4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_counter.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/div64.h>
45 #include <asm/timex.h>
48 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
50 EXPORT_SYMBOL(jiffies_64);
53 * per-CPU timer vector definitions:
55 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
56 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
57 #define TVN_SIZE (1 << TVN_BITS)
58 #define TVR_SIZE (1 << TVR_BITS)
59 #define TVN_MASK (TVN_SIZE - 1)
60 #define TVR_MASK (TVR_SIZE - 1)
63 struct list_head vec[TVN_SIZE];
67 struct list_head vec[TVR_SIZE];
72 struct timer_list *running_timer;
73 unsigned long timer_jiffies;
79 } ____cacheline_aligned;
81 struct tvec_base boot_tvec_bases;
82 EXPORT_SYMBOL(boot_tvec_bases);
83 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
86 * Note that all tvec_bases are 2 byte aligned and lower bit of
87 * base in timer_list is guaranteed to be zero. Use the LSB for
88 * the new flag to indicate whether the timer is deferrable
90 #define TBASE_DEFERRABLE_FLAG (0x1)
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
98 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
100 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
103 static inline void timer_set_deferrable(struct timer_list *timer)
105 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
106 TBASE_DEFERRABLE_FLAG));
110 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
112 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
113 tbase_get_deferrable(timer->base));
116 static unsigned long round_jiffies_common(unsigned long j, int cpu,
120 unsigned long original = j;
123 * We don't want all cpus firing their timers at once hitting the
124 * same lock or cachelines, so we skew each extra cpu with an extra
125 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
127 * The skew is done by adding 3*cpunr, then round, then subtract this
128 * extra offset again.
135 * If the target jiffie is just after a whole second (which can happen
136 * due to delays of the timer irq, long irq off times etc etc) then
137 * we should round down to the whole second, not up. Use 1/4th second
138 * as cutoff for this rounding as an extreme upper bound for this.
139 * But never round down if @force_up is set.
141 if (rem < HZ/4 && !force_up) /* round down */
146 /* now that we have rounded, subtract the extra skew again */
149 if (j <= jiffies) /* rounding ate our timeout entirely; */
155 * __round_jiffies - function to round jiffies to a full second
156 * @j: the time in (absolute) jiffies that should be rounded
157 * @cpu: the processor number on which the timeout will happen
159 * __round_jiffies() rounds an absolute time in the future (in jiffies)
160 * up or down to (approximately) full seconds. This is useful for timers
161 * for which the exact time they fire does not matter too much, as long as
162 * they fire approximately every X seconds.
164 * By rounding these timers to whole seconds, all such timers will fire
165 * at the same time, rather than at various times spread out. The goal
166 * of this is to have the CPU wake up less, which saves power.
168 * The exact rounding is skewed for each processor to avoid all
169 * processors firing at the exact same time, which could lead
170 * to lock contention or spurious cache line bouncing.
172 * The return value is the rounded version of the @j parameter.
174 unsigned long __round_jiffies(unsigned long j, int cpu)
176 return round_jiffies_common(j, cpu, false);
178 EXPORT_SYMBOL_GPL(__round_jiffies);
181 * __round_jiffies_relative - function to round jiffies to a full second
182 * @j: the time in (relative) jiffies that should be rounded
183 * @cpu: the processor number on which the timeout will happen
185 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
186 * up or down to (approximately) full seconds. This is useful for timers
187 * for which the exact time they fire does not matter too much, as long as
188 * they fire approximately every X seconds.
190 * By rounding these timers to whole seconds, all such timers will fire
191 * at the same time, rather than at various times spread out. The goal
192 * of this is to have the CPU wake up less, which saves power.
194 * The exact rounding is skewed for each processor to avoid all
195 * processors firing at the exact same time, which could lead
196 * to lock contention or spurious cache line bouncing.
198 * The return value is the rounded version of the @j parameter.
200 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
202 unsigned long j0 = jiffies;
204 /* Use j0 because jiffies might change while we run */
205 return round_jiffies_common(j + j0, cpu, false) - j0;
207 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
210 * round_jiffies - function to round jiffies to a full second
211 * @j: the time in (absolute) jiffies that should be rounded
213 * round_jiffies() rounds an absolute time in the future (in jiffies)
214 * up or down to (approximately) full seconds. This is useful for timers
215 * for which the exact time they fire does not matter too much, as long as
216 * they fire approximately every X seconds.
218 * By rounding these timers to whole seconds, all such timers will fire
219 * at the same time, rather than at various times spread out. The goal
220 * of this is to have the CPU wake up less, which saves power.
222 * The return value is the rounded version of the @j parameter.
224 unsigned long round_jiffies(unsigned long j)
226 return round_jiffies_common(j, raw_smp_processor_id(), false);
228 EXPORT_SYMBOL_GPL(round_jiffies);
231 * round_jiffies_relative - function to round jiffies to a full second
232 * @j: the time in (relative) jiffies that should be rounded
234 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
235 * up or down to (approximately) full seconds. This is useful for timers
236 * for which the exact time they fire does not matter too much, as long as
237 * they fire approximately every X seconds.
239 * By rounding these timers to whole seconds, all such timers will fire
240 * at the same time, rather than at various times spread out. The goal
241 * of this is to have the CPU wake up less, which saves power.
243 * The return value is the rounded version of the @j parameter.
245 unsigned long round_jiffies_relative(unsigned long j)
247 return __round_jiffies_relative(j, raw_smp_processor_id());
249 EXPORT_SYMBOL_GPL(round_jiffies_relative);
252 * __round_jiffies_up - function to round jiffies up to a full second
253 * @j: the time in (absolute) jiffies that should be rounded
254 * @cpu: the processor number on which the timeout will happen
256 * This is the same as __round_jiffies() except that it will never
257 * round down. This is useful for timeouts for which the exact time
258 * of firing does not matter too much, as long as they don't fire too
261 unsigned long __round_jiffies_up(unsigned long j, int cpu)
263 return round_jiffies_common(j, cpu, true);
265 EXPORT_SYMBOL_GPL(__round_jiffies_up);
268 * __round_jiffies_up_relative - function to round jiffies up to a full second
269 * @j: the time in (relative) jiffies that should be rounded
270 * @cpu: the processor number on which the timeout will happen
272 * This is the same as __round_jiffies_relative() except that it will never
273 * round down. This is useful for timeouts for which the exact time
274 * of firing does not matter too much, as long as they don't fire too
277 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
279 unsigned long j0 = jiffies;
281 /* Use j0 because jiffies might change while we run */
282 return round_jiffies_common(j + j0, cpu, true) - j0;
284 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
287 * round_jiffies_up - function to round jiffies up to a full second
288 * @j: the time in (absolute) jiffies that should be rounded
290 * This is the same as round_jiffies() except that it will never
291 * round down. This is useful for timeouts for which the exact time
292 * of firing does not matter too much, as long as they don't fire too
295 unsigned long round_jiffies_up(unsigned long j)
297 return round_jiffies_common(j, raw_smp_processor_id(), true);
299 EXPORT_SYMBOL_GPL(round_jiffies_up);
302 * round_jiffies_up_relative - function to round jiffies up to a full second
303 * @j: the time in (relative) jiffies that should be rounded
305 * This is the same as round_jiffies_relative() except that it will never
306 * round down. This is useful for timeouts for which the exact time
307 * of firing does not matter too much, as long as they don't fire too
310 unsigned long round_jiffies_up_relative(unsigned long j)
312 return __round_jiffies_up_relative(j, raw_smp_processor_id());
314 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
317 static inline void set_running_timer(struct tvec_base *base,
318 struct timer_list *timer)
321 base->running_timer = timer;
325 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
327 unsigned long expires = timer->expires;
328 unsigned long idx = expires - base->timer_jiffies;
329 struct list_head *vec;
331 if (idx < TVR_SIZE) {
332 int i = expires & TVR_MASK;
333 vec = base->tv1.vec + i;
334 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
335 int i = (expires >> TVR_BITS) & TVN_MASK;
336 vec = base->tv2.vec + i;
337 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
338 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
339 vec = base->tv3.vec + i;
340 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
341 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
342 vec = base->tv4.vec + i;
343 } else if ((signed long) idx < 0) {
345 * Can happen if you add a timer with expires == jiffies,
346 * or you set a timer to go off in the past
348 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
351 /* If the timeout is larger than 0xffffffff on 64-bit
352 * architectures then we use the maximum timeout:
354 if (idx > 0xffffffffUL) {
356 expires = idx + base->timer_jiffies;
358 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
359 vec = base->tv5.vec + i;
364 list_add_tail(&timer->entry, vec);
367 #ifdef CONFIG_TIMER_STATS
368 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
370 if (timer->start_site)
373 timer->start_site = addr;
374 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
375 timer->start_pid = current->pid;
378 static void timer_stats_account_timer(struct timer_list *timer)
380 unsigned int flag = 0;
382 if (unlikely(tbase_get_deferrable(timer->base)))
383 flag |= TIMER_STATS_FLAG_DEFERRABLE;
385 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
386 timer->function, timer->start_comm, flag);
390 static void timer_stats_account_timer(struct timer_list *timer) {}
393 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
395 static struct debug_obj_descr timer_debug_descr;
398 * fixup_init is called when:
399 * - an active object is initialized
401 static int timer_fixup_init(void *addr, enum debug_obj_state state)
403 struct timer_list *timer = addr;
406 case ODEBUG_STATE_ACTIVE:
407 del_timer_sync(timer);
408 debug_object_init(timer, &timer_debug_descr);
416 * fixup_activate is called when:
417 * - an active object is activated
418 * - an unknown object is activated (might be a statically initialized object)
420 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
422 struct timer_list *timer = addr;
426 case ODEBUG_STATE_NOTAVAILABLE:
428 * This is not really a fixup. The timer was
429 * statically initialized. We just make sure that it
430 * is tracked in the object tracker.
432 if (timer->entry.next == NULL &&
433 timer->entry.prev == TIMER_ENTRY_STATIC) {
434 debug_object_init(timer, &timer_debug_descr);
435 debug_object_activate(timer, &timer_debug_descr);
442 case ODEBUG_STATE_ACTIVE:
451 * fixup_free is called when:
452 * - an active object is freed
454 static int timer_fixup_free(void *addr, enum debug_obj_state state)
456 struct timer_list *timer = addr;
459 case ODEBUG_STATE_ACTIVE:
460 del_timer_sync(timer);
461 debug_object_free(timer, &timer_debug_descr);
468 static struct debug_obj_descr timer_debug_descr = {
469 .name = "timer_list",
470 .fixup_init = timer_fixup_init,
471 .fixup_activate = timer_fixup_activate,
472 .fixup_free = timer_fixup_free,
475 static inline void debug_timer_init(struct timer_list *timer)
477 debug_object_init(timer, &timer_debug_descr);
480 static inline void debug_timer_activate(struct timer_list *timer)
482 debug_object_activate(timer, &timer_debug_descr);
485 static inline void debug_timer_deactivate(struct timer_list *timer)
487 debug_object_deactivate(timer, &timer_debug_descr);
490 static inline void debug_timer_free(struct timer_list *timer)
492 debug_object_free(timer, &timer_debug_descr);
495 static void __init_timer(struct timer_list *timer,
497 struct lock_class_key *key);
499 void init_timer_on_stack_key(struct timer_list *timer,
501 struct lock_class_key *key)
503 debug_object_init_on_stack(timer, &timer_debug_descr);
504 __init_timer(timer, name, key);
506 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
508 void destroy_timer_on_stack(struct timer_list *timer)
510 debug_object_free(timer, &timer_debug_descr);
512 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
515 static inline void debug_timer_init(struct timer_list *timer) { }
516 static inline void debug_timer_activate(struct timer_list *timer) { }
517 static inline void debug_timer_deactivate(struct timer_list *timer) { }
520 static void __init_timer(struct timer_list *timer,
522 struct lock_class_key *key)
524 timer->entry.next = NULL;
525 timer->base = __raw_get_cpu_var(tvec_bases);
526 #ifdef CONFIG_TIMER_STATS
527 timer->start_site = NULL;
528 timer->start_pid = -1;
529 memset(timer->start_comm, 0, TASK_COMM_LEN);
531 lockdep_init_map(&timer->lockdep_map, name, key, 0);
535 * init_timer_key - initialize a timer
536 * @timer: the timer to be initialized
537 * @name: name of the timer
538 * @key: lockdep class key of the fake lock used for tracking timer
539 * sync lock dependencies
541 * init_timer_key() must be done to a timer prior calling *any* of the
542 * other timer functions.
544 void init_timer_key(struct timer_list *timer,
546 struct lock_class_key *key)
548 debug_timer_init(timer);
549 __init_timer(timer, name, key);
551 EXPORT_SYMBOL(init_timer_key);
553 void init_timer_deferrable_key(struct timer_list *timer,
555 struct lock_class_key *key)
557 init_timer_key(timer, name, key);
558 timer_set_deferrable(timer);
560 EXPORT_SYMBOL(init_timer_deferrable_key);
562 static inline void detach_timer(struct timer_list *timer,
565 struct list_head *entry = &timer->entry;
567 debug_timer_deactivate(timer);
569 __list_del(entry->prev, entry->next);
572 entry->prev = LIST_POISON2;
576 * We are using hashed locking: holding per_cpu(tvec_bases).lock
577 * means that all timers which are tied to this base via timer->base are
578 * locked, and the base itself is locked too.
580 * So __run_timers/migrate_timers can safely modify all timers which could
581 * be found on ->tvX lists.
583 * When the timer's base is locked, and the timer removed from list, it is
584 * possible to set timer->base = NULL and drop the lock: the timer remains
587 static struct tvec_base *lock_timer_base(struct timer_list *timer,
588 unsigned long *flags)
589 __acquires(timer->base->lock)
591 struct tvec_base *base;
594 struct tvec_base *prelock_base = timer->base;
595 base = tbase_get_base(prelock_base);
596 if (likely(base != NULL)) {
597 spin_lock_irqsave(&base->lock, *flags);
598 if (likely(prelock_base == timer->base))
600 /* The timer has migrated to another CPU */
601 spin_unlock_irqrestore(&base->lock, *flags);
608 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
610 struct tvec_base *base, *new_base;
616 timer_stats_timer_set_start_info(timer);
617 BUG_ON(!timer->function);
619 base = lock_timer_base(timer, &flags);
621 if (timer_pending(timer)) {
622 detach_timer(timer, 0);
629 debug_timer_activate(timer);
631 new_base = __get_cpu_var(tvec_bases);
633 if (base != new_base) {
635 * We are trying to schedule the timer on the local CPU.
636 * However we can't change timer's base while it is running,
637 * otherwise del_timer_sync() can't detect that the timer's
638 * handler yet has not finished. This also guarantees that
639 * the timer is serialized wrt itself.
641 if (likely(base->running_timer != timer)) {
642 /* See the comment in lock_timer_base() */
643 timer_set_base(timer, NULL);
644 spin_unlock(&base->lock);
646 spin_lock(&base->lock);
647 timer_set_base(timer, base);
651 timer->expires = expires;
652 internal_add_timer(base, timer);
655 spin_unlock_irqrestore(&base->lock, flags);
661 * mod_timer_pending - modify a pending timer's timeout
662 * @timer: the pending timer to be modified
663 * @expires: new timeout in jiffies
665 * mod_timer_pending() is the same for pending timers as mod_timer(),
666 * but will not re-activate and modify already deleted timers.
668 * It is useful for unserialized use of timers.
670 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
672 return __mod_timer(timer, expires, true);
674 EXPORT_SYMBOL(mod_timer_pending);
677 * mod_timer - modify a timer's timeout
678 * @timer: the timer to be modified
679 * @expires: new timeout in jiffies
681 * mod_timer() is a more efficient way to update the expire field of an
682 * active timer (if the timer is inactive it will be activated)
684 * mod_timer(timer, expires) is equivalent to:
686 * del_timer(timer); timer->expires = expires; add_timer(timer);
688 * Note that if there are multiple unserialized concurrent users of the
689 * same timer, then mod_timer() is the only safe way to modify the timeout,
690 * since add_timer() cannot modify an already running timer.
692 * The function returns whether it has modified a pending timer or not.
693 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
694 * active timer returns 1.)
696 int mod_timer(struct timer_list *timer, unsigned long expires)
699 * This is a common optimization triggered by the
700 * networking code - if the timer is re-modified
701 * to be the same thing then just return:
703 if (timer->expires == expires && timer_pending(timer))
706 return __mod_timer(timer, expires, false);
708 EXPORT_SYMBOL(mod_timer);
711 * add_timer - start a timer
712 * @timer: the timer to be added
714 * The kernel will do a ->function(->data) callback from the
715 * timer interrupt at the ->expires point in the future. The
716 * current time is 'jiffies'.
718 * The timer's ->expires, ->function (and if the handler uses it, ->data)
719 * fields must be set prior calling this function.
721 * Timers with an ->expires field in the past will be executed in the next
724 void add_timer(struct timer_list *timer)
726 BUG_ON(timer_pending(timer));
727 mod_timer(timer, timer->expires);
729 EXPORT_SYMBOL(add_timer);
732 * add_timer_on - start a timer on a particular CPU
733 * @timer: the timer to be added
734 * @cpu: the CPU to start it on
736 * This is not very scalable on SMP. Double adds are not possible.
738 void add_timer_on(struct timer_list *timer, int cpu)
740 struct tvec_base *base = per_cpu(tvec_bases, cpu);
743 timer_stats_timer_set_start_info(timer);
744 BUG_ON(timer_pending(timer) || !timer->function);
745 spin_lock_irqsave(&base->lock, flags);
746 timer_set_base(timer, base);
747 debug_timer_activate(timer);
748 internal_add_timer(base, timer);
750 * Check whether the other CPU is idle and needs to be
751 * triggered to reevaluate the timer wheel when nohz is
752 * active. We are protected against the other CPU fiddling
753 * with the timer by holding the timer base lock. This also
754 * makes sure that a CPU on the way to idle can not evaluate
757 wake_up_idle_cpu(cpu);
758 spin_unlock_irqrestore(&base->lock, flags);
762 * del_timer - deactive a timer.
763 * @timer: the timer to be deactivated
765 * del_timer() deactivates a timer - this works on both active and inactive
768 * The function returns whether it has deactivated a pending timer or not.
769 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
770 * active timer returns 1.)
772 int del_timer(struct timer_list *timer)
774 struct tvec_base *base;
778 timer_stats_timer_clear_start_info(timer);
779 if (timer_pending(timer)) {
780 base = lock_timer_base(timer, &flags);
781 if (timer_pending(timer)) {
782 detach_timer(timer, 1);
785 spin_unlock_irqrestore(&base->lock, flags);
790 EXPORT_SYMBOL(del_timer);
794 * try_to_del_timer_sync - Try to deactivate a timer
795 * @timer: timer do del
797 * This function tries to deactivate a timer. Upon successful (ret >= 0)
798 * exit the timer is not queued and the handler is not running on any CPU.
800 * It must not be called from interrupt contexts.
802 int try_to_del_timer_sync(struct timer_list *timer)
804 struct tvec_base *base;
808 base = lock_timer_base(timer, &flags);
810 if (base->running_timer == timer)
814 if (timer_pending(timer)) {
815 detach_timer(timer, 1);
819 spin_unlock_irqrestore(&base->lock, flags);
823 EXPORT_SYMBOL(try_to_del_timer_sync);
826 * del_timer_sync - deactivate a timer and wait for the handler to finish.
827 * @timer: the timer to be deactivated
829 * This function only differs from del_timer() on SMP: besides deactivating
830 * the timer it also makes sure the handler has finished executing on other
833 * Synchronization rules: Callers must prevent restarting of the timer,
834 * otherwise this function is meaningless. It must not be called from
835 * interrupt contexts. The caller must not hold locks which would prevent
836 * completion of the timer's handler. The timer's handler must not call
837 * add_timer_on(). Upon exit the timer is not queued and the handler is
838 * not running on any CPU.
840 * The function returns whether it has deactivated a pending timer or not.
842 int del_timer_sync(struct timer_list *timer)
844 #ifdef CONFIG_LOCKDEP
847 local_irq_save(flags);
848 lock_map_acquire(&timer->lockdep_map);
849 lock_map_release(&timer->lockdep_map);
850 local_irq_restore(flags);
854 int ret = try_to_del_timer_sync(timer);
860 EXPORT_SYMBOL(del_timer_sync);
863 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
865 /* cascade all the timers from tv up one level */
866 struct timer_list *timer, *tmp;
867 struct list_head tv_list;
869 list_replace_init(tv->vec + index, &tv_list);
872 * We are removing _all_ timers from the list, so we
873 * don't have to detach them individually.
875 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
876 BUG_ON(tbase_get_base(timer->base) != base);
877 internal_add_timer(base, timer);
883 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
886 * __run_timers - run all expired timers (if any) on this CPU.
887 * @base: the timer vector to be processed.
889 * This function cascades all vectors and executes all expired timer
892 static inline void __run_timers(struct tvec_base *base)
894 struct timer_list *timer;
896 spin_lock_irq(&base->lock);
897 while (time_after_eq(jiffies, base->timer_jiffies)) {
898 struct list_head work_list;
899 struct list_head *head = &work_list;
900 int index = base->timer_jiffies & TVR_MASK;
906 (!cascade(base, &base->tv2, INDEX(0))) &&
907 (!cascade(base, &base->tv3, INDEX(1))) &&
908 !cascade(base, &base->tv4, INDEX(2)))
909 cascade(base, &base->tv5, INDEX(3));
910 ++base->timer_jiffies;
911 list_replace_init(base->tv1.vec + index, &work_list);
912 while (!list_empty(head)) {
913 void (*fn)(unsigned long);
916 timer = list_first_entry(head, struct timer_list,entry);
917 fn = timer->function;
920 timer_stats_account_timer(timer);
922 set_running_timer(base, timer);
923 detach_timer(timer, 1);
925 spin_unlock_irq(&base->lock);
927 int preempt_count = preempt_count();
929 #ifdef CONFIG_LOCKDEP
931 * It is permissible to free the timer from
932 * inside the function that is called from
933 * it, this we need to take into account for
934 * lockdep too. To avoid bogus "held lock
935 * freed" warnings as well as problems when
936 * looking into timer->lockdep_map, make a
937 * copy and use that here.
939 struct lockdep_map lockdep_map =
943 * Couple the lock chain with the lock chain at
944 * del_timer_sync() by acquiring the lock_map
945 * around the fn() call here and in
948 lock_map_acquire(&lockdep_map);
952 lock_map_release(&lockdep_map);
954 if (preempt_count != preempt_count()) {
955 printk(KERN_ERR "huh, entered %p "
956 "with preempt_count %08x, exited"
963 spin_lock_irq(&base->lock);
966 set_running_timer(base, NULL);
967 spin_unlock_irq(&base->lock);
972 * Find out when the next timer event is due to happen. This
973 * is used on S/390 to stop all activity when a cpus is idle.
974 * This functions needs to be called disabled.
976 static unsigned long __next_timer_interrupt(struct tvec_base *base)
978 unsigned long timer_jiffies = base->timer_jiffies;
979 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
980 int index, slot, array, found = 0;
981 struct timer_list *nte;
982 struct tvec *varray[4];
984 /* Look for timer events in tv1. */
985 index = slot = timer_jiffies & TVR_MASK;
987 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
988 if (tbase_get_deferrable(nte->base))
992 expires = nte->expires;
993 /* Look at the cascade bucket(s)? */
994 if (!index || slot < index)
998 slot = (slot + 1) & TVR_MASK;
999 } while (slot != index);
1002 /* Calculate the next cascade event */
1004 timer_jiffies += TVR_SIZE - index;
1005 timer_jiffies >>= TVR_BITS;
1007 /* Check tv2-tv5. */
1008 varray[0] = &base->tv2;
1009 varray[1] = &base->tv3;
1010 varray[2] = &base->tv4;
1011 varray[3] = &base->tv5;
1013 for (array = 0; array < 4; array++) {
1014 struct tvec *varp = varray[array];
1016 index = slot = timer_jiffies & TVN_MASK;
1018 list_for_each_entry(nte, varp->vec + slot, entry) {
1020 if (time_before(nte->expires, expires))
1021 expires = nte->expires;
1024 * Do we still search for the first timer or are
1025 * we looking up the cascade buckets ?
1028 /* Look at the cascade bucket(s)? */
1029 if (!index || slot < index)
1033 slot = (slot + 1) & TVN_MASK;
1034 } while (slot != index);
1037 timer_jiffies += TVN_SIZE - index;
1038 timer_jiffies >>= TVN_BITS;
1044 * Check, if the next hrtimer event is before the next timer wheel
1047 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1048 unsigned long expires)
1050 ktime_t hr_delta = hrtimer_get_next_event();
1051 struct timespec tsdelta;
1052 unsigned long delta;
1054 if (hr_delta.tv64 == KTIME_MAX)
1058 * Expired timer available, let it expire in the next tick
1060 if (hr_delta.tv64 <= 0)
1063 tsdelta = ktime_to_timespec(hr_delta);
1064 delta = timespec_to_jiffies(&tsdelta);
1067 * Limit the delta to the max value, which is checked in
1068 * tick_nohz_stop_sched_tick():
1070 if (delta > NEXT_TIMER_MAX_DELTA)
1071 delta = NEXT_TIMER_MAX_DELTA;
1074 * Take rounding errors in to account and make sure, that it
1075 * expires in the next tick. Otherwise we go into an endless
1076 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1082 if (time_before(now, expires))
1088 * get_next_timer_interrupt - return the jiffy of the next pending timer
1089 * @now: current time (in jiffies)
1091 unsigned long get_next_timer_interrupt(unsigned long now)
1093 struct tvec_base *base = __get_cpu_var(tvec_bases);
1094 unsigned long expires;
1096 spin_lock(&base->lock);
1097 expires = __next_timer_interrupt(base);
1098 spin_unlock(&base->lock);
1100 if (time_before_eq(expires, now))
1103 return cmp_next_hrtimer_event(now, expires);
1108 * Called from the timer interrupt handler to charge one tick to the current
1109 * process. user_tick is 1 if the tick is user time, 0 for system.
1111 void update_process_times(int user_tick)
1113 struct task_struct *p = current;
1114 int cpu = smp_processor_id();
1116 /* Note: this timer irq context must be accounted for as well. */
1117 account_process_tick(p, user_tick);
1119 if (rcu_pending(cpu))
1120 rcu_check_callbacks(cpu, user_tick);
1123 run_posix_cpu_timers(p);
1127 * Nr of active tasks - counted in fixed-point numbers
1129 static unsigned long count_active_tasks(void)
1131 return nr_active() * FIXED_1;
1135 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1136 * imply that avenrun[] is the standard name for this kind of thing.
1137 * Nothing else seems to be standardized: the fractional size etc
1138 * all seem to differ on different machines.
1140 * Requires xtime_lock to access.
1142 unsigned long avenrun[3];
1144 EXPORT_SYMBOL(avenrun);
1147 * calc_load - given tick count, update the avenrun load estimates.
1148 * This is called while holding a write_lock on xtime_lock.
1150 static inline void calc_load(unsigned long ticks)
1152 unsigned long active_tasks; /* fixed-point */
1153 static int count = LOAD_FREQ;
1156 if (unlikely(count < 0)) {
1157 active_tasks = count_active_tasks();
1159 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1160 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1161 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1163 } while (count < 0);
1168 * This function runs timers and the timer-tq in bottom half context.
1170 static void run_timer_softirq(struct softirq_action *h)
1172 struct tvec_base *base = __get_cpu_var(tvec_bases);
1174 perf_counter_do_pending();
1176 hrtimer_run_pending();
1178 if (time_after_eq(jiffies, base->timer_jiffies))
1183 * Called by the local, per-CPU timer interrupt on SMP.
1185 void run_local_timers(void)
1187 hrtimer_run_queues();
1188 raise_softirq(TIMER_SOFTIRQ);
1193 * Called by the timer interrupt. xtime_lock must already be taken
1196 static inline void update_times(unsigned long ticks)
1203 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1204 * without sampling the sequence number in xtime_lock.
1205 * jiffies is defined in the linker script...
1208 void do_timer(unsigned long ticks)
1210 jiffies_64 += ticks;
1211 update_times(ticks);
1214 #ifdef __ARCH_WANT_SYS_ALARM
1217 * For backwards compatibility? This can be done in libc so Alpha
1218 * and all newer ports shouldn't need it.
1220 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1222 return alarm_setitimer(seconds);
1230 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1231 * should be moved into arch/i386 instead?
1235 * sys_getpid - return the thread group id of the current process
1237 * Note, despite the name, this returns the tgid not the pid. The tgid and
1238 * the pid are identical unless CLONE_THREAD was specified on clone() in
1239 * which case the tgid is the same in all threads of the same group.
1241 * This is SMP safe as current->tgid does not change.
1243 SYSCALL_DEFINE0(getpid)
1245 return task_tgid_vnr(current);
1249 * Accessing ->real_parent is not SMP-safe, it could
1250 * change from under us. However, we can use a stale
1251 * value of ->real_parent under rcu_read_lock(), see
1252 * release_task()->call_rcu(delayed_put_task_struct).
1254 SYSCALL_DEFINE0(getppid)
1259 pid = task_tgid_vnr(current->real_parent);
1265 SYSCALL_DEFINE0(getuid)
1267 /* Only we change this so SMP safe */
1268 return current_uid();
1271 SYSCALL_DEFINE0(geteuid)
1273 /* Only we change this so SMP safe */
1274 return current_euid();
1277 SYSCALL_DEFINE0(getgid)
1279 /* Only we change this so SMP safe */
1280 return current_gid();
1283 SYSCALL_DEFINE0(getegid)
1285 /* Only we change this so SMP safe */
1286 return current_egid();
1291 static void process_timeout(unsigned long __data)
1293 wake_up_process((struct task_struct *)__data);
1297 * schedule_timeout - sleep until timeout
1298 * @timeout: timeout value in jiffies
1300 * Make the current task sleep until @timeout jiffies have
1301 * elapsed. The routine will return immediately unless
1302 * the current task state has been set (see set_current_state()).
1304 * You can set the task state as follows -
1306 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1307 * pass before the routine returns. The routine will return 0
1309 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1310 * delivered to the current task. In this case the remaining time
1311 * in jiffies will be returned, or 0 if the timer expired in time
1313 * The current task state is guaranteed to be TASK_RUNNING when this
1316 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1317 * the CPU away without a bound on the timeout. In this case the return
1318 * value will be %MAX_SCHEDULE_TIMEOUT.
1320 * In all cases the return value is guaranteed to be non-negative.
1322 signed long __sched schedule_timeout(signed long timeout)
1324 struct timer_list timer;
1325 unsigned long expire;
1329 case MAX_SCHEDULE_TIMEOUT:
1331 * These two special cases are useful to be comfortable
1332 * in the caller. Nothing more. We could take
1333 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1334 * but I' d like to return a valid offset (>=0) to allow
1335 * the caller to do everything it want with the retval.
1341 * Another bit of PARANOID. Note that the retval will be
1342 * 0 since no piece of kernel is supposed to do a check
1343 * for a negative retval of schedule_timeout() (since it
1344 * should never happens anyway). You just have the printk()
1345 * that will tell you if something is gone wrong and where.
1348 printk(KERN_ERR "schedule_timeout: wrong timeout "
1349 "value %lx\n", timeout);
1351 current->state = TASK_RUNNING;
1356 expire = timeout + jiffies;
1358 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1359 __mod_timer(&timer, expire, false);
1361 del_singleshot_timer_sync(&timer);
1363 /* Remove the timer from the object tracker */
1364 destroy_timer_on_stack(&timer);
1366 timeout = expire - jiffies;
1369 return timeout < 0 ? 0 : timeout;
1371 EXPORT_SYMBOL(schedule_timeout);
1374 * We can use __set_current_state() here because schedule_timeout() calls
1375 * schedule() unconditionally.
1377 signed long __sched schedule_timeout_interruptible(signed long timeout)
1379 __set_current_state(TASK_INTERRUPTIBLE);
1380 return schedule_timeout(timeout);
1382 EXPORT_SYMBOL(schedule_timeout_interruptible);
1384 signed long __sched schedule_timeout_killable(signed long timeout)
1386 __set_current_state(TASK_KILLABLE);
1387 return schedule_timeout(timeout);
1389 EXPORT_SYMBOL(schedule_timeout_killable);
1391 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1393 __set_current_state(TASK_UNINTERRUPTIBLE);
1394 return schedule_timeout(timeout);
1396 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1398 /* Thread ID - the internal kernel "pid" */
1399 SYSCALL_DEFINE0(gettid)
1401 return task_pid_vnr(current);
1405 * do_sysinfo - fill in sysinfo struct
1406 * @info: pointer to buffer to fill
1408 int do_sysinfo(struct sysinfo *info)
1410 unsigned long mem_total, sav_total;
1411 unsigned int mem_unit, bitcount;
1414 memset(info, 0, sizeof(struct sysinfo));
1418 seq = read_seqbegin(&xtime_lock);
1421 * This is annoying. The below is the same thing
1422 * posix_get_clock_monotonic() does, but it wants to
1423 * take the lock which we want to cover the loads stuff
1427 getnstimeofday(&tp);
1428 tp.tv_sec += wall_to_monotonic.tv_sec;
1429 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1430 monotonic_to_bootbased(&tp);
1431 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1432 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1435 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1437 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1438 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1439 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1441 info->procs = nr_threads;
1442 } while (read_seqretry(&xtime_lock, seq));
1448 * If the sum of all the available memory (i.e. ram + swap)
1449 * is less than can be stored in a 32 bit unsigned long then
1450 * we can be binary compatible with 2.2.x kernels. If not,
1451 * well, in that case 2.2.x was broken anyways...
1453 * -Erik Andersen <andersee@debian.org>
1456 mem_total = info->totalram + info->totalswap;
1457 if (mem_total < info->totalram || mem_total < info->totalswap)
1460 mem_unit = info->mem_unit;
1461 while (mem_unit > 1) {
1464 sav_total = mem_total;
1466 if (mem_total < sav_total)
1471 * If mem_total did not overflow, multiply all memory values by
1472 * info->mem_unit and set it to 1. This leaves things compatible
1473 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1478 info->totalram <<= bitcount;
1479 info->freeram <<= bitcount;
1480 info->sharedram <<= bitcount;
1481 info->bufferram <<= bitcount;
1482 info->totalswap <<= bitcount;
1483 info->freeswap <<= bitcount;
1484 info->totalhigh <<= bitcount;
1485 info->freehigh <<= bitcount;
1491 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1497 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1503 static int __cpuinit init_timers_cpu(int cpu)
1506 struct tvec_base *base;
1507 static char __cpuinitdata tvec_base_done[NR_CPUS];
1509 if (!tvec_base_done[cpu]) {
1510 static char boot_done;
1514 * The APs use this path later in boot
1516 base = kmalloc_node(sizeof(*base),
1517 GFP_KERNEL | __GFP_ZERO,
1522 /* Make sure that tvec_base is 2 byte aligned */
1523 if (tbase_get_deferrable(base)) {
1528 per_cpu(tvec_bases, cpu) = base;
1531 * This is for the boot CPU - we use compile-time
1532 * static initialisation because per-cpu memory isn't
1533 * ready yet and because the memory allocators are not
1534 * initialised either.
1537 base = &boot_tvec_bases;
1539 tvec_base_done[cpu] = 1;
1541 base = per_cpu(tvec_bases, cpu);
1544 spin_lock_init(&base->lock);
1546 for (j = 0; j < TVN_SIZE; j++) {
1547 INIT_LIST_HEAD(base->tv5.vec + j);
1548 INIT_LIST_HEAD(base->tv4.vec + j);
1549 INIT_LIST_HEAD(base->tv3.vec + j);
1550 INIT_LIST_HEAD(base->tv2.vec + j);
1552 for (j = 0; j < TVR_SIZE; j++)
1553 INIT_LIST_HEAD(base->tv1.vec + j);
1555 base->timer_jiffies = jiffies;
1559 #ifdef CONFIG_HOTPLUG_CPU
1560 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1562 struct timer_list *timer;
1564 while (!list_empty(head)) {
1565 timer = list_first_entry(head, struct timer_list, entry);
1566 detach_timer(timer, 0);
1567 timer_set_base(timer, new_base);
1568 internal_add_timer(new_base, timer);
1572 static void __cpuinit migrate_timers(int cpu)
1574 struct tvec_base *old_base;
1575 struct tvec_base *new_base;
1578 BUG_ON(cpu_online(cpu));
1579 old_base = per_cpu(tvec_bases, cpu);
1580 new_base = get_cpu_var(tvec_bases);
1582 * The caller is globally serialized and nobody else
1583 * takes two locks at once, deadlock is not possible.
1585 spin_lock_irq(&new_base->lock);
1586 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1588 BUG_ON(old_base->running_timer);
1590 for (i = 0; i < TVR_SIZE; i++)
1591 migrate_timer_list(new_base, old_base->tv1.vec + i);
1592 for (i = 0; i < TVN_SIZE; i++) {
1593 migrate_timer_list(new_base, old_base->tv2.vec + i);
1594 migrate_timer_list(new_base, old_base->tv3.vec + i);
1595 migrate_timer_list(new_base, old_base->tv4.vec + i);
1596 migrate_timer_list(new_base, old_base->tv5.vec + i);
1599 spin_unlock(&old_base->lock);
1600 spin_unlock_irq(&new_base->lock);
1601 put_cpu_var(tvec_bases);
1603 #endif /* CONFIG_HOTPLUG_CPU */
1605 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1606 unsigned long action, void *hcpu)
1608 long cpu = (long)hcpu;
1610 case CPU_UP_PREPARE:
1611 case CPU_UP_PREPARE_FROZEN:
1612 if (init_timers_cpu(cpu) < 0)
1615 #ifdef CONFIG_HOTPLUG_CPU
1617 case CPU_DEAD_FROZEN:
1618 migrate_timers(cpu);
1627 static struct notifier_block __cpuinitdata timers_nb = {
1628 .notifier_call = timer_cpu_notify,
1632 void __init init_timers(void)
1634 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1635 (void *)(long)smp_processor_id());
1639 BUG_ON(err == NOTIFY_BAD);
1640 register_cpu_notifier(&timers_nb);
1641 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1645 * msleep - sleep safely even with waitqueue interruptions
1646 * @msecs: Time in milliseconds to sleep for
1648 void msleep(unsigned int msecs)
1650 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1653 timeout = schedule_timeout_uninterruptible(timeout);
1656 EXPORT_SYMBOL(msleep);
1659 * msleep_interruptible - sleep waiting for signals
1660 * @msecs: Time in milliseconds to sleep for
1662 unsigned long msleep_interruptible(unsigned int msecs)
1664 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1666 while (timeout && !signal_pending(current))
1667 timeout = schedule_timeout_interruptible(timeout);
1668 return jiffies_to_msecs(timeout);
1671 EXPORT_SYMBOL(msleep_interruptible);