Fix misuses of bdevname()
[linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include "ext4_jbd2.h"
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47         int ea_blocks = EXT4_I(inode)->i_file_acl ?
48                 (inode->i_sb->s_blocksize >> 9) : 0;
49
50         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52
53 /*
54  * The ext4 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases.
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63                         struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65         int err;
66
67         might_sleep();
68
69         BUFFER_TRACE(bh, "enter");
70
71         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72                   "data mode %lx\n",
73                   bh, is_metadata, inode->i_mode,
74                   test_opt(inode->i_sb, DATA_FLAGS));
75
76         /* Never use the revoke function if we are doing full data
77          * journaling: there is no need to, and a V1 superblock won't
78          * support it.  Otherwise, only skip the revoke on un-journaled
79          * data blocks. */
80
81         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82             (!is_metadata && !ext4_should_journal_data(inode))) {
83                 if (bh) {
84                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
85                         return ext4_journal_forget(handle, bh);
86                 }
87                 return 0;
88         }
89
90         /*
91          * data!=journal && (is_metadata || should_journal_data(inode))
92          */
93         BUFFER_TRACE(bh, "call ext4_journal_revoke");
94         err = ext4_journal_revoke(handle, blocknr, bh);
95         if (err)
96                 ext4_abort(inode->i_sb, __func__,
97                            "error %d when attempting revoke", err);
98         BUFFER_TRACE(bh, "exit");
99         return err;
100 }
101
102 /*
103  * Work out how many blocks we need to proceed with the next chunk of a
104  * truncate transaction.
105  */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108         ext4_lblk_t needed;
109
110         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112         /* Give ourselves just enough room to cope with inodes in which
113          * i_blocks is corrupt: we've seen disk corruptions in the past
114          * which resulted in random data in an inode which looked enough
115          * like a regular file for ext4 to try to delete it.  Things
116          * will go a bit crazy if that happens, but at least we should
117          * try not to panic the whole kernel. */
118         if (needed < 2)
119                 needed = 2;
120
121         /* But we need to bound the transaction so we don't overflow the
122          * journal. */
123         if (needed > EXT4_MAX_TRANS_DATA)
124                 needed = EXT4_MAX_TRANS_DATA;
125
126         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128
129 /*
130  * Truncate transactions can be complex and absolutely huge.  So we need to
131  * be able to restart the transaction at a conventient checkpoint to make
132  * sure we don't overflow the journal.
133  *
134  * start_transaction gets us a new handle for a truncate transaction,
135  * and extend_transaction tries to extend the existing one a bit.  If
136  * extend fails, we need to propagate the failure up and restart the
137  * transaction in the top-level truncate loop. --sct
138  */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141         handle_t *result;
142
143         result = ext4_journal_start(inode, blocks_for_truncate(inode));
144         if (!IS_ERR(result))
145                 return result;
146
147         ext4_std_error(inode->i_sb, PTR_ERR(result));
148         return result;
149 }
150
151 /*
152  * Try to extend this transaction for the purposes of truncation.
153  *
154  * Returns 0 if we managed to create more room.  If we can't create more
155  * room, and the transaction must be restarted we return 1.
156  */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160                 return 0;
161         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162                 return 0;
163         return 1;
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173         jbd_debug(2, "restarting handle %p\n", handle);
174         return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_delete_inode (struct inode * inode)
181 {
182         handle_t *handle;
183
184         truncate_inode_pages(&inode->i_data, 0);
185
186         if (is_bad_inode(inode))
187                 goto no_delete;
188
189         handle = start_transaction(inode);
190         if (IS_ERR(handle)) {
191                 /*
192                  * If we're going to skip the normal cleanup, we still need to
193                  * make sure that the in-core orphan linked list is properly
194                  * cleaned up.
195                  */
196                 ext4_orphan_del(NULL, inode);
197                 goto no_delete;
198         }
199
200         if (IS_SYNC(inode))
201                 handle->h_sync = 1;
202         inode->i_size = 0;
203         if (inode->i_blocks)
204                 ext4_truncate(inode);
205         /*
206          * Kill off the orphan record which ext4_truncate created.
207          * AKPM: I think this can be inside the above `if'.
208          * Note that ext4_orphan_del() has to be able to cope with the
209          * deletion of a non-existent orphan - this is because we don't
210          * know if ext4_truncate() actually created an orphan record.
211          * (Well, we could do this if we need to, but heck - it works)
212          */
213         ext4_orphan_del(handle, inode);
214         EXT4_I(inode)->i_dtime  = get_seconds();
215
216         /*
217          * One subtle ordering requirement: if anything has gone wrong
218          * (transaction abort, IO errors, whatever), then we can still
219          * do these next steps (the fs will already have been marked as
220          * having errors), but we can't free the inode if the mark_dirty
221          * fails.
222          */
223         if (ext4_mark_inode_dirty(handle, inode))
224                 /* If that failed, just do the required in-core inode clear. */
225                 clear_inode(inode);
226         else
227                 ext4_free_inode(handle, inode);
228         ext4_journal_stop(handle);
229         return;
230 no_delete:
231         clear_inode(inode);     /* We must guarantee clearing of inode... */
232 }
233
234 typedef struct {
235         __le32  *p;
236         __le32  key;
237         struct buffer_head *bh;
238 } Indirect;
239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242         p->key = *(p->p = v);
243         p->bh = bh;
244 }
245
246 /**
247  *      ext4_block_to_path - parse the block number into array of offsets
248  *      @inode: inode in question (we are only interested in its superblock)
249  *      @i_block: block number to be parsed
250  *      @offsets: array to store the offsets in
251  *      @boundary: set this non-zero if the referred-to block is likely to be
252  *             followed (on disk) by an indirect block.
253  *
254  *      To store the locations of file's data ext4 uses a data structure common
255  *      for UNIX filesystems - tree of pointers anchored in the inode, with
256  *      data blocks at leaves and indirect blocks in intermediate nodes.
257  *      This function translates the block number into path in that tree -
258  *      return value is the path length and @offsets[n] is the offset of
259  *      pointer to (n+1)th node in the nth one. If @block is out of range
260  *      (negative or too large) warning is printed and zero returned.
261  *
262  *      Note: function doesn't find node addresses, so no IO is needed. All
263  *      we need to know is the capacity of indirect blocks (taken from the
264  *      inode->i_sb).
265  */
266
267 /*
268  * Portability note: the last comparison (check that we fit into triple
269  * indirect block) is spelled differently, because otherwise on an
270  * architecture with 32-bit longs and 8Kb pages we might get into trouble
271  * if our filesystem had 8Kb blocks. We might use long long, but that would
272  * kill us on x86. Oh, well, at least the sign propagation does not matter -
273  * i_block would have to be negative in the very beginning, so we would not
274  * get there at all.
275  */
276
277 static int ext4_block_to_path(struct inode *inode,
278                         ext4_lblk_t i_block,
279                         ext4_lblk_t offsets[4], int *boundary)
280 {
281         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283         const long direct_blocks = EXT4_NDIR_BLOCKS,
284                 indirect_blocks = ptrs,
285                 double_blocks = (1 << (ptrs_bits * 2));
286         int n = 0;
287         int final = 0;
288
289         if (i_block < 0) {
290                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291         } else if (i_block < direct_blocks) {
292                 offsets[n++] = i_block;
293                 final = direct_blocks;
294         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295                 offsets[n++] = EXT4_IND_BLOCK;
296                 offsets[n++] = i_block;
297                 final = ptrs;
298         } else if ((i_block -= indirect_blocks) < double_blocks) {
299                 offsets[n++] = EXT4_DIND_BLOCK;
300                 offsets[n++] = i_block >> ptrs_bits;
301                 offsets[n++] = i_block & (ptrs - 1);
302                 final = ptrs;
303         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304                 offsets[n++] = EXT4_TIND_BLOCK;
305                 offsets[n++] = i_block >> (ptrs_bits * 2);
306                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307                 offsets[n++] = i_block & (ptrs - 1);
308                 final = ptrs;
309         } else {
310                 ext4_warning(inode->i_sb, "ext4_block_to_path",
311                                 "block %lu > max",
312                                 i_block + direct_blocks +
313                                 indirect_blocks + double_blocks);
314         }
315         if (boundary)
316                 *boundary = final - 1 - (i_block & (ptrs - 1));
317         return n;
318 }
319
320 /**
321  *      ext4_get_branch - read the chain of indirect blocks leading to data
322  *      @inode: inode in question
323  *      @depth: depth of the chain (1 - direct pointer, etc.)
324  *      @offsets: offsets of pointers in inode/indirect blocks
325  *      @chain: place to store the result
326  *      @err: here we store the error value
327  *
328  *      Function fills the array of triples <key, p, bh> and returns %NULL
329  *      if everything went OK or the pointer to the last filled triple
330  *      (incomplete one) otherwise. Upon the return chain[i].key contains
331  *      the number of (i+1)-th block in the chain (as it is stored in memory,
332  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
333  *      number (it points into struct inode for i==0 and into the bh->b_data
334  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335  *      block for i>0 and NULL for i==0. In other words, it holds the block
336  *      numbers of the chain, addresses they were taken from (and where we can
337  *      verify that chain did not change) and buffer_heads hosting these
338  *      numbers.
339  *
340  *      Function stops when it stumbles upon zero pointer (absent block)
341  *              (pointer to last triple returned, *@err == 0)
342  *      or when it gets an IO error reading an indirect block
343  *              (ditto, *@err == -EIO)
344  *      or when it reads all @depth-1 indirect blocks successfully and finds
345  *      the whole chain, all way to the data (returns %NULL, *err == 0).
346  *
347  *      Need to be called with
348  *      down_read(&EXT4_I(inode)->i_data_sem)
349  */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351                                  ext4_lblk_t  *offsets,
352                                  Indirect chain[4], int *err)
353 {
354         struct super_block *sb = inode->i_sb;
355         Indirect *p = chain;
356         struct buffer_head *bh;
357
358         *err = 0;
359         /* i_data is not going away, no lock needed */
360         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361         if (!p->key)
362                 goto no_block;
363         while (--depth) {
364                 bh = sb_bread(sb, le32_to_cpu(p->key));
365                 if (!bh)
366                         goto failure;
367                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368                 /* Reader: end */
369                 if (!p->key)
370                         goto no_block;
371         }
372         return NULL;
373
374 failure:
375         *err = -EIO;
376 no_block:
377         return p;
378 }
379
380 /**
381  *      ext4_find_near - find a place for allocation with sufficient locality
382  *      @inode: owner
383  *      @ind: descriptor of indirect block.
384  *
385  *      This function returns the preferred place for block allocation.
386  *      It is used when heuristic for sequential allocation fails.
387  *      Rules are:
388  *        + if there is a block to the left of our position - allocate near it.
389  *        + if pointer will live in indirect block - allocate near that block.
390  *        + if pointer will live in inode - allocate in the same
391  *          cylinder group.
392  *
393  * In the latter case we colour the starting block by the callers PID to
394  * prevent it from clashing with concurrent allocations for a different inode
395  * in the same block group.   The PID is used here so that functionally related
396  * files will be close-by on-disk.
397  *
398  *      Caller must make sure that @ind is valid and will stay that way.
399  */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402         struct ext4_inode_info *ei = EXT4_I(inode);
403         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404         __le32 *p;
405         ext4_fsblk_t bg_start;
406         ext4_fsblk_t last_block;
407         ext4_grpblk_t colour;
408
409         /* Try to find previous block */
410         for (p = ind->p - 1; p >= start; p--) {
411                 if (*p)
412                         return le32_to_cpu(*p);
413         }
414
415         /* No such thing, so let's try location of indirect block */
416         if (ind->bh)
417                 return ind->bh->b_blocknr;
418
419         /*
420          * It is going to be referred to from the inode itself? OK, just put it
421          * into the same cylinder group then.
422          */
423         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
424         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
425
426         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
427                 colour = (current->pid % 16) *
428                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
429         else
430                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
431         return bg_start + colour;
432 }
433
434 /**
435  *      ext4_find_goal - find a preferred place for allocation.
436  *      @inode: owner
437  *      @block:  block we want
438  *      @partial: pointer to the last triple within a chain
439  *
440  *      Normally this function find the preferred place for block allocation,
441  *      returns it.
442  */
443 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
444                 Indirect *partial)
445 {
446         struct ext4_block_alloc_info *block_i;
447
448         block_i =  EXT4_I(inode)->i_block_alloc_info;
449
450         /*
451          * try the heuristic for sequential allocation,
452          * failing that at least try to get decent locality.
453          */
454         if (block_i && (block == block_i->last_alloc_logical_block + 1)
455                 && (block_i->last_alloc_physical_block != 0)) {
456                 return block_i->last_alloc_physical_block + 1;
457         }
458
459         return ext4_find_near(inode, partial);
460 }
461
462 /**
463  *      ext4_blks_to_allocate: Look up the block map and count the number
464  *      of direct blocks need to be allocated for the given branch.
465  *
466  *      @branch: chain of indirect blocks
467  *      @k: number of blocks need for indirect blocks
468  *      @blks: number of data blocks to be mapped.
469  *      @blocks_to_boundary:  the offset in the indirect block
470  *
471  *      return the total number of blocks to be allocate, including the
472  *      direct and indirect blocks.
473  */
474 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
475                 int blocks_to_boundary)
476 {
477         unsigned long count = 0;
478
479         /*
480          * Simple case, [t,d]Indirect block(s) has not allocated yet
481          * then it's clear blocks on that path have not allocated
482          */
483         if (k > 0) {
484                 /* right now we don't handle cross boundary allocation */
485                 if (blks < blocks_to_boundary + 1)
486                         count += blks;
487                 else
488                         count += blocks_to_boundary + 1;
489                 return count;
490         }
491
492         count++;
493         while (count < blks && count <= blocks_to_boundary &&
494                 le32_to_cpu(*(branch[0].p + count)) == 0) {
495                 count++;
496         }
497         return count;
498 }
499
500 /**
501  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
502  *      @indirect_blks: the number of blocks need to allocate for indirect
503  *                      blocks
504  *
505  *      @new_blocks: on return it will store the new block numbers for
506  *      the indirect blocks(if needed) and the first direct block,
507  *      @blks:  on return it will store the total number of allocated
508  *              direct blocks
509  */
510 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
511                         ext4_fsblk_t goal, int indirect_blks, int blks,
512                         ext4_fsblk_t new_blocks[4], int *err)
513 {
514         int target, i;
515         unsigned long count = 0;
516         int index = 0;
517         ext4_fsblk_t current_block = 0;
518         int ret = 0;
519
520         /*
521          * Here we try to allocate the requested multiple blocks at once,
522          * on a best-effort basis.
523          * To build a branch, we should allocate blocks for
524          * the indirect blocks(if not allocated yet), and at least
525          * the first direct block of this branch.  That's the
526          * minimum number of blocks need to allocate(required)
527          */
528         target = blks + indirect_blks;
529
530         while (1) {
531                 count = target;
532                 /* allocating blocks for indirect blocks and direct blocks */
533                 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
534                 if (*err)
535                         goto failed_out;
536
537                 target -= count;
538                 /* allocate blocks for indirect blocks */
539                 while (index < indirect_blks && count) {
540                         new_blocks[index++] = current_block++;
541                         count--;
542                 }
543
544                 if (count > 0)
545                         break;
546         }
547
548         /* save the new block number for the first direct block */
549         new_blocks[index] = current_block;
550
551         /* total number of blocks allocated for direct blocks */
552         ret = count;
553         *err = 0;
554         return ret;
555 failed_out:
556         for (i = 0; i <index; i++)
557                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
558         return ret;
559 }
560
561 /**
562  *      ext4_alloc_branch - allocate and set up a chain of blocks.
563  *      @inode: owner
564  *      @indirect_blks: number of allocated indirect blocks
565  *      @blks: number of allocated direct blocks
566  *      @offsets: offsets (in the blocks) to store the pointers to next.
567  *      @branch: place to store the chain in.
568  *
569  *      This function allocates blocks, zeroes out all but the last one,
570  *      links them into chain and (if we are synchronous) writes them to disk.
571  *      In other words, it prepares a branch that can be spliced onto the
572  *      inode. It stores the information about that chain in the branch[], in
573  *      the same format as ext4_get_branch() would do. We are calling it after
574  *      we had read the existing part of chain and partial points to the last
575  *      triple of that (one with zero ->key). Upon the exit we have the same
576  *      picture as after the successful ext4_get_block(), except that in one
577  *      place chain is disconnected - *branch->p is still zero (we did not
578  *      set the last link), but branch->key contains the number that should
579  *      be placed into *branch->p to fill that gap.
580  *
581  *      If allocation fails we free all blocks we've allocated (and forget
582  *      their buffer_heads) and return the error value the from failed
583  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
584  *      as described above and return 0.
585  */
586 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
587                         int indirect_blks, int *blks, ext4_fsblk_t goal,
588                         ext4_lblk_t *offsets, Indirect *branch)
589 {
590         int blocksize = inode->i_sb->s_blocksize;
591         int i, n = 0;
592         int err = 0;
593         struct buffer_head *bh;
594         int num;
595         ext4_fsblk_t new_blocks[4];
596         ext4_fsblk_t current_block;
597
598         num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
599                                 *blks, new_blocks, &err);
600         if (err)
601                 return err;
602
603         branch[0].key = cpu_to_le32(new_blocks[0]);
604         /*
605          * metadata blocks and data blocks are allocated.
606          */
607         for (n = 1; n <= indirect_blks;  n++) {
608                 /*
609                  * Get buffer_head for parent block, zero it out
610                  * and set the pointer to new one, then send
611                  * parent to disk.
612                  */
613                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
614                 branch[n].bh = bh;
615                 lock_buffer(bh);
616                 BUFFER_TRACE(bh, "call get_create_access");
617                 err = ext4_journal_get_create_access(handle, bh);
618                 if (err) {
619                         unlock_buffer(bh);
620                         brelse(bh);
621                         goto failed;
622                 }
623
624                 memset(bh->b_data, 0, blocksize);
625                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
626                 branch[n].key = cpu_to_le32(new_blocks[n]);
627                 *branch[n].p = branch[n].key;
628                 if ( n == indirect_blks) {
629                         current_block = new_blocks[n];
630                         /*
631                          * End of chain, update the last new metablock of
632                          * the chain to point to the new allocated
633                          * data blocks numbers
634                          */
635                         for (i=1; i < num; i++)
636                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
637                 }
638                 BUFFER_TRACE(bh, "marking uptodate");
639                 set_buffer_uptodate(bh);
640                 unlock_buffer(bh);
641
642                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
643                 err = ext4_journal_dirty_metadata(handle, bh);
644                 if (err)
645                         goto failed;
646         }
647         *blks = num;
648         return err;
649 failed:
650         /* Allocation failed, free what we already allocated */
651         for (i = 1; i <= n ; i++) {
652                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
653                 ext4_journal_forget(handle, branch[i].bh);
654         }
655         for (i = 0; i <indirect_blks; i++)
656                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
657
658         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
659
660         return err;
661 }
662
663 /**
664  * ext4_splice_branch - splice the allocated branch onto inode.
665  * @inode: owner
666  * @block: (logical) number of block we are adding
667  * @chain: chain of indirect blocks (with a missing link - see
668  *      ext4_alloc_branch)
669  * @where: location of missing link
670  * @num:   number of indirect blocks we are adding
671  * @blks:  number of direct blocks we are adding
672  *
673  * This function fills the missing link and does all housekeeping needed in
674  * inode (->i_blocks, etc.). In case of success we end up with the full
675  * chain to new block and return 0.
676  */
677 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
678                         ext4_lblk_t block, Indirect *where, int num, int blks)
679 {
680         int i;
681         int err = 0;
682         struct ext4_block_alloc_info *block_i;
683         ext4_fsblk_t current_block;
684
685         block_i = EXT4_I(inode)->i_block_alloc_info;
686         /*
687          * If we're splicing into a [td]indirect block (as opposed to the
688          * inode) then we need to get write access to the [td]indirect block
689          * before the splice.
690          */
691         if (where->bh) {
692                 BUFFER_TRACE(where->bh, "get_write_access");
693                 err = ext4_journal_get_write_access(handle, where->bh);
694                 if (err)
695                         goto err_out;
696         }
697         /* That's it */
698
699         *where->p = where->key;
700
701         /*
702          * Update the host buffer_head or inode to point to more just allocated
703          * direct blocks blocks
704          */
705         if (num == 0 && blks > 1) {
706                 current_block = le32_to_cpu(where->key) + 1;
707                 for (i = 1; i < blks; i++)
708                         *(where->p + i ) = cpu_to_le32(current_block++);
709         }
710
711         /*
712          * update the most recently allocated logical & physical block
713          * in i_block_alloc_info, to assist find the proper goal block for next
714          * allocation
715          */
716         if (block_i) {
717                 block_i->last_alloc_logical_block = block + blks - 1;
718                 block_i->last_alloc_physical_block =
719                                 le32_to_cpu(where[num].key) + blks - 1;
720         }
721
722         /* We are done with atomic stuff, now do the rest of housekeeping */
723
724         inode->i_ctime = ext4_current_time(inode);
725         ext4_mark_inode_dirty(handle, inode);
726
727         /* had we spliced it onto indirect block? */
728         if (where->bh) {
729                 /*
730                  * If we spliced it onto an indirect block, we haven't
731                  * altered the inode.  Note however that if it is being spliced
732                  * onto an indirect block at the very end of the file (the
733                  * file is growing) then we *will* alter the inode to reflect
734                  * the new i_size.  But that is not done here - it is done in
735                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
736                  */
737                 jbd_debug(5, "splicing indirect only\n");
738                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
739                 err = ext4_journal_dirty_metadata(handle, where->bh);
740                 if (err)
741                         goto err_out;
742         } else {
743                 /*
744                  * OK, we spliced it into the inode itself on a direct block.
745                  * Inode was dirtied above.
746                  */
747                 jbd_debug(5, "splicing direct\n");
748         }
749         return err;
750
751 err_out:
752         for (i = 1; i <= num; i++) {
753                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
754                 ext4_journal_forget(handle, where[i].bh);
755                 ext4_free_blocks(handle, inode,
756                                         le32_to_cpu(where[i-1].key), 1, 0);
757         }
758         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
759
760         return err;
761 }
762
763 /*
764  * Allocation strategy is simple: if we have to allocate something, we will
765  * have to go the whole way to leaf. So let's do it before attaching anything
766  * to tree, set linkage between the newborn blocks, write them if sync is
767  * required, recheck the path, free and repeat if check fails, otherwise
768  * set the last missing link (that will protect us from any truncate-generated
769  * removals - all blocks on the path are immune now) and possibly force the
770  * write on the parent block.
771  * That has a nice additional property: no special recovery from the failed
772  * allocations is needed - we simply release blocks and do not touch anything
773  * reachable from inode.
774  *
775  * `handle' can be NULL if create == 0.
776  *
777  * return > 0, # of blocks mapped or allocated.
778  * return = 0, if plain lookup failed.
779  * return < 0, error case.
780  *
781  *
782  * Need to be called with
783  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
784  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
785  */
786 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
787                 ext4_lblk_t iblock, unsigned long maxblocks,
788                 struct buffer_head *bh_result,
789                 int create, int extend_disksize)
790 {
791         int err = -EIO;
792         ext4_lblk_t offsets[4];
793         Indirect chain[4];
794         Indirect *partial;
795         ext4_fsblk_t goal;
796         int indirect_blks;
797         int blocks_to_boundary = 0;
798         int depth;
799         struct ext4_inode_info *ei = EXT4_I(inode);
800         int count = 0;
801         ext4_fsblk_t first_block = 0;
802
803
804         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
805         J_ASSERT(handle != NULL || create == 0);
806         depth = ext4_block_to_path(inode, iblock, offsets,
807                                         &blocks_to_boundary);
808
809         if (depth == 0)
810                 goto out;
811
812         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
813
814         /* Simplest case - block found, no allocation needed */
815         if (!partial) {
816                 first_block = le32_to_cpu(chain[depth - 1].key);
817                 clear_buffer_new(bh_result);
818                 count++;
819                 /*map more blocks*/
820                 while (count < maxblocks && count <= blocks_to_boundary) {
821                         ext4_fsblk_t blk;
822
823                         blk = le32_to_cpu(*(chain[depth-1].p + count));
824
825                         if (blk == first_block + count)
826                                 count++;
827                         else
828                                 break;
829                 }
830                 goto got_it;
831         }
832
833         /* Next simple case - plain lookup or failed read of indirect block */
834         if (!create || err == -EIO)
835                 goto cleanup;
836
837         /*
838          * Okay, we need to do block allocation.  Lazily initialize the block
839          * allocation info here if necessary
840         */
841         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
842                 ext4_init_block_alloc_info(inode);
843
844         goal = ext4_find_goal(inode, iblock, partial);
845
846         /* the number of blocks need to allocate for [d,t]indirect blocks */
847         indirect_blks = (chain + depth) - partial - 1;
848
849         /*
850          * Next look up the indirect map to count the totoal number of
851          * direct blocks to allocate for this branch.
852          */
853         count = ext4_blks_to_allocate(partial, indirect_blks,
854                                         maxblocks, blocks_to_boundary);
855         /*
856          * Block out ext4_truncate while we alter the tree
857          */
858         err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
859                                 offsets + (partial - chain), partial);
860
861         /*
862          * The ext4_splice_branch call will free and forget any buffers
863          * on the new chain if there is a failure, but that risks using
864          * up transaction credits, especially for bitmaps where the
865          * credits cannot be returned.  Can we handle this somehow?  We
866          * may need to return -EAGAIN upwards in the worst case.  --sct
867          */
868         if (!err)
869                 err = ext4_splice_branch(handle, inode, iblock,
870                                         partial, indirect_blks, count);
871         /*
872          * i_disksize growing is protected by i_data_sem.  Don't forget to
873          * protect it if you're about to implement concurrent
874          * ext4_get_block() -bzzz
875         */
876         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
877                 ei->i_disksize = inode->i_size;
878         if (err)
879                 goto cleanup;
880
881         set_buffer_new(bh_result);
882 got_it:
883         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
884         if (count > blocks_to_boundary)
885                 set_buffer_boundary(bh_result);
886         err = count;
887         /* Clean up and exit */
888         partial = chain + depth - 1;    /* the whole chain */
889 cleanup:
890         while (partial > chain) {
891                 BUFFER_TRACE(partial->bh, "call brelse");
892                 brelse(partial->bh);
893                 partial--;
894         }
895         BUFFER_TRACE(bh_result, "returned");
896 out:
897         return err;
898 }
899
900 /* Maximum number of blocks we map for direct IO at once. */
901 #define DIO_MAX_BLOCKS 4096
902 /*
903  * Number of credits we need for writing DIO_MAX_BLOCKS:
904  * We need sb + group descriptor + bitmap + inode -> 4
905  * For B blocks with A block pointers per block we need:
906  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
907  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
908  */
909 #define DIO_CREDITS 25
910
911
912 /*
913  *
914  *
915  * ext4_ext4 get_block() wrapper function
916  * It will do a look up first, and returns if the blocks already mapped.
917  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
918  * and store the allocated blocks in the result buffer head and mark it
919  * mapped.
920  *
921  * If file type is extents based, it will call ext4_ext_get_blocks(),
922  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
923  * based files
924  *
925  * On success, it returns the number of blocks being mapped or allocate.
926  * if create==0 and the blocks are pre-allocated and uninitialized block,
927  * the result buffer head is unmapped. If the create ==1, it will make sure
928  * the buffer head is mapped.
929  *
930  * It returns 0 if plain look up failed (blocks have not been allocated), in
931  * that casem, buffer head is unmapped
932  *
933  * It returns the error in case of allocation failure.
934  */
935 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
936                         unsigned long max_blocks, struct buffer_head *bh,
937                         int create, int extend_disksize)
938 {
939         int retval;
940
941         clear_buffer_mapped(bh);
942
943         /*
944          * Try to see if we can get  the block without requesting
945          * for new file system block.
946          */
947         down_read((&EXT4_I(inode)->i_data_sem));
948         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
949                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
950                                 bh, 0, 0);
951         } else {
952                 retval = ext4_get_blocks_handle(handle,
953                                 inode, block, max_blocks, bh, 0, 0);
954         }
955         up_read((&EXT4_I(inode)->i_data_sem));
956
957         /* If it is only a block(s) look up */
958         if (!create)
959                 return retval;
960
961         /*
962          * Returns if the blocks have already allocated
963          *
964          * Note that if blocks have been preallocated
965          * ext4_ext_get_block() returns th create = 0
966          * with buffer head unmapped.
967          */
968         if (retval > 0 && buffer_mapped(bh))
969                 return retval;
970
971         /*
972          * New blocks allocate and/or writing to uninitialized extent
973          * will possibly result in updating i_data, so we take
974          * the write lock of i_data_sem, and call get_blocks()
975          * with create == 1 flag.
976          */
977         down_write((&EXT4_I(inode)->i_data_sem));
978         /*
979          * We need to check for EXT4 here because migrate
980          * could have changed the inode type in between
981          */
982         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
983                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
984                                 bh, create, extend_disksize);
985         } else {
986                 retval = ext4_get_blocks_handle(handle, inode, block,
987                                 max_blocks, bh, create, extend_disksize);
988
989                 if (retval > 0 && buffer_new(bh)) {
990                         /*
991                          * We allocated new blocks which will result in
992                          * i_data's format changing.  Force the migrate
993                          * to fail by clearing migrate flags
994                          */
995                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
996                                                         ~EXT4_EXT_MIGRATE;
997                 }
998         }
999         up_write((&EXT4_I(inode)->i_data_sem));
1000         return retval;
1001 }
1002
1003 static int ext4_get_block(struct inode *inode, sector_t iblock,
1004                         struct buffer_head *bh_result, int create)
1005 {
1006         handle_t *handle = ext4_journal_current_handle();
1007         int ret = 0, started = 0;
1008         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1009
1010         if (create && !handle) {
1011                 /* Direct IO write... */
1012                 if (max_blocks > DIO_MAX_BLOCKS)
1013                         max_blocks = DIO_MAX_BLOCKS;
1014                 handle = ext4_journal_start(inode, DIO_CREDITS +
1015                               2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1016                 if (IS_ERR(handle)) {
1017                         ret = PTR_ERR(handle);
1018                         goto out;
1019                 }
1020                 started = 1;
1021         }
1022
1023         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1024                                         max_blocks, bh_result, create, 0);
1025         if (ret > 0) {
1026                 bh_result->b_size = (ret << inode->i_blkbits);
1027                 ret = 0;
1028         }
1029         if (started)
1030                 ext4_journal_stop(handle);
1031 out:
1032         return ret;
1033 }
1034
1035 /*
1036  * `handle' can be NULL if create is zero
1037  */
1038 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1039                                 ext4_lblk_t block, int create, int *errp)
1040 {
1041         struct buffer_head dummy;
1042         int fatal = 0, err;
1043
1044         J_ASSERT(handle != NULL || create == 0);
1045
1046         dummy.b_state = 0;
1047         dummy.b_blocknr = -1000;
1048         buffer_trace_init(&dummy.b_history);
1049         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1050                                         &dummy, create, 1);
1051         /*
1052          * ext4_get_blocks_handle() returns number of blocks
1053          * mapped. 0 in case of a HOLE.
1054          */
1055         if (err > 0) {
1056                 if (err > 1)
1057                         WARN_ON(1);
1058                 err = 0;
1059         }
1060         *errp = err;
1061         if (!err && buffer_mapped(&dummy)) {
1062                 struct buffer_head *bh;
1063                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1064                 if (!bh) {
1065                         *errp = -EIO;
1066                         goto err;
1067                 }
1068                 if (buffer_new(&dummy)) {
1069                         J_ASSERT(create != 0);
1070                         J_ASSERT(handle != NULL);
1071
1072                         /*
1073                          * Now that we do not always journal data, we should
1074                          * keep in mind whether this should always journal the
1075                          * new buffer as metadata.  For now, regular file
1076                          * writes use ext4_get_block instead, so it's not a
1077                          * problem.
1078                          */
1079                         lock_buffer(bh);
1080                         BUFFER_TRACE(bh, "call get_create_access");
1081                         fatal = ext4_journal_get_create_access(handle, bh);
1082                         if (!fatal && !buffer_uptodate(bh)) {
1083                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1084                                 set_buffer_uptodate(bh);
1085                         }
1086                         unlock_buffer(bh);
1087                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1088                         err = ext4_journal_dirty_metadata(handle, bh);
1089                         if (!fatal)
1090                                 fatal = err;
1091                 } else {
1092                         BUFFER_TRACE(bh, "not a new buffer");
1093                 }
1094                 if (fatal) {
1095                         *errp = fatal;
1096                         brelse(bh);
1097                         bh = NULL;
1098                 }
1099                 return bh;
1100         }
1101 err:
1102         return NULL;
1103 }
1104
1105 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1106                                ext4_lblk_t block, int create, int *err)
1107 {
1108         struct buffer_head * bh;
1109
1110         bh = ext4_getblk(handle, inode, block, create, err);
1111         if (!bh)
1112                 return bh;
1113         if (buffer_uptodate(bh))
1114                 return bh;
1115         ll_rw_block(READ_META, 1, &bh);
1116         wait_on_buffer(bh);
1117         if (buffer_uptodate(bh))
1118                 return bh;
1119         put_bh(bh);
1120         *err = -EIO;
1121         return NULL;
1122 }
1123
1124 static int walk_page_buffers(   handle_t *handle,
1125                                 struct buffer_head *head,
1126                                 unsigned from,
1127                                 unsigned to,
1128                                 int *partial,
1129                                 int (*fn)(      handle_t *handle,
1130                                                 struct buffer_head *bh))
1131 {
1132         struct buffer_head *bh;
1133         unsigned block_start, block_end;
1134         unsigned blocksize = head->b_size;
1135         int err, ret = 0;
1136         struct buffer_head *next;
1137
1138         for (   bh = head, block_start = 0;
1139                 ret == 0 && (bh != head || !block_start);
1140                 block_start = block_end, bh = next)
1141         {
1142                 next = bh->b_this_page;
1143                 block_end = block_start + blocksize;
1144                 if (block_end <= from || block_start >= to) {
1145                         if (partial && !buffer_uptodate(bh))
1146                                 *partial = 1;
1147                         continue;
1148                 }
1149                 err = (*fn)(handle, bh);
1150                 if (!ret)
1151                         ret = err;
1152         }
1153         return ret;
1154 }
1155
1156 /*
1157  * To preserve ordering, it is essential that the hole instantiation and
1158  * the data write be encapsulated in a single transaction.  We cannot
1159  * close off a transaction and start a new one between the ext4_get_block()
1160  * and the commit_write().  So doing the jbd2_journal_start at the start of
1161  * prepare_write() is the right place.
1162  *
1163  * Also, this function can nest inside ext4_writepage() ->
1164  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1165  * has generated enough buffer credits to do the whole page.  So we won't
1166  * block on the journal in that case, which is good, because the caller may
1167  * be PF_MEMALLOC.
1168  *
1169  * By accident, ext4 can be reentered when a transaction is open via
1170  * quota file writes.  If we were to commit the transaction while thus
1171  * reentered, there can be a deadlock - we would be holding a quota
1172  * lock, and the commit would never complete if another thread had a
1173  * transaction open and was blocking on the quota lock - a ranking
1174  * violation.
1175  *
1176  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1177  * will _not_ run commit under these circumstances because handle->h_ref
1178  * is elevated.  We'll still have enough credits for the tiny quotafile
1179  * write.
1180  */
1181 static int do_journal_get_write_access(handle_t *handle,
1182                                         struct buffer_head *bh)
1183 {
1184         if (!buffer_mapped(bh) || buffer_freed(bh))
1185                 return 0;
1186         return ext4_journal_get_write_access(handle, bh);
1187 }
1188
1189 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1190                                 loff_t pos, unsigned len, unsigned flags,
1191                                 struct page **pagep, void **fsdata)
1192 {
1193         struct inode *inode = mapping->host;
1194         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1195         handle_t *handle;
1196         int retries = 0;
1197         struct page *page;
1198         pgoff_t index;
1199         unsigned from, to;
1200
1201         index = pos >> PAGE_CACHE_SHIFT;
1202         from = pos & (PAGE_CACHE_SIZE - 1);
1203         to = from + len;
1204
1205 retry:
1206         page = __grab_cache_page(mapping, index);
1207         if (!page)
1208                 return -ENOMEM;
1209         *pagep = page;
1210
1211         handle = ext4_journal_start(inode, needed_blocks);
1212         if (IS_ERR(handle)) {
1213                 unlock_page(page);
1214                 page_cache_release(page);
1215                 ret = PTR_ERR(handle);
1216                 goto out;
1217         }
1218
1219         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1220                                                         ext4_get_block);
1221
1222         if (!ret && ext4_should_journal_data(inode)) {
1223                 ret = walk_page_buffers(handle, page_buffers(page),
1224                                 from, to, NULL, do_journal_get_write_access);
1225         }
1226
1227         if (ret) {
1228                 ext4_journal_stop(handle);
1229                 unlock_page(page);
1230                 page_cache_release(page);
1231         }
1232
1233         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1234                 goto retry;
1235 out:
1236         return ret;
1237 }
1238
1239 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1240 {
1241         int err = jbd2_journal_dirty_data(handle, bh);
1242         if (err)
1243                 ext4_journal_abort_handle(__func__, __func__,
1244                                                 bh, handle, err);
1245         return err;
1246 }
1247
1248 /* For write_end() in data=journal mode */
1249 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1250 {
1251         if (!buffer_mapped(bh) || buffer_freed(bh))
1252                 return 0;
1253         set_buffer_uptodate(bh);
1254         return ext4_journal_dirty_metadata(handle, bh);
1255 }
1256
1257 /*
1258  * Generic write_end handler for ordered and writeback ext4 journal modes.
1259  * We can't use generic_write_end, because that unlocks the page and we need to
1260  * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1261  * after block_write_end.
1262  */
1263 static int ext4_generic_write_end(struct file *file,
1264                                 struct address_space *mapping,
1265                                 loff_t pos, unsigned len, unsigned copied,
1266                                 struct page *page, void *fsdata)
1267 {
1268         struct inode *inode = file->f_mapping->host;
1269
1270         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1271
1272         if (pos+copied > inode->i_size) {
1273                 i_size_write(inode, pos+copied);
1274                 mark_inode_dirty(inode);
1275         }
1276
1277         return copied;
1278 }
1279
1280 /*
1281  * We need to pick up the new inode size which generic_commit_write gave us
1282  * `file' can be NULL - eg, when called from page_symlink().
1283  *
1284  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1285  * buffers are managed internally.
1286  */
1287 static int ext4_ordered_write_end(struct file *file,
1288                                 struct address_space *mapping,
1289                                 loff_t pos, unsigned len, unsigned copied,
1290                                 struct page *page, void *fsdata)
1291 {
1292         handle_t *handle = ext4_journal_current_handle();
1293         struct inode *inode = file->f_mapping->host;
1294         unsigned from, to;
1295         int ret = 0, ret2;
1296
1297         from = pos & (PAGE_CACHE_SIZE - 1);
1298         to = from + len;
1299
1300         ret = walk_page_buffers(handle, page_buffers(page),
1301                 from, to, NULL, ext4_journal_dirty_data);
1302
1303         if (ret == 0) {
1304                 /*
1305                  * generic_write_end() will run mark_inode_dirty() if i_size
1306                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1307                  * into that.
1308                  */
1309                 loff_t new_i_size;
1310
1311                 new_i_size = pos + copied;
1312                 if (new_i_size > EXT4_I(inode)->i_disksize)
1313                         EXT4_I(inode)->i_disksize = new_i_size;
1314                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1315                                                         page, fsdata);
1316                 copied = ret2;
1317                 if (ret2 < 0)
1318                         ret = ret2;
1319         }
1320         ret2 = ext4_journal_stop(handle);
1321         if (!ret)
1322                 ret = ret2;
1323         unlock_page(page);
1324         page_cache_release(page);
1325
1326         return ret ? ret : copied;
1327 }
1328
1329 static int ext4_writeback_write_end(struct file *file,
1330                                 struct address_space *mapping,
1331                                 loff_t pos, unsigned len, unsigned copied,
1332                                 struct page *page, void *fsdata)
1333 {
1334         handle_t *handle = ext4_journal_current_handle();
1335         struct inode *inode = file->f_mapping->host;
1336         int ret = 0, ret2;
1337         loff_t new_i_size;
1338
1339         new_i_size = pos + copied;
1340         if (new_i_size > EXT4_I(inode)->i_disksize)
1341                 EXT4_I(inode)->i_disksize = new_i_size;
1342
1343         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1344                                                         page, fsdata);
1345         copied = ret2;
1346         if (ret2 < 0)
1347                 ret = ret2;
1348
1349         ret2 = ext4_journal_stop(handle);
1350         if (!ret)
1351                 ret = ret2;
1352         unlock_page(page);
1353         page_cache_release(page);
1354
1355         return ret ? ret : copied;
1356 }
1357
1358 static int ext4_journalled_write_end(struct file *file,
1359                                 struct address_space *mapping,
1360                                 loff_t pos, unsigned len, unsigned copied,
1361                                 struct page *page, void *fsdata)
1362 {
1363         handle_t *handle = ext4_journal_current_handle();
1364         struct inode *inode = mapping->host;
1365         int ret = 0, ret2;
1366         int partial = 0;
1367         unsigned from, to;
1368
1369         from = pos & (PAGE_CACHE_SIZE - 1);
1370         to = from + len;
1371
1372         if (copied < len) {
1373                 if (!PageUptodate(page))
1374                         copied = 0;
1375                 page_zero_new_buffers(page, from+copied, to);
1376         }
1377
1378         ret = walk_page_buffers(handle, page_buffers(page), from,
1379                                 to, &partial, write_end_fn);
1380         if (!partial)
1381                 SetPageUptodate(page);
1382         if (pos+copied > inode->i_size)
1383                 i_size_write(inode, pos+copied);
1384         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1385         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1386                 EXT4_I(inode)->i_disksize = inode->i_size;
1387                 ret2 = ext4_mark_inode_dirty(handle, inode);
1388                 if (!ret)
1389                         ret = ret2;
1390         }
1391
1392         ret2 = ext4_journal_stop(handle);
1393         if (!ret)
1394                 ret = ret2;
1395         unlock_page(page);
1396         page_cache_release(page);
1397
1398         return ret ? ret : copied;
1399 }
1400
1401 /*
1402  * bmap() is special.  It gets used by applications such as lilo and by
1403  * the swapper to find the on-disk block of a specific piece of data.
1404  *
1405  * Naturally, this is dangerous if the block concerned is still in the
1406  * journal.  If somebody makes a swapfile on an ext4 data-journaling
1407  * filesystem and enables swap, then they may get a nasty shock when the
1408  * data getting swapped to that swapfile suddenly gets overwritten by
1409  * the original zero's written out previously to the journal and
1410  * awaiting writeback in the kernel's buffer cache.
1411  *
1412  * So, if we see any bmap calls here on a modified, data-journaled file,
1413  * take extra steps to flush any blocks which might be in the cache.
1414  */
1415 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1416 {
1417         struct inode *inode = mapping->host;
1418         journal_t *journal;
1419         int err;
1420
1421         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1422                 /*
1423                  * This is a REALLY heavyweight approach, but the use of
1424                  * bmap on dirty files is expected to be extremely rare:
1425                  * only if we run lilo or swapon on a freshly made file
1426                  * do we expect this to happen.
1427                  *
1428                  * (bmap requires CAP_SYS_RAWIO so this does not
1429                  * represent an unprivileged user DOS attack --- we'd be
1430                  * in trouble if mortal users could trigger this path at
1431                  * will.)
1432                  *
1433                  * NB. EXT4_STATE_JDATA is not set on files other than
1434                  * regular files.  If somebody wants to bmap a directory
1435                  * or symlink and gets confused because the buffer
1436                  * hasn't yet been flushed to disk, they deserve
1437                  * everything they get.
1438                  */
1439
1440                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1441                 journal = EXT4_JOURNAL(inode);
1442                 jbd2_journal_lock_updates(journal);
1443                 err = jbd2_journal_flush(journal);
1444                 jbd2_journal_unlock_updates(journal);
1445
1446                 if (err)
1447                         return 0;
1448         }
1449
1450         return generic_block_bmap(mapping,block,ext4_get_block);
1451 }
1452
1453 static int bget_one(handle_t *handle, struct buffer_head *bh)
1454 {
1455         get_bh(bh);
1456         return 0;
1457 }
1458
1459 static int bput_one(handle_t *handle, struct buffer_head *bh)
1460 {
1461         put_bh(bh);
1462         return 0;
1463 }
1464
1465 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1466 {
1467         if (buffer_mapped(bh))
1468                 return ext4_journal_dirty_data(handle, bh);
1469         return 0;
1470 }
1471
1472 /*
1473  * Note that we always start a transaction even if we're not journalling
1474  * data.  This is to preserve ordering: any hole instantiation within
1475  * __block_write_full_page -> ext4_get_block() should be journalled
1476  * along with the data so we don't crash and then get metadata which
1477  * refers to old data.
1478  *
1479  * In all journalling modes block_write_full_page() will start the I/O.
1480  *
1481  * Problem:
1482  *
1483  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1484  *              ext4_writepage()
1485  *
1486  * Similar for:
1487  *
1488  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1489  *
1490  * Same applies to ext4_get_block().  We will deadlock on various things like
1491  * lock_journal and i_data_sem
1492  *
1493  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1494  * allocations fail.
1495  *
1496  * 16May01: If we're reentered then journal_current_handle() will be
1497  *          non-zero. We simply *return*.
1498  *
1499  * 1 July 2001: @@@ FIXME:
1500  *   In journalled data mode, a data buffer may be metadata against the
1501  *   current transaction.  But the same file is part of a shared mapping
1502  *   and someone does a writepage() on it.
1503  *
1504  *   We will move the buffer onto the async_data list, but *after* it has
1505  *   been dirtied. So there's a small window where we have dirty data on
1506  *   BJ_Metadata.
1507  *
1508  *   Note that this only applies to the last partial page in the file.  The
1509  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1510  *   broken code anyway: it's wrong for msync()).
1511  *
1512  *   It's a rare case: affects the final partial page, for journalled data
1513  *   where the file is subject to bith write() and writepage() in the same
1514  *   transction.  To fix it we'll need a custom block_write_full_page().
1515  *   We'll probably need that anyway for journalling writepage() output.
1516  *
1517  * We don't honour synchronous mounts for writepage().  That would be
1518  * disastrous.  Any write() or metadata operation will sync the fs for
1519  * us.
1520  *
1521  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1522  * we don't need to open a transaction here.
1523  */
1524 static int ext4_ordered_writepage(struct page *page,
1525                                 struct writeback_control *wbc)
1526 {
1527         struct inode *inode = page->mapping->host;
1528         struct buffer_head *page_bufs;
1529         handle_t *handle = NULL;
1530         int ret = 0;
1531         int err;
1532
1533         J_ASSERT(PageLocked(page));
1534
1535         /*
1536          * We give up here if we're reentered, because it might be for a
1537          * different filesystem.
1538          */
1539         if (ext4_journal_current_handle())
1540                 goto out_fail;
1541
1542         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1543
1544         if (IS_ERR(handle)) {
1545                 ret = PTR_ERR(handle);
1546                 goto out_fail;
1547         }
1548
1549         if (!page_has_buffers(page)) {
1550                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1551                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1552         }
1553         page_bufs = page_buffers(page);
1554         walk_page_buffers(handle, page_bufs, 0,
1555                         PAGE_CACHE_SIZE, NULL, bget_one);
1556
1557         ret = block_write_full_page(page, ext4_get_block, wbc);
1558
1559         /*
1560          * The page can become unlocked at any point now, and
1561          * truncate can then come in and change things.  So we
1562          * can't touch *page from now on.  But *page_bufs is
1563          * safe due to elevated refcount.
1564          */
1565
1566         /*
1567          * And attach them to the current transaction.  But only if
1568          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1569          * and generally junk.
1570          */
1571         if (ret == 0) {
1572                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1573                                         NULL, jbd2_journal_dirty_data_fn);
1574                 if (!ret)
1575                         ret = err;
1576         }
1577         walk_page_buffers(handle, page_bufs, 0,
1578                         PAGE_CACHE_SIZE, NULL, bput_one);
1579         err = ext4_journal_stop(handle);
1580         if (!ret)
1581                 ret = err;
1582         return ret;
1583
1584 out_fail:
1585         redirty_page_for_writepage(wbc, page);
1586         unlock_page(page);
1587         return ret;
1588 }
1589
1590 static int ext4_writeback_writepage(struct page *page,
1591                                 struct writeback_control *wbc)
1592 {
1593         struct inode *inode = page->mapping->host;
1594         handle_t *handle = NULL;
1595         int ret = 0;
1596         int err;
1597
1598         if (ext4_journal_current_handle())
1599                 goto out_fail;
1600
1601         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1602         if (IS_ERR(handle)) {
1603                 ret = PTR_ERR(handle);
1604                 goto out_fail;
1605         }
1606
1607         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1608                 ret = nobh_writepage(page, ext4_get_block, wbc);
1609         else
1610                 ret = block_write_full_page(page, ext4_get_block, wbc);
1611
1612         err = ext4_journal_stop(handle);
1613         if (!ret)
1614                 ret = err;
1615         return ret;
1616
1617 out_fail:
1618         redirty_page_for_writepage(wbc, page);
1619         unlock_page(page);
1620         return ret;
1621 }
1622
1623 static int ext4_journalled_writepage(struct page *page,
1624                                 struct writeback_control *wbc)
1625 {
1626         struct inode *inode = page->mapping->host;
1627         handle_t *handle = NULL;
1628         int ret = 0;
1629         int err;
1630
1631         if (ext4_journal_current_handle())
1632                 goto no_write;
1633
1634         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1635         if (IS_ERR(handle)) {
1636                 ret = PTR_ERR(handle);
1637                 goto no_write;
1638         }
1639
1640         if (!page_has_buffers(page) || PageChecked(page)) {
1641                 /*
1642                  * It's mmapped pagecache.  Add buffers and journal it.  There
1643                  * doesn't seem much point in redirtying the page here.
1644                  */
1645                 ClearPageChecked(page);
1646                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1647                                         ext4_get_block);
1648                 if (ret != 0) {
1649                         ext4_journal_stop(handle);
1650                         goto out_unlock;
1651                 }
1652                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1653                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1654
1655                 err = walk_page_buffers(handle, page_buffers(page), 0,
1656                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1657                 if (ret == 0)
1658                         ret = err;
1659                 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1660                 unlock_page(page);
1661         } else {
1662                 /*
1663                  * It may be a page full of checkpoint-mode buffers.  We don't
1664                  * really know unless we go poke around in the buffer_heads.
1665                  * But block_write_full_page will do the right thing.
1666                  */
1667                 ret = block_write_full_page(page, ext4_get_block, wbc);
1668         }
1669         err = ext4_journal_stop(handle);
1670         if (!ret)
1671                 ret = err;
1672 out:
1673         return ret;
1674
1675 no_write:
1676         redirty_page_for_writepage(wbc, page);
1677 out_unlock:
1678         unlock_page(page);
1679         goto out;
1680 }
1681
1682 static int ext4_readpage(struct file *file, struct page *page)
1683 {
1684         return mpage_readpage(page, ext4_get_block);
1685 }
1686
1687 static int
1688 ext4_readpages(struct file *file, struct address_space *mapping,
1689                 struct list_head *pages, unsigned nr_pages)
1690 {
1691         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1692 }
1693
1694 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1695 {
1696         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1697
1698         /*
1699          * If it's a full truncate we just forget about the pending dirtying
1700          */
1701         if (offset == 0)
1702                 ClearPageChecked(page);
1703
1704         jbd2_journal_invalidatepage(journal, page, offset);
1705 }
1706
1707 static int ext4_releasepage(struct page *page, gfp_t wait)
1708 {
1709         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1710
1711         WARN_ON(PageChecked(page));
1712         if (!page_has_buffers(page))
1713                 return 0;
1714         return jbd2_journal_try_to_free_buffers(journal, page, wait);
1715 }
1716
1717 /*
1718  * If the O_DIRECT write will extend the file then add this inode to the
1719  * orphan list.  So recovery will truncate it back to the original size
1720  * if the machine crashes during the write.
1721  *
1722  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1723  * crashes then stale disk data _may_ be exposed inside the file. But current
1724  * VFS code falls back into buffered path in that case so we are safe.
1725  */
1726 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1727                         const struct iovec *iov, loff_t offset,
1728                         unsigned long nr_segs)
1729 {
1730         struct file *file = iocb->ki_filp;
1731         struct inode *inode = file->f_mapping->host;
1732         struct ext4_inode_info *ei = EXT4_I(inode);
1733         handle_t *handle;
1734         ssize_t ret;
1735         int orphan = 0;
1736         size_t count = iov_length(iov, nr_segs);
1737
1738         if (rw == WRITE) {
1739                 loff_t final_size = offset + count;
1740
1741                 if (final_size > inode->i_size) {
1742                         /* Credits for sb + inode write */
1743                         handle = ext4_journal_start(inode, 2);
1744                         if (IS_ERR(handle)) {
1745                                 ret = PTR_ERR(handle);
1746                                 goto out;
1747                         }
1748                         ret = ext4_orphan_add(handle, inode);
1749                         if (ret) {
1750                                 ext4_journal_stop(handle);
1751                                 goto out;
1752                         }
1753                         orphan = 1;
1754                         ei->i_disksize = inode->i_size;
1755                         ext4_journal_stop(handle);
1756                 }
1757         }
1758
1759         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1760                                  offset, nr_segs,
1761                                  ext4_get_block, NULL);
1762
1763         if (orphan) {
1764                 int err;
1765
1766                 /* Credits for sb + inode write */
1767                 handle = ext4_journal_start(inode, 2);
1768                 if (IS_ERR(handle)) {
1769                         /* This is really bad luck. We've written the data
1770                          * but cannot extend i_size. Bail out and pretend
1771                          * the write failed... */
1772                         ret = PTR_ERR(handle);
1773                         goto out;
1774                 }
1775                 if (inode->i_nlink)
1776                         ext4_orphan_del(handle, inode);
1777                 if (ret > 0) {
1778                         loff_t end = offset + ret;
1779                         if (end > inode->i_size) {
1780                                 ei->i_disksize = end;
1781                                 i_size_write(inode, end);
1782                                 /*
1783                                  * We're going to return a positive `ret'
1784                                  * here due to non-zero-length I/O, so there's
1785                                  * no way of reporting error returns from
1786                                  * ext4_mark_inode_dirty() to userspace.  So
1787                                  * ignore it.
1788                                  */
1789                                 ext4_mark_inode_dirty(handle, inode);
1790                         }
1791                 }
1792                 err = ext4_journal_stop(handle);
1793                 if (ret == 0)
1794                         ret = err;
1795         }
1796 out:
1797         return ret;
1798 }
1799
1800 /*
1801  * Pages can be marked dirty completely asynchronously from ext4's journalling
1802  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1803  * much here because ->set_page_dirty is called under VFS locks.  The page is
1804  * not necessarily locked.
1805  *
1806  * We cannot just dirty the page and leave attached buffers clean, because the
1807  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1808  * or jbddirty because all the journalling code will explode.
1809  *
1810  * So what we do is to mark the page "pending dirty" and next time writepage
1811  * is called, propagate that into the buffers appropriately.
1812  */
1813 static int ext4_journalled_set_page_dirty(struct page *page)
1814 {
1815         SetPageChecked(page);
1816         return __set_page_dirty_nobuffers(page);
1817 }
1818
1819 static const struct address_space_operations ext4_ordered_aops = {
1820         .readpage       = ext4_readpage,
1821         .readpages      = ext4_readpages,
1822         .writepage      = ext4_ordered_writepage,
1823         .sync_page      = block_sync_page,
1824         .write_begin    = ext4_write_begin,
1825         .write_end      = ext4_ordered_write_end,
1826         .bmap           = ext4_bmap,
1827         .invalidatepage = ext4_invalidatepage,
1828         .releasepage    = ext4_releasepage,
1829         .direct_IO      = ext4_direct_IO,
1830         .migratepage    = buffer_migrate_page,
1831 };
1832
1833 static const struct address_space_operations ext4_writeback_aops = {
1834         .readpage       = ext4_readpage,
1835         .readpages      = ext4_readpages,
1836         .writepage      = ext4_writeback_writepage,
1837         .sync_page      = block_sync_page,
1838         .write_begin    = ext4_write_begin,
1839         .write_end      = ext4_writeback_write_end,
1840         .bmap           = ext4_bmap,
1841         .invalidatepage = ext4_invalidatepage,
1842         .releasepage    = ext4_releasepage,
1843         .direct_IO      = ext4_direct_IO,
1844         .migratepage    = buffer_migrate_page,
1845 };
1846
1847 static const struct address_space_operations ext4_journalled_aops = {
1848         .readpage       = ext4_readpage,
1849         .readpages      = ext4_readpages,
1850         .writepage      = ext4_journalled_writepage,
1851         .sync_page      = block_sync_page,
1852         .write_begin    = ext4_write_begin,
1853         .write_end      = ext4_journalled_write_end,
1854         .set_page_dirty = ext4_journalled_set_page_dirty,
1855         .bmap           = ext4_bmap,
1856         .invalidatepage = ext4_invalidatepage,
1857         .releasepage    = ext4_releasepage,
1858 };
1859
1860 void ext4_set_aops(struct inode *inode)
1861 {
1862         if (ext4_should_order_data(inode))
1863                 inode->i_mapping->a_ops = &ext4_ordered_aops;
1864         else if (ext4_should_writeback_data(inode))
1865                 inode->i_mapping->a_ops = &ext4_writeback_aops;
1866         else
1867                 inode->i_mapping->a_ops = &ext4_journalled_aops;
1868 }
1869
1870 /*
1871  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1872  * up to the end of the block which corresponds to `from'.
1873  * This required during truncate. We need to physically zero the tail end
1874  * of that block so it doesn't yield old data if the file is later grown.
1875  */
1876 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1877                 struct address_space *mapping, loff_t from)
1878 {
1879         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1880         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1881         unsigned blocksize, length, pos;
1882         ext4_lblk_t iblock;
1883         struct inode *inode = mapping->host;
1884         struct buffer_head *bh;
1885         int err = 0;
1886
1887         blocksize = inode->i_sb->s_blocksize;
1888         length = blocksize - (offset & (blocksize - 1));
1889         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1890
1891         /*
1892          * For "nobh" option,  we can only work if we don't need to
1893          * read-in the page - otherwise we create buffers to do the IO.
1894          */
1895         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1896              ext4_should_writeback_data(inode) && PageUptodate(page)) {
1897                 zero_user(page, offset, length);
1898                 set_page_dirty(page);
1899                 goto unlock;
1900         }
1901
1902         if (!page_has_buffers(page))
1903                 create_empty_buffers(page, blocksize, 0);
1904
1905         /* Find the buffer that contains "offset" */
1906         bh = page_buffers(page);
1907         pos = blocksize;
1908         while (offset >= pos) {
1909                 bh = bh->b_this_page;
1910                 iblock++;
1911                 pos += blocksize;
1912         }
1913
1914         err = 0;
1915         if (buffer_freed(bh)) {
1916                 BUFFER_TRACE(bh, "freed: skip");
1917                 goto unlock;
1918         }
1919
1920         if (!buffer_mapped(bh)) {
1921                 BUFFER_TRACE(bh, "unmapped");
1922                 ext4_get_block(inode, iblock, bh, 0);
1923                 /* unmapped? It's a hole - nothing to do */
1924                 if (!buffer_mapped(bh)) {
1925                         BUFFER_TRACE(bh, "still unmapped");
1926                         goto unlock;
1927                 }
1928         }
1929
1930         /* Ok, it's mapped. Make sure it's up-to-date */
1931         if (PageUptodate(page))
1932                 set_buffer_uptodate(bh);
1933
1934         if (!buffer_uptodate(bh)) {
1935                 err = -EIO;
1936                 ll_rw_block(READ, 1, &bh);
1937                 wait_on_buffer(bh);
1938                 /* Uhhuh. Read error. Complain and punt. */
1939                 if (!buffer_uptodate(bh))
1940                         goto unlock;
1941         }
1942
1943         if (ext4_should_journal_data(inode)) {
1944                 BUFFER_TRACE(bh, "get write access");
1945                 err = ext4_journal_get_write_access(handle, bh);
1946                 if (err)
1947                         goto unlock;
1948         }
1949
1950         zero_user(page, offset, length);
1951
1952         BUFFER_TRACE(bh, "zeroed end of block");
1953
1954         err = 0;
1955         if (ext4_should_journal_data(inode)) {
1956                 err = ext4_journal_dirty_metadata(handle, bh);
1957         } else {
1958                 if (ext4_should_order_data(inode))
1959                         err = ext4_journal_dirty_data(handle, bh);
1960                 mark_buffer_dirty(bh);
1961         }
1962
1963 unlock:
1964         unlock_page(page);
1965         page_cache_release(page);
1966         return err;
1967 }
1968
1969 /*
1970  * Probably it should be a library function... search for first non-zero word
1971  * or memcmp with zero_page, whatever is better for particular architecture.
1972  * Linus?
1973  */
1974 static inline int all_zeroes(__le32 *p, __le32 *q)
1975 {
1976         while (p < q)
1977                 if (*p++)
1978                         return 0;
1979         return 1;
1980 }
1981
1982 /**
1983  *      ext4_find_shared - find the indirect blocks for partial truncation.
1984  *      @inode:   inode in question
1985  *      @depth:   depth of the affected branch
1986  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1987  *      @chain:   place to store the pointers to partial indirect blocks
1988  *      @top:     place to the (detached) top of branch
1989  *
1990  *      This is a helper function used by ext4_truncate().
1991  *
1992  *      When we do truncate() we may have to clean the ends of several
1993  *      indirect blocks but leave the blocks themselves alive. Block is
1994  *      partially truncated if some data below the new i_size is refered
1995  *      from it (and it is on the path to the first completely truncated
1996  *      data block, indeed).  We have to free the top of that path along
1997  *      with everything to the right of the path. Since no allocation
1998  *      past the truncation point is possible until ext4_truncate()
1999  *      finishes, we may safely do the latter, but top of branch may
2000  *      require special attention - pageout below the truncation point
2001  *      might try to populate it.
2002  *
2003  *      We atomically detach the top of branch from the tree, store the
2004  *      block number of its root in *@top, pointers to buffer_heads of
2005  *      partially truncated blocks - in @chain[].bh and pointers to
2006  *      their last elements that should not be removed - in
2007  *      @chain[].p. Return value is the pointer to last filled element
2008  *      of @chain.
2009  *
2010  *      The work left to caller to do the actual freeing of subtrees:
2011  *              a) free the subtree starting from *@top
2012  *              b) free the subtrees whose roots are stored in
2013  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2014  *              c) free the subtrees growing from the inode past the @chain[0].
2015  *                      (no partially truncated stuff there).  */
2016
2017 static Indirect *ext4_find_shared(struct inode *inode, int depth,
2018                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
2019 {
2020         Indirect *partial, *p;
2021         int k, err;
2022
2023         *top = 0;
2024         /* Make k index the deepest non-null offest + 1 */
2025         for (k = depth; k > 1 && !offsets[k-1]; k--)
2026                 ;
2027         partial = ext4_get_branch(inode, k, offsets, chain, &err);
2028         /* Writer: pointers */
2029         if (!partial)
2030                 partial = chain + k-1;
2031         /*
2032          * If the branch acquired continuation since we've looked at it -
2033          * fine, it should all survive and (new) top doesn't belong to us.
2034          */
2035         if (!partial->key && *partial->p)
2036                 /* Writer: end */
2037                 goto no_top;
2038         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2039                 ;
2040         /*
2041          * OK, we've found the last block that must survive. The rest of our
2042          * branch should be detached before unlocking. However, if that rest
2043          * of branch is all ours and does not grow immediately from the inode
2044          * it's easier to cheat and just decrement partial->p.
2045          */
2046         if (p == chain + k - 1 && p > chain) {
2047                 p->p--;
2048         } else {
2049                 *top = *p->p;
2050                 /* Nope, don't do this in ext4.  Must leave the tree intact */
2051 #if 0
2052                 *p->p = 0;
2053 #endif
2054         }
2055         /* Writer: end */
2056
2057         while(partial > p) {
2058                 brelse(partial->bh);
2059                 partial--;
2060         }
2061 no_top:
2062         return partial;
2063 }
2064
2065 /*
2066  * Zero a number of block pointers in either an inode or an indirect block.
2067  * If we restart the transaction we must again get write access to the
2068  * indirect block for further modification.
2069  *
2070  * We release `count' blocks on disk, but (last - first) may be greater
2071  * than `count' because there can be holes in there.
2072  */
2073 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2074                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2075                 unsigned long count, __le32 *first, __le32 *last)
2076 {
2077         __le32 *p;
2078         if (try_to_extend_transaction(handle, inode)) {
2079                 if (bh) {
2080                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2081                         ext4_journal_dirty_metadata(handle, bh);
2082                 }
2083                 ext4_mark_inode_dirty(handle, inode);
2084                 ext4_journal_test_restart(handle, inode);
2085                 if (bh) {
2086                         BUFFER_TRACE(bh, "retaking write access");
2087                         ext4_journal_get_write_access(handle, bh);
2088                 }
2089         }
2090
2091         /*
2092          * Any buffers which are on the journal will be in memory. We find
2093          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2094          * on them.  We've already detached each block from the file, so
2095          * bforget() in jbd2_journal_forget() should be safe.
2096          *
2097          * AKPM: turn on bforget in jbd2_journal_forget()!!!
2098          */
2099         for (p = first; p < last; p++) {
2100                 u32 nr = le32_to_cpu(*p);
2101                 if (nr) {
2102                         struct buffer_head *tbh;
2103
2104                         *p = 0;
2105                         tbh = sb_find_get_block(inode->i_sb, nr);
2106                         ext4_forget(handle, 0, inode, tbh, nr);
2107                 }
2108         }
2109
2110         ext4_free_blocks(handle, inode, block_to_free, count, 0);
2111 }
2112
2113 /**
2114  * ext4_free_data - free a list of data blocks
2115  * @handle:     handle for this transaction
2116  * @inode:      inode we are dealing with
2117  * @this_bh:    indirect buffer_head which contains *@first and *@last
2118  * @first:      array of block numbers
2119  * @last:       points immediately past the end of array
2120  *
2121  * We are freeing all blocks refered from that array (numbers are stored as
2122  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2123  *
2124  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2125  * blocks are contiguous then releasing them at one time will only affect one
2126  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2127  * actually use a lot of journal space.
2128  *
2129  * @this_bh will be %NULL if @first and @last point into the inode's direct
2130  * block pointers.
2131  */
2132 static void ext4_free_data(handle_t *handle, struct inode *inode,
2133                            struct buffer_head *this_bh,
2134                            __le32 *first, __le32 *last)
2135 {
2136         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2137         unsigned long count = 0;            /* Number of blocks in the run */
2138         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2139                                                corresponding to
2140                                                block_to_free */
2141         ext4_fsblk_t nr;                    /* Current block # */
2142         __le32 *p;                          /* Pointer into inode/ind
2143                                                for current block */
2144         int err;
2145
2146         if (this_bh) {                          /* For indirect block */
2147                 BUFFER_TRACE(this_bh, "get_write_access");
2148                 err = ext4_journal_get_write_access(handle, this_bh);
2149                 /* Important: if we can't update the indirect pointers
2150                  * to the blocks, we can't free them. */
2151                 if (err)
2152                         return;
2153         }
2154
2155         for (p = first; p < last; p++) {
2156                 nr = le32_to_cpu(*p);
2157                 if (nr) {
2158                         /* accumulate blocks to free if they're contiguous */
2159                         if (count == 0) {
2160                                 block_to_free = nr;
2161                                 block_to_free_p = p;
2162                                 count = 1;
2163                         } else if (nr == block_to_free + count) {
2164                                 count++;
2165                         } else {
2166                                 ext4_clear_blocks(handle, inode, this_bh,
2167                                                   block_to_free,
2168                                                   count, block_to_free_p, p);
2169                                 block_to_free = nr;
2170                                 block_to_free_p = p;
2171                                 count = 1;
2172                         }
2173                 }
2174         }
2175
2176         if (count > 0)
2177                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2178                                   count, block_to_free_p, p);
2179
2180         if (this_bh) {
2181                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2182                 ext4_journal_dirty_metadata(handle, this_bh);
2183         }
2184 }
2185
2186 /**
2187  *      ext4_free_branches - free an array of branches
2188  *      @handle: JBD handle for this transaction
2189  *      @inode: inode we are dealing with
2190  *      @parent_bh: the buffer_head which contains *@first and *@last
2191  *      @first: array of block numbers
2192  *      @last:  pointer immediately past the end of array
2193  *      @depth: depth of the branches to free
2194  *
2195  *      We are freeing all blocks refered from these branches (numbers are
2196  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2197  *      appropriately.
2198  */
2199 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2200                                struct buffer_head *parent_bh,
2201                                __le32 *first, __le32 *last, int depth)
2202 {
2203         ext4_fsblk_t nr;
2204         __le32 *p;
2205
2206         if (is_handle_aborted(handle))
2207                 return;
2208
2209         if (depth--) {
2210                 struct buffer_head *bh;
2211                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2212                 p = last;
2213                 while (--p >= first) {
2214                         nr = le32_to_cpu(*p);
2215                         if (!nr)
2216                                 continue;               /* A hole */
2217
2218                         /* Go read the buffer for the next level down */
2219                         bh = sb_bread(inode->i_sb, nr);
2220
2221                         /*
2222                          * A read failure? Report error and clear slot
2223                          * (should be rare).
2224                          */
2225                         if (!bh) {
2226                                 ext4_error(inode->i_sb, "ext4_free_branches",
2227                                            "Read failure, inode=%lu, block=%llu",
2228                                            inode->i_ino, nr);
2229                                 continue;
2230                         }
2231
2232                         /* This zaps the entire block.  Bottom up. */
2233                         BUFFER_TRACE(bh, "free child branches");
2234                         ext4_free_branches(handle, inode, bh,
2235                                            (__le32*)bh->b_data,
2236                                            (__le32*)bh->b_data + addr_per_block,
2237                                            depth);
2238
2239                         /*
2240                          * We've probably journalled the indirect block several
2241                          * times during the truncate.  But it's no longer
2242                          * needed and we now drop it from the transaction via
2243                          * jbd2_journal_revoke().
2244                          *
2245                          * That's easy if it's exclusively part of this
2246                          * transaction.  But if it's part of the committing
2247                          * transaction then jbd2_journal_forget() will simply
2248                          * brelse() it.  That means that if the underlying
2249                          * block is reallocated in ext4_get_block(),
2250                          * unmap_underlying_metadata() will find this block
2251                          * and will try to get rid of it.  damn, damn.
2252                          *
2253                          * If this block has already been committed to the
2254                          * journal, a revoke record will be written.  And
2255                          * revoke records must be emitted *before* clearing
2256                          * this block's bit in the bitmaps.
2257                          */
2258                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2259
2260                         /*
2261                          * Everything below this this pointer has been
2262                          * released.  Now let this top-of-subtree go.
2263                          *
2264                          * We want the freeing of this indirect block to be
2265                          * atomic in the journal with the updating of the
2266                          * bitmap block which owns it.  So make some room in
2267                          * the journal.
2268                          *
2269                          * We zero the parent pointer *after* freeing its
2270                          * pointee in the bitmaps, so if extend_transaction()
2271                          * for some reason fails to put the bitmap changes and
2272                          * the release into the same transaction, recovery
2273                          * will merely complain about releasing a free block,
2274                          * rather than leaking blocks.
2275                          */
2276                         if (is_handle_aborted(handle))
2277                                 return;
2278                         if (try_to_extend_transaction(handle, inode)) {
2279                                 ext4_mark_inode_dirty(handle, inode);
2280                                 ext4_journal_test_restart(handle, inode);
2281                         }
2282
2283                         ext4_free_blocks(handle, inode, nr, 1, 1);
2284
2285                         if (parent_bh) {
2286                                 /*
2287                                  * The block which we have just freed is
2288                                  * pointed to by an indirect block: journal it
2289                                  */
2290                                 BUFFER_TRACE(parent_bh, "get_write_access");
2291                                 if (!ext4_journal_get_write_access(handle,
2292                                                                    parent_bh)){
2293                                         *p = 0;
2294                                         BUFFER_TRACE(parent_bh,
2295                                         "call ext4_journal_dirty_metadata");
2296                                         ext4_journal_dirty_metadata(handle,
2297                                                                     parent_bh);
2298                                 }
2299                         }
2300                 }
2301         } else {
2302                 /* We have reached the bottom of the tree. */
2303                 BUFFER_TRACE(parent_bh, "free data blocks");
2304                 ext4_free_data(handle, inode, parent_bh, first, last);
2305         }
2306 }
2307
2308 /*
2309  * ext4_truncate()
2310  *
2311  * We block out ext4_get_block() block instantiations across the entire
2312  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2313  * simultaneously on behalf of the same inode.
2314  *
2315  * As we work through the truncate and commmit bits of it to the journal there
2316  * is one core, guiding principle: the file's tree must always be consistent on
2317  * disk.  We must be able to restart the truncate after a crash.
2318  *
2319  * The file's tree may be transiently inconsistent in memory (although it
2320  * probably isn't), but whenever we close off and commit a journal transaction,
2321  * the contents of (the filesystem + the journal) must be consistent and
2322  * restartable.  It's pretty simple, really: bottom up, right to left (although
2323  * left-to-right works OK too).
2324  *
2325  * Note that at recovery time, journal replay occurs *before* the restart of
2326  * truncate against the orphan inode list.
2327  *
2328  * The committed inode has the new, desired i_size (which is the same as
2329  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2330  * that this inode's truncate did not complete and it will again call
2331  * ext4_truncate() to have another go.  So there will be instantiated blocks
2332  * to the right of the truncation point in a crashed ext4 filesystem.  But
2333  * that's fine - as long as they are linked from the inode, the post-crash
2334  * ext4_truncate() run will find them and release them.
2335  */
2336 void ext4_truncate(struct inode *inode)
2337 {
2338         handle_t *handle;
2339         struct ext4_inode_info *ei = EXT4_I(inode);
2340         __le32 *i_data = ei->i_data;
2341         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2342         struct address_space *mapping = inode->i_mapping;
2343         ext4_lblk_t offsets[4];
2344         Indirect chain[4];
2345         Indirect *partial;
2346         __le32 nr = 0;
2347         int n;
2348         ext4_lblk_t last_block;
2349         unsigned blocksize = inode->i_sb->s_blocksize;
2350         struct page *page;
2351
2352         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2353             S_ISLNK(inode->i_mode)))
2354                 return;
2355         if (ext4_inode_is_fast_symlink(inode))
2356                 return;
2357         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2358                 return;
2359
2360         /*
2361          * We have to lock the EOF page here, because lock_page() nests
2362          * outside jbd2_journal_start().
2363          */
2364         if ((inode->i_size & (blocksize - 1)) == 0) {
2365                 /* Block boundary? Nothing to do */
2366                 page = NULL;
2367         } else {
2368                 page = grab_cache_page(mapping,
2369                                 inode->i_size >> PAGE_CACHE_SHIFT);
2370                 if (!page)
2371                         return;
2372         }
2373
2374         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2375                 ext4_ext_truncate(inode, page);
2376                 return;
2377         }
2378
2379         handle = start_transaction(inode);
2380         if (IS_ERR(handle)) {
2381                 if (page) {
2382                         clear_highpage(page);
2383                         flush_dcache_page(page);
2384                         unlock_page(page);
2385                         page_cache_release(page);
2386                 }
2387                 return;         /* AKPM: return what? */
2388         }
2389
2390         last_block = (inode->i_size + blocksize-1)
2391                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2392
2393         if (page)
2394                 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2395
2396         n = ext4_block_to_path(inode, last_block, offsets, NULL);
2397         if (n == 0)
2398                 goto out_stop;  /* error */
2399
2400         /*
2401          * OK.  This truncate is going to happen.  We add the inode to the
2402          * orphan list, so that if this truncate spans multiple transactions,
2403          * and we crash, we will resume the truncate when the filesystem
2404          * recovers.  It also marks the inode dirty, to catch the new size.
2405          *
2406          * Implication: the file must always be in a sane, consistent
2407          * truncatable state while each transaction commits.
2408          */
2409         if (ext4_orphan_add(handle, inode))
2410                 goto out_stop;
2411
2412         /*
2413          * The orphan list entry will now protect us from any crash which
2414          * occurs before the truncate completes, so it is now safe to propagate
2415          * the new, shorter inode size (held for now in i_size) into the
2416          * on-disk inode. We do this via i_disksize, which is the value which
2417          * ext4 *really* writes onto the disk inode.
2418          */
2419         ei->i_disksize = inode->i_size;
2420
2421         /*
2422          * From here we block out all ext4_get_block() callers who want to
2423          * modify the block allocation tree.
2424          */
2425         down_write(&ei->i_data_sem);
2426
2427         if (n == 1) {           /* direct blocks */
2428                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2429                                i_data + EXT4_NDIR_BLOCKS);
2430                 goto do_indirects;
2431         }
2432
2433         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2434         /* Kill the top of shared branch (not detached) */
2435         if (nr) {
2436                 if (partial == chain) {
2437                         /* Shared branch grows from the inode */
2438                         ext4_free_branches(handle, inode, NULL,
2439                                            &nr, &nr+1, (chain+n-1) - partial);
2440                         *partial->p = 0;
2441                         /*
2442                          * We mark the inode dirty prior to restart,
2443                          * and prior to stop.  No need for it here.
2444                          */
2445                 } else {
2446                         /* Shared branch grows from an indirect block */
2447                         BUFFER_TRACE(partial->bh, "get_write_access");
2448                         ext4_free_branches(handle, inode, partial->bh,
2449                                         partial->p,
2450                                         partial->p+1, (chain+n-1) - partial);
2451                 }
2452         }
2453         /* Clear the ends of indirect blocks on the shared branch */
2454         while (partial > chain) {
2455                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2456                                    (__le32*)partial->bh->b_data+addr_per_block,
2457                                    (chain+n-1) - partial);
2458                 BUFFER_TRACE(partial->bh, "call brelse");
2459                 brelse (partial->bh);
2460                 partial--;
2461         }
2462 do_indirects:
2463         /* Kill the remaining (whole) subtrees */
2464         switch (offsets[0]) {
2465         default:
2466                 nr = i_data[EXT4_IND_BLOCK];
2467                 if (nr) {
2468                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2469                         i_data[EXT4_IND_BLOCK] = 0;
2470                 }
2471         case EXT4_IND_BLOCK:
2472                 nr = i_data[EXT4_DIND_BLOCK];
2473                 if (nr) {
2474                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2475                         i_data[EXT4_DIND_BLOCK] = 0;
2476                 }
2477         case EXT4_DIND_BLOCK:
2478                 nr = i_data[EXT4_TIND_BLOCK];
2479                 if (nr) {
2480                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2481                         i_data[EXT4_TIND_BLOCK] = 0;
2482                 }
2483         case EXT4_TIND_BLOCK:
2484                 ;
2485         }
2486
2487         ext4_discard_reservation(inode);
2488
2489         up_write(&ei->i_data_sem);
2490         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2491         ext4_mark_inode_dirty(handle, inode);
2492
2493         /*
2494          * In a multi-transaction truncate, we only make the final transaction
2495          * synchronous
2496          */
2497         if (IS_SYNC(inode))
2498                 handle->h_sync = 1;
2499 out_stop:
2500         /*
2501          * If this was a simple ftruncate(), and the file will remain alive
2502          * then we need to clear up the orphan record which we created above.
2503          * However, if this was a real unlink then we were called by
2504          * ext4_delete_inode(), and we allow that function to clean up the
2505          * orphan info for us.
2506          */
2507         if (inode->i_nlink)
2508                 ext4_orphan_del(handle, inode);
2509
2510         ext4_journal_stop(handle);
2511 }
2512
2513 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2514                 unsigned long ino, struct ext4_iloc *iloc)
2515 {
2516         ext4_group_t block_group;
2517         unsigned long offset;
2518         ext4_fsblk_t block;
2519         struct ext4_group_desc *gdp;
2520
2521         if (!ext4_valid_inum(sb, ino)) {
2522                 /*
2523                  * This error is already checked for in namei.c unless we are
2524                  * looking at an NFS filehandle, in which case no error
2525                  * report is needed
2526                  */
2527                 return 0;
2528         }
2529
2530         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2531         gdp = ext4_get_group_desc(sb, block_group, NULL);
2532         if (!gdp)
2533                 return 0;
2534
2535         /*
2536          * Figure out the offset within the block group inode table
2537          */
2538         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2539                 EXT4_INODE_SIZE(sb);
2540         block = ext4_inode_table(sb, gdp) +
2541                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2542
2543         iloc->block_group = block_group;
2544         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2545         return block;
2546 }
2547
2548 /*
2549  * ext4_get_inode_loc returns with an extra refcount against the inode's
2550  * underlying buffer_head on success. If 'in_mem' is true, we have all
2551  * data in memory that is needed to recreate the on-disk version of this
2552  * inode.
2553  */
2554 static int __ext4_get_inode_loc(struct inode *inode,
2555                                 struct ext4_iloc *iloc, int in_mem)
2556 {
2557         ext4_fsblk_t block;
2558         struct buffer_head *bh;
2559
2560         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2561         if (!block)
2562                 return -EIO;
2563
2564         bh = sb_getblk(inode->i_sb, block);
2565         if (!bh) {
2566                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2567                                 "unable to read inode block - "
2568                                 "inode=%lu, block=%llu",
2569                                  inode->i_ino, block);
2570                 return -EIO;
2571         }
2572         if (!buffer_uptodate(bh)) {
2573                 lock_buffer(bh);
2574                 if (buffer_uptodate(bh)) {
2575                         /* someone brought it uptodate while we waited */
2576                         unlock_buffer(bh);
2577                         goto has_buffer;
2578                 }
2579
2580                 /*
2581                  * If we have all information of the inode in memory and this
2582                  * is the only valid inode in the block, we need not read the
2583                  * block.
2584                  */
2585                 if (in_mem) {
2586                         struct buffer_head *bitmap_bh;
2587                         struct ext4_group_desc *desc;
2588                         int inodes_per_buffer;
2589                         int inode_offset, i;
2590                         ext4_group_t block_group;
2591                         int start;
2592
2593                         block_group = (inode->i_ino - 1) /
2594                                         EXT4_INODES_PER_GROUP(inode->i_sb);
2595                         inodes_per_buffer = bh->b_size /
2596                                 EXT4_INODE_SIZE(inode->i_sb);
2597                         inode_offset = ((inode->i_ino - 1) %
2598                                         EXT4_INODES_PER_GROUP(inode->i_sb));
2599                         start = inode_offset & ~(inodes_per_buffer - 1);
2600
2601                         /* Is the inode bitmap in cache? */
2602                         desc = ext4_get_group_desc(inode->i_sb,
2603                                                 block_group, NULL);
2604                         if (!desc)
2605                                 goto make_io;
2606
2607                         bitmap_bh = sb_getblk(inode->i_sb,
2608                                 ext4_inode_bitmap(inode->i_sb, desc));
2609                         if (!bitmap_bh)
2610                                 goto make_io;
2611
2612                         /*
2613                          * If the inode bitmap isn't in cache then the
2614                          * optimisation may end up performing two reads instead
2615                          * of one, so skip it.
2616                          */
2617                         if (!buffer_uptodate(bitmap_bh)) {
2618                                 brelse(bitmap_bh);
2619                                 goto make_io;
2620                         }
2621                         for (i = start; i < start + inodes_per_buffer; i++) {
2622                                 if (i == inode_offset)
2623                                         continue;
2624                                 if (ext4_test_bit(i, bitmap_bh->b_data))
2625                                         break;
2626                         }
2627                         brelse(bitmap_bh);
2628                         if (i == start + inodes_per_buffer) {
2629                                 /* all other inodes are free, so skip I/O */
2630                                 memset(bh->b_data, 0, bh->b_size);
2631                                 set_buffer_uptodate(bh);
2632                                 unlock_buffer(bh);
2633                                 goto has_buffer;
2634                         }
2635                 }
2636
2637 make_io:
2638                 /*
2639                  * There are other valid inodes in the buffer, this inode
2640                  * has in-inode xattrs, or we don't have this inode in memory.
2641                  * Read the block from disk.
2642                  */
2643                 get_bh(bh);
2644                 bh->b_end_io = end_buffer_read_sync;
2645                 submit_bh(READ_META, bh);
2646                 wait_on_buffer(bh);
2647                 if (!buffer_uptodate(bh)) {
2648                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
2649                                         "unable to read inode block - "
2650                                         "inode=%lu, block=%llu",
2651                                         inode->i_ino, block);
2652                         brelse(bh);
2653                         return -EIO;
2654                 }
2655         }
2656 has_buffer:
2657         iloc->bh = bh;
2658         return 0;
2659 }
2660
2661 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2662 {
2663         /* We have all inode data except xattrs in memory here. */
2664         return __ext4_get_inode_loc(inode, iloc,
2665                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2666 }
2667
2668 void ext4_set_inode_flags(struct inode *inode)
2669 {
2670         unsigned int flags = EXT4_I(inode)->i_flags;
2671
2672         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2673         if (flags & EXT4_SYNC_FL)
2674                 inode->i_flags |= S_SYNC;
2675         if (flags & EXT4_APPEND_FL)
2676                 inode->i_flags |= S_APPEND;
2677         if (flags & EXT4_IMMUTABLE_FL)
2678                 inode->i_flags |= S_IMMUTABLE;
2679         if (flags & EXT4_NOATIME_FL)
2680                 inode->i_flags |= S_NOATIME;
2681         if (flags & EXT4_DIRSYNC_FL)
2682                 inode->i_flags |= S_DIRSYNC;
2683 }
2684
2685 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2686 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2687 {
2688         unsigned int flags = ei->vfs_inode.i_flags;
2689
2690         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2691                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2692         if (flags & S_SYNC)
2693                 ei->i_flags |= EXT4_SYNC_FL;
2694         if (flags & S_APPEND)
2695                 ei->i_flags |= EXT4_APPEND_FL;
2696         if (flags & S_IMMUTABLE)
2697                 ei->i_flags |= EXT4_IMMUTABLE_FL;
2698         if (flags & S_NOATIME)
2699                 ei->i_flags |= EXT4_NOATIME_FL;
2700         if (flags & S_DIRSYNC)
2701                 ei->i_flags |= EXT4_DIRSYNC_FL;
2702 }
2703 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2704                                         struct ext4_inode_info *ei)
2705 {
2706         blkcnt_t i_blocks ;
2707         struct inode *inode = &(ei->vfs_inode);
2708         struct super_block *sb = inode->i_sb;
2709
2710         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2711                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2712                 /* we are using combined 48 bit field */
2713                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2714                                         le32_to_cpu(raw_inode->i_blocks_lo);
2715                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2716                         /* i_blocks represent file system block size */
2717                         return i_blocks  << (inode->i_blkbits - 9);
2718                 } else {
2719                         return i_blocks;
2720                 }
2721         } else {
2722                 return le32_to_cpu(raw_inode->i_blocks_lo);
2723         }
2724 }
2725
2726 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2727 {
2728         struct ext4_iloc iloc;
2729         struct ext4_inode *raw_inode;
2730         struct ext4_inode_info *ei;
2731         struct buffer_head *bh;
2732         struct inode *inode;
2733         long ret;
2734         int block;
2735
2736         inode = iget_locked(sb, ino);
2737         if (!inode)
2738                 return ERR_PTR(-ENOMEM);
2739         if (!(inode->i_state & I_NEW))
2740                 return inode;
2741
2742         ei = EXT4_I(inode);
2743 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2744         ei->i_acl = EXT4_ACL_NOT_CACHED;
2745         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2746 #endif
2747         ei->i_block_alloc_info = NULL;
2748
2749         ret = __ext4_get_inode_loc(inode, &iloc, 0);
2750         if (ret < 0)
2751                 goto bad_inode;
2752         bh = iloc.bh;
2753         raw_inode = ext4_raw_inode(&iloc);
2754         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2755         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2756         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2757         if(!(test_opt (inode->i_sb, NO_UID32))) {
2758                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2759                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2760         }
2761         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2762
2763         ei->i_state = 0;
2764         ei->i_dir_start_lookup = 0;
2765         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2766         /* We now have enough fields to check if the inode was active or not.
2767          * This is needed because nfsd might try to access dead inodes
2768          * the test is that same one that e2fsck uses
2769          * NeilBrown 1999oct15
2770          */
2771         if (inode->i_nlink == 0) {
2772                 if (inode->i_mode == 0 ||
2773                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2774                         /* this inode is deleted */
2775                         brelse (bh);
2776                         ret = -ESTALE;
2777                         goto bad_inode;
2778                 }
2779                 /* The only unlinked inodes we let through here have
2780                  * valid i_mode and are being read by the orphan
2781                  * recovery code: that's fine, we're about to complete
2782                  * the process of deleting those. */
2783         }
2784         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2785         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2786         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2787         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2788             cpu_to_le32(EXT4_OS_HURD)) {
2789                 ei->i_file_acl |=
2790                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2791         }
2792         inode->i_size = ext4_isize(raw_inode);
2793         ei->i_disksize = inode->i_size;
2794         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2795         ei->i_block_group = iloc.block_group;
2796         /*
2797          * NOTE! The in-memory inode i_data array is in little-endian order
2798          * even on big-endian machines: we do NOT byteswap the block numbers!
2799          */
2800         for (block = 0; block < EXT4_N_BLOCKS; block++)
2801                 ei->i_data[block] = raw_inode->i_block[block];
2802         INIT_LIST_HEAD(&ei->i_orphan);
2803
2804         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2805                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2806                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2807                     EXT4_INODE_SIZE(inode->i_sb)) {
2808                         brelse (bh);
2809                         ret = -EIO;
2810                         goto bad_inode;
2811                 }
2812                 if (ei->i_extra_isize == 0) {
2813                         /* The extra space is currently unused. Use it. */
2814                         ei->i_extra_isize = sizeof(struct ext4_inode) -
2815                                             EXT4_GOOD_OLD_INODE_SIZE;
2816                 } else {
2817                         __le32 *magic = (void *)raw_inode +
2818                                         EXT4_GOOD_OLD_INODE_SIZE +
2819                                         ei->i_extra_isize;
2820                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2821                                  ei->i_state |= EXT4_STATE_XATTR;
2822                 }
2823         } else
2824                 ei->i_extra_isize = 0;
2825
2826         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2827         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2828         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2829         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2830
2831         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2832         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2833                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2834                         inode->i_version |=
2835                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2836         }
2837
2838         if (S_ISREG(inode->i_mode)) {
2839                 inode->i_op = &ext4_file_inode_operations;
2840                 inode->i_fop = &ext4_file_operations;
2841                 ext4_set_aops(inode);
2842         } else if (S_ISDIR(inode->i_mode)) {
2843                 inode->i_op = &ext4_dir_inode_operations;
2844                 inode->i_fop = &ext4_dir_operations;
2845         } else if (S_ISLNK(inode->i_mode)) {
2846                 if (ext4_inode_is_fast_symlink(inode))
2847                         inode->i_op = &ext4_fast_symlink_inode_operations;
2848                 else {
2849                         inode->i_op = &ext4_symlink_inode_operations;
2850                         ext4_set_aops(inode);
2851                 }
2852         } else {
2853                 inode->i_op = &ext4_special_inode_operations;
2854                 if (raw_inode->i_block[0])
2855                         init_special_inode(inode, inode->i_mode,
2856                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2857                 else
2858                         init_special_inode(inode, inode->i_mode,
2859                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2860         }
2861         brelse (iloc.bh);
2862         ext4_set_inode_flags(inode);
2863         unlock_new_inode(inode);
2864         return inode;
2865
2866 bad_inode:
2867         iget_failed(inode);
2868         return ERR_PTR(ret);
2869 }
2870
2871 static int ext4_inode_blocks_set(handle_t *handle,
2872                                 struct ext4_inode *raw_inode,
2873                                 struct ext4_inode_info *ei)
2874 {
2875         struct inode *inode = &(ei->vfs_inode);
2876         u64 i_blocks = inode->i_blocks;
2877         struct super_block *sb = inode->i_sb;
2878         int err = 0;
2879
2880         if (i_blocks <= ~0U) {
2881                 /*
2882                  * i_blocks can be represnted in a 32 bit variable
2883                  * as multiple of 512 bytes
2884                  */
2885                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2886                 raw_inode->i_blocks_high = 0;
2887                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2888         } else if (i_blocks <= 0xffffffffffffULL) {
2889                 /*
2890                  * i_blocks can be represented in a 48 bit variable
2891                  * as multiple of 512 bytes
2892                  */
2893                 err = ext4_update_rocompat_feature(handle, sb,
2894                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2895                 if (err)
2896                         goto  err_out;
2897                 /* i_block is stored in the split  48 bit fields */
2898                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2899                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2900                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2901         } else {
2902                 /*
2903                  * i_blocks should be represented in a 48 bit variable
2904                  * as multiple of  file system block size
2905                  */
2906                 err = ext4_update_rocompat_feature(handle, sb,
2907                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2908                 if (err)
2909                         goto  err_out;
2910                 ei->i_flags |= EXT4_HUGE_FILE_FL;
2911                 /* i_block is stored in file system block size */
2912                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2913                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2914                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2915         }
2916 err_out:
2917         return err;
2918 }
2919
2920 /*
2921  * Post the struct inode info into an on-disk inode location in the
2922  * buffer-cache.  This gobbles the caller's reference to the
2923  * buffer_head in the inode location struct.
2924  *
2925  * The caller must have write access to iloc->bh.
2926  */
2927 static int ext4_do_update_inode(handle_t *handle,
2928                                 struct inode *inode,
2929                                 struct ext4_iloc *iloc)
2930 {
2931         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2932         struct ext4_inode_info *ei = EXT4_I(inode);
2933         struct buffer_head *bh = iloc->bh;
2934         int err = 0, rc, block;
2935
2936         /* For fields not not tracking in the in-memory inode,
2937          * initialise them to zero for new inodes. */
2938         if (ei->i_state & EXT4_STATE_NEW)
2939                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2940
2941         ext4_get_inode_flags(ei);
2942         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2943         if(!(test_opt(inode->i_sb, NO_UID32))) {
2944                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2945                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2946 /*
2947  * Fix up interoperability with old kernels. Otherwise, old inodes get
2948  * re-used with the upper 16 bits of the uid/gid intact
2949  */
2950                 if(!ei->i_dtime) {
2951                         raw_inode->i_uid_high =
2952                                 cpu_to_le16(high_16_bits(inode->i_uid));
2953                         raw_inode->i_gid_high =
2954                                 cpu_to_le16(high_16_bits(inode->i_gid));
2955                 } else {
2956                         raw_inode->i_uid_high = 0;
2957                         raw_inode->i_gid_high = 0;
2958                 }
2959         } else {
2960                 raw_inode->i_uid_low =
2961                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2962                 raw_inode->i_gid_low =
2963                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
2964                 raw_inode->i_uid_high = 0;
2965                 raw_inode->i_gid_high = 0;
2966         }
2967         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2968
2969         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2970         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2971         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2972         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2973
2974         if (ext4_inode_blocks_set(handle, raw_inode, ei))
2975                 goto out_brelse;
2976         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2977         /* clear the migrate flag in the raw_inode */
2978         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
2979         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2980             cpu_to_le32(EXT4_OS_HURD))
2981                 raw_inode->i_file_acl_high =
2982                         cpu_to_le16(ei->i_file_acl >> 32);
2983         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2984         ext4_isize_set(raw_inode, ei->i_disksize);
2985         if (ei->i_disksize > 0x7fffffffULL) {
2986                 struct super_block *sb = inode->i_sb;
2987                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2988                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2989                                 EXT4_SB(sb)->s_es->s_rev_level ==
2990                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2991                         /* If this is the first large file
2992                          * created, add a flag to the superblock.
2993                          */
2994                         err = ext4_journal_get_write_access(handle,
2995                                         EXT4_SB(sb)->s_sbh);
2996                         if (err)
2997                                 goto out_brelse;
2998                         ext4_update_dynamic_rev(sb);
2999                         EXT4_SET_RO_COMPAT_FEATURE(sb,
3000                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3001                         sb->s_dirt = 1;
3002                         handle->h_sync = 1;
3003                         err = ext4_journal_dirty_metadata(handle,
3004                                         EXT4_SB(sb)->s_sbh);
3005                 }
3006         }
3007         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3008         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3009                 if (old_valid_dev(inode->i_rdev)) {
3010                         raw_inode->i_block[0] =
3011                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3012                         raw_inode->i_block[1] = 0;
3013                 } else {
3014                         raw_inode->i_block[0] = 0;
3015                         raw_inode->i_block[1] =
3016                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3017                         raw_inode->i_block[2] = 0;
3018                 }
3019         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
3020                 raw_inode->i_block[block] = ei->i_data[block];
3021
3022         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3023         if (ei->i_extra_isize) {
3024                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3025                         raw_inode->i_version_hi =
3026                         cpu_to_le32(inode->i_version >> 32);
3027                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3028         }
3029
3030
3031         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3032         rc = ext4_journal_dirty_metadata(handle, bh);
3033         if (!err)
3034                 err = rc;
3035         ei->i_state &= ~EXT4_STATE_NEW;
3036
3037 out_brelse:
3038         brelse (bh);
3039         ext4_std_error(inode->i_sb, err);
3040         return err;
3041 }
3042
3043 /*
3044  * ext4_write_inode()
3045  *
3046  * We are called from a few places:
3047  *
3048  * - Within generic_file_write() for O_SYNC files.
3049  *   Here, there will be no transaction running. We wait for any running
3050  *   trasnaction to commit.
3051  *
3052  * - Within sys_sync(), kupdate and such.
3053  *   We wait on commit, if tol to.
3054  *
3055  * - Within prune_icache() (PF_MEMALLOC == true)
3056  *   Here we simply return.  We can't afford to block kswapd on the
3057  *   journal commit.
3058  *
3059  * In all cases it is actually safe for us to return without doing anything,
3060  * because the inode has been copied into a raw inode buffer in
3061  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3062  * knfsd.
3063  *
3064  * Note that we are absolutely dependent upon all inode dirtiers doing the
3065  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3066  * which we are interested.
3067  *
3068  * It would be a bug for them to not do this.  The code:
3069  *
3070  *      mark_inode_dirty(inode)
3071  *      stuff();
3072  *      inode->i_size = expr;
3073  *
3074  * is in error because a kswapd-driven write_inode() could occur while
3075  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3076  * will no longer be on the superblock's dirty inode list.
3077  */
3078 int ext4_write_inode(struct inode *inode, int wait)
3079 {
3080         if (current->flags & PF_MEMALLOC)
3081                 return 0;
3082
3083         if (ext4_journal_current_handle()) {
3084                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3085                 dump_stack();
3086                 return -EIO;
3087         }
3088
3089         if (!wait)
3090                 return 0;
3091
3092         return ext4_force_commit(inode->i_sb);
3093 }
3094
3095 /*
3096  * ext4_setattr()
3097  *
3098  * Called from notify_change.
3099  *
3100  * We want to trap VFS attempts to truncate the file as soon as
3101  * possible.  In particular, we want to make sure that when the VFS
3102  * shrinks i_size, we put the inode on the orphan list and modify
3103  * i_disksize immediately, so that during the subsequent flushing of
3104  * dirty pages and freeing of disk blocks, we can guarantee that any
3105  * commit will leave the blocks being flushed in an unused state on
3106  * disk.  (On recovery, the inode will get truncated and the blocks will
3107  * be freed, so we have a strong guarantee that no future commit will
3108  * leave these blocks visible to the user.)
3109  *
3110  * Called with inode->sem down.
3111  */
3112 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3113 {
3114         struct inode *inode = dentry->d_inode;
3115         int error, rc = 0;
3116         const unsigned int ia_valid = attr->ia_valid;
3117
3118         error = inode_change_ok(inode, attr);
3119         if (error)
3120                 return error;
3121
3122         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3123                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3124                 handle_t *handle;
3125
3126                 /* (user+group)*(old+new) structure, inode write (sb,
3127                  * inode block, ? - but truncate inode update has it) */
3128                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3129                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3130                 if (IS_ERR(handle)) {
3131                         error = PTR_ERR(handle);
3132                         goto err_out;
3133                 }
3134                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3135                 if (error) {
3136                         ext4_journal_stop(handle);
3137                         return error;
3138                 }
3139                 /* Update corresponding info in inode so that everything is in
3140                  * one transaction */
3141                 if (attr->ia_valid & ATTR_UID)
3142                         inode->i_uid = attr->ia_uid;
3143                 if (attr->ia_valid & ATTR_GID)
3144                         inode->i_gid = attr->ia_gid;
3145                 error = ext4_mark_inode_dirty(handle, inode);
3146                 ext4_journal_stop(handle);
3147         }
3148
3149         if (attr->ia_valid & ATTR_SIZE) {
3150                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3151                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3152
3153                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3154                                 error = -EFBIG;
3155                                 goto err_out;
3156                         }
3157                 }
3158         }
3159
3160         if (S_ISREG(inode->i_mode) &&
3161             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3162                 handle_t *handle;
3163
3164                 handle = ext4_journal_start(inode, 3);
3165                 if (IS_ERR(handle)) {
3166                         error = PTR_ERR(handle);
3167                         goto err_out;
3168                 }
3169
3170                 error = ext4_orphan_add(handle, inode);
3171                 EXT4_I(inode)->i_disksize = attr->ia_size;
3172                 rc = ext4_mark_inode_dirty(handle, inode);
3173                 if (!error)
3174                         error = rc;
3175                 ext4_journal_stop(handle);
3176         }
3177
3178         rc = inode_setattr(inode, attr);
3179
3180         /* If inode_setattr's call to ext4_truncate failed to get a
3181          * transaction handle at all, we need to clean up the in-core
3182          * orphan list manually. */
3183         if (inode->i_nlink)
3184                 ext4_orphan_del(NULL, inode);
3185
3186         if (!rc && (ia_valid & ATTR_MODE))
3187                 rc = ext4_acl_chmod(inode);
3188
3189 err_out:
3190         ext4_std_error(inode->i_sb, error);
3191         if (!error)
3192                 error = rc;
3193         return error;
3194 }
3195
3196
3197 /*
3198  * How many blocks doth make a writepage()?
3199  *
3200  * With N blocks per page, it may be:
3201  * N data blocks
3202  * 2 indirect block
3203  * 2 dindirect
3204  * 1 tindirect
3205  * N+5 bitmap blocks (from the above)
3206  * N+5 group descriptor summary blocks
3207  * 1 inode block
3208  * 1 superblock.
3209  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3210  *
3211  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3212  *
3213  * With ordered or writeback data it's the same, less the N data blocks.
3214  *
3215  * If the inode's direct blocks can hold an integral number of pages then a
3216  * page cannot straddle two indirect blocks, and we can only touch one indirect
3217  * and dindirect block, and the "5" above becomes "3".
3218  *
3219  * This still overestimates under most circumstances.  If we were to pass the
3220  * start and end offsets in here as well we could do block_to_path() on each
3221  * block and work out the exact number of indirects which are touched.  Pah.
3222  */
3223
3224 int ext4_writepage_trans_blocks(struct inode *inode)
3225 {
3226         int bpp = ext4_journal_blocks_per_page(inode);
3227         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3228         int ret;
3229
3230         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3231                 return ext4_ext_writepage_trans_blocks(inode, bpp);
3232
3233         if (ext4_should_journal_data(inode))
3234                 ret = 3 * (bpp + indirects) + 2;
3235         else
3236                 ret = 2 * (bpp + indirects) + 2;
3237
3238 #ifdef CONFIG_QUOTA
3239         /* We know that structure was already allocated during DQUOT_INIT so
3240          * we will be updating only the data blocks + inodes */
3241         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3242 #endif
3243
3244         return ret;
3245 }
3246
3247 /*
3248  * The caller must have previously called ext4_reserve_inode_write().
3249  * Give this, we know that the caller already has write access to iloc->bh.
3250  */
3251 int ext4_mark_iloc_dirty(handle_t *handle,
3252                 struct inode *inode, struct ext4_iloc *iloc)
3253 {
3254         int err = 0;
3255
3256         if (test_opt(inode->i_sb, I_VERSION))
3257                 inode_inc_iversion(inode);
3258
3259         /* the do_update_inode consumes one bh->b_count */
3260         get_bh(iloc->bh);
3261
3262         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3263         err = ext4_do_update_inode(handle, inode, iloc);
3264         put_bh(iloc->bh);
3265         return err;
3266 }
3267
3268 /*
3269  * On success, We end up with an outstanding reference count against
3270  * iloc->bh.  This _must_ be cleaned up later.
3271  */
3272
3273 int
3274 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3275                          struct ext4_iloc *iloc)
3276 {
3277         int err = 0;
3278         if (handle) {
3279                 err = ext4_get_inode_loc(inode, iloc);
3280                 if (!err) {
3281                         BUFFER_TRACE(iloc->bh, "get_write_access");
3282                         err = ext4_journal_get_write_access(handle, iloc->bh);
3283                         if (err) {
3284                                 brelse(iloc->bh);
3285                                 iloc->bh = NULL;
3286                         }
3287                 }
3288         }
3289         ext4_std_error(inode->i_sb, err);
3290         return err;
3291 }
3292
3293 /*
3294  * Expand an inode by new_extra_isize bytes.
3295  * Returns 0 on success or negative error number on failure.
3296  */
3297 static int ext4_expand_extra_isize(struct inode *inode,
3298                                    unsigned int new_extra_isize,
3299                                    struct ext4_iloc iloc,
3300                                    handle_t *handle)
3301 {
3302         struct ext4_inode *raw_inode;
3303         struct ext4_xattr_ibody_header *header;
3304         struct ext4_xattr_entry *entry;
3305
3306         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3307                 return 0;
3308
3309         raw_inode = ext4_raw_inode(&iloc);
3310
3311         header = IHDR(inode, raw_inode);
3312         entry = IFIRST(header);
3313
3314         /* No extended attributes present */
3315         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3316                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3317                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3318                         new_extra_isize);
3319                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3320                 return 0;
3321         }
3322
3323         /* try to expand with EAs present */
3324         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3325                                           raw_inode, handle);
3326 }
3327
3328 /*
3329  * What we do here is to mark the in-core inode as clean with respect to inode
3330  * dirtiness (it may still be data-dirty).
3331  * This means that the in-core inode may be reaped by prune_icache
3332  * without having to perform any I/O.  This is a very good thing,
3333  * because *any* task may call prune_icache - even ones which
3334  * have a transaction open against a different journal.
3335  *
3336  * Is this cheating?  Not really.  Sure, we haven't written the
3337  * inode out, but prune_icache isn't a user-visible syncing function.
3338  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3339  * we start and wait on commits.
3340  *
3341  * Is this efficient/effective?  Well, we're being nice to the system
3342  * by cleaning up our inodes proactively so they can be reaped
3343  * without I/O.  But we are potentially leaving up to five seconds'
3344  * worth of inodes floating about which prune_icache wants us to
3345  * write out.  One way to fix that would be to get prune_icache()
3346  * to do a write_super() to free up some memory.  It has the desired
3347  * effect.
3348  */
3349 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3350 {
3351         struct ext4_iloc iloc;
3352         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3353         static unsigned int mnt_count;
3354         int err, ret;
3355
3356         might_sleep();
3357         err = ext4_reserve_inode_write(handle, inode, &iloc);
3358         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3359             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3360                 /*
3361                  * We need extra buffer credits since we may write into EA block
3362                  * with this same handle. If journal_extend fails, then it will
3363                  * only result in a minor loss of functionality for that inode.
3364                  * If this is felt to be critical, then e2fsck should be run to
3365                  * force a large enough s_min_extra_isize.
3366                  */
3367                 if ((jbd2_journal_extend(handle,
3368                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3369                         ret = ext4_expand_extra_isize(inode,
3370                                                       sbi->s_want_extra_isize,
3371                                                       iloc, handle);
3372                         if (ret) {
3373                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3374                                 if (mnt_count !=
3375                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
3376                                         ext4_warning(inode->i_sb, __func__,
3377                                         "Unable to expand inode %lu. Delete"
3378                                         " some EAs or run e2fsck.",
3379                                         inode->i_ino);
3380                                         mnt_count =
3381                                           le16_to_cpu(sbi->s_es->s_mnt_count);
3382                                 }
3383                         }
3384                 }
3385         }
3386         if (!err)
3387                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3388         return err;
3389 }
3390
3391 /*
3392  * ext4_dirty_inode() is called from __mark_inode_dirty()
3393  *
3394  * We're really interested in the case where a file is being extended.
3395  * i_size has been changed by generic_commit_write() and we thus need
3396  * to include the updated inode in the current transaction.
3397  *
3398  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3399  * are allocated to the file.
3400  *
3401  * If the inode is marked synchronous, we don't honour that here - doing
3402  * so would cause a commit on atime updates, which we don't bother doing.
3403  * We handle synchronous inodes at the highest possible level.
3404  */
3405 void ext4_dirty_inode(struct inode *inode)
3406 {
3407         handle_t *current_handle = ext4_journal_current_handle();
3408         handle_t *handle;
3409
3410         handle = ext4_journal_start(inode, 2);
3411         if (IS_ERR(handle))
3412                 goto out;
3413         if (current_handle &&
3414                 current_handle->h_transaction != handle->h_transaction) {
3415                 /* This task has a transaction open against a different fs */
3416                 printk(KERN_EMERG "%s: transactions do not match!\n",
3417                        __func__);
3418         } else {
3419                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3420                                 current_handle);
3421                 ext4_mark_inode_dirty(handle, inode);
3422         }
3423         ext4_journal_stop(handle);
3424 out:
3425         return;
3426 }
3427
3428 #if 0
3429 /*
3430  * Bind an inode's backing buffer_head into this transaction, to prevent
3431  * it from being flushed to disk early.  Unlike
3432  * ext4_reserve_inode_write, this leaves behind no bh reference and
3433  * returns no iloc structure, so the caller needs to repeat the iloc
3434  * lookup to mark the inode dirty later.
3435  */
3436 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3437 {
3438         struct ext4_iloc iloc;
3439
3440         int err = 0;
3441         if (handle) {
3442                 err = ext4_get_inode_loc(inode, &iloc);
3443                 if (!err) {
3444                         BUFFER_TRACE(iloc.bh, "get_write_access");
3445                         err = jbd2_journal_get_write_access(handle, iloc.bh);
3446                         if (!err)
3447                                 err = ext4_journal_dirty_metadata(handle,
3448                                                                   iloc.bh);
3449                         brelse(iloc.bh);
3450                 }
3451         }
3452         ext4_std_error(inode->i_sb, err);
3453         return err;
3454 }
3455 #endif
3456
3457 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3458 {
3459         journal_t *journal;
3460         handle_t *handle;
3461         int err;
3462
3463         /*
3464          * We have to be very careful here: changing a data block's
3465          * journaling status dynamically is dangerous.  If we write a
3466          * data block to the journal, change the status and then delete
3467          * that block, we risk forgetting to revoke the old log record
3468          * from the journal and so a subsequent replay can corrupt data.
3469          * So, first we make sure that the journal is empty and that
3470          * nobody is changing anything.
3471          */
3472
3473         journal = EXT4_JOURNAL(inode);
3474         if (is_journal_aborted(journal))
3475                 return -EROFS;
3476
3477         jbd2_journal_lock_updates(journal);
3478         jbd2_journal_flush(journal);
3479
3480         /*
3481          * OK, there are no updates running now, and all cached data is
3482          * synced to disk.  We are now in a completely consistent state
3483          * which doesn't have anything in the journal, and we know that
3484          * no filesystem updates are running, so it is safe to modify
3485          * the inode's in-core data-journaling state flag now.
3486          */
3487
3488         if (val)
3489                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3490         else
3491                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3492         ext4_set_aops(inode);
3493
3494         jbd2_journal_unlock_updates(journal);
3495
3496         /* Finally we can mark the inode as dirty. */
3497
3498         handle = ext4_journal_start(inode, 1);
3499         if (IS_ERR(handle))
3500                 return PTR_ERR(handle);
3501
3502         err = ext4_mark_inode_dirty(handle, inode);
3503         handle->h_sync = 1;
3504         ext4_journal_stop(handle);
3505         ext4_std_error(inode->i_sb, err);
3506
3507         return err;
3508 }