1 #include <linux/string.h>
2 #include <linux/kernel.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/mod_devicetable.h>
6 #include <linux/slab.h>
9 #include <asm/of_device.h>
12 * of_match_device - Tell if an of_device structure has a matching
14 * @ids: array of of device match structures to search in
15 * @dev: the of device structure to match against
17 * Used by a driver to check whether an of_device present in the
18 * system is in its list of supported devices.
20 const struct of_device_id *of_match_device(const struct of_device_id *matches,
21 const struct of_device *dev)
25 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
28 match &= dev->node->name
29 && !strcmp(matches->name, dev->node->name);
31 match &= dev->node->type
32 && !strcmp(matches->type, dev->node->type);
33 if (matches->compatible[0])
34 match &= of_device_is_compatible(dev->node,
43 static int of_platform_bus_match(struct device *dev, struct device_driver *drv)
45 struct of_device * of_dev = to_of_device(dev);
46 struct of_platform_driver * of_drv = to_of_platform_driver(drv);
47 const struct of_device_id * matches = of_drv->match_table;
52 return of_match_device(matches, of_dev) != NULL;
55 struct of_device *of_dev_get(struct of_device *dev)
61 tmp = get_device(&dev->dev);
63 return to_of_device(tmp);
68 void of_dev_put(struct of_device *dev)
71 put_device(&dev->dev);
75 static int of_device_probe(struct device *dev)
78 struct of_platform_driver *drv;
79 struct of_device *of_dev;
80 const struct of_device_id *match;
82 drv = to_of_platform_driver(dev->driver);
83 of_dev = to_of_device(dev);
90 match = of_match_device(drv->match_table, of_dev);
92 error = drv->probe(of_dev, match);
99 static int of_device_remove(struct device *dev)
101 struct of_device * of_dev = to_of_device(dev);
102 struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
104 if (dev->driver && drv->remove)
109 static int of_device_suspend(struct device *dev, pm_message_t state)
111 struct of_device * of_dev = to_of_device(dev);
112 struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
115 if (dev->driver && drv->suspend)
116 error = drv->suspend(of_dev, state);
120 static int of_device_resume(struct device * dev)
122 struct of_device * of_dev = to_of_device(dev);
123 struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
126 if (dev->driver && drv->resume)
127 error = drv->resume(of_dev);
131 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
133 unsigned long ret = res->start + offset;
136 if (res->flags & IORESOURCE_MEM)
137 r = request_mem_region(ret, size, name);
139 r = request_region(ret, size, name);
143 return (void __iomem *) ret;
145 EXPORT_SYMBOL(of_ioremap);
147 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
149 if (res->flags & IORESOURCE_MEM)
150 release_mem_region((unsigned long) base, size);
152 release_region((unsigned long) base, size);
154 EXPORT_SYMBOL(of_iounmap);
156 static int node_match(struct device *dev, void *data)
158 struct of_device *op = to_of_device(dev);
159 struct device_node *dp = data;
161 return (op->node == dp);
164 struct of_device *of_find_device_by_node(struct device_node *dp)
166 struct device *dev = bus_find_device(&of_bus_type, NULL,
170 return to_of_device(dev);
174 EXPORT_SYMBOL(of_find_device_by_node);
177 struct bus_type isa_bus_type = {
179 .match = of_platform_bus_match,
180 .probe = of_device_probe,
181 .remove = of_device_remove,
182 .suspend = of_device_suspend,
183 .resume = of_device_resume,
185 EXPORT_SYMBOL(isa_bus_type);
187 struct bus_type ebus_bus_type = {
189 .match = of_platform_bus_match,
190 .probe = of_device_probe,
191 .remove = of_device_remove,
192 .suspend = of_device_suspend,
193 .resume = of_device_resume,
195 EXPORT_SYMBOL(ebus_bus_type);
199 struct bus_type sbus_bus_type = {
201 .match = of_platform_bus_match,
202 .probe = of_device_probe,
203 .remove = of_device_remove,
204 .suspend = of_device_suspend,
205 .resume = of_device_resume,
207 EXPORT_SYMBOL(sbus_bus_type);
210 struct bus_type of_bus_type = {
212 .match = of_platform_bus_match,
213 .probe = of_device_probe,
214 .remove = of_device_remove,
215 .suspend = of_device_suspend,
216 .resume = of_device_resume,
218 EXPORT_SYMBOL(of_bus_type);
220 static inline u64 of_read_addr(const u32 *cell, int size)
224 r = (r << 32) | *(cell++);
228 static void __init get_cells(struct device_node *dp,
229 int *addrc, int *sizec)
232 *addrc = of_n_addr_cells(dp);
234 *sizec = of_n_size_cells(dp);
237 /* Max address size we deal with */
238 #define OF_MAX_ADDR_CELLS 4
242 const char *addr_prop_name;
243 int (*match)(struct device_node *parent);
244 void (*count_cells)(struct device_node *child,
245 int *addrc, int *sizec);
246 int (*map)(u32 *addr, const u32 *range,
247 int na, int ns, int pna);
248 unsigned int (*get_flags)(u32 *addr);
252 * Default translator (generic bus)
255 static void of_bus_default_count_cells(struct device_node *dev,
256 int *addrc, int *sizec)
258 get_cells(dev, addrc, sizec);
261 /* Make sure the least significant 64-bits are in-range. Even
262 * for 3 or 4 cell values it is a good enough approximation.
264 static int of_out_of_range(const u32 *addr, const u32 *base,
265 const u32 *size, int na, int ns)
267 u64 a = of_read_addr(addr, na);
268 u64 b = of_read_addr(base, na);
273 b += of_read_addr(size, ns);
280 static int of_bus_default_map(u32 *addr, const u32 *range,
281 int na, int ns, int pna)
283 u32 result[OF_MAX_ADDR_CELLS];
287 printk("of_device: Cannot handle size cells (%d) > 2.", ns);
291 if (of_out_of_range(addr, range, range + na + pna, na, ns))
294 /* Start with the parent range base. */
295 memcpy(result, range + na, pna * 4);
297 /* Add in the child address offset. */
298 for (i = 0; i < na; i++)
299 result[pna - 1 - i] +=
303 memcpy(addr, result, pna * 4);
308 static unsigned int of_bus_default_get_flags(u32 *addr)
310 return IORESOURCE_MEM;
314 * PCI bus specific translator
317 static int of_bus_pci_match(struct device_node *np)
319 if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
320 /* Do not do PCI specific frobbing if the
321 * PCI bridge lacks a ranges property. We
322 * want to pass it through up to the next
323 * parent as-is, not with the PCI translate
324 * method which chops off the top address cell.
326 if (!of_find_property(np, "ranges", NULL))
335 static void of_bus_pci_count_cells(struct device_node *np,
336 int *addrc, int *sizec)
344 static int of_bus_pci_map(u32 *addr, const u32 *range,
345 int na, int ns, int pna)
347 u32 result[OF_MAX_ADDR_CELLS];
350 /* Check address type match */
351 if ((addr[0] ^ range[0]) & 0x03000000)
354 if (of_out_of_range(addr + 1, range + 1, range + na + pna,
358 /* Start with the parent range base. */
359 memcpy(result, range + na, pna * 4);
361 /* Add in the child address offset, skipping high cell. */
362 for (i = 0; i < na - 1; i++)
363 result[pna - 1 - i] +=
367 memcpy(addr, result, pna * 4);
372 static unsigned int of_bus_pci_get_flags(u32 *addr)
374 unsigned int flags = 0;
377 switch((w >> 24) & 0x03) {
379 flags |= IORESOURCE_IO;
380 case 0x02: /* 32 bits */
381 case 0x03: /* 64 bits */
382 flags |= IORESOURCE_MEM;
385 flags |= IORESOURCE_PREFETCH;
390 * SBUS bus specific translator
393 static int of_bus_sbus_match(struct device_node *np)
395 return !strcmp(np->name, "sbus") ||
396 !strcmp(np->name, "sbi");
399 static void of_bus_sbus_count_cells(struct device_node *child,
400 int *addrc, int *sizec)
409 * FHC/Central bus specific translator.
411 * This is just needed to hard-code the address and size cell
412 * counts. 'fhc' and 'central' nodes lack the #address-cells and
413 * #size-cells properties, and if you walk to the root on such
414 * Enterprise boxes all you'll get is a #size-cells of 2 which is
415 * not what we want to use.
417 static int of_bus_fhc_match(struct device_node *np)
419 return !strcmp(np->name, "fhc") ||
420 !strcmp(np->name, "central");
423 #define of_bus_fhc_count_cells of_bus_sbus_count_cells
426 * Array of bus specific translators
429 static struct of_bus of_busses[] = {
433 .addr_prop_name = "assigned-addresses",
434 .match = of_bus_pci_match,
435 .count_cells = of_bus_pci_count_cells,
436 .map = of_bus_pci_map,
437 .get_flags = of_bus_pci_get_flags,
442 .addr_prop_name = "reg",
443 .match = of_bus_sbus_match,
444 .count_cells = of_bus_sbus_count_cells,
445 .map = of_bus_default_map,
446 .get_flags = of_bus_default_get_flags,
451 .addr_prop_name = "reg",
452 .match = of_bus_fhc_match,
453 .count_cells = of_bus_fhc_count_cells,
454 .map = of_bus_default_map,
455 .get_flags = of_bus_default_get_flags,
460 .addr_prop_name = "reg",
462 .count_cells = of_bus_default_count_cells,
463 .map = of_bus_default_map,
464 .get_flags = of_bus_default_get_flags,
468 static struct of_bus *of_match_bus(struct device_node *np)
472 for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
473 if (!of_busses[i].match || of_busses[i].match(np))
474 return &of_busses[i];
479 static int __init build_one_resource(struct device_node *parent,
483 int na, int ns, int pna)
489 ranges = of_get_property(parent, "ranges", &rlen);
490 if (ranges == NULL || rlen == 0) {
491 u32 result[OF_MAX_ADDR_CELLS];
494 memset(result, 0, pna * 4);
495 for (i = 0; i < na; i++)
496 result[pna - 1 - i] =
499 memcpy(addr, result, pna * 4);
503 /* Now walk through the ranges */
505 rone = na + pna + ns;
506 for (; rlen >= rone; rlen -= rone, ranges += rone) {
507 if (!bus->map(addr, ranges, na, ns, pna))
514 static int __init use_1to1_mapping(struct device_node *pp)
518 /* If this is on the PMU bus, don't try to translate it even
519 * if a ranges property exists.
521 if (!strcmp(pp->name, "pmu"))
524 /* If we have a ranges property in the parent, use it. */
525 if (of_find_property(pp, "ranges", NULL) != NULL)
528 /* If the parent is the dma node of an ISA bus, pass
529 * the translation up to the root.
531 if (!strcmp(pp->name, "dma"))
534 /* Similarly for Simba PCI bridges. */
535 model = of_get_property(pp, "model", NULL);
536 if (model && !strcmp(model, "SUNW,simba"))
542 static int of_resource_verbose;
544 static void __init build_device_resources(struct of_device *op,
545 struct device *parent)
547 struct of_device *p_op;
556 p_op = to_of_device(parent);
557 bus = of_match_bus(p_op->node);
558 bus->count_cells(op->node, &na, &ns);
560 preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
561 if (!preg || num_reg == 0)
564 /* Convert to num-cells. */
567 /* Convert to num-entries. */
570 /* Prevent overruning the op->resources[] array. */
571 if (num_reg > PROMREG_MAX) {
572 printk(KERN_WARNING "%s: Too many regs (%d), "
574 op->node->full_name, num_reg, PROMREG_MAX);
575 num_reg = PROMREG_MAX;
578 for (index = 0; index < num_reg; index++) {
579 struct resource *r = &op->resource[index];
580 u32 addr[OF_MAX_ADDR_CELLS];
581 u32 *reg = (preg + (index * ((na + ns) * 4)));
582 struct device_node *dp = op->node;
583 struct device_node *pp = p_op->node;
584 struct of_bus *pbus, *dbus;
585 u64 size, result = OF_BAD_ADDR;
590 size = of_read_addr(reg + na, ns);
591 flags = bus->get_flags(reg);
593 memcpy(addr, reg, na * 4);
595 if (use_1to1_mapping(pp)) {
596 result = of_read_addr(addr, na);
608 result = of_read_addr(addr, dna);
612 pbus = of_match_bus(pp);
613 pbus->count_cells(dp, &pna, &pns);
615 if (build_one_resource(dp, dbus, pbus, addr,
625 memset(r, 0, sizeof(*r));
627 if (of_resource_verbose)
628 printk("%s reg[%d] -> %lx\n",
629 op->node->full_name, index,
632 if (result != OF_BAD_ADDR) {
633 if (tlb_type == hypervisor)
634 result &= 0x0fffffffffffffffUL;
637 r->end = result + size - 1;
640 r->name = op->node->name;
644 static struct device_node * __init
645 apply_interrupt_map(struct device_node *dp, struct device_node *pp,
646 u32 *imap, int imlen, u32 *imask,
649 struct device_node *cp;
650 unsigned int irq = *irq_p;
656 bus = of_match_bus(pp);
657 bus->count_cells(dp, &na, NULL);
659 reg = of_get_property(dp, "reg", &num_reg);
660 if (!reg || !num_reg)
663 imlen /= ((na + 3) * 4);
665 for (i = 0; i < imlen; i++) {
668 for (j = 0; j < na; j++) {
669 if ((reg[j] & imask[j]) != imap[j])
672 if (imap[na] == irq) {
673 handle = imap[na + 1];
682 /* Psycho and Sabre PCI controllers can have 'interrupt-map'
683 * properties that do not include the on-board device
684 * interrupts. Instead, the device's 'interrupts' property
685 * is already a fully specified INO value.
687 * Handle this by deciding that, if we didn't get a
688 * match in the parent's 'interrupt-map', and the
689 * parent is an IRQ translater, then use the parent as
690 * our IRQ controller.
699 cp = of_find_node_by_phandle(handle);
704 static unsigned int __init pci_irq_swizzle(struct device_node *dp,
705 struct device_node *pp,
708 struct linux_prom_pci_registers *regs;
709 unsigned int bus, devfn, slot, ret;
711 if (irq < 1 || irq > 4)
714 regs = of_get_property(dp, "reg", NULL);
718 bus = (regs->phys_hi >> 16) & 0xff;
719 devfn = (regs->phys_hi >> 8) & 0xff;
720 slot = (devfn >> 3) & 0x1f;
723 /* Derived from Table 8-3, U2P User's Manual. This branch
724 * is handling a PCI controller that lacks a proper set of
725 * interrupt-map and interrupt-map-mask properties. The
726 * Ultra-E450 is one example.
728 * The bit layout is BSSLL, where:
729 * B: 0 on bus A, 1 on bus B
730 * D: 2-bit slot number, derived from PCI device number as
731 * (dev - 1) for bus A, or (dev - 2) for bus B
732 * L: 2-bit line number
734 * Actually, more "portable" way to calculate the funky
735 * slot number is to subtract pbm->pci_first_slot from the
736 * device number, and that's exactly what the pre-OF
737 * sparc64 code did, but we're building this stuff generically
738 * using the OBP tree, not in the PCI controller layer.
743 slot = (slot - 1) << 2;
747 slot = (slot - 2) << 2;
751 ret = (bus | slot | irq);
753 /* Going through a PCI-PCI bridge that lacks a set of
754 * interrupt-map and interrupt-map-mask properties.
756 ret = ((irq - 1 + (slot & 3)) & 3) + 1;
762 static int of_irq_verbose;
764 static unsigned int __init build_one_device_irq(struct of_device *op,
765 struct device *parent,
768 struct device_node *dp = op->node;
769 struct device_node *pp, *ip;
770 unsigned int orig_irq = irq;
772 if (irq == 0xffffffff)
776 irq = dp->irq_trans->irq_build(dp, irq,
777 dp->irq_trans->data);
780 printk("%s: direct translate %x --> %x\n",
781 dp->full_name, orig_irq, irq);
786 /* Something more complicated. Walk up to the root, applying
787 * interrupt-map or bus specific translations, until we hit
790 * If we hit a bus type or situation we cannot handle, we
791 * stop and assume that the original IRQ number was in a
792 * format which has special meaning to it's immediate parent.
800 imap = of_get_property(pp, "interrupt-map", &imlen);
801 imsk = of_get_property(pp, "interrupt-map-mask", NULL);
803 struct device_node *iret;
804 int this_orig_irq = irq;
806 iret = apply_interrupt_map(dp, pp,
811 printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
813 pp->full_name, this_orig_irq,
814 (iret ? iret->full_name : "NULL"), irq);
819 if (iret->irq_trans) {
824 if (!strcmp(pp->type, "pci") ||
825 !strcmp(pp->type, "pciex")) {
826 unsigned int this_orig_irq = irq;
828 irq = pci_irq_swizzle(dp, pp, irq);
830 printk("%s: PCI swizzle [%s] "
833 pp->full_name, this_orig_irq,
849 irq = ip->irq_trans->irq_build(op->node, irq,
850 ip->irq_trans->data);
852 printk("%s: Apply IRQ trans [%s] %x --> %x\n",
853 op->node->full_name, ip->full_name, orig_irq, irq);
858 static struct of_device * __init scan_one_device(struct device_node *dp,
859 struct device *parent)
861 struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
870 op->clock_freq = of_getintprop_default(dp, "clock-frequency",
872 op->portid = of_getintprop_default(dp, "upa-portid", -1);
873 if (op->portid == -1)
874 op->portid = of_getintprop_default(dp, "portid", -1);
876 irq = of_get_property(dp, "interrupts", &len);
878 memcpy(op->irqs, irq, len);
879 op->num_irqs = len / 4;
884 /* Prevent overruning the op->irqs[] array. */
885 if (op->num_irqs > PROMINTR_MAX) {
886 printk(KERN_WARNING "%s: Too many irqs (%d), "
888 dp->full_name, op->num_irqs, PROMINTR_MAX);
889 op->num_irqs = PROMINTR_MAX;
892 build_device_resources(op, parent);
893 for (i = 0; i < op->num_irqs; i++)
894 op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
896 op->dev.parent = parent;
897 op->dev.bus = &of_bus_type;
899 strcpy(op->dev.bus_id, "root");
901 sprintf(op->dev.bus_id, "%08x", dp->node);
903 if (of_device_register(op)) {
904 printk("%s: Could not register of device.\n",
913 static void __init scan_tree(struct device_node *dp, struct device *parent)
916 struct of_device *op = scan_one_device(dp, parent);
919 scan_tree(dp->child, &op->dev);
925 static void __init scan_of_devices(void)
927 struct device_node *root = of_find_node_by_path("/");
928 struct of_device *parent;
930 parent = scan_one_device(root, NULL);
934 scan_tree(root->child, &parent->dev);
937 static int __init of_bus_driver_init(void)
941 err = bus_register(&of_bus_type);
944 err = bus_register(&isa_bus_type);
946 err = bus_register(&ebus_bus_type);
950 err = bus_register(&sbus_bus_type);
959 postcore_initcall(of_bus_driver_init);
961 static int __init of_debug(char *str)
965 get_option(&str, &val);
967 of_resource_verbose = 1;
973 __setup("of_debug=", of_debug);
975 int of_register_driver(struct of_platform_driver *drv, struct bus_type *bus)
977 /* initialize common driver fields */
978 drv->driver.name = drv->name;
979 drv->driver.bus = bus;
981 /* register with core */
982 return driver_register(&drv->driver);
985 void of_unregister_driver(struct of_platform_driver *drv)
987 driver_unregister(&drv->driver);
991 static ssize_t dev_show_devspec(struct device *dev, struct device_attribute *attr, char *buf)
993 struct of_device *ofdev;
995 ofdev = to_of_device(dev);
996 return sprintf(buf, "%s", ofdev->node->full_name);
999 static DEVICE_ATTR(devspec, S_IRUGO, dev_show_devspec, NULL);
1002 * of_release_dev - free an of device structure when all users of it are finished.
1003 * @dev: device that's been disconnected
1005 * Will be called only by the device core when all users of this of device are
1008 void of_release_dev(struct device *dev)
1010 struct of_device *ofdev;
1012 ofdev = to_of_device(dev);
1017 int of_device_register(struct of_device *ofdev)
1021 BUG_ON(ofdev->node == NULL);
1023 rc = device_register(&ofdev->dev);
1027 rc = device_create_file(&ofdev->dev, &dev_attr_devspec);
1029 device_unregister(&ofdev->dev);
1034 void of_device_unregister(struct of_device *ofdev)
1036 device_remove_file(&ofdev->dev, &dev_attr_devspec);
1037 device_unregister(&ofdev->dev);
1040 struct of_device* of_platform_device_create(struct device_node *np,
1042 struct device *parent,
1043 struct bus_type *bus)
1045 struct of_device *dev;
1047 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1051 dev->dev.parent = parent;
1053 dev->dev.release = of_release_dev;
1055 strlcpy(dev->dev.bus_id, bus_id, BUS_ID_SIZE);
1057 if (of_device_register(dev) != 0) {
1065 EXPORT_SYMBOL(of_match_device);
1066 EXPORT_SYMBOL(of_register_driver);
1067 EXPORT_SYMBOL(of_unregister_driver);
1068 EXPORT_SYMBOL(of_device_register);
1069 EXPORT_SYMBOL(of_device_unregister);
1070 EXPORT_SYMBOL(of_dev_get);
1071 EXPORT_SYMBOL(of_dev_put);
1072 EXPORT_SYMBOL(of_platform_device_create);
1073 EXPORT_SYMBOL(of_release_dev);