Btrfs: be more polite in the async caching threads
[linux-2.6] / fs / btrfs / async-thread.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kthread.h>
20 #include <linux/list.h>
21 #include <linux/spinlock.h>
22 #include <linux/freezer.h>
23 #include "async-thread.h"
24
25 #define WORK_QUEUED_BIT 0
26 #define WORK_DONE_BIT 1
27 #define WORK_ORDER_DONE_BIT 2
28 #define WORK_HIGH_PRIO_BIT 3
29
30 /*
31  * container for the kthread task pointer and the list of pending work
32  * One of these is allocated per thread.
33  */
34 struct btrfs_worker_thread {
35         /* pool we belong to */
36         struct btrfs_workers *workers;
37
38         /* list of struct btrfs_work that are waiting for service */
39         struct list_head pending;
40         struct list_head prio_pending;
41
42         /* list of worker threads from struct btrfs_workers */
43         struct list_head worker_list;
44
45         /* kthread */
46         struct task_struct *task;
47
48         /* number of things on the pending list */
49         atomic_t num_pending;
50
51         unsigned long sequence;
52
53         /* protects the pending list. */
54         spinlock_t lock;
55
56         /* set to non-zero when this thread is already awake and kicking */
57         int working;
58
59         /* are we currently idle */
60         int idle;
61 };
62
63 /*
64  * helper function to move a thread onto the idle list after it
65  * has finished some requests.
66  */
67 static void check_idle_worker(struct btrfs_worker_thread *worker)
68 {
69         if (!worker->idle && atomic_read(&worker->num_pending) <
70             worker->workers->idle_thresh / 2) {
71                 unsigned long flags;
72                 spin_lock_irqsave(&worker->workers->lock, flags);
73                 worker->idle = 1;
74                 list_move(&worker->worker_list, &worker->workers->idle_list);
75                 spin_unlock_irqrestore(&worker->workers->lock, flags);
76         }
77 }
78
79 /*
80  * helper function to move a thread off the idle list after new
81  * pending work is added.
82  */
83 static void check_busy_worker(struct btrfs_worker_thread *worker)
84 {
85         if (worker->idle && atomic_read(&worker->num_pending) >=
86             worker->workers->idle_thresh) {
87                 unsigned long flags;
88                 spin_lock_irqsave(&worker->workers->lock, flags);
89                 worker->idle = 0;
90                 list_move_tail(&worker->worker_list,
91                                &worker->workers->worker_list);
92                 spin_unlock_irqrestore(&worker->workers->lock, flags);
93         }
94 }
95
96 static noinline int run_ordered_completions(struct btrfs_workers *workers,
97                                             struct btrfs_work *work)
98 {
99         unsigned long flags;
100
101         if (!workers->ordered)
102                 return 0;
103
104         set_bit(WORK_DONE_BIT, &work->flags);
105
106         spin_lock_irqsave(&workers->lock, flags);
107
108         while (1) {
109                 if (!list_empty(&workers->prio_order_list)) {
110                         work = list_entry(workers->prio_order_list.next,
111                                           struct btrfs_work, order_list);
112                 } else if (!list_empty(&workers->order_list)) {
113                         work = list_entry(workers->order_list.next,
114                                           struct btrfs_work, order_list);
115                 } else {
116                         break;
117                 }
118                 if (!test_bit(WORK_DONE_BIT, &work->flags))
119                         break;
120
121                 /* we are going to call the ordered done function, but
122                  * we leave the work item on the list as a barrier so
123                  * that later work items that are done don't have their
124                  * functions called before this one returns
125                  */
126                 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
127                         break;
128
129                 spin_unlock_irqrestore(&workers->lock, flags);
130
131                 work->ordered_func(work);
132
133                 /* now take the lock again and call the freeing code */
134                 spin_lock_irqsave(&workers->lock, flags);
135                 list_del(&work->order_list);
136                 work->ordered_free(work);
137         }
138
139         spin_unlock_irqrestore(&workers->lock, flags);
140         return 0;
141 }
142
143 /*
144  * main loop for servicing work items
145  */
146 static int worker_loop(void *arg)
147 {
148         struct btrfs_worker_thread *worker = arg;
149         struct list_head *cur;
150         struct btrfs_work *work;
151         do {
152                 spin_lock_irq(&worker->lock);
153 again_locked:
154                 while (1) {
155                         if (!list_empty(&worker->prio_pending))
156                                 cur = worker->prio_pending.next;
157                         else if (!list_empty(&worker->pending))
158                                 cur = worker->pending.next;
159                         else
160                                 break;
161
162                         work = list_entry(cur, struct btrfs_work, list);
163                         list_del(&work->list);
164                         clear_bit(WORK_QUEUED_BIT, &work->flags);
165
166                         work->worker = worker;
167                         spin_unlock_irq(&worker->lock);
168
169                         work->func(work);
170
171                         atomic_dec(&worker->num_pending);
172                         /*
173                          * unless this is an ordered work queue,
174                          * 'work' was probably freed by func above.
175                          */
176                         run_ordered_completions(worker->workers, work);
177
178                         spin_lock_irq(&worker->lock);
179                         check_idle_worker(worker);
180                 }
181                 if (freezing(current)) {
182                         worker->working = 0;
183                         spin_unlock_irq(&worker->lock);
184                         refrigerator();
185                 } else {
186                         spin_unlock_irq(&worker->lock);
187                         if (!kthread_should_stop()) {
188                                 cpu_relax();
189                                 /*
190                                  * we've dropped the lock, did someone else
191                                  * jump_in?
192                                  */
193                                 smp_mb();
194                                 if (!list_empty(&worker->pending) ||
195                                     !list_empty(&worker->prio_pending))
196                                         continue;
197
198                                 /*
199                                  * this short schedule allows more work to
200                                  * come in without the queue functions
201                                  * needing to go through wake_up_process()
202                                  *
203                                  * worker->working is still 1, so nobody
204                                  * is going to try and wake us up
205                                  */
206                                 schedule_timeout(1);
207                                 smp_mb();
208                                 if (!list_empty(&worker->pending) ||
209                                     !list_empty(&worker->prio_pending))
210                                         continue;
211
212                                 if (kthread_should_stop())
213                                         break;
214
215                                 /* still no more work?, sleep for real */
216                                 spin_lock_irq(&worker->lock);
217                                 set_current_state(TASK_INTERRUPTIBLE);
218                                 if (!list_empty(&worker->pending) ||
219                                     !list_empty(&worker->prio_pending))
220                                         goto again_locked;
221
222                                 /*
223                                  * this makes sure we get a wakeup when someone
224                                  * adds something new to the queue
225                                  */
226                                 worker->working = 0;
227                                 spin_unlock_irq(&worker->lock);
228
229                                 if (!kthread_should_stop())
230                                         schedule();
231                         }
232                         __set_current_state(TASK_RUNNING);
233                 }
234         } while (!kthread_should_stop());
235         return 0;
236 }
237
238 /*
239  * this will wait for all the worker threads to shutdown
240  */
241 int btrfs_stop_workers(struct btrfs_workers *workers)
242 {
243         struct list_head *cur;
244         struct btrfs_worker_thread *worker;
245
246         list_splice_init(&workers->idle_list, &workers->worker_list);
247         while (!list_empty(&workers->worker_list)) {
248                 cur = workers->worker_list.next;
249                 worker = list_entry(cur, struct btrfs_worker_thread,
250                                     worker_list);
251                 kthread_stop(worker->task);
252                 list_del(&worker->worker_list);
253                 kfree(worker);
254         }
255         return 0;
256 }
257
258 /*
259  * simple init on struct btrfs_workers
260  */
261 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max)
262 {
263         workers->num_workers = 0;
264         INIT_LIST_HEAD(&workers->worker_list);
265         INIT_LIST_HEAD(&workers->idle_list);
266         INIT_LIST_HEAD(&workers->order_list);
267         INIT_LIST_HEAD(&workers->prio_order_list);
268         spin_lock_init(&workers->lock);
269         workers->max_workers = max;
270         workers->idle_thresh = 32;
271         workers->name = name;
272         workers->ordered = 0;
273 }
274
275 /*
276  * starts new worker threads.  This does not enforce the max worker
277  * count in case you need to temporarily go past it.
278  */
279 int btrfs_start_workers(struct btrfs_workers *workers, int num_workers)
280 {
281         struct btrfs_worker_thread *worker;
282         int ret = 0;
283         int i;
284
285         for (i = 0; i < num_workers; i++) {
286                 worker = kzalloc(sizeof(*worker), GFP_NOFS);
287                 if (!worker) {
288                         ret = -ENOMEM;
289                         goto fail;
290                 }
291
292                 INIT_LIST_HEAD(&worker->pending);
293                 INIT_LIST_HEAD(&worker->prio_pending);
294                 INIT_LIST_HEAD(&worker->worker_list);
295                 spin_lock_init(&worker->lock);
296                 atomic_set(&worker->num_pending, 0);
297                 worker->workers = workers;
298                 worker->task = kthread_run(worker_loop, worker,
299                                            "btrfs-%s-%d", workers->name,
300                                            workers->num_workers + i);
301                 if (IS_ERR(worker->task)) {
302                         ret = PTR_ERR(worker->task);
303                         kfree(worker);
304                         goto fail;
305                 }
306
307                 spin_lock_irq(&workers->lock);
308                 list_add_tail(&worker->worker_list, &workers->idle_list);
309                 worker->idle = 1;
310                 workers->num_workers++;
311                 spin_unlock_irq(&workers->lock);
312         }
313         return 0;
314 fail:
315         btrfs_stop_workers(workers);
316         return ret;
317 }
318
319 /*
320  * run through the list and find a worker thread that doesn't have a lot
321  * to do right now.  This can return null if we aren't yet at the thread
322  * count limit and all of the threads are busy.
323  */
324 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
325 {
326         struct btrfs_worker_thread *worker;
327         struct list_head *next;
328         int enforce_min = workers->num_workers < workers->max_workers;
329
330         /*
331          * if we find an idle thread, don't move it to the end of the
332          * idle list.  This improves the chance that the next submission
333          * will reuse the same thread, and maybe catch it while it is still
334          * working
335          */
336         if (!list_empty(&workers->idle_list)) {
337                 next = workers->idle_list.next;
338                 worker = list_entry(next, struct btrfs_worker_thread,
339                                     worker_list);
340                 return worker;
341         }
342         if (enforce_min || list_empty(&workers->worker_list))
343                 return NULL;
344
345         /*
346          * if we pick a busy task, move the task to the end of the list.
347          * hopefully this will keep things somewhat evenly balanced.
348          * Do the move in batches based on the sequence number.  This groups
349          * requests submitted at roughly the same time onto the same worker.
350          */
351         next = workers->worker_list.next;
352         worker = list_entry(next, struct btrfs_worker_thread, worker_list);
353         atomic_inc(&worker->num_pending);
354         worker->sequence++;
355
356         if (worker->sequence % workers->idle_thresh == 0)
357                 list_move_tail(next, &workers->worker_list);
358         return worker;
359 }
360
361 /*
362  * selects a worker thread to take the next job.  This will either find
363  * an idle worker, start a new worker up to the max count, or just return
364  * one of the existing busy workers.
365  */
366 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
367 {
368         struct btrfs_worker_thread *worker;
369         unsigned long flags;
370
371 again:
372         spin_lock_irqsave(&workers->lock, flags);
373         worker = next_worker(workers);
374         spin_unlock_irqrestore(&workers->lock, flags);
375
376         if (!worker) {
377                 spin_lock_irqsave(&workers->lock, flags);
378                 if (workers->num_workers >= workers->max_workers) {
379                         struct list_head *fallback = NULL;
380                         /*
381                          * we have failed to find any workers, just
382                          * return the force one
383                          */
384                         if (!list_empty(&workers->worker_list))
385                                 fallback = workers->worker_list.next;
386                         if (!list_empty(&workers->idle_list))
387                                 fallback = workers->idle_list.next;
388                         BUG_ON(!fallback);
389                         worker = list_entry(fallback,
390                                   struct btrfs_worker_thread, worker_list);
391                         spin_unlock_irqrestore(&workers->lock, flags);
392                 } else {
393                         spin_unlock_irqrestore(&workers->lock, flags);
394                         /* we're below the limit, start another worker */
395                         btrfs_start_workers(workers, 1);
396                         goto again;
397                 }
398         }
399         return worker;
400 }
401
402 /*
403  * btrfs_requeue_work just puts the work item back on the tail of the list
404  * it was taken from.  It is intended for use with long running work functions
405  * that make some progress and want to give the cpu up for others.
406  */
407 int btrfs_requeue_work(struct btrfs_work *work)
408 {
409         struct btrfs_worker_thread *worker = work->worker;
410         unsigned long flags;
411         int wake = 0;
412
413         if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
414                 goto out;
415
416         spin_lock_irqsave(&worker->lock, flags);
417         if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
418                 list_add_tail(&work->list, &worker->prio_pending);
419         else
420                 list_add_tail(&work->list, &worker->pending);
421         atomic_inc(&worker->num_pending);
422
423         /* by definition we're busy, take ourselves off the idle
424          * list
425          */
426         if (worker->idle) {
427                 spin_lock(&worker->workers->lock);
428                 worker->idle = 0;
429                 list_move_tail(&worker->worker_list,
430                                &worker->workers->worker_list);
431                 spin_unlock(&worker->workers->lock);
432         }
433         if (!worker->working) {
434                 wake = 1;
435                 worker->working = 1;
436         }
437
438         spin_unlock_irqrestore(&worker->lock, flags);
439         if (wake)
440                 wake_up_process(worker->task);
441 out:
442
443         return 0;
444 }
445
446 void btrfs_set_work_high_prio(struct btrfs_work *work)
447 {
448         set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
449 }
450
451 /*
452  * places a struct btrfs_work into the pending queue of one of the kthreads
453  */
454 int btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
455 {
456         struct btrfs_worker_thread *worker;
457         unsigned long flags;
458         int wake = 0;
459
460         /* don't requeue something already on a list */
461         if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
462                 goto out;
463
464         worker = find_worker(workers);
465         if (workers->ordered) {
466                 spin_lock_irqsave(&workers->lock, flags);
467                 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) {
468                         list_add_tail(&work->order_list,
469                                       &workers->prio_order_list);
470                 } else {
471                         list_add_tail(&work->order_list, &workers->order_list);
472                 }
473                 spin_unlock_irqrestore(&workers->lock, flags);
474         } else {
475                 INIT_LIST_HEAD(&work->order_list);
476         }
477
478         spin_lock_irqsave(&worker->lock, flags);
479
480         if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
481                 list_add_tail(&work->list, &worker->prio_pending);
482         else
483                 list_add_tail(&work->list, &worker->pending);
484         atomic_inc(&worker->num_pending);
485         check_busy_worker(worker);
486
487         /*
488          * avoid calling into wake_up_process if this thread has already
489          * been kicked
490          */
491         if (!worker->working)
492                 wake = 1;
493         worker->working = 1;
494
495         spin_unlock_irqrestore(&worker->lock, flags);
496
497         if (wake)
498                 wake_up_process(worker->task);
499 out:
500         return 0;
501 }