2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_host.h>
62 #include <linux/libata.h>
63 #include <asm/byteorder.h>
64 #include <linux/cdrom.h>
69 /* debounce timing parameters in msecs { interval, duration, timeout } */
70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
74 const struct ata_port_operations ata_base_port_ops = {
75 .prereset = ata_std_prereset,
76 .postreset = ata_std_postreset,
77 .error_handler = ata_std_error_handler,
80 const struct ata_port_operations sata_port_ops = {
81 .inherits = &ata_base_port_ops,
83 .qc_defer = ata_std_qc_defer,
84 .hardreset = sata_std_hardreset,
87 static unsigned int ata_dev_init_params(struct ata_device *dev,
88 u16 heads, u16 sectors);
89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
90 static unsigned int ata_dev_set_feature(struct ata_device *dev,
91 u8 enable, u8 feature);
92 static void ata_dev_xfermask(struct ata_device *dev);
93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
95 unsigned int ata_print_id = 1;
96 static struct workqueue_struct *ata_wq;
98 struct workqueue_struct *ata_aux_wq;
100 struct ata_force_param {
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
110 struct ata_force_ent {
113 struct ata_force_param param;
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
160 MODULE_AUTHOR("Jeff Garzik");
161 MODULE_DESCRIPTION("Library module for ATA devices");
162 MODULE_LICENSE("GPL");
163 MODULE_VERSION(DRV_VERSION);
167 * Iterator helpers. Don't use directly.
170 * Host lock or EH context.
172 struct ata_link *__ata_port_next_link(struct ata_port *ap,
173 struct ata_link *link, bool dev_only)
175 /* NULL link indicates start of iteration */
177 if (dev_only && sata_pmp_attached(ap))
182 /* we just iterated over the host master link, what's next? */
183 if (link == &ap->link) {
184 if (!sata_pmp_attached(ap)) {
185 if (unlikely(ap->slave_link) && !dev_only)
186 return ap->slave_link;
192 /* slave_link excludes PMP */
193 if (unlikely(link == ap->slave_link))
196 /* iterate to the next PMP link */
197 if (++link < ap->pmp_link + ap->nr_pmp_links)
203 * ata_dev_phys_link - find physical link for a device
204 * @dev: ATA device to look up physical link for
206 * Look up physical link which @dev is attached to. Note that
207 * this is different from @dev->link only when @dev is on slave
208 * link. For all other cases, it's the same as @dev->link.
214 * Pointer to the found physical link.
216 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
218 struct ata_port *ap = dev->link->ap;
224 return ap->slave_link;
228 * ata_force_cbl - force cable type according to libata.force
229 * @ap: ATA port of interest
231 * Force cable type according to libata.force and whine about it.
232 * The last entry which has matching port number is used, so it
233 * can be specified as part of device force parameters. For
234 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
240 void ata_force_cbl(struct ata_port *ap)
244 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
245 const struct ata_force_ent *fe = &ata_force_tbl[i];
247 if (fe->port != -1 && fe->port != ap->print_id)
250 if (fe->param.cbl == ATA_CBL_NONE)
253 ap->cbl = fe->param.cbl;
254 ata_port_printk(ap, KERN_NOTICE,
255 "FORCE: cable set to %s\n", fe->param.name);
261 * ata_force_link_limits - force link limits according to libata.force
262 * @link: ATA link of interest
264 * Force link flags and SATA spd limit according to libata.force
265 * and whine about it. When only the port part is specified
266 * (e.g. 1:), the limit applies to all links connected to both
267 * the host link and all fan-out ports connected via PMP. If the
268 * device part is specified as 0 (e.g. 1.00:), it specifies the
269 * first fan-out link not the host link. Device number 15 always
270 * points to the host link whether PMP is attached or not. If the
271 * controller has slave link, device number 16 points to it.
276 static void ata_force_link_limits(struct ata_link *link)
278 bool did_spd = false;
279 int linkno = link->pmp;
282 if (ata_is_host_link(link))
285 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
286 const struct ata_force_ent *fe = &ata_force_tbl[i];
288 if (fe->port != -1 && fe->port != link->ap->print_id)
291 if (fe->device != -1 && fe->device != linkno)
294 /* only honor the first spd limit */
295 if (!did_spd && fe->param.spd_limit) {
296 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
297 ata_link_printk(link, KERN_NOTICE,
298 "FORCE: PHY spd limit set to %s\n",
303 /* let lflags stack */
304 if (fe->param.lflags) {
305 link->flags |= fe->param.lflags;
306 ata_link_printk(link, KERN_NOTICE,
307 "FORCE: link flag 0x%x forced -> 0x%x\n",
308 fe->param.lflags, link->flags);
314 * ata_force_xfermask - force xfermask according to libata.force
315 * @dev: ATA device of interest
317 * Force xfer_mask according to libata.force and whine about it.
318 * For consistency with link selection, device number 15 selects
319 * the first device connected to the host link.
324 static void ata_force_xfermask(struct ata_device *dev)
326 int devno = dev->link->pmp + dev->devno;
327 int alt_devno = devno;
330 /* allow n.15/16 for devices attached to host port */
331 if (ata_is_host_link(dev->link))
334 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
335 const struct ata_force_ent *fe = &ata_force_tbl[i];
336 unsigned long pio_mask, mwdma_mask, udma_mask;
338 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
341 if (fe->device != -1 && fe->device != devno &&
342 fe->device != alt_devno)
345 if (!fe->param.xfer_mask)
348 ata_unpack_xfermask(fe->param.xfer_mask,
349 &pio_mask, &mwdma_mask, &udma_mask);
351 dev->udma_mask = udma_mask;
352 else if (mwdma_mask) {
354 dev->mwdma_mask = mwdma_mask;
358 dev->pio_mask = pio_mask;
361 ata_dev_printk(dev, KERN_NOTICE,
362 "FORCE: xfer_mask set to %s\n", fe->param.name);
368 * ata_force_horkage - force horkage according to libata.force
369 * @dev: ATA device of interest
371 * Force horkage according to libata.force and whine about it.
372 * For consistency with link selection, device number 15 selects
373 * the first device connected to the host link.
378 static void ata_force_horkage(struct ata_device *dev)
380 int devno = dev->link->pmp + dev->devno;
381 int alt_devno = devno;
384 /* allow n.15/16 for devices attached to host port */
385 if (ata_is_host_link(dev->link))
388 for (i = 0; i < ata_force_tbl_size; i++) {
389 const struct ata_force_ent *fe = &ata_force_tbl[i];
391 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
394 if (fe->device != -1 && fe->device != devno &&
395 fe->device != alt_devno)
398 if (!(~dev->horkage & fe->param.horkage_on) &&
399 !(dev->horkage & fe->param.horkage_off))
402 dev->horkage |= fe->param.horkage_on;
403 dev->horkage &= ~fe->param.horkage_off;
405 ata_dev_printk(dev, KERN_NOTICE,
406 "FORCE: horkage modified (%s)\n", fe->param.name);
411 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
412 * @opcode: SCSI opcode
414 * Determine ATAPI command type from @opcode.
420 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
422 int atapi_cmd_type(u8 opcode)
431 case GPCMD_WRITE_AND_VERIFY_10:
435 case GPCMD_READ_CD_MSF:
436 return ATAPI_READ_CD;
440 if (atapi_passthru16)
441 return ATAPI_PASS_THRU;
449 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
450 * @tf: Taskfile to convert
451 * @pmp: Port multiplier port
452 * @is_cmd: This FIS is for command
453 * @fis: Buffer into which data will output
455 * Converts a standard ATA taskfile to a Serial ATA
456 * FIS structure (Register - Host to Device).
459 * Inherited from caller.
461 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
463 fis[0] = 0x27; /* Register - Host to Device FIS */
464 fis[1] = pmp & 0xf; /* Port multiplier number*/
466 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
468 fis[2] = tf->command;
469 fis[3] = tf->feature;
476 fis[8] = tf->hob_lbal;
477 fis[9] = tf->hob_lbam;
478 fis[10] = tf->hob_lbah;
479 fis[11] = tf->hob_feature;
482 fis[13] = tf->hob_nsect;
493 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
494 * @fis: Buffer from which data will be input
495 * @tf: Taskfile to output
497 * Converts a serial ATA FIS structure to a standard ATA taskfile.
500 * Inherited from caller.
503 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
505 tf->command = fis[2]; /* status */
506 tf->feature = fis[3]; /* error */
513 tf->hob_lbal = fis[8];
514 tf->hob_lbam = fis[9];
515 tf->hob_lbah = fis[10];
518 tf->hob_nsect = fis[13];
521 static const u8 ata_rw_cmds[] = {
525 ATA_CMD_READ_MULTI_EXT,
526 ATA_CMD_WRITE_MULTI_EXT,
530 ATA_CMD_WRITE_MULTI_FUA_EXT,
534 ATA_CMD_PIO_READ_EXT,
535 ATA_CMD_PIO_WRITE_EXT,
548 ATA_CMD_WRITE_FUA_EXT
552 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
553 * @tf: command to examine and configure
554 * @dev: device tf belongs to
556 * Examine the device configuration and tf->flags to calculate
557 * the proper read/write commands and protocol to use.
562 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
566 int index, fua, lba48, write;
568 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
569 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
570 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
572 if (dev->flags & ATA_DFLAG_PIO) {
573 tf->protocol = ATA_PROT_PIO;
574 index = dev->multi_count ? 0 : 8;
575 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
576 /* Unable to use DMA due to host limitation */
577 tf->protocol = ATA_PROT_PIO;
578 index = dev->multi_count ? 0 : 8;
580 tf->protocol = ATA_PROT_DMA;
584 cmd = ata_rw_cmds[index + fua + lba48 + write];
593 * ata_tf_read_block - Read block address from ATA taskfile
594 * @tf: ATA taskfile of interest
595 * @dev: ATA device @tf belongs to
600 * Read block address from @tf. This function can handle all
601 * three address formats - LBA, LBA48 and CHS. tf->protocol and
602 * flags select the address format to use.
605 * Block address read from @tf.
607 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
611 if (tf->flags & ATA_TFLAG_LBA) {
612 if (tf->flags & ATA_TFLAG_LBA48) {
613 block |= (u64)tf->hob_lbah << 40;
614 block |= (u64)tf->hob_lbam << 32;
615 block |= tf->hob_lbal << 24;
617 block |= (tf->device & 0xf) << 24;
619 block |= tf->lbah << 16;
620 block |= tf->lbam << 8;
625 cyl = tf->lbam | (tf->lbah << 8);
626 head = tf->device & 0xf;
629 block = (cyl * dev->heads + head) * dev->sectors + sect;
636 * ata_build_rw_tf - Build ATA taskfile for given read/write request
637 * @tf: Target ATA taskfile
638 * @dev: ATA device @tf belongs to
639 * @block: Block address
640 * @n_block: Number of blocks
641 * @tf_flags: RW/FUA etc...
647 * Build ATA taskfile @tf for read/write request described by
648 * @block, @n_block, @tf_flags and @tag on @dev.
652 * 0 on success, -ERANGE if the request is too large for @dev,
653 * -EINVAL if the request is invalid.
655 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
656 u64 block, u32 n_block, unsigned int tf_flags,
659 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
660 tf->flags |= tf_flags;
662 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
664 if (!lba_48_ok(block, n_block))
667 tf->protocol = ATA_PROT_NCQ;
668 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
670 if (tf->flags & ATA_TFLAG_WRITE)
671 tf->command = ATA_CMD_FPDMA_WRITE;
673 tf->command = ATA_CMD_FPDMA_READ;
675 tf->nsect = tag << 3;
676 tf->hob_feature = (n_block >> 8) & 0xff;
677 tf->feature = n_block & 0xff;
679 tf->hob_lbah = (block >> 40) & 0xff;
680 tf->hob_lbam = (block >> 32) & 0xff;
681 tf->hob_lbal = (block >> 24) & 0xff;
682 tf->lbah = (block >> 16) & 0xff;
683 tf->lbam = (block >> 8) & 0xff;
684 tf->lbal = block & 0xff;
687 if (tf->flags & ATA_TFLAG_FUA)
688 tf->device |= 1 << 7;
689 } else if (dev->flags & ATA_DFLAG_LBA) {
690 tf->flags |= ATA_TFLAG_LBA;
692 if (lba_28_ok(block, n_block)) {
694 tf->device |= (block >> 24) & 0xf;
695 } else if (lba_48_ok(block, n_block)) {
696 if (!(dev->flags & ATA_DFLAG_LBA48))
700 tf->flags |= ATA_TFLAG_LBA48;
702 tf->hob_nsect = (n_block >> 8) & 0xff;
704 tf->hob_lbah = (block >> 40) & 0xff;
705 tf->hob_lbam = (block >> 32) & 0xff;
706 tf->hob_lbal = (block >> 24) & 0xff;
708 /* request too large even for LBA48 */
711 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
714 tf->nsect = n_block & 0xff;
716 tf->lbah = (block >> 16) & 0xff;
717 tf->lbam = (block >> 8) & 0xff;
718 tf->lbal = block & 0xff;
720 tf->device |= ATA_LBA;
723 u32 sect, head, cyl, track;
725 /* The request -may- be too large for CHS addressing. */
726 if (!lba_28_ok(block, n_block))
729 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
732 /* Convert LBA to CHS */
733 track = (u32)block / dev->sectors;
734 cyl = track / dev->heads;
735 head = track % dev->heads;
736 sect = (u32)block % dev->sectors + 1;
738 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
739 (u32)block, track, cyl, head, sect);
741 /* Check whether the converted CHS can fit.
745 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
748 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
759 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
760 * @pio_mask: pio_mask
761 * @mwdma_mask: mwdma_mask
762 * @udma_mask: udma_mask
764 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
765 * unsigned int xfer_mask.
773 unsigned long ata_pack_xfermask(unsigned long pio_mask,
774 unsigned long mwdma_mask,
775 unsigned long udma_mask)
777 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
778 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
779 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
783 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
784 * @xfer_mask: xfer_mask to unpack
785 * @pio_mask: resulting pio_mask
786 * @mwdma_mask: resulting mwdma_mask
787 * @udma_mask: resulting udma_mask
789 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
790 * Any NULL distination masks will be ignored.
792 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
793 unsigned long *mwdma_mask, unsigned long *udma_mask)
796 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
798 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
800 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
803 static const struct ata_xfer_ent {
807 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
808 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
809 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
814 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
815 * @xfer_mask: xfer_mask of interest
817 * Return matching XFER_* value for @xfer_mask. Only the highest
818 * bit of @xfer_mask is considered.
824 * Matching XFER_* value, 0xff if no match found.
826 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
828 int highbit = fls(xfer_mask) - 1;
829 const struct ata_xfer_ent *ent;
831 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
832 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
833 return ent->base + highbit - ent->shift;
838 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
839 * @xfer_mode: XFER_* of interest
841 * Return matching xfer_mask for @xfer_mode.
847 * Matching xfer_mask, 0 if no match found.
849 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
851 const struct ata_xfer_ent *ent;
853 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
854 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
855 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
856 & ~((1 << ent->shift) - 1);
861 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
862 * @xfer_mode: XFER_* of interest
864 * Return matching xfer_shift for @xfer_mode.
870 * Matching xfer_shift, -1 if no match found.
872 int ata_xfer_mode2shift(unsigned long xfer_mode)
874 const struct ata_xfer_ent *ent;
876 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
877 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
883 * ata_mode_string - convert xfer_mask to string
884 * @xfer_mask: mask of bits supported; only highest bit counts.
886 * Determine string which represents the highest speed
887 * (highest bit in @modemask).
893 * Constant C string representing highest speed listed in
894 * @mode_mask, or the constant C string "<n/a>".
896 const char *ata_mode_string(unsigned long xfer_mask)
898 static const char * const xfer_mode_str[] = {
922 highbit = fls(xfer_mask) - 1;
923 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
924 return xfer_mode_str[highbit];
928 static const char *sata_spd_string(unsigned int spd)
930 static const char * const spd_str[] = {
935 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
937 return spd_str[spd - 1];
940 void ata_dev_disable(struct ata_device *dev)
942 if (ata_dev_enabled(dev)) {
943 if (ata_msg_drv(dev->link->ap))
944 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
945 ata_acpi_on_disable(dev);
946 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
952 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
954 struct ata_link *link = dev->link;
955 struct ata_port *ap = link->ap;
957 unsigned int err_mask;
961 * disallow DIPM for drivers which haven't set
962 * ATA_FLAG_IPM. This is because when DIPM is enabled,
963 * phy ready will be set in the interrupt status on
964 * state changes, which will cause some drivers to
965 * think there are errors - additionally drivers will
966 * need to disable hot plug.
968 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
969 ap->pm_policy = NOT_AVAILABLE;
974 * For DIPM, we will only enable it for the
977 * Why? Because Disks are too stupid to know that
978 * If the host rejects a request to go to SLUMBER
979 * they should retry at PARTIAL, and instead it
980 * just would give up. So, for medium_power to
981 * work at all, we need to only allow HIPM.
983 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
989 /* no restrictions on IPM transitions */
990 scontrol &= ~(0x3 << 8);
991 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
996 if (dev->flags & ATA_DFLAG_DIPM)
997 err_mask = ata_dev_set_feature(dev,
998 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1001 /* allow IPM to PARTIAL */
1002 scontrol &= ~(0x1 << 8);
1003 scontrol |= (0x2 << 8);
1004 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1009 * we don't have to disable DIPM since IPM flags
1010 * disallow transitions to SLUMBER, which effectively
1011 * disable DIPM if it does not support PARTIAL
1015 case MAX_PERFORMANCE:
1016 /* disable all IPM transitions */
1017 scontrol |= (0x3 << 8);
1018 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1023 * we don't have to disable DIPM since IPM flags
1024 * disallow all transitions which effectively
1025 * disable DIPM anyway.
1030 /* FIXME: handle SET FEATURES failure */
1037 * ata_dev_enable_pm - enable SATA interface power management
1038 * @dev: device to enable power management
1039 * @policy: the link power management policy
1041 * Enable SATA Interface power management. This will enable
1042 * Device Interface Power Management (DIPM) for min_power
1043 * policy, and then call driver specific callbacks for
1044 * enabling Host Initiated Power management.
1047 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1049 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1052 struct ata_port *ap = dev->link->ap;
1054 /* set HIPM first, then DIPM */
1055 if (ap->ops->enable_pm)
1056 rc = ap->ops->enable_pm(ap, policy);
1059 rc = ata_dev_set_dipm(dev, policy);
1063 ap->pm_policy = MAX_PERFORMANCE;
1065 ap->pm_policy = policy;
1066 return /* rc */; /* hopefully we can use 'rc' eventually */
1071 * ata_dev_disable_pm - disable SATA interface power management
1072 * @dev: device to disable power management
1074 * Disable SATA Interface power management. This will disable
1075 * Device Interface Power Management (DIPM) without changing
1076 * policy, call driver specific callbacks for disabling Host
1077 * Initiated Power management.
1082 static void ata_dev_disable_pm(struct ata_device *dev)
1084 struct ata_port *ap = dev->link->ap;
1086 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1087 if (ap->ops->disable_pm)
1088 ap->ops->disable_pm(ap);
1090 #endif /* CONFIG_PM */
1092 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1094 ap->pm_policy = policy;
1095 ap->link.eh_info.action |= ATA_EH_LPM;
1096 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1097 ata_port_schedule_eh(ap);
1101 static void ata_lpm_enable(struct ata_host *host)
1103 struct ata_link *link;
1104 struct ata_port *ap;
1105 struct ata_device *dev;
1108 for (i = 0; i < host->n_ports; i++) {
1109 ap = host->ports[i];
1110 ata_port_for_each_link(link, ap) {
1111 ata_link_for_each_dev(dev, link)
1112 ata_dev_disable_pm(dev);
1117 static void ata_lpm_disable(struct ata_host *host)
1121 for (i = 0; i < host->n_ports; i++) {
1122 struct ata_port *ap = host->ports[i];
1123 ata_lpm_schedule(ap, ap->pm_policy);
1126 #endif /* CONFIG_PM */
1129 * ata_dev_classify - determine device type based on ATA-spec signature
1130 * @tf: ATA taskfile register set for device to be identified
1132 * Determine from taskfile register contents whether a device is
1133 * ATA or ATAPI, as per "Signature and persistence" section
1134 * of ATA/PI spec (volume 1, sect 5.14).
1140 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1141 * %ATA_DEV_UNKNOWN the event of failure.
1143 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1145 /* Apple's open source Darwin code hints that some devices only
1146 * put a proper signature into the LBA mid/high registers,
1147 * So, we only check those. It's sufficient for uniqueness.
1149 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1150 * signatures for ATA and ATAPI devices attached on SerialATA,
1151 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1152 * spec has never mentioned about using different signatures
1153 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1154 * Multiplier specification began to use 0x69/0x96 to identify
1155 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1156 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1157 * 0x69/0x96 shortly and described them as reserved for
1160 * We follow the current spec and consider that 0x69/0x96
1161 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1163 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1164 DPRINTK("found ATA device by sig\n");
1168 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1169 DPRINTK("found ATAPI device by sig\n");
1170 return ATA_DEV_ATAPI;
1173 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1174 DPRINTK("found PMP device by sig\n");
1178 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1179 printk(KERN_INFO "ata: SEMB device ignored\n");
1180 return ATA_DEV_SEMB_UNSUP; /* not yet */
1183 DPRINTK("unknown device\n");
1184 return ATA_DEV_UNKNOWN;
1188 * ata_id_string - Convert IDENTIFY DEVICE page into string
1189 * @id: IDENTIFY DEVICE results we will examine
1190 * @s: string into which data is output
1191 * @ofs: offset into identify device page
1192 * @len: length of string to return. must be an even number.
1194 * The strings in the IDENTIFY DEVICE page are broken up into
1195 * 16-bit chunks. Run through the string, and output each
1196 * 8-bit chunk linearly, regardless of platform.
1202 void ata_id_string(const u16 *id, unsigned char *s,
1203 unsigned int ofs, unsigned int len)
1224 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1225 * @id: IDENTIFY DEVICE results we will examine
1226 * @s: string into which data is output
1227 * @ofs: offset into identify device page
1228 * @len: length of string to return. must be an odd number.
1230 * This function is identical to ata_id_string except that it
1231 * trims trailing spaces and terminates the resulting string with
1232 * null. @len must be actual maximum length (even number) + 1.
1237 void ata_id_c_string(const u16 *id, unsigned char *s,
1238 unsigned int ofs, unsigned int len)
1242 ata_id_string(id, s, ofs, len - 1);
1244 p = s + strnlen(s, len - 1);
1245 while (p > s && p[-1] == ' ')
1250 static u64 ata_id_n_sectors(const u16 *id)
1252 if (ata_id_has_lba(id)) {
1253 if (ata_id_has_lba48(id))
1254 return ata_id_u64(id, 100);
1256 return ata_id_u32(id, 60);
1258 if (ata_id_current_chs_valid(id))
1259 return ata_id_u32(id, 57);
1261 return id[1] * id[3] * id[6];
1265 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1269 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1270 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1271 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1272 sectors |= (tf->lbah & 0xff) << 16;
1273 sectors |= (tf->lbam & 0xff) << 8;
1274 sectors |= (tf->lbal & 0xff);
1279 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1283 sectors |= (tf->device & 0x0f) << 24;
1284 sectors |= (tf->lbah & 0xff) << 16;
1285 sectors |= (tf->lbam & 0xff) << 8;
1286 sectors |= (tf->lbal & 0xff);
1292 * ata_read_native_max_address - Read native max address
1293 * @dev: target device
1294 * @max_sectors: out parameter for the result native max address
1296 * Perform an LBA48 or LBA28 native size query upon the device in
1300 * 0 on success, -EACCES if command is aborted by the drive.
1301 * -EIO on other errors.
1303 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1305 unsigned int err_mask;
1306 struct ata_taskfile tf;
1307 int lba48 = ata_id_has_lba48(dev->id);
1309 ata_tf_init(dev, &tf);
1311 /* always clear all address registers */
1312 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1315 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1316 tf.flags |= ATA_TFLAG_LBA48;
1318 tf.command = ATA_CMD_READ_NATIVE_MAX;
1320 tf.protocol |= ATA_PROT_NODATA;
1321 tf.device |= ATA_LBA;
1323 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1325 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1326 "max address (err_mask=0x%x)\n", err_mask);
1327 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1333 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1335 *max_sectors = ata_tf_to_lba(&tf) + 1;
1336 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1342 * ata_set_max_sectors - Set max sectors
1343 * @dev: target device
1344 * @new_sectors: new max sectors value to set for the device
1346 * Set max sectors of @dev to @new_sectors.
1349 * 0 on success, -EACCES if command is aborted or denied (due to
1350 * previous non-volatile SET_MAX) by the drive. -EIO on other
1353 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1355 unsigned int err_mask;
1356 struct ata_taskfile tf;
1357 int lba48 = ata_id_has_lba48(dev->id);
1361 ata_tf_init(dev, &tf);
1363 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1366 tf.command = ATA_CMD_SET_MAX_EXT;
1367 tf.flags |= ATA_TFLAG_LBA48;
1369 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1370 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1371 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1373 tf.command = ATA_CMD_SET_MAX;
1375 tf.device |= (new_sectors >> 24) & 0xf;
1378 tf.protocol |= ATA_PROT_NODATA;
1379 tf.device |= ATA_LBA;
1381 tf.lbal = (new_sectors >> 0) & 0xff;
1382 tf.lbam = (new_sectors >> 8) & 0xff;
1383 tf.lbah = (new_sectors >> 16) & 0xff;
1385 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1387 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1388 "max address (err_mask=0x%x)\n", err_mask);
1389 if (err_mask == AC_ERR_DEV &&
1390 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1399 * ata_hpa_resize - Resize a device with an HPA set
1400 * @dev: Device to resize
1402 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1403 * it if required to the full size of the media. The caller must check
1404 * the drive has the HPA feature set enabled.
1407 * 0 on success, -errno on failure.
1409 static int ata_hpa_resize(struct ata_device *dev)
1411 struct ata_eh_context *ehc = &dev->link->eh_context;
1412 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1413 u64 sectors = ata_id_n_sectors(dev->id);
1417 /* do we need to do it? */
1418 if (dev->class != ATA_DEV_ATA ||
1419 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1420 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1423 /* read native max address */
1424 rc = ata_read_native_max_address(dev, &native_sectors);
1426 /* If device aborted the command or HPA isn't going to
1427 * be unlocked, skip HPA resizing.
1429 if (rc == -EACCES || !ata_ignore_hpa) {
1430 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1431 "broken, skipping HPA handling\n");
1432 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1434 /* we can continue if device aborted the command */
1442 /* nothing to do? */
1443 if (native_sectors <= sectors || !ata_ignore_hpa) {
1444 if (!print_info || native_sectors == sectors)
1447 if (native_sectors > sectors)
1448 ata_dev_printk(dev, KERN_INFO,
1449 "HPA detected: current %llu, native %llu\n",
1450 (unsigned long long)sectors,
1451 (unsigned long long)native_sectors);
1452 else if (native_sectors < sectors)
1453 ata_dev_printk(dev, KERN_WARNING,
1454 "native sectors (%llu) is smaller than "
1456 (unsigned long long)native_sectors,
1457 (unsigned long long)sectors);
1461 /* let's unlock HPA */
1462 rc = ata_set_max_sectors(dev, native_sectors);
1463 if (rc == -EACCES) {
1464 /* if device aborted the command, skip HPA resizing */
1465 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1466 "(%llu -> %llu), skipping HPA handling\n",
1467 (unsigned long long)sectors,
1468 (unsigned long long)native_sectors);
1469 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1474 /* re-read IDENTIFY data */
1475 rc = ata_dev_reread_id(dev, 0);
1477 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1478 "data after HPA resizing\n");
1483 u64 new_sectors = ata_id_n_sectors(dev->id);
1484 ata_dev_printk(dev, KERN_INFO,
1485 "HPA unlocked: %llu -> %llu, native %llu\n",
1486 (unsigned long long)sectors,
1487 (unsigned long long)new_sectors,
1488 (unsigned long long)native_sectors);
1495 * ata_dump_id - IDENTIFY DEVICE info debugging output
1496 * @id: IDENTIFY DEVICE page to dump
1498 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1505 static inline void ata_dump_id(const u16 *id)
1507 DPRINTK("49==0x%04x "
1517 DPRINTK("80==0x%04x "
1527 DPRINTK("88==0x%04x "
1534 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1535 * @id: IDENTIFY data to compute xfer mask from
1537 * Compute the xfermask for this device. This is not as trivial
1538 * as it seems if we must consider early devices correctly.
1540 * FIXME: pre IDE drive timing (do we care ?).
1548 unsigned long ata_id_xfermask(const u16 *id)
1550 unsigned long pio_mask, mwdma_mask, udma_mask;
1552 /* Usual case. Word 53 indicates word 64 is valid */
1553 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1554 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1558 /* If word 64 isn't valid then Word 51 high byte holds
1559 * the PIO timing number for the maximum. Turn it into
1562 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1563 if (mode < 5) /* Valid PIO range */
1564 pio_mask = (2 << mode) - 1;
1568 /* But wait.. there's more. Design your standards by
1569 * committee and you too can get a free iordy field to
1570 * process. However its the speeds not the modes that
1571 * are supported... Note drivers using the timing API
1572 * will get this right anyway
1576 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1578 if (ata_id_is_cfa(id)) {
1580 * Process compact flash extended modes
1582 int pio = id[163] & 0x7;
1583 int dma = (id[163] >> 3) & 7;
1586 pio_mask |= (1 << 5);
1588 pio_mask |= (1 << 6);
1590 mwdma_mask |= (1 << 3);
1592 mwdma_mask |= (1 << 4);
1596 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1597 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1599 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1603 * ata_pio_queue_task - Queue port_task
1604 * @ap: The ata_port to queue port_task for
1605 * @data: data for @fn to use
1606 * @delay: delay time in msecs for workqueue function
1608 * Schedule @fn(@data) for execution after @delay jiffies using
1609 * port_task. There is one port_task per port and it's the
1610 * user(low level driver)'s responsibility to make sure that only
1611 * one task is active at any given time.
1613 * libata core layer takes care of synchronization between
1614 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1618 * Inherited from caller.
1620 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1622 ap->port_task_data = data;
1624 /* may fail if ata_port_flush_task() in progress */
1625 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1629 * ata_port_flush_task - Flush port_task
1630 * @ap: The ata_port to flush port_task for
1632 * After this function completes, port_task is guranteed not to
1633 * be running or scheduled.
1636 * Kernel thread context (may sleep)
1638 void ata_port_flush_task(struct ata_port *ap)
1642 cancel_rearming_delayed_work(&ap->port_task);
1644 if (ata_msg_ctl(ap))
1645 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1648 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1650 struct completion *waiting = qc->private_data;
1656 * ata_exec_internal_sg - execute libata internal command
1657 * @dev: Device to which the command is sent
1658 * @tf: Taskfile registers for the command and the result
1659 * @cdb: CDB for packet command
1660 * @dma_dir: Data tranfer direction of the command
1661 * @sgl: sg list for the data buffer of the command
1662 * @n_elem: Number of sg entries
1663 * @timeout: Timeout in msecs (0 for default)
1665 * Executes libata internal command with timeout. @tf contains
1666 * command on entry and result on return. Timeout and error
1667 * conditions are reported via return value. No recovery action
1668 * is taken after a command times out. It's caller's duty to
1669 * clean up after timeout.
1672 * None. Should be called with kernel context, might sleep.
1675 * Zero on success, AC_ERR_* mask on failure
1677 unsigned ata_exec_internal_sg(struct ata_device *dev,
1678 struct ata_taskfile *tf, const u8 *cdb,
1679 int dma_dir, struct scatterlist *sgl,
1680 unsigned int n_elem, unsigned long timeout)
1682 struct ata_link *link = dev->link;
1683 struct ata_port *ap = link->ap;
1684 u8 command = tf->command;
1685 int auto_timeout = 0;
1686 struct ata_queued_cmd *qc;
1687 unsigned int tag, preempted_tag;
1688 u32 preempted_sactive, preempted_qc_active;
1689 int preempted_nr_active_links;
1690 DECLARE_COMPLETION_ONSTACK(wait);
1691 unsigned long flags;
1692 unsigned int err_mask;
1695 spin_lock_irqsave(ap->lock, flags);
1697 /* no internal command while frozen */
1698 if (ap->pflags & ATA_PFLAG_FROZEN) {
1699 spin_unlock_irqrestore(ap->lock, flags);
1700 return AC_ERR_SYSTEM;
1703 /* initialize internal qc */
1705 /* XXX: Tag 0 is used for drivers with legacy EH as some
1706 * drivers choke if any other tag is given. This breaks
1707 * ata_tag_internal() test for those drivers. Don't use new
1708 * EH stuff without converting to it.
1710 if (ap->ops->error_handler)
1711 tag = ATA_TAG_INTERNAL;
1715 if (test_and_set_bit(tag, &ap->qc_allocated))
1717 qc = __ata_qc_from_tag(ap, tag);
1725 preempted_tag = link->active_tag;
1726 preempted_sactive = link->sactive;
1727 preempted_qc_active = ap->qc_active;
1728 preempted_nr_active_links = ap->nr_active_links;
1729 link->active_tag = ATA_TAG_POISON;
1732 ap->nr_active_links = 0;
1734 /* prepare & issue qc */
1737 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1738 qc->flags |= ATA_QCFLAG_RESULT_TF;
1739 qc->dma_dir = dma_dir;
1740 if (dma_dir != DMA_NONE) {
1741 unsigned int i, buflen = 0;
1742 struct scatterlist *sg;
1744 for_each_sg(sgl, sg, n_elem, i)
1745 buflen += sg->length;
1747 ata_sg_init(qc, sgl, n_elem);
1748 qc->nbytes = buflen;
1751 qc->private_data = &wait;
1752 qc->complete_fn = ata_qc_complete_internal;
1756 spin_unlock_irqrestore(ap->lock, flags);
1759 if (ata_probe_timeout)
1760 timeout = ata_probe_timeout * 1000;
1762 timeout = ata_internal_cmd_timeout(dev, command);
1767 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1769 ata_port_flush_task(ap);
1772 spin_lock_irqsave(ap->lock, flags);
1774 /* We're racing with irq here. If we lose, the
1775 * following test prevents us from completing the qc
1776 * twice. If we win, the port is frozen and will be
1777 * cleaned up by ->post_internal_cmd().
1779 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1780 qc->err_mask |= AC_ERR_TIMEOUT;
1782 if (ap->ops->error_handler)
1783 ata_port_freeze(ap);
1785 ata_qc_complete(qc);
1787 if (ata_msg_warn(ap))
1788 ata_dev_printk(dev, KERN_WARNING,
1789 "qc timeout (cmd 0x%x)\n", command);
1792 spin_unlock_irqrestore(ap->lock, flags);
1795 /* do post_internal_cmd */
1796 if (ap->ops->post_internal_cmd)
1797 ap->ops->post_internal_cmd(qc);
1799 /* perform minimal error analysis */
1800 if (qc->flags & ATA_QCFLAG_FAILED) {
1801 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1802 qc->err_mask |= AC_ERR_DEV;
1805 qc->err_mask |= AC_ERR_OTHER;
1807 if (qc->err_mask & ~AC_ERR_OTHER)
1808 qc->err_mask &= ~AC_ERR_OTHER;
1812 spin_lock_irqsave(ap->lock, flags);
1814 *tf = qc->result_tf;
1815 err_mask = qc->err_mask;
1818 link->active_tag = preempted_tag;
1819 link->sactive = preempted_sactive;
1820 ap->qc_active = preempted_qc_active;
1821 ap->nr_active_links = preempted_nr_active_links;
1823 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1824 * Until those drivers are fixed, we detect the condition
1825 * here, fail the command with AC_ERR_SYSTEM and reenable the
1828 * Note that this doesn't change any behavior as internal
1829 * command failure results in disabling the device in the
1830 * higher layer for LLDDs without new reset/EH callbacks.
1832 * Kill the following code as soon as those drivers are fixed.
1834 if (ap->flags & ATA_FLAG_DISABLED) {
1835 err_mask |= AC_ERR_SYSTEM;
1839 spin_unlock_irqrestore(ap->lock, flags);
1841 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1842 ata_internal_cmd_timed_out(dev, command);
1848 * ata_exec_internal - execute libata internal command
1849 * @dev: Device to which the command is sent
1850 * @tf: Taskfile registers for the command and the result
1851 * @cdb: CDB for packet command
1852 * @dma_dir: Data tranfer direction of the command
1853 * @buf: Data buffer of the command
1854 * @buflen: Length of data buffer
1855 * @timeout: Timeout in msecs (0 for default)
1857 * Wrapper around ata_exec_internal_sg() which takes simple
1858 * buffer instead of sg list.
1861 * None. Should be called with kernel context, might sleep.
1864 * Zero on success, AC_ERR_* mask on failure
1866 unsigned ata_exec_internal(struct ata_device *dev,
1867 struct ata_taskfile *tf, const u8 *cdb,
1868 int dma_dir, void *buf, unsigned int buflen,
1869 unsigned long timeout)
1871 struct scatterlist *psg = NULL, sg;
1872 unsigned int n_elem = 0;
1874 if (dma_dir != DMA_NONE) {
1876 sg_init_one(&sg, buf, buflen);
1881 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1886 * ata_do_simple_cmd - execute simple internal command
1887 * @dev: Device to which the command is sent
1888 * @cmd: Opcode to execute
1890 * Execute a 'simple' command, that only consists of the opcode
1891 * 'cmd' itself, without filling any other registers
1894 * Kernel thread context (may sleep).
1897 * Zero on success, AC_ERR_* mask on failure
1899 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1901 struct ata_taskfile tf;
1903 ata_tf_init(dev, &tf);
1906 tf.flags |= ATA_TFLAG_DEVICE;
1907 tf.protocol = ATA_PROT_NODATA;
1909 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1913 * ata_pio_need_iordy - check if iordy needed
1916 * Check if the current speed of the device requires IORDY. Used
1917 * by various controllers for chip configuration.
1920 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1922 /* Controller doesn't support IORDY. Probably a pointless check
1923 as the caller should know this */
1924 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1926 /* PIO3 and higher it is mandatory */
1927 if (adev->pio_mode > XFER_PIO_2)
1929 /* We turn it on when possible */
1930 if (ata_id_has_iordy(adev->id))
1936 * ata_pio_mask_no_iordy - Return the non IORDY mask
1939 * Compute the highest mode possible if we are not using iordy. Return
1940 * -1 if no iordy mode is available.
1943 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1945 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1946 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1947 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1948 /* Is the speed faster than the drive allows non IORDY ? */
1950 /* This is cycle times not frequency - watch the logic! */
1951 if (pio > 240) /* PIO2 is 240nS per cycle */
1952 return 3 << ATA_SHIFT_PIO;
1953 return 7 << ATA_SHIFT_PIO;
1956 return 3 << ATA_SHIFT_PIO;
1960 * ata_do_dev_read_id - default ID read method
1962 * @tf: proposed taskfile
1965 * Issue the identify taskfile and hand back the buffer containing
1966 * identify data. For some RAID controllers and for pre ATA devices
1967 * this function is wrapped or replaced by the driver
1969 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1970 struct ata_taskfile *tf, u16 *id)
1972 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1973 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1977 * ata_dev_read_id - Read ID data from the specified device
1978 * @dev: target device
1979 * @p_class: pointer to class of the target device (may be changed)
1980 * @flags: ATA_READID_* flags
1981 * @id: buffer to read IDENTIFY data into
1983 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1984 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1985 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1986 * for pre-ATA4 drives.
1988 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1989 * now we abort if we hit that case.
1992 * Kernel thread context (may sleep)
1995 * 0 on success, -errno otherwise.
1997 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1998 unsigned int flags, u16 *id)
2000 struct ata_port *ap = dev->link->ap;
2001 unsigned int class = *p_class;
2002 struct ata_taskfile tf;
2003 unsigned int err_mask = 0;
2005 int may_fallback = 1, tried_spinup = 0;
2008 if (ata_msg_ctl(ap))
2009 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2012 ata_tf_init(dev, &tf);
2016 tf.command = ATA_CMD_ID_ATA;
2019 tf.command = ATA_CMD_ID_ATAPI;
2023 reason = "unsupported class";
2027 tf.protocol = ATA_PROT_PIO;
2029 /* Some devices choke if TF registers contain garbage. Make
2030 * sure those are properly initialized.
2032 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2034 /* Device presence detection is unreliable on some
2035 * controllers. Always poll IDENTIFY if available.
2037 tf.flags |= ATA_TFLAG_POLLING;
2039 if (ap->ops->read_id)
2040 err_mask = ap->ops->read_id(dev, &tf, id);
2042 err_mask = ata_do_dev_read_id(dev, &tf, id);
2045 if (err_mask & AC_ERR_NODEV_HINT) {
2046 ata_dev_printk(dev, KERN_DEBUG,
2047 "NODEV after polling detection\n");
2051 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2052 /* Device or controller might have reported
2053 * the wrong device class. Give a shot at the
2054 * other IDENTIFY if the current one is
2055 * aborted by the device.
2060 if (class == ATA_DEV_ATA)
2061 class = ATA_DEV_ATAPI;
2063 class = ATA_DEV_ATA;
2067 /* Control reaches here iff the device aborted
2068 * both flavors of IDENTIFYs which happens
2069 * sometimes with phantom devices.
2071 ata_dev_printk(dev, KERN_DEBUG,
2072 "both IDENTIFYs aborted, assuming NODEV\n");
2077 reason = "I/O error";
2081 /* Falling back doesn't make sense if ID data was read
2082 * successfully at least once.
2086 swap_buf_le16(id, ATA_ID_WORDS);
2090 reason = "device reports invalid type";
2092 if (class == ATA_DEV_ATA) {
2093 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2096 if (ata_id_is_ata(id))
2100 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2103 * Drive powered-up in standby mode, and requires a specific
2104 * SET_FEATURES spin-up subcommand before it will accept
2105 * anything other than the original IDENTIFY command.
2107 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2108 if (err_mask && id[2] != 0x738c) {
2110 reason = "SPINUP failed";
2114 * If the drive initially returned incomplete IDENTIFY info,
2115 * we now must reissue the IDENTIFY command.
2117 if (id[2] == 0x37c8)
2121 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2123 * The exact sequence expected by certain pre-ATA4 drives is:
2125 * IDENTIFY (optional in early ATA)
2126 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2128 * Some drives were very specific about that exact sequence.
2130 * Note that ATA4 says lba is mandatory so the second check
2131 * shoud never trigger.
2133 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2134 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2137 reason = "INIT_DEV_PARAMS failed";
2141 /* current CHS translation info (id[53-58]) might be
2142 * changed. reread the identify device info.
2144 flags &= ~ATA_READID_POSTRESET;
2154 if (ata_msg_warn(ap))
2155 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2156 "(%s, err_mask=0x%x)\n", reason, err_mask);
2160 static inline u8 ata_dev_knobble(struct ata_device *dev)
2162 struct ata_port *ap = dev->link->ap;
2164 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2167 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2170 static void ata_dev_config_ncq(struct ata_device *dev,
2171 char *desc, size_t desc_sz)
2173 struct ata_port *ap = dev->link->ap;
2174 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2176 if (!ata_id_has_ncq(dev->id)) {
2180 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2181 snprintf(desc, desc_sz, "NCQ (not used)");
2184 if (ap->flags & ATA_FLAG_NCQ) {
2185 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2186 dev->flags |= ATA_DFLAG_NCQ;
2189 if (hdepth >= ddepth)
2190 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2192 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2196 * ata_dev_configure - Configure the specified ATA/ATAPI device
2197 * @dev: Target device to configure
2199 * Configure @dev according to @dev->id. Generic and low-level
2200 * driver specific fixups are also applied.
2203 * Kernel thread context (may sleep)
2206 * 0 on success, -errno otherwise
2208 int ata_dev_configure(struct ata_device *dev)
2210 struct ata_port *ap = dev->link->ap;
2211 struct ata_eh_context *ehc = &dev->link->eh_context;
2212 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2213 const u16 *id = dev->id;
2214 unsigned long xfer_mask;
2215 char revbuf[7]; /* XYZ-99\0 */
2216 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2217 char modelbuf[ATA_ID_PROD_LEN+1];
2220 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2221 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2226 if (ata_msg_probe(ap))
2227 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2230 dev->horkage |= ata_dev_blacklisted(dev);
2231 ata_force_horkage(dev);
2233 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2234 ata_dev_printk(dev, KERN_INFO,
2235 "unsupported device, disabling\n");
2236 ata_dev_disable(dev);
2240 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2241 dev->class == ATA_DEV_ATAPI) {
2242 ata_dev_printk(dev, KERN_WARNING,
2243 "WARNING: ATAPI is %s, device ignored.\n",
2244 atapi_enabled ? "not supported with this driver"
2246 ata_dev_disable(dev);
2250 /* let ACPI work its magic */
2251 rc = ata_acpi_on_devcfg(dev);
2255 /* massage HPA, do it early as it might change IDENTIFY data */
2256 rc = ata_hpa_resize(dev);
2260 /* print device capabilities */
2261 if (ata_msg_probe(ap))
2262 ata_dev_printk(dev, KERN_DEBUG,
2263 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2264 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2266 id[49], id[82], id[83], id[84],
2267 id[85], id[86], id[87], id[88]);
2269 /* initialize to-be-configured parameters */
2270 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2271 dev->max_sectors = 0;
2279 * common ATA, ATAPI feature tests
2282 /* find max transfer mode; for printk only */
2283 xfer_mask = ata_id_xfermask(id);
2285 if (ata_msg_probe(ap))
2288 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2289 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2292 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2295 /* ATA-specific feature tests */
2296 if (dev->class == ATA_DEV_ATA) {
2297 if (ata_id_is_cfa(id)) {
2298 if (id[162] & 1) /* CPRM may make this media unusable */
2299 ata_dev_printk(dev, KERN_WARNING,
2300 "supports DRM functions and may "
2301 "not be fully accessable.\n");
2302 snprintf(revbuf, 7, "CFA");
2304 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2305 /* Warn the user if the device has TPM extensions */
2306 if (ata_id_has_tpm(id))
2307 ata_dev_printk(dev, KERN_WARNING,
2308 "supports DRM functions and may "
2309 "not be fully accessable.\n");
2312 dev->n_sectors = ata_id_n_sectors(id);
2314 if (dev->id[59] & 0x100)
2315 dev->multi_count = dev->id[59] & 0xff;
2317 if (ata_id_has_lba(id)) {
2318 const char *lba_desc;
2322 dev->flags |= ATA_DFLAG_LBA;
2323 if (ata_id_has_lba48(id)) {
2324 dev->flags |= ATA_DFLAG_LBA48;
2327 if (dev->n_sectors >= (1UL << 28) &&
2328 ata_id_has_flush_ext(id))
2329 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2333 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2335 /* print device info to dmesg */
2336 if (ata_msg_drv(ap) && print_info) {
2337 ata_dev_printk(dev, KERN_INFO,
2338 "%s: %s, %s, max %s\n",
2339 revbuf, modelbuf, fwrevbuf,
2340 ata_mode_string(xfer_mask));
2341 ata_dev_printk(dev, KERN_INFO,
2342 "%Lu sectors, multi %u: %s %s\n",
2343 (unsigned long long)dev->n_sectors,
2344 dev->multi_count, lba_desc, ncq_desc);
2349 /* Default translation */
2350 dev->cylinders = id[1];
2352 dev->sectors = id[6];
2354 if (ata_id_current_chs_valid(id)) {
2355 /* Current CHS translation is valid. */
2356 dev->cylinders = id[54];
2357 dev->heads = id[55];
2358 dev->sectors = id[56];
2361 /* print device info to dmesg */
2362 if (ata_msg_drv(ap) && print_info) {
2363 ata_dev_printk(dev, KERN_INFO,
2364 "%s: %s, %s, max %s\n",
2365 revbuf, modelbuf, fwrevbuf,
2366 ata_mode_string(xfer_mask));
2367 ata_dev_printk(dev, KERN_INFO,
2368 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2369 (unsigned long long)dev->n_sectors,
2370 dev->multi_count, dev->cylinders,
2371 dev->heads, dev->sectors);
2378 /* ATAPI-specific feature tests */
2379 else if (dev->class == ATA_DEV_ATAPI) {
2380 const char *cdb_intr_string = "";
2381 const char *atapi_an_string = "";
2382 const char *dma_dir_string = "";
2385 rc = atapi_cdb_len(id);
2386 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2387 if (ata_msg_warn(ap))
2388 ata_dev_printk(dev, KERN_WARNING,
2389 "unsupported CDB len\n");
2393 dev->cdb_len = (unsigned int) rc;
2395 /* Enable ATAPI AN if both the host and device have
2396 * the support. If PMP is attached, SNTF is required
2397 * to enable ATAPI AN to discern between PHY status
2398 * changed notifications and ATAPI ANs.
2400 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2401 (!sata_pmp_attached(ap) ||
2402 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2403 unsigned int err_mask;
2405 /* issue SET feature command to turn this on */
2406 err_mask = ata_dev_set_feature(dev,
2407 SETFEATURES_SATA_ENABLE, SATA_AN);
2409 ata_dev_printk(dev, KERN_ERR,
2410 "failed to enable ATAPI AN "
2411 "(err_mask=0x%x)\n", err_mask);
2413 dev->flags |= ATA_DFLAG_AN;
2414 atapi_an_string = ", ATAPI AN";
2418 if (ata_id_cdb_intr(dev->id)) {
2419 dev->flags |= ATA_DFLAG_CDB_INTR;
2420 cdb_intr_string = ", CDB intr";
2423 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2424 dev->flags |= ATA_DFLAG_DMADIR;
2425 dma_dir_string = ", DMADIR";
2428 /* print device info to dmesg */
2429 if (ata_msg_drv(ap) && print_info)
2430 ata_dev_printk(dev, KERN_INFO,
2431 "ATAPI: %s, %s, max %s%s%s%s\n",
2433 ata_mode_string(xfer_mask),
2434 cdb_intr_string, atapi_an_string,
2438 /* determine max_sectors */
2439 dev->max_sectors = ATA_MAX_SECTORS;
2440 if (dev->flags & ATA_DFLAG_LBA48)
2441 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2443 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2444 if (ata_id_has_hipm(dev->id))
2445 dev->flags |= ATA_DFLAG_HIPM;
2446 if (ata_id_has_dipm(dev->id))
2447 dev->flags |= ATA_DFLAG_DIPM;
2450 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2452 if (ata_dev_knobble(dev)) {
2453 if (ata_msg_drv(ap) && print_info)
2454 ata_dev_printk(dev, KERN_INFO,
2455 "applying bridge limits\n");
2456 dev->udma_mask &= ATA_UDMA5;
2457 dev->max_sectors = ATA_MAX_SECTORS;
2460 if ((dev->class == ATA_DEV_ATAPI) &&
2461 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2462 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2463 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2466 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2467 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2470 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2471 dev->horkage |= ATA_HORKAGE_IPM;
2473 /* reset link pm_policy for this port to no pm */
2474 ap->pm_policy = MAX_PERFORMANCE;
2477 if (ap->ops->dev_config)
2478 ap->ops->dev_config(dev);
2480 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2481 /* Let the user know. We don't want to disallow opens for
2482 rescue purposes, or in case the vendor is just a blithering
2483 idiot. Do this after the dev_config call as some controllers
2484 with buggy firmware may want to avoid reporting false device
2488 ata_dev_printk(dev, KERN_WARNING,
2489 "Drive reports diagnostics failure. This may indicate a drive\n");
2490 ata_dev_printk(dev, KERN_WARNING,
2491 "fault or invalid emulation. Contact drive vendor for information.\n");
2498 if (ata_msg_probe(ap))
2499 ata_dev_printk(dev, KERN_DEBUG,
2500 "%s: EXIT, err\n", __func__);
2505 * ata_cable_40wire - return 40 wire cable type
2508 * Helper method for drivers which want to hardwire 40 wire cable
2512 int ata_cable_40wire(struct ata_port *ap)
2514 return ATA_CBL_PATA40;
2518 * ata_cable_80wire - return 80 wire cable type
2521 * Helper method for drivers which want to hardwire 80 wire cable
2525 int ata_cable_80wire(struct ata_port *ap)
2527 return ATA_CBL_PATA80;
2531 * ata_cable_unknown - return unknown PATA cable.
2534 * Helper method for drivers which have no PATA cable detection.
2537 int ata_cable_unknown(struct ata_port *ap)
2539 return ATA_CBL_PATA_UNK;
2543 * ata_cable_ignore - return ignored PATA cable.
2546 * Helper method for drivers which don't use cable type to limit
2549 int ata_cable_ignore(struct ata_port *ap)
2551 return ATA_CBL_PATA_IGN;
2555 * ata_cable_sata - return SATA cable type
2558 * Helper method for drivers which have SATA cables
2561 int ata_cable_sata(struct ata_port *ap)
2563 return ATA_CBL_SATA;
2567 * ata_bus_probe - Reset and probe ATA bus
2570 * Master ATA bus probing function. Initiates a hardware-dependent
2571 * bus reset, then attempts to identify any devices found on
2575 * PCI/etc. bus probe sem.
2578 * Zero on success, negative errno otherwise.
2581 int ata_bus_probe(struct ata_port *ap)
2583 unsigned int classes[ATA_MAX_DEVICES];
2584 int tries[ATA_MAX_DEVICES];
2586 struct ata_device *dev;
2590 ata_link_for_each_dev(dev, &ap->link)
2591 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2594 ata_link_for_each_dev(dev, &ap->link) {
2595 /* If we issue an SRST then an ATA drive (not ATAPI)
2596 * may change configuration and be in PIO0 timing. If
2597 * we do a hard reset (or are coming from power on)
2598 * this is true for ATA or ATAPI. Until we've set a
2599 * suitable controller mode we should not touch the
2600 * bus as we may be talking too fast.
2602 dev->pio_mode = XFER_PIO_0;
2604 /* If the controller has a pio mode setup function
2605 * then use it to set the chipset to rights. Don't
2606 * touch the DMA setup as that will be dealt with when
2607 * configuring devices.
2609 if (ap->ops->set_piomode)
2610 ap->ops->set_piomode(ap, dev);
2613 /* reset and determine device classes */
2614 ap->ops->phy_reset(ap);
2616 ata_link_for_each_dev(dev, &ap->link) {
2617 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2618 dev->class != ATA_DEV_UNKNOWN)
2619 classes[dev->devno] = dev->class;
2621 classes[dev->devno] = ATA_DEV_NONE;
2623 dev->class = ATA_DEV_UNKNOWN;
2628 /* read IDENTIFY page and configure devices. We have to do the identify
2629 specific sequence bass-ackwards so that PDIAG- is released by
2632 ata_link_for_each_dev_reverse(dev, &ap->link) {
2633 if (tries[dev->devno])
2634 dev->class = classes[dev->devno];
2636 if (!ata_dev_enabled(dev))
2639 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2645 /* Now ask for the cable type as PDIAG- should have been released */
2646 if (ap->ops->cable_detect)
2647 ap->cbl = ap->ops->cable_detect(ap);
2649 /* We may have SATA bridge glue hiding here irrespective of the
2650 reported cable types and sensed types */
2651 ata_link_for_each_dev(dev, &ap->link) {
2652 if (!ata_dev_enabled(dev))
2654 /* SATA drives indicate we have a bridge. We don't know which
2655 end of the link the bridge is which is a problem */
2656 if (ata_id_is_sata(dev->id))
2657 ap->cbl = ATA_CBL_SATA;
2660 /* After the identify sequence we can now set up the devices. We do
2661 this in the normal order so that the user doesn't get confused */
2663 ata_link_for_each_dev(dev, &ap->link) {
2664 if (!ata_dev_enabled(dev))
2667 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2668 rc = ata_dev_configure(dev);
2669 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2674 /* configure transfer mode */
2675 rc = ata_set_mode(&ap->link, &dev);
2679 ata_link_for_each_dev(dev, &ap->link)
2680 if (ata_dev_enabled(dev))
2683 /* no device present, disable port */
2684 ata_port_disable(ap);
2688 tries[dev->devno]--;
2692 /* eeek, something went very wrong, give up */
2693 tries[dev->devno] = 0;
2697 /* give it just one more chance */
2698 tries[dev->devno] = min(tries[dev->devno], 1);
2700 if (tries[dev->devno] == 1) {
2701 /* This is the last chance, better to slow
2702 * down than lose it.
2704 sata_down_spd_limit(&ap->link);
2705 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2709 if (!tries[dev->devno])
2710 ata_dev_disable(dev);
2716 * ata_port_probe - Mark port as enabled
2717 * @ap: Port for which we indicate enablement
2719 * Modify @ap data structure such that the system
2720 * thinks that the entire port is enabled.
2722 * LOCKING: host lock, or some other form of
2726 void ata_port_probe(struct ata_port *ap)
2728 ap->flags &= ~ATA_FLAG_DISABLED;
2732 * sata_print_link_status - Print SATA link status
2733 * @link: SATA link to printk link status about
2735 * This function prints link speed and status of a SATA link.
2740 static void sata_print_link_status(struct ata_link *link)
2742 u32 sstatus, scontrol, tmp;
2744 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2746 sata_scr_read(link, SCR_CONTROL, &scontrol);
2748 if (ata_phys_link_online(link)) {
2749 tmp = (sstatus >> 4) & 0xf;
2750 ata_link_printk(link, KERN_INFO,
2751 "SATA link up %s (SStatus %X SControl %X)\n",
2752 sata_spd_string(tmp), sstatus, scontrol);
2754 ata_link_printk(link, KERN_INFO,
2755 "SATA link down (SStatus %X SControl %X)\n",
2761 * ata_dev_pair - return other device on cable
2764 * Obtain the other device on the same cable, or if none is
2765 * present NULL is returned
2768 struct ata_device *ata_dev_pair(struct ata_device *adev)
2770 struct ata_link *link = adev->link;
2771 struct ata_device *pair = &link->device[1 - adev->devno];
2772 if (!ata_dev_enabled(pair))
2778 * ata_port_disable - Disable port.
2779 * @ap: Port to be disabled.
2781 * Modify @ap data structure such that the system
2782 * thinks that the entire port is disabled, and should
2783 * never attempt to probe or communicate with devices
2786 * LOCKING: host lock, or some other form of
2790 void ata_port_disable(struct ata_port *ap)
2792 ap->link.device[0].class = ATA_DEV_NONE;
2793 ap->link.device[1].class = ATA_DEV_NONE;
2794 ap->flags |= ATA_FLAG_DISABLED;
2798 * sata_down_spd_limit - adjust SATA spd limit downward
2799 * @link: Link to adjust SATA spd limit for
2801 * Adjust SATA spd limit of @link downward. Note that this
2802 * function only adjusts the limit. The change must be applied
2803 * using sata_set_spd().
2806 * Inherited from caller.
2809 * 0 on success, negative errno on failure
2811 int sata_down_spd_limit(struct ata_link *link)
2813 u32 sstatus, spd, mask;
2816 if (!sata_scr_valid(link))
2819 /* If SCR can be read, use it to determine the current SPD.
2820 * If not, use cached value in link->sata_spd.
2822 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2824 spd = (sstatus >> 4) & 0xf;
2826 spd = link->sata_spd;
2828 mask = link->sata_spd_limit;
2832 /* unconditionally mask off the highest bit */
2833 highbit = fls(mask) - 1;
2834 mask &= ~(1 << highbit);
2836 /* Mask off all speeds higher than or equal to the current
2837 * one. Force 1.5Gbps if current SPD is not available.
2840 mask &= (1 << (spd - 1)) - 1;
2844 /* were we already at the bottom? */
2848 link->sata_spd_limit = mask;
2850 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2851 sata_spd_string(fls(mask)));
2856 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2858 struct ata_link *host_link = &link->ap->link;
2859 u32 limit, target, spd;
2861 limit = link->sata_spd_limit;
2863 /* Don't configure downstream link faster than upstream link.
2864 * It doesn't speed up anything and some PMPs choke on such
2867 if (!ata_is_host_link(link) && host_link->sata_spd)
2868 limit &= (1 << host_link->sata_spd) - 1;
2870 if (limit == UINT_MAX)
2873 target = fls(limit);
2875 spd = (*scontrol >> 4) & 0xf;
2876 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2878 return spd != target;
2882 * sata_set_spd_needed - is SATA spd configuration needed
2883 * @link: Link in question
2885 * Test whether the spd limit in SControl matches
2886 * @link->sata_spd_limit. This function is used to determine
2887 * whether hardreset is necessary to apply SATA spd
2891 * Inherited from caller.
2894 * 1 if SATA spd configuration is needed, 0 otherwise.
2896 static int sata_set_spd_needed(struct ata_link *link)
2900 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2903 return __sata_set_spd_needed(link, &scontrol);
2907 * sata_set_spd - set SATA spd according to spd limit
2908 * @link: Link to set SATA spd for
2910 * Set SATA spd of @link according to sata_spd_limit.
2913 * Inherited from caller.
2916 * 0 if spd doesn't need to be changed, 1 if spd has been
2917 * changed. Negative errno if SCR registers are inaccessible.
2919 int sata_set_spd(struct ata_link *link)
2924 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2927 if (!__sata_set_spd_needed(link, &scontrol))
2930 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2937 * This mode timing computation functionality is ported over from
2938 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2941 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2942 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2943 * for UDMA6, which is currently supported only by Maxtor drives.
2945 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2948 static const struct ata_timing ata_timing[] = {
2949 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2950 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2951 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2952 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2953 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2954 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2955 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2956 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2958 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2959 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2960 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2962 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2963 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2964 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2965 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2966 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2968 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2969 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2970 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2971 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2972 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2973 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2974 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2975 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2980 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2981 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2983 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2985 q->setup = EZ(t->setup * 1000, T);
2986 q->act8b = EZ(t->act8b * 1000, T);
2987 q->rec8b = EZ(t->rec8b * 1000, T);
2988 q->cyc8b = EZ(t->cyc8b * 1000, T);
2989 q->active = EZ(t->active * 1000, T);
2990 q->recover = EZ(t->recover * 1000, T);
2991 q->cycle = EZ(t->cycle * 1000, T);
2992 q->udma = EZ(t->udma * 1000, UT);
2995 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2996 struct ata_timing *m, unsigned int what)
2998 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2999 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3000 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3001 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3002 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3003 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3004 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3005 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3008 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3010 const struct ata_timing *t = ata_timing;
3012 while (xfer_mode > t->mode)
3015 if (xfer_mode == t->mode)
3020 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3021 struct ata_timing *t, int T, int UT)
3023 const struct ata_timing *s;
3024 struct ata_timing p;
3030 if (!(s = ata_timing_find_mode(speed)))
3033 memcpy(t, s, sizeof(*s));
3036 * If the drive is an EIDE drive, it can tell us it needs extended
3037 * PIO/MW_DMA cycle timing.
3040 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3041 memset(&p, 0, sizeof(p));
3042 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3043 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3044 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3045 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3046 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3048 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3052 * Convert the timing to bus clock counts.
3055 ata_timing_quantize(t, t, T, UT);
3058 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3059 * S.M.A.R.T * and some other commands. We have to ensure that the
3060 * DMA cycle timing is slower/equal than the fastest PIO timing.
3063 if (speed > XFER_PIO_6) {
3064 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3065 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3069 * Lengthen active & recovery time so that cycle time is correct.
3072 if (t->act8b + t->rec8b < t->cyc8b) {
3073 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3074 t->rec8b = t->cyc8b - t->act8b;
3077 if (t->active + t->recover < t->cycle) {
3078 t->active += (t->cycle - (t->active + t->recover)) / 2;
3079 t->recover = t->cycle - t->active;
3082 /* In a few cases quantisation may produce enough errors to
3083 leave t->cycle too low for the sum of active and recovery
3084 if so we must correct this */
3085 if (t->active + t->recover > t->cycle)
3086 t->cycle = t->active + t->recover;
3092 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3093 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3094 * @cycle: cycle duration in ns
3096 * Return matching xfer mode for @cycle. The returned mode is of
3097 * the transfer type specified by @xfer_shift. If @cycle is too
3098 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3099 * than the fastest known mode, the fasted mode is returned.
3105 * Matching xfer_mode, 0xff if no match found.
3107 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3109 u8 base_mode = 0xff, last_mode = 0xff;
3110 const struct ata_xfer_ent *ent;
3111 const struct ata_timing *t;
3113 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3114 if (ent->shift == xfer_shift)
3115 base_mode = ent->base;
3117 for (t = ata_timing_find_mode(base_mode);
3118 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3119 unsigned short this_cycle;
3121 switch (xfer_shift) {
3123 case ATA_SHIFT_MWDMA:
3124 this_cycle = t->cycle;
3126 case ATA_SHIFT_UDMA:
3127 this_cycle = t->udma;
3133 if (cycle > this_cycle)
3136 last_mode = t->mode;
3143 * ata_down_xfermask_limit - adjust dev xfer masks downward
3144 * @dev: Device to adjust xfer masks
3145 * @sel: ATA_DNXFER_* selector
3147 * Adjust xfer masks of @dev downward. Note that this function
3148 * does not apply the change. Invoking ata_set_mode() afterwards
3149 * will apply the limit.
3152 * Inherited from caller.
3155 * 0 on success, negative errno on failure
3157 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3160 unsigned long orig_mask, xfer_mask;
3161 unsigned long pio_mask, mwdma_mask, udma_mask;
3164 quiet = !!(sel & ATA_DNXFER_QUIET);
3165 sel &= ~ATA_DNXFER_QUIET;
3167 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3170 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3173 case ATA_DNXFER_PIO:
3174 highbit = fls(pio_mask) - 1;
3175 pio_mask &= ~(1 << highbit);
3178 case ATA_DNXFER_DMA:
3180 highbit = fls(udma_mask) - 1;
3181 udma_mask &= ~(1 << highbit);
3184 } else if (mwdma_mask) {
3185 highbit = fls(mwdma_mask) - 1;
3186 mwdma_mask &= ~(1 << highbit);
3192 case ATA_DNXFER_40C:
3193 udma_mask &= ATA_UDMA_MASK_40C;
3196 case ATA_DNXFER_FORCE_PIO0:
3198 case ATA_DNXFER_FORCE_PIO:
3207 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3209 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3213 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3214 snprintf(buf, sizeof(buf), "%s:%s",
3215 ata_mode_string(xfer_mask),
3216 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3218 snprintf(buf, sizeof(buf), "%s",
3219 ata_mode_string(xfer_mask));
3221 ata_dev_printk(dev, KERN_WARNING,
3222 "limiting speed to %s\n", buf);
3225 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3231 static int ata_dev_set_mode(struct ata_device *dev)
3233 struct ata_eh_context *ehc = &dev->link->eh_context;
3234 const char *dev_err_whine = "";
3235 int ign_dev_err = 0;
3236 unsigned int err_mask;
3239 dev->flags &= ~ATA_DFLAG_PIO;
3240 if (dev->xfer_shift == ATA_SHIFT_PIO)
3241 dev->flags |= ATA_DFLAG_PIO;
3243 err_mask = ata_dev_set_xfermode(dev);
3245 if (err_mask & ~AC_ERR_DEV)
3249 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3250 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3251 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3255 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3256 /* Old CFA may refuse this command, which is just fine */
3257 if (ata_id_is_cfa(dev->id))
3259 /* Catch several broken garbage emulations plus some pre
3261 if (ata_id_major_version(dev->id) == 0 &&
3262 dev->pio_mode <= XFER_PIO_2)
3264 /* Some very old devices and some bad newer ones fail
3265 any kind of SET_XFERMODE request but support PIO0-2
3266 timings and no IORDY */
3267 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3270 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3271 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3272 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3273 dev->dma_mode == XFER_MW_DMA_0 &&
3274 (dev->id[63] >> 8) & 1)
3277 /* if the device is actually configured correctly, ignore dev err */
3278 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3281 if (err_mask & AC_ERR_DEV) {
3285 dev_err_whine = " (device error ignored)";
3288 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3289 dev->xfer_shift, (int)dev->xfer_mode);
3291 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3292 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3298 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3299 "(err_mask=0x%x)\n", err_mask);
3304 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3305 * @link: link on which timings will be programmed
3306 * @r_failed_dev: out parameter for failed device
3308 * Standard implementation of the function used to tune and set
3309 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3310 * ata_dev_set_mode() fails, pointer to the failing device is
3311 * returned in @r_failed_dev.
3314 * PCI/etc. bus probe sem.
3317 * 0 on success, negative errno otherwise
3320 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3322 struct ata_port *ap = link->ap;
3323 struct ata_device *dev;
3324 int rc = 0, used_dma = 0, found = 0;
3326 /* step 1: calculate xfer_mask */
3327 ata_link_for_each_dev(dev, link) {
3328 unsigned long pio_mask, dma_mask;
3329 unsigned int mode_mask;
3331 if (!ata_dev_enabled(dev))
3334 mode_mask = ATA_DMA_MASK_ATA;
3335 if (dev->class == ATA_DEV_ATAPI)
3336 mode_mask = ATA_DMA_MASK_ATAPI;
3337 else if (ata_id_is_cfa(dev->id))
3338 mode_mask = ATA_DMA_MASK_CFA;
3340 ata_dev_xfermask(dev);
3341 ata_force_xfermask(dev);
3343 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3344 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3346 if (libata_dma_mask & mode_mask)
3347 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3351 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3352 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3355 if (ata_dma_enabled(dev))
3361 /* step 2: always set host PIO timings */
3362 ata_link_for_each_dev(dev, link) {
3363 if (!ata_dev_enabled(dev))
3366 if (dev->pio_mode == 0xff) {
3367 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3372 dev->xfer_mode = dev->pio_mode;
3373 dev->xfer_shift = ATA_SHIFT_PIO;
3374 if (ap->ops->set_piomode)
3375 ap->ops->set_piomode(ap, dev);
3378 /* step 3: set host DMA timings */
3379 ata_link_for_each_dev(dev, link) {
3380 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev))
3383 dev->xfer_mode = dev->dma_mode;
3384 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3385 if (ap->ops->set_dmamode)
3386 ap->ops->set_dmamode(ap, dev);
3389 /* step 4: update devices' xfer mode */
3390 ata_link_for_each_dev(dev, link) {
3391 /* don't update suspended devices' xfer mode */
3392 if (!ata_dev_enabled(dev))
3395 rc = ata_dev_set_mode(dev);
3400 /* Record simplex status. If we selected DMA then the other
3401 * host channels are not permitted to do so.
3403 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3404 ap->host->simplex_claimed = ap;
3408 *r_failed_dev = dev;
3413 * ata_wait_ready - wait for link to become ready
3414 * @link: link to be waited on
3415 * @deadline: deadline jiffies for the operation
3416 * @check_ready: callback to check link readiness
3418 * Wait for @link to become ready. @check_ready should return
3419 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3420 * link doesn't seem to be occupied, other errno for other error
3423 * Transient -ENODEV conditions are allowed for
3424 * ATA_TMOUT_FF_WAIT.
3430 * 0 if @linke is ready before @deadline; otherwise, -errno.
3432 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3433 int (*check_ready)(struct ata_link *link))
3435 unsigned long start = jiffies;
3436 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3439 /* Slave readiness can't be tested separately from master. On
3440 * M/S emulation configuration, this function should be called
3441 * only on the master and it will handle both master and slave.
3443 WARN_ON(link == link->ap->slave_link);
3445 if (time_after(nodev_deadline, deadline))
3446 nodev_deadline = deadline;
3449 unsigned long now = jiffies;
3452 ready = tmp = check_ready(link);
3456 /* -ENODEV could be transient. Ignore -ENODEV if link
3457 * is online. Also, some SATA devices take a long
3458 * time to clear 0xff after reset. For example,
3459 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3460 * GoVault needs even more than that. Wait for
3461 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3463 * Note that some PATA controllers (pata_ali) explode
3464 * if status register is read more than once when
3465 * there's no device attached.
3467 if (ready == -ENODEV) {
3468 if (ata_link_online(link))
3470 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3471 !ata_link_offline(link) &&
3472 time_before(now, nodev_deadline))
3478 if (time_after(now, deadline))
3481 if (!warned && time_after(now, start + 5 * HZ) &&
3482 (deadline - now > 3 * HZ)) {
3483 ata_link_printk(link, KERN_WARNING,
3484 "link is slow to respond, please be patient "
3485 "(ready=%d)\n", tmp);
3494 * ata_wait_after_reset - wait for link to become ready after reset
3495 * @link: link to be waited on
3496 * @deadline: deadline jiffies for the operation
3497 * @check_ready: callback to check link readiness
3499 * Wait for @link to become ready after reset.
3505 * 0 if @linke is ready before @deadline; otherwise, -errno.
3507 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3508 int (*check_ready)(struct ata_link *link))
3510 msleep(ATA_WAIT_AFTER_RESET);
3512 return ata_wait_ready(link, deadline, check_ready);
3516 * sata_link_debounce - debounce SATA phy status
3517 * @link: ATA link to debounce SATA phy status for
3518 * @params: timing parameters { interval, duratinon, timeout } in msec
3519 * @deadline: deadline jiffies for the operation
3521 * Make sure SStatus of @link reaches stable state, determined by
3522 * holding the same value where DET is not 1 for @duration polled
3523 * every @interval, before @timeout. Timeout constraints the
3524 * beginning of the stable state. Because DET gets stuck at 1 on
3525 * some controllers after hot unplugging, this functions waits
3526 * until timeout then returns 0 if DET is stable at 1.
3528 * @timeout is further limited by @deadline. The sooner of the
3532 * Kernel thread context (may sleep)
3535 * 0 on success, -errno on failure.
3537 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3538 unsigned long deadline)
3540 unsigned long interval = params[0];
3541 unsigned long duration = params[1];
3542 unsigned long last_jiffies, t;
3546 t = ata_deadline(jiffies, params[2]);
3547 if (time_before(t, deadline))
3550 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3555 last_jiffies = jiffies;
3559 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3565 if (cur == 1 && time_before(jiffies, deadline))
3567 if (time_after(jiffies,
3568 ata_deadline(last_jiffies, duration)))
3573 /* unstable, start over */
3575 last_jiffies = jiffies;
3577 /* Check deadline. If debouncing failed, return
3578 * -EPIPE to tell upper layer to lower link speed.
3580 if (time_after(jiffies, deadline))
3586 * sata_link_resume - resume SATA link
3587 * @link: ATA link to resume SATA
3588 * @params: timing parameters { interval, duratinon, timeout } in msec
3589 * @deadline: deadline jiffies for the operation
3591 * Resume SATA phy @link and debounce it.
3594 * Kernel thread context (may sleep)
3597 * 0 on success, -errno on failure.
3599 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3600 unsigned long deadline)
3602 u32 scontrol, serror;
3605 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3608 scontrol = (scontrol & 0x0f0) | 0x300;
3610 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3613 /* Some PHYs react badly if SStatus is pounded immediately
3614 * after resuming. Delay 200ms before debouncing.
3618 if ((rc = sata_link_debounce(link, params, deadline)))
3621 /* clear SError, some PHYs require this even for SRST to work */
3622 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3623 rc = sata_scr_write(link, SCR_ERROR, serror);
3625 return rc != -EINVAL ? rc : 0;
3629 * ata_std_prereset - prepare for reset
3630 * @link: ATA link to be reset
3631 * @deadline: deadline jiffies for the operation
3633 * @link is about to be reset. Initialize it. Failure from
3634 * prereset makes libata abort whole reset sequence and give up
3635 * that port, so prereset should be best-effort. It does its
3636 * best to prepare for reset sequence but if things go wrong, it
3637 * should just whine, not fail.
3640 * Kernel thread context (may sleep)
3643 * 0 on success, -errno otherwise.
3645 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3647 struct ata_port *ap = link->ap;
3648 struct ata_eh_context *ehc = &link->eh_context;
3649 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3652 /* if we're about to do hardreset, nothing more to do */
3653 if (ehc->i.action & ATA_EH_HARDRESET)
3656 /* if SATA, resume link */
3657 if (ap->flags & ATA_FLAG_SATA) {
3658 rc = sata_link_resume(link, timing, deadline);
3659 /* whine about phy resume failure but proceed */
3660 if (rc && rc != -EOPNOTSUPP)
3661 ata_link_printk(link, KERN_WARNING, "failed to resume "
3662 "link for reset (errno=%d)\n", rc);
3665 /* no point in trying softreset on offline link */
3666 if (ata_phys_link_offline(link))
3667 ehc->i.action &= ~ATA_EH_SOFTRESET;
3673 * sata_link_hardreset - reset link via SATA phy reset
3674 * @link: link to reset
3675 * @timing: timing parameters { interval, duratinon, timeout } in msec
3676 * @deadline: deadline jiffies for the operation
3677 * @online: optional out parameter indicating link onlineness
3678 * @check_ready: optional callback to check link readiness
3680 * SATA phy-reset @link using DET bits of SControl register.
3681 * After hardreset, link readiness is waited upon using
3682 * ata_wait_ready() if @check_ready is specified. LLDs are
3683 * allowed to not specify @check_ready and wait itself after this
3684 * function returns. Device classification is LLD's
3687 * *@online is set to one iff reset succeeded and @link is online
3691 * Kernel thread context (may sleep)
3694 * 0 on success, -errno otherwise.
3696 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3697 unsigned long deadline,
3698 bool *online, int (*check_ready)(struct ata_link *))
3708 if (sata_set_spd_needed(link)) {
3709 /* SATA spec says nothing about how to reconfigure
3710 * spd. To be on the safe side, turn off phy during
3711 * reconfiguration. This works for at least ICH7 AHCI
3714 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3717 scontrol = (scontrol & 0x0f0) | 0x304;
3719 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3725 /* issue phy wake/reset */
3726 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3729 scontrol = (scontrol & 0x0f0) | 0x301;
3731 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3734 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3735 * 10.4.2 says at least 1 ms.
3739 /* bring link back */
3740 rc = sata_link_resume(link, timing, deadline);
3743 /* if link is offline nothing more to do */
3744 if (ata_phys_link_offline(link))
3747 /* Link is online. From this point, -ENODEV too is an error. */
3751 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3752 /* If PMP is supported, we have to do follow-up SRST.
3753 * Some PMPs don't send D2H Reg FIS after hardreset if
3754 * the first port is empty. Wait only for
3755 * ATA_TMOUT_PMP_SRST_WAIT.
3758 unsigned long pmp_deadline;
3760 pmp_deadline = ata_deadline(jiffies,
3761 ATA_TMOUT_PMP_SRST_WAIT);
3762 if (time_after(pmp_deadline, deadline))
3763 pmp_deadline = deadline;
3764 ata_wait_ready(link, pmp_deadline, check_ready);
3772 rc = ata_wait_ready(link, deadline, check_ready);
3774 if (rc && rc != -EAGAIN) {
3775 /* online is set iff link is online && reset succeeded */
3778 ata_link_printk(link, KERN_ERR,
3779 "COMRESET failed (errno=%d)\n", rc);
3781 DPRINTK("EXIT, rc=%d\n", rc);
3786 * sata_std_hardreset - COMRESET w/o waiting or classification
3787 * @link: link to reset
3788 * @class: resulting class of attached device
3789 * @deadline: deadline jiffies for the operation
3791 * Standard SATA COMRESET w/o waiting or classification.
3794 * Kernel thread context (may sleep)
3797 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3799 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3800 unsigned long deadline)
3802 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3807 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3808 return online ? -EAGAIN : rc;
3812 * ata_std_postreset - standard postreset callback
3813 * @link: the target ata_link
3814 * @classes: classes of attached devices
3816 * This function is invoked after a successful reset. Note that
3817 * the device might have been reset more than once using
3818 * different reset methods before postreset is invoked.
3821 * Kernel thread context (may sleep)
3823 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3829 /* reset complete, clear SError */
3830 if (!sata_scr_read(link, SCR_ERROR, &serror))
3831 sata_scr_write(link, SCR_ERROR, serror);
3833 /* print link status */
3834 sata_print_link_status(link);
3840 * ata_dev_same_device - Determine whether new ID matches configured device
3841 * @dev: device to compare against
3842 * @new_class: class of the new device
3843 * @new_id: IDENTIFY page of the new device
3845 * Compare @new_class and @new_id against @dev and determine
3846 * whether @dev is the device indicated by @new_class and
3853 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3855 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3858 const u16 *old_id = dev->id;
3859 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3860 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3862 if (dev->class != new_class) {
3863 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3864 dev->class, new_class);
3868 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3869 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3870 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3871 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3873 if (strcmp(model[0], model[1])) {
3874 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3875 "'%s' != '%s'\n", model[0], model[1]);
3879 if (strcmp(serial[0], serial[1])) {
3880 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3881 "'%s' != '%s'\n", serial[0], serial[1]);
3889 * ata_dev_reread_id - Re-read IDENTIFY data
3890 * @dev: target ATA device
3891 * @readid_flags: read ID flags
3893 * Re-read IDENTIFY page and make sure @dev is still attached to
3897 * Kernel thread context (may sleep)
3900 * 0 on success, negative errno otherwise
3902 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3904 unsigned int class = dev->class;
3905 u16 *id = (void *)dev->link->ap->sector_buf;
3909 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3913 /* is the device still there? */
3914 if (!ata_dev_same_device(dev, class, id))
3917 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3922 * ata_dev_revalidate - Revalidate ATA device
3923 * @dev: device to revalidate
3924 * @new_class: new class code
3925 * @readid_flags: read ID flags
3927 * Re-read IDENTIFY page, make sure @dev is still attached to the
3928 * port and reconfigure it according to the new IDENTIFY page.
3931 * Kernel thread context (may sleep)
3934 * 0 on success, negative errno otherwise
3936 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3937 unsigned int readid_flags)
3939 u64 n_sectors = dev->n_sectors;
3942 if (!ata_dev_enabled(dev))
3945 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3946 if (ata_class_enabled(new_class) &&
3947 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3948 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3949 dev->class, new_class);
3955 rc = ata_dev_reread_id(dev, readid_flags);
3959 /* configure device according to the new ID */
3960 rc = ata_dev_configure(dev);
3964 /* verify n_sectors hasn't changed */
3965 if (dev->class == ATA_DEV_ATA && n_sectors &&
3966 dev->n_sectors != n_sectors) {
3967 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3969 (unsigned long long)n_sectors,
3970 (unsigned long long)dev->n_sectors);
3972 /* restore original n_sectors */
3973 dev->n_sectors = n_sectors;
3982 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3986 struct ata_blacklist_entry {
3987 const char *model_num;
3988 const char *model_rev;
3989 unsigned long horkage;
3992 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3993 /* Devices with DMA related problems under Linux */
3994 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3995 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3996 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3997 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3998 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3999 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4000 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4001 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4002 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4003 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4004 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4005 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4006 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4007 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4008 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4009 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4010 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4011 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4012 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4013 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4014 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4015 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4016 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4017 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4018 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4019 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4020 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4021 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4022 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4023 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4024 /* Odd clown on sil3726/4726 PMPs */
4025 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4027 /* Weird ATAPI devices */
4028 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4029 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4031 /* Devices we expect to fail diagnostics */
4033 /* Devices where NCQ should be avoided */
4035 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4036 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4037 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4038 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4040 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4041 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4042 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4043 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4045 /* Blacklist entries taken from Silicon Image 3124/3132
4046 Windows driver .inf file - also several Linux problem reports */
4047 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4048 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4049 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4051 /* devices which puke on READ_NATIVE_MAX */
4052 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4053 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4054 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4055 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4057 /* Devices which report 1 sector over size HPA */
4058 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4059 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4060 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4062 /* Devices which get the IVB wrong */
4063 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4064 /* Maybe we should just blacklist TSSTcorp... */
4065 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4066 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4067 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4068 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4069 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4070 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4072 /* Devices that do not need bridging limits applied */
4073 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4079 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4085 * check for trailing wildcard: *\0
4087 p = strchr(patt, wildchar);
4088 if (p && ((*(p + 1)) == 0))
4099 return strncmp(patt, name, len);
4102 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4104 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4105 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4106 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4108 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4109 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4111 while (ad->model_num) {
4112 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4113 if (ad->model_rev == NULL)
4115 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4123 static int ata_dma_blacklisted(const struct ata_device *dev)
4125 /* We don't support polling DMA.
4126 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4127 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4129 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4130 (dev->flags & ATA_DFLAG_CDB_INTR))
4132 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4136 * ata_is_40wire - check drive side detection
4139 * Perform drive side detection decoding, allowing for device vendors
4140 * who can't follow the documentation.
4143 static int ata_is_40wire(struct ata_device *dev)
4145 if (dev->horkage & ATA_HORKAGE_IVB)
4146 return ata_drive_40wire_relaxed(dev->id);
4147 return ata_drive_40wire(dev->id);
4151 * cable_is_40wire - 40/80/SATA decider
4152 * @ap: port to consider
4154 * This function encapsulates the policy for speed management
4155 * in one place. At the moment we don't cache the result but
4156 * there is a good case for setting ap->cbl to the result when
4157 * we are called with unknown cables (and figuring out if it
4158 * impacts hotplug at all).
4160 * Return 1 if the cable appears to be 40 wire.
4163 static int cable_is_40wire(struct ata_port *ap)
4165 struct ata_link *link;
4166 struct ata_device *dev;
4168 /* If the controller thinks we are 40 wire, we are. */
4169 if (ap->cbl == ATA_CBL_PATA40)
4172 /* If the controller thinks we are 80 wire, we are. */
4173 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4176 /* If the system is known to be 40 wire short cable (eg
4177 * laptop), then we allow 80 wire modes even if the drive
4180 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4183 /* If the controller doesn't know, we scan.
4185 * Note: We look for all 40 wire detects at this point. Any
4186 * 80 wire detect is taken to be 80 wire cable because
4187 * - in many setups only the one drive (slave if present) will
4188 * give a valid detect
4189 * - if you have a non detect capable drive you don't want it
4190 * to colour the choice
4192 ata_port_for_each_link(link, ap) {
4193 ata_link_for_each_dev(dev, link) {
4194 if (ata_dev_enabled(dev) && !ata_is_40wire(dev))
4202 * ata_dev_xfermask - Compute supported xfermask of the given device
4203 * @dev: Device to compute xfermask for
4205 * Compute supported xfermask of @dev and store it in
4206 * dev->*_mask. This function is responsible for applying all
4207 * known limits including host controller limits, device
4213 static void ata_dev_xfermask(struct ata_device *dev)
4215 struct ata_link *link = dev->link;
4216 struct ata_port *ap = link->ap;
4217 struct ata_host *host = ap->host;
4218 unsigned long xfer_mask;
4220 /* controller modes available */
4221 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4222 ap->mwdma_mask, ap->udma_mask);
4224 /* drive modes available */
4225 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4226 dev->mwdma_mask, dev->udma_mask);
4227 xfer_mask &= ata_id_xfermask(dev->id);
4230 * CFA Advanced TrueIDE timings are not allowed on a shared
4233 if (ata_dev_pair(dev)) {
4234 /* No PIO5 or PIO6 */
4235 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4236 /* No MWDMA3 or MWDMA 4 */
4237 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4240 if (ata_dma_blacklisted(dev)) {
4241 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4242 ata_dev_printk(dev, KERN_WARNING,
4243 "device is on DMA blacklist, disabling DMA\n");
4246 if ((host->flags & ATA_HOST_SIMPLEX) &&
4247 host->simplex_claimed && host->simplex_claimed != ap) {
4248 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4249 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4250 "other device, disabling DMA\n");
4253 if (ap->flags & ATA_FLAG_NO_IORDY)
4254 xfer_mask &= ata_pio_mask_no_iordy(dev);
4256 if (ap->ops->mode_filter)
4257 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4259 /* Apply cable rule here. Don't apply it early because when
4260 * we handle hot plug the cable type can itself change.
4261 * Check this last so that we know if the transfer rate was
4262 * solely limited by the cable.
4263 * Unknown or 80 wire cables reported host side are checked
4264 * drive side as well. Cases where we know a 40wire cable
4265 * is used safely for 80 are not checked here.
4267 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4268 /* UDMA/44 or higher would be available */
4269 if (cable_is_40wire(ap)) {
4270 ata_dev_printk(dev, KERN_WARNING,
4271 "limited to UDMA/33 due to 40-wire cable\n");
4272 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4275 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4276 &dev->mwdma_mask, &dev->udma_mask);
4280 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4281 * @dev: Device to which command will be sent
4283 * Issue SET FEATURES - XFER MODE command to device @dev
4287 * PCI/etc. bus probe sem.
4290 * 0 on success, AC_ERR_* mask otherwise.
4293 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4295 struct ata_taskfile tf;
4296 unsigned int err_mask;
4298 /* set up set-features taskfile */
4299 DPRINTK("set features - xfer mode\n");
4301 /* Some controllers and ATAPI devices show flaky interrupt
4302 * behavior after setting xfer mode. Use polling instead.
4304 ata_tf_init(dev, &tf);
4305 tf.command = ATA_CMD_SET_FEATURES;
4306 tf.feature = SETFEATURES_XFER;
4307 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4308 tf.protocol = ATA_PROT_NODATA;
4309 /* If we are using IORDY we must send the mode setting command */
4310 if (ata_pio_need_iordy(dev))
4311 tf.nsect = dev->xfer_mode;
4312 /* If the device has IORDY and the controller does not - turn it off */
4313 else if (ata_id_has_iordy(dev->id))
4315 else /* In the ancient relic department - skip all of this */
4318 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4320 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4324 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4325 * @dev: Device to which command will be sent
4326 * @enable: Whether to enable or disable the feature
4327 * @feature: The sector count represents the feature to set
4329 * Issue SET FEATURES - SATA FEATURES command to device @dev
4330 * on port @ap with sector count
4333 * PCI/etc. bus probe sem.
4336 * 0 on success, AC_ERR_* mask otherwise.
4338 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4341 struct ata_taskfile tf;
4342 unsigned int err_mask;
4344 /* set up set-features taskfile */
4345 DPRINTK("set features - SATA features\n");
4347 ata_tf_init(dev, &tf);
4348 tf.command = ATA_CMD_SET_FEATURES;
4349 tf.feature = enable;
4350 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4351 tf.protocol = ATA_PROT_NODATA;
4354 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4356 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4361 * ata_dev_init_params - Issue INIT DEV PARAMS command
4362 * @dev: Device to which command will be sent
4363 * @heads: Number of heads (taskfile parameter)
4364 * @sectors: Number of sectors (taskfile parameter)
4367 * Kernel thread context (may sleep)
4370 * 0 on success, AC_ERR_* mask otherwise.
4372 static unsigned int ata_dev_init_params(struct ata_device *dev,
4373 u16 heads, u16 sectors)
4375 struct ata_taskfile tf;
4376 unsigned int err_mask;
4378 /* Number of sectors per track 1-255. Number of heads 1-16 */
4379 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4380 return AC_ERR_INVALID;
4382 /* set up init dev params taskfile */
4383 DPRINTK("init dev params \n");
4385 ata_tf_init(dev, &tf);
4386 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4387 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4388 tf.protocol = ATA_PROT_NODATA;
4390 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4392 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4393 /* A clean abort indicates an original or just out of spec drive
4394 and we should continue as we issue the setup based on the
4395 drive reported working geometry */
4396 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4399 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4404 * ata_sg_clean - Unmap DMA memory associated with command
4405 * @qc: Command containing DMA memory to be released
4407 * Unmap all mapped DMA memory associated with this command.
4410 * spin_lock_irqsave(host lock)
4412 void ata_sg_clean(struct ata_queued_cmd *qc)
4414 struct ata_port *ap = qc->ap;
4415 struct scatterlist *sg = qc->sg;
4416 int dir = qc->dma_dir;
4418 WARN_ON(sg == NULL);
4420 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4423 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4425 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4430 * atapi_check_dma - Check whether ATAPI DMA can be supported
4431 * @qc: Metadata associated with taskfile to check
4433 * Allow low-level driver to filter ATA PACKET commands, returning
4434 * a status indicating whether or not it is OK to use DMA for the
4435 * supplied PACKET command.
4438 * spin_lock_irqsave(host lock)
4440 * RETURNS: 0 when ATAPI DMA can be used
4443 int atapi_check_dma(struct ata_queued_cmd *qc)
4445 struct ata_port *ap = qc->ap;
4447 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4448 * few ATAPI devices choke on such DMA requests.
4450 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4451 unlikely(qc->nbytes & 15))
4454 if (ap->ops->check_atapi_dma)
4455 return ap->ops->check_atapi_dma(qc);
4461 * ata_std_qc_defer - Check whether a qc needs to be deferred
4462 * @qc: ATA command in question
4464 * Non-NCQ commands cannot run with any other command, NCQ or
4465 * not. As upper layer only knows the queue depth, we are
4466 * responsible for maintaining exclusion. This function checks
4467 * whether a new command @qc can be issued.
4470 * spin_lock_irqsave(host lock)
4473 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4475 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4477 struct ata_link *link = qc->dev->link;
4479 if (qc->tf.protocol == ATA_PROT_NCQ) {
4480 if (!ata_tag_valid(link->active_tag))
4483 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4487 return ATA_DEFER_LINK;
4490 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4493 * ata_sg_init - Associate command with scatter-gather table.
4494 * @qc: Command to be associated
4495 * @sg: Scatter-gather table.
4496 * @n_elem: Number of elements in s/g table.
4498 * Initialize the data-related elements of queued_cmd @qc
4499 * to point to a scatter-gather table @sg, containing @n_elem
4503 * spin_lock_irqsave(host lock)
4505 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4506 unsigned int n_elem)
4509 qc->n_elem = n_elem;
4514 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4515 * @qc: Command with scatter-gather table to be mapped.
4517 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4520 * spin_lock_irqsave(host lock)
4523 * Zero on success, negative on error.
4526 static int ata_sg_setup(struct ata_queued_cmd *qc)
4528 struct ata_port *ap = qc->ap;
4529 unsigned int n_elem;
4531 VPRINTK("ENTER, ata%u\n", ap->print_id);
4533 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4537 DPRINTK("%d sg elements mapped\n", n_elem);
4539 qc->n_elem = n_elem;
4540 qc->flags |= ATA_QCFLAG_DMAMAP;
4546 * swap_buf_le16 - swap halves of 16-bit words in place
4547 * @buf: Buffer to swap
4548 * @buf_words: Number of 16-bit words in buffer.
4550 * Swap halves of 16-bit words if needed to convert from
4551 * little-endian byte order to native cpu byte order, or
4555 * Inherited from caller.
4557 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4562 for (i = 0; i < buf_words; i++)
4563 buf[i] = le16_to_cpu(buf[i]);
4564 #endif /* __BIG_ENDIAN */
4568 * ata_qc_new - Request an available ATA command, for queueing
4569 * @ap: Port associated with device @dev
4570 * @dev: Device from whom we request an available command structure
4576 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4578 struct ata_queued_cmd *qc = NULL;
4581 /* no command while frozen */
4582 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4585 /* the last tag is reserved for internal command. */
4586 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4587 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4588 qc = __ata_qc_from_tag(ap, i);
4599 * ata_qc_new_init - Request an available ATA command, and initialize it
4600 * @dev: Device from whom we request an available command structure
4607 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4609 struct ata_port *ap = dev->link->ap;
4610 struct ata_queued_cmd *qc;
4612 qc = ata_qc_new(ap);
4625 * ata_qc_free - free unused ata_queued_cmd
4626 * @qc: Command to complete
4628 * Designed to free unused ata_queued_cmd object
4629 * in case something prevents using it.
4632 * spin_lock_irqsave(host lock)
4634 void ata_qc_free(struct ata_queued_cmd *qc)
4636 struct ata_port *ap = qc->ap;
4639 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4643 if (likely(ata_tag_valid(tag))) {
4644 qc->tag = ATA_TAG_POISON;
4645 clear_bit(tag, &ap->qc_allocated);
4649 void __ata_qc_complete(struct ata_queued_cmd *qc)
4651 struct ata_port *ap = qc->ap;
4652 struct ata_link *link = qc->dev->link;
4654 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4655 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4657 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4660 /* command should be marked inactive atomically with qc completion */
4661 if (qc->tf.protocol == ATA_PROT_NCQ) {
4662 link->sactive &= ~(1 << qc->tag);
4664 ap->nr_active_links--;
4666 link->active_tag = ATA_TAG_POISON;
4667 ap->nr_active_links--;
4670 /* clear exclusive status */
4671 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4672 ap->excl_link == link))
4673 ap->excl_link = NULL;
4675 /* atapi: mark qc as inactive to prevent the interrupt handler
4676 * from completing the command twice later, before the error handler
4677 * is called. (when rc != 0 and atapi request sense is needed)
4679 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4680 ap->qc_active &= ~(1 << qc->tag);
4682 /* call completion callback */
4683 qc->complete_fn(qc);
4686 static void fill_result_tf(struct ata_queued_cmd *qc)
4688 struct ata_port *ap = qc->ap;
4690 qc->result_tf.flags = qc->tf.flags;
4691 ap->ops->qc_fill_rtf(qc);
4694 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4696 struct ata_device *dev = qc->dev;
4698 if (ata_tag_internal(qc->tag))
4701 if (ata_is_nodata(qc->tf.protocol))
4704 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4707 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4711 * ata_qc_complete - Complete an active ATA command
4712 * @qc: Command to complete
4714 * Indicate to the mid and upper layers that an ATA
4715 * command has completed, with either an ok or not-ok status.
4718 * spin_lock_irqsave(host lock)
4720 void ata_qc_complete(struct ata_queued_cmd *qc)
4722 struct ata_port *ap = qc->ap;
4724 /* XXX: New EH and old EH use different mechanisms to
4725 * synchronize EH with regular execution path.
4727 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4728 * Normal execution path is responsible for not accessing a
4729 * failed qc. libata core enforces the rule by returning NULL
4730 * from ata_qc_from_tag() for failed qcs.
4732 * Old EH depends on ata_qc_complete() nullifying completion
4733 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4734 * not synchronize with interrupt handler. Only PIO task is
4737 if (ap->ops->error_handler) {
4738 struct ata_device *dev = qc->dev;
4739 struct ata_eh_info *ehi = &dev->link->eh_info;
4741 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4743 if (unlikely(qc->err_mask))
4744 qc->flags |= ATA_QCFLAG_FAILED;
4746 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4747 if (!ata_tag_internal(qc->tag)) {
4748 /* always fill result TF for failed qc */
4750 ata_qc_schedule_eh(qc);
4755 /* read result TF if requested */
4756 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4759 /* Some commands need post-processing after successful
4762 switch (qc->tf.command) {
4763 case ATA_CMD_SET_FEATURES:
4764 if (qc->tf.feature != SETFEATURES_WC_ON &&
4765 qc->tf.feature != SETFEATURES_WC_OFF)
4768 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4769 case ATA_CMD_SET_MULTI: /* multi_count changed */
4770 /* revalidate device */
4771 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4772 ata_port_schedule_eh(ap);
4776 dev->flags |= ATA_DFLAG_SLEEPING;
4780 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4781 ata_verify_xfer(qc);
4783 __ata_qc_complete(qc);
4785 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4788 /* read result TF if failed or requested */
4789 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4792 __ata_qc_complete(qc);
4797 * ata_qc_complete_multiple - Complete multiple qcs successfully
4798 * @ap: port in question
4799 * @qc_active: new qc_active mask
4801 * Complete in-flight commands. This functions is meant to be
4802 * called from low-level driver's interrupt routine to complete
4803 * requests normally. ap->qc_active and @qc_active is compared
4804 * and commands are completed accordingly.
4807 * spin_lock_irqsave(host lock)
4810 * Number of completed commands on success, -errno otherwise.
4812 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4818 done_mask = ap->qc_active ^ qc_active;
4820 if (unlikely(done_mask & qc_active)) {
4821 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4822 "(%08x->%08x)\n", ap->qc_active, qc_active);
4826 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4827 struct ata_queued_cmd *qc;
4829 if (!(done_mask & (1 << i)))
4832 if ((qc = ata_qc_from_tag(ap, i))) {
4833 ata_qc_complete(qc);
4842 * ata_qc_issue - issue taskfile to device
4843 * @qc: command to issue to device
4845 * Prepare an ATA command to submission to device.
4846 * This includes mapping the data into a DMA-able
4847 * area, filling in the S/G table, and finally
4848 * writing the taskfile to hardware, starting the command.
4851 * spin_lock_irqsave(host lock)
4853 void ata_qc_issue(struct ata_queued_cmd *qc)
4855 struct ata_port *ap = qc->ap;
4856 struct ata_link *link = qc->dev->link;
4857 u8 prot = qc->tf.protocol;
4859 /* Make sure only one non-NCQ command is outstanding. The
4860 * check is skipped for old EH because it reuses active qc to
4861 * request ATAPI sense.
4863 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4865 if (ata_is_ncq(prot)) {
4866 WARN_ON(link->sactive & (1 << qc->tag));
4869 ap->nr_active_links++;
4870 link->sactive |= 1 << qc->tag;
4872 WARN_ON(link->sactive);
4874 ap->nr_active_links++;
4875 link->active_tag = qc->tag;
4878 qc->flags |= ATA_QCFLAG_ACTIVE;
4879 ap->qc_active |= 1 << qc->tag;
4881 /* We guarantee to LLDs that they will have at least one
4882 * non-zero sg if the command is a data command.
4884 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4886 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4887 (ap->flags & ATA_FLAG_PIO_DMA)))
4888 if (ata_sg_setup(qc))
4891 /* if device is sleeping, schedule reset and abort the link */
4892 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4893 link->eh_info.action |= ATA_EH_RESET;
4894 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4895 ata_link_abort(link);
4899 ap->ops->qc_prep(qc);
4901 qc->err_mask |= ap->ops->qc_issue(qc);
4902 if (unlikely(qc->err_mask))
4907 qc->err_mask |= AC_ERR_SYSTEM;
4909 ata_qc_complete(qc);
4913 * sata_scr_valid - test whether SCRs are accessible
4914 * @link: ATA link to test SCR accessibility for
4916 * Test whether SCRs are accessible for @link.
4922 * 1 if SCRs are accessible, 0 otherwise.
4924 int sata_scr_valid(struct ata_link *link)
4926 struct ata_port *ap = link->ap;
4928 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
4932 * sata_scr_read - read SCR register of the specified port
4933 * @link: ATA link to read SCR for
4935 * @val: Place to store read value
4937 * Read SCR register @reg of @link into *@val. This function is
4938 * guaranteed to succeed if @link is ap->link, the cable type of
4939 * the port is SATA and the port implements ->scr_read.
4942 * None if @link is ap->link. Kernel thread context otherwise.
4945 * 0 on success, negative errno on failure.
4947 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
4949 if (ata_is_host_link(link)) {
4950 if (sata_scr_valid(link))
4951 return link->ap->ops->scr_read(link, reg, val);
4955 return sata_pmp_scr_read(link, reg, val);
4959 * sata_scr_write - write SCR register of the specified port
4960 * @link: ATA link to write SCR for
4961 * @reg: SCR to write
4962 * @val: value to write
4964 * Write @val to SCR register @reg of @link. This function is
4965 * guaranteed to succeed if @link is ap->link, the cable type of
4966 * the port is SATA and the port implements ->scr_read.
4969 * None if @link is ap->link. Kernel thread context otherwise.
4972 * 0 on success, negative errno on failure.
4974 int sata_scr_write(struct ata_link *link, int reg, u32 val)
4976 if (ata_is_host_link(link)) {
4977 if (sata_scr_valid(link))
4978 return link->ap->ops->scr_write(link, reg, val);
4982 return sata_pmp_scr_write(link, reg, val);
4986 * sata_scr_write_flush - write SCR register of the specified port and flush
4987 * @link: ATA link to write SCR for
4988 * @reg: SCR to write
4989 * @val: value to write
4991 * This function is identical to sata_scr_write() except that this
4992 * function performs flush after writing to the register.
4995 * None if @link is ap->link. Kernel thread context otherwise.
4998 * 0 on success, negative errno on failure.
5000 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5002 if (ata_is_host_link(link)) {
5005 if (sata_scr_valid(link)) {
5006 rc = link->ap->ops->scr_write(link, reg, val);
5008 rc = link->ap->ops->scr_read(link, reg, &val);
5014 return sata_pmp_scr_write(link, reg, val);
5018 * ata_phys_link_online - test whether the given link is online
5019 * @link: ATA link to test
5021 * Test whether @link is online. Note that this function returns
5022 * 0 if online status of @link cannot be obtained, so
5023 * ata_link_online(link) != !ata_link_offline(link).
5029 * True if the port online status is available and online.
5031 bool ata_phys_link_online(struct ata_link *link)
5035 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5036 (sstatus & 0xf) == 0x3)
5042 * ata_phys_link_offline - test whether the given link is offline
5043 * @link: ATA link to test
5045 * Test whether @link is offline. Note that this function
5046 * returns 0 if offline status of @link cannot be obtained, so
5047 * ata_link_online(link) != !ata_link_offline(link).
5053 * True if the port offline status is available and offline.
5055 bool ata_phys_link_offline(struct ata_link *link)
5059 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5060 (sstatus & 0xf) != 0x3)
5066 * ata_link_online - test whether the given link is online
5067 * @link: ATA link to test
5069 * Test whether @link is online. This is identical to
5070 * ata_phys_link_online() when there's no slave link. When
5071 * there's a slave link, this function should only be called on
5072 * the master link and will return true if any of M/S links is
5079 * True if the port online status is available and online.
5081 bool ata_link_online(struct ata_link *link)
5083 struct ata_link *slave = link->ap->slave_link;
5085 WARN_ON(link == slave); /* shouldn't be called on slave link */
5087 return ata_phys_link_online(link) ||
5088 (slave && ata_phys_link_online(slave));
5092 * ata_link_offline - test whether the given link is offline
5093 * @link: ATA link to test
5095 * Test whether @link is offline. This is identical to
5096 * ata_phys_link_offline() when there's no slave link. When
5097 * there's a slave link, this function should only be called on
5098 * the master link and will return true if both M/S links are
5105 * True if the port offline status is available and offline.
5107 bool ata_link_offline(struct ata_link *link)
5109 struct ata_link *slave = link->ap->slave_link;
5111 WARN_ON(link == slave); /* shouldn't be called on slave link */
5113 return ata_phys_link_offline(link) &&
5114 (!slave || ata_phys_link_offline(slave));
5118 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5119 unsigned int action, unsigned int ehi_flags,
5122 unsigned long flags;
5125 for (i = 0; i < host->n_ports; i++) {
5126 struct ata_port *ap = host->ports[i];
5127 struct ata_link *link;
5129 /* Previous resume operation might still be in
5130 * progress. Wait for PM_PENDING to clear.
5132 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5133 ata_port_wait_eh(ap);
5134 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5137 /* request PM ops to EH */
5138 spin_lock_irqsave(ap->lock, flags);
5143 ap->pm_result = &rc;
5146 ap->pflags |= ATA_PFLAG_PM_PENDING;
5147 __ata_port_for_each_link(link, ap) {
5148 link->eh_info.action |= action;
5149 link->eh_info.flags |= ehi_flags;
5152 ata_port_schedule_eh(ap);
5154 spin_unlock_irqrestore(ap->lock, flags);
5156 /* wait and check result */
5158 ata_port_wait_eh(ap);
5159 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5169 * ata_host_suspend - suspend host
5170 * @host: host to suspend
5173 * Suspend @host. Actual operation is performed by EH. This
5174 * function requests EH to perform PM operations and waits for EH
5178 * Kernel thread context (may sleep).
5181 * 0 on success, -errno on failure.
5183 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5188 * disable link pm on all ports before requesting
5191 ata_lpm_enable(host);
5193 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5195 host->dev->power.power_state = mesg;
5200 * ata_host_resume - resume host
5201 * @host: host to resume
5203 * Resume @host. Actual operation is performed by EH. This
5204 * function requests EH to perform PM operations and returns.
5205 * Note that all resume operations are performed parallely.
5208 * Kernel thread context (may sleep).
5210 void ata_host_resume(struct ata_host *host)
5212 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5213 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5214 host->dev->power.power_state = PMSG_ON;
5216 /* reenable link pm */
5217 ata_lpm_disable(host);
5222 * ata_port_start - Set port up for dma.
5223 * @ap: Port to initialize
5225 * Called just after data structures for each port are
5226 * initialized. Allocates space for PRD table.
5228 * May be used as the port_start() entry in ata_port_operations.
5231 * Inherited from caller.
5233 int ata_port_start(struct ata_port *ap)
5235 struct device *dev = ap->dev;
5237 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5246 * ata_dev_init - Initialize an ata_device structure
5247 * @dev: Device structure to initialize
5249 * Initialize @dev in preparation for probing.
5252 * Inherited from caller.
5254 void ata_dev_init(struct ata_device *dev)
5256 struct ata_link *link = ata_dev_phys_link(dev);
5257 struct ata_port *ap = link->ap;
5258 unsigned long flags;
5260 /* SATA spd limit is bound to the attached device, reset together */
5261 link->sata_spd_limit = link->hw_sata_spd_limit;
5264 /* High bits of dev->flags are used to record warm plug
5265 * requests which occur asynchronously. Synchronize using
5268 spin_lock_irqsave(ap->lock, flags);
5269 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5271 spin_unlock_irqrestore(ap->lock, flags);
5273 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5274 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5275 dev->pio_mask = UINT_MAX;
5276 dev->mwdma_mask = UINT_MAX;
5277 dev->udma_mask = UINT_MAX;
5281 * ata_link_init - Initialize an ata_link structure
5282 * @ap: ATA port link is attached to
5283 * @link: Link structure to initialize
5284 * @pmp: Port multiplier port number
5289 * Kernel thread context (may sleep)
5291 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5295 /* clear everything except for devices */
5296 memset(link, 0, offsetof(struct ata_link, device[0]));
5300 link->active_tag = ATA_TAG_POISON;
5301 link->hw_sata_spd_limit = UINT_MAX;
5303 /* can't use iterator, ap isn't initialized yet */
5304 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5305 struct ata_device *dev = &link->device[i];
5308 dev->devno = dev - link->device;
5314 * sata_link_init_spd - Initialize link->sata_spd_limit
5315 * @link: Link to configure sata_spd_limit for
5317 * Initialize @link->[hw_]sata_spd_limit to the currently
5321 * Kernel thread context (may sleep).
5324 * 0 on success, -errno on failure.
5326 int sata_link_init_spd(struct ata_link *link)
5331 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5335 spd = (link->saved_scontrol >> 4) & 0xf;
5337 link->hw_sata_spd_limit &= (1 << spd) - 1;
5339 ata_force_link_limits(link);
5341 link->sata_spd_limit = link->hw_sata_spd_limit;
5347 * ata_port_alloc - allocate and initialize basic ATA port resources
5348 * @host: ATA host this allocated port belongs to
5350 * Allocate and initialize basic ATA port resources.
5353 * Allocate ATA port on success, NULL on failure.
5356 * Inherited from calling layer (may sleep).
5358 struct ata_port *ata_port_alloc(struct ata_host *host)
5360 struct ata_port *ap;
5364 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5368 ap->pflags |= ATA_PFLAG_INITIALIZING;
5369 ap->lock = &host->lock;
5370 ap->flags = ATA_FLAG_DISABLED;
5372 ap->ctl = ATA_DEVCTL_OBS;
5374 ap->dev = host->dev;
5375 ap->last_ctl = 0xFF;
5377 #if defined(ATA_VERBOSE_DEBUG)
5378 /* turn on all debugging levels */
5379 ap->msg_enable = 0x00FF;
5380 #elif defined(ATA_DEBUG)
5381 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5383 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5386 #ifdef CONFIG_ATA_SFF
5387 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5389 INIT_DELAYED_WORK(&ap->port_task, NULL);
5391 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5392 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5393 INIT_LIST_HEAD(&ap->eh_done_q);
5394 init_waitqueue_head(&ap->eh_wait_q);
5395 init_completion(&ap->park_req_pending);
5396 init_timer_deferrable(&ap->fastdrain_timer);
5397 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5398 ap->fastdrain_timer.data = (unsigned long)ap;
5400 ap->cbl = ATA_CBL_NONE;
5402 ata_link_init(ap, &ap->link, 0);
5405 ap->stats.unhandled_irq = 1;
5406 ap->stats.idle_irq = 1;
5411 static void ata_host_release(struct device *gendev, void *res)
5413 struct ata_host *host = dev_get_drvdata(gendev);
5416 for (i = 0; i < host->n_ports; i++) {
5417 struct ata_port *ap = host->ports[i];
5423 scsi_host_put(ap->scsi_host);
5425 kfree(ap->pmp_link);
5426 kfree(ap->slave_link);
5428 host->ports[i] = NULL;
5431 dev_set_drvdata(gendev, NULL);
5435 * ata_host_alloc - allocate and init basic ATA host resources
5436 * @dev: generic device this host is associated with
5437 * @max_ports: maximum number of ATA ports associated with this host
5439 * Allocate and initialize basic ATA host resources. LLD calls
5440 * this function to allocate a host, initializes it fully and
5441 * attaches it using ata_host_register().
5443 * @max_ports ports are allocated and host->n_ports is
5444 * initialized to @max_ports. The caller is allowed to decrease
5445 * host->n_ports before calling ata_host_register(). The unused
5446 * ports will be automatically freed on registration.
5449 * Allocate ATA host on success, NULL on failure.
5452 * Inherited from calling layer (may sleep).
5454 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5456 struct ata_host *host;
5462 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5465 /* alloc a container for our list of ATA ports (buses) */
5466 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5467 /* alloc a container for our list of ATA ports (buses) */
5468 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5472 devres_add(dev, host);
5473 dev_set_drvdata(dev, host);
5475 spin_lock_init(&host->lock);
5477 host->n_ports = max_ports;
5479 /* allocate ports bound to this host */
5480 for (i = 0; i < max_ports; i++) {
5481 struct ata_port *ap;
5483 ap = ata_port_alloc(host);
5488 host->ports[i] = ap;
5491 devres_remove_group(dev, NULL);
5495 devres_release_group(dev, NULL);
5500 * ata_host_alloc_pinfo - alloc host and init with port_info array
5501 * @dev: generic device this host is associated with
5502 * @ppi: array of ATA port_info to initialize host with
5503 * @n_ports: number of ATA ports attached to this host
5505 * Allocate ATA host and initialize with info from @ppi. If NULL
5506 * terminated, @ppi may contain fewer entries than @n_ports. The
5507 * last entry will be used for the remaining ports.
5510 * Allocate ATA host on success, NULL on failure.
5513 * Inherited from calling layer (may sleep).
5515 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5516 const struct ata_port_info * const * ppi,
5519 const struct ata_port_info *pi;
5520 struct ata_host *host;
5523 host = ata_host_alloc(dev, n_ports);
5527 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5528 struct ata_port *ap = host->ports[i];
5533 ap->pio_mask = pi->pio_mask;
5534 ap->mwdma_mask = pi->mwdma_mask;
5535 ap->udma_mask = pi->udma_mask;
5536 ap->flags |= pi->flags;
5537 ap->link.flags |= pi->link_flags;
5538 ap->ops = pi->port_ops;
5540 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5541 host->ops = pi->port_ops;
5548 * ata_slave_link_init - initialize slave link
5549 * @ap: port to initialize slave link for
5551 * Create and initialize slave link for @ap. This enables slave
5552 * link handling on the port.
5554 * In libata, a port contains links and a link contains devices.
5555 * There is single host link but if a PMP is attached to it,
5556 * there can be multiple fan-out links. On SATA, there's usually
5557 * a single device connected to a link but PATA and SATA
5558 * controllers emulating TF based interface can have two - master
5561 * However, there are a few controllers which don't fit into this
5562 * abstraction too well - SATA controllers which emulate TF
5563 * interface with both master and slave devices but also have
5564 * separate SCR register sets for each device. These controllers
5565 * need separate links for physical link handling
5566 * (e.g. onlineness, link speed) but should be treated like a
5567 * traditional M/S controller for everything else (e.g. command
5568 * issue, softreset).
5570 * slave_link is libata's way of handling this class of
5571 * controllers without impacting core layer too much. For
5572 * anything other than physical link handling, the default host
5573 * link is used for both master and slave. For physical link
5574 * handling, separate @ap->slave_link is used. All dirty details
5575 * are implemented inside libata core layer. From LLD's POV, the
5576 * only difference is that prereset, hardreset and postreset are
5577 * called once more for the slave link, so the reset sequence
5578 * looks like the following.
5580 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5581 * softreset(M) -> postreset(M) -> postreset(S)
5583 * Note that softreset is called only for the master. Softreset
5584 * resets both M/S by definition, so SRST on master should handle
5585 * both (the standard method will work just fine).
5588 * Should be called before host is registered.
5591 * 0 on success, -errno on failure.
5593 int ata_slave_link_init(struct ata_port *ap)
5595 struct ata_link *link;
5597 WARN_ON(ap->slave_link);
5598 WARN_ON(ap->flags & ATA_FLAG_PMP);
5600 link = kzalloc(sizeof(*link), GFP_KERNEL);
5604 ata_link_init(ap, link, 1);
5605 ap->slave_link = link;
5609 static void ata_host_stop(struct device *gendev, void *res)
5611 struct ata_host *host = dev_get_drvdata(gendev);
5614 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5616 for (i = 0; i < host->n_ports; i++) {
5617 struct ata_port *ap = host->ports[i];
5619 if (ap->ops->port_stop)
5620 ap->ops->port_stop(ap);
5623 if (host->ops->host_stop)
5624 host->ops->host_stop(host);
5628 * ata_finalize_port_ops - finalize ata_port_operations
5629 * @ops: ata_port_operations to finalize
5631 * An ata_port_operations can inherit from another ops and that
5632 * ops can again inherit from another. This can go on as many
5633 * times as necessary as long as there is no loop in the
5634 * inheritance chain.
5636 * Ops tables are finalized when the host is started. NULL or
5637 * unspecified entries are inherited from the closet ancestor
5638 * which has the method and the entry is populated with it.
5639 * After finalization, the ops table directly points to all the
5640 * methods and ->inherits is no longer necessary and cleared.
5642 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5647 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5649 static DEFINE_SPINLOCK(lock);
5650 const struct ata_port_operations *cur;
5651 void **begin = (void **)ops;
5652 void **end = (void **)&ops->inherits;
5655 if (!ops || !ops->inherits)
5660 for (cur = ops->inherits; cur; cur = cur->inherits) {
5661 void **inherit = (void **)cur;
5663 for (pp = begin; pp < end; pp++, inherit++)
5668 for (pp = begin; pp < end; pp++)
5672 ops->inherits = NULL;
5678 * ata_host_start - start and freeze ports of an ATA host
5679 * @host: ATA host to start ports for
5681 * Start and then freeze ports of @host. Started status is
5682 * recorded in host->flags, so this function can be called
5683 * multiple times. Ports are guaranteed to get started only
5684 * once. If host->ops isn't initialized yet, its set to the
5685 * first non-dummy port ops.
5688 * Inherited from calling layer (may sleep).
5691 * 0 if all ports are started successfully, -errno otherwise.
5693 int ata_host_start(struct ata_host *host)
5696 void *start_dr = NULL;
5699 if (host->flags & ATA_HOST_STARTED)
5702 ata_finalize_port_ops(host->ops);
5704 for (i = 0; i < host->n_ports; i++) {
5705 struct ata_port *ap = host->ports[i];
5707 ata_finalize_port_ops(ap->ops);
5709 if (!host->ops && !ata_port_is_dummy(ap))
5710 host->ops = ap->ops;
5712 if (ap->ops->port_stop)
5716 if (host->ops->host_stop)
5720 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5725 for (i = 0; i < host->n_ports; i++) {
5726 struct ata_port *ap = host->ports[i];
5728 if (ap->ops->port_start) {
5729 rc = ap->ops->port_start(ap);
5732 dev_printk(KERN_ERR, host->dev,
5733 "failed to start port %d "
5734 "(errno=%d)\n", i, rc);
5738 ata_eh_freeze_port(ap);
5742 devres_add(host->dev, start_dr);
5743 host->flags |= ATA_HOST_STARTED;
5748 struct ata_port *ap = host->ports[i];
5750 if (ap->ops->port_stop)
5751 ap->ops->port_stop(ap);
5753 devres_free(start_dr);
5758 * ata_sas_host_init - Initialize a host struct
5759 * @host: host to initialize
5760 * @dev: device host is attached to
5761 * @flags: host flags
5765 * PCI/etc. bus probe sem.
5768 /* KILLME - the only user left is ipr */
5769 void ata_host_init(struct ata_host *host, struct device *dev,
5770 unsigned long flags, struct ata_port_operations *ops)
5772 spin_lock_init(&host->lock);
5774 host->flags = flags;
5779 * ata_host_register - register initialized ATA host
5780 * @host: ATA host to register
5781 * @sht: template for SCSI host
5783 * Register initialized ATA host. @host is allocated using
5784 * ata_host_alloc() and fully initialized by LLD. This function
5785 * starts ports, registers @host with ATA and SCSI layers and
5786 * probe registered devices.
5789 * Inherited from calling layer (may sleep).
5792 * 0 on success, -errno otherwise.
5794 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5798 /* host must have been started */
5799 if (!(host->flags & ATA_HOST_STARTED)) {
5800 dev_printk(KERN_ERR, host->dev,
5801 "BUG: trying to register unstarted host\n");
5806 /* Blow away unused ports. This happens when LLD can't
5807 * determine the exact number of ports to allocate at
5810 for (i = host->n_ports; host->ports[i]; i++)
5811 kfree(host->ports[i]);
5813 /* give ports names and add SCSI hosts */
5814 for (i = 0; i < host->n_ports; i++)
5815 host->ports[i]->print_id = ata_print_id++;
5817 rc = ata_scsi_add_hosts(host, sht);
5821 /* associate with ACPI nodes */
5822 ata_acpi_associate(host);
5824 /* set cable, sata_spd_limit and report */
5825 for (i = 0; i < host->n_ports; i++) {
5826 struct ata_port *ap = host->ports[i];
5827 unsigned long xfer_mask;
5829 /* set SATA cable type if still unset */
5830 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5831 ap->cbl = ATA_CBL_SATA;
5833 /* init sata_spd_limit to the current value */
5834 sata_link_init_spd(&ap->link);
5836 sata_link_init_spd(ap->slave_link);
5838 /* print per-port info to dmesg */
5839 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5842 if (!ata_port_is_dummy(ap)) {
5843 ata_port_printk(ap, KERN_INFO,
5844 "%cATA max %s %s\n",
5845 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5846 ata_mode_string(xfer_mask),
5847 ap->link.eh_info.desc);
5848 ata_ehi_clear_desc(&ap->link.eh_info);
5850 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5853 /* perform each probe synchronously */
5854 DPRINTK("probe begin\n");
5855 for (i = 0; i < host->n_ports; i++) {
5856 struct ata_port *ap = host->ports[i];
5859 if (ap->ops->error_handler) {
5860 struct ata_eh_info *ehi = &ap->link.eh_info;
5861 unsigned long flags;
5865 /* kick EH for boot probing */
5866 spin_lock_irqsave(ap->lock, flags);
5868 ehi->probe_mask |= ATA_ALL_DEVICES;
5869 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5870 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5872 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5873 ap->pflags |= ATA_PFLAG_LOADING;
5874 ata_port_schedule_eh(ap);
5876 spin_unlock_irqrestore(ap->lock, flags);
5878 /* wait for EH to finish */
5879 ata_port_wait_eh(ap);
5881 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5882 rc = ata_bus_probe(ap);
5883 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5886 /* FIXME: do something useful here?
5887 * Current libata behavior will
5888 * tear down everything when
5889 * the module is removed
5890 * or the h/w is unplugged.
5896 /* probes are done, now scan each port's disk(s) */
5897 DPRINTK("host probe begin\n");
5898 for (i = 0; i < host->n_ports; i++) {
5899 struct ata_port *ap = host->ports[i];
5901 ata_scsi_scan_host(ap, 1);
5908 * ata_host_activate - start host, request IRQ and register it
5909 * @host: target ATA host
5910 * @irq: IRQ to request
5911 * @irq_handler: irq_handler used when requesting IRQ
5912 * @irq_flags: irq_flags used when requesting IRQ
5913 * @sht: scsi_host_template to use when registering the host
5915 * After allocating an ATA host and initializing it, most libata
5916 * LLDs perform three steps to activate the host - start host,
5917 * request IRQ and register it. This helper takes necessasry
5918 * arguments and performs the three steps in one go.
5920 * An invalid IRQ skips the IRQ registration and expects the host to
5921 * have set polling mode on the port. In this case, @irq_handler
5925 * Inherited from calling layer (may sleep).
5928 * 0 on success, -errno otherwise.
5930 int ata_host_activate(struct ata_host *host, int irq,
5931 irq_handler_t irq_handler, unsigned long irq_flags,
5932 struct scsi_host_template *sht)
5936 rc = ata_host_start(host);
5940 /* Special case for polling mode */
5942 WARN_ON(irq_handler);
5943 return ata_host_register(host, sht);
5946 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5947 dev_driver_string(host->dev), host);
5951 for (i = 0; i < host->n_ports; i++)
5952 ata_port_desc(host->ports[i], "irq %d", irq);
5954 rc = ata_host_register(host, sht);
5955 /* if failed, just free the IRQ and leave ports alone */
5957 devm_free_irq(host->dev, irq, host);
5963 * ata_port_detach - Detach ATA port in prepration of device removal
5964 * @ap: ATA port to be detached
5966 * Detach all ATA devices and the associated SCSI devices of @ap;
5967 * then, remove the associated SCSI host. @ap is guaranteed to
5968 * be quiescent on return from this function.
5971 * Kernel thread context (may sleep).
5973 static void ata_port_detach(struct ata_port *ap)
5975 unsigned long flags;
5976 struct ata_link *link;
5977 struct ata_device *dev;
5979 if (!ap->ops->error_handler)
5982 /* tell EH we're leaving & flush EH */
5983 spin_lock_irqsave(ap->lock, flags);
5984 ap->pflags |= ATA_PFLAG_UNLOADING;
5985 spin_unlock_irqrestore(ap->lock, flags);
5987 ata_port_wait_eh(ap);
5989 /* EH is now guaranteed to see UNLOADING - EH context belongs
5990 * to us. Restore SControl and disable all existing devices.
5992 __ata_port_for_each_link(link, ap) {
5993 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol & 0xff0);
5994 ata_link_for_each_dev(dev, link)
5995 ata_dev_disable(dev);
5998 /* Final freeze & EH. All in-flight commands are aborted. EH
5999 * will be skipped and retrials will be terminated with bad
6002 spin_lock_irqsave(ap->lock, flags);
6003 ata_port_freeze(ap); /* won't be thawed */
6004 spin_unlock_irqrestore(ap->lock, flags);
6006 ata_port_wait_eh(ap);
6007 cancel_rearming_delayed_work(&ap->hotplug_task);
6010 /* remove the associated SCSI host */
6011 scsi_remove_host(ap->scsi_host);
6015 * ata_host_detach - Detach all ports of an ATA host
6016 * @host: Host to detach
6018 * Detach all ports of @host.
6021 * Kernel thread context (may sleep).
6023 void ata_host_detach(struct ata_host *host)
6027 for (i = 0; i < host->n_ports; i++)
6028 ata_port_detach(host->ports[i]);
6030 /* the host is dead now, dissociate ACPI */
6031 ata_acpi_dissociate(host);
6037 * ata_pci_remove_one - PCI layer callback for device removal
6038 * @pdev: PCI device that was removed
6040 * PCI layer indicates to libata via this hook that hot-unplug or
6041 * module unload event has occurred. Detach all ports. Resource
6042 * release is handled via devres.
6045 * Inherited from PCI layer (may sleep).
6047 void ata_pci_remove_one(struct pci_dev *pdev)
6049 struct device *dev = &pdev->dev;
6050 struct ata_host *host = dev_get_drvdata(dev);
6052 ata_host_detach(host);
6055 /* move to PCI subsystem */
6056 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6058 unsigned long tmp = 0;
6060 switch (bits->width) {
6063 pci_read_config_byte(pdev, bits->reg, &tmp8);
6069 pci_read_config_word(pdev, bits->reg, &tmp16);
6075 pci_read_config_dword(pdev, bits->reg, &tmp32);
6086 return (tmp == bits->val) ? 1 : 0;
6090 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6092 pci_save_state(pdev);
6093 pci_disable_device(pdev);
6095 if (mesg.event & PM_EVENT_SLEEP)
6096 pci_set_power_state(pdev, PCI_D3hot);
6099 int ata_pci_device_do_resume(struct pci_dev *pdev)
6103 pci_set_power_state(pdev, PCI_D0);
6104 pci_restore_state(pdev);
6106 rc = pcim_enable_device(pdev);
6108 dev_printk(KERN_ERR, &pdev->dev,
6109 "failed to enable device after resume (%d)\n", rc);
6113 pci_set_master(pdev);
6117 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6119 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6122 rc = ata_host_suspend(host, mesg);
6126 ata_pci_device_do_suspend(pdev, mesg);
6131 int ata_pci_device_resume(struct pci_dev *pdev)
6133 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6136 rc = ata_pci_device_do_resume(pdev);
6138 ata_host_resume(host);
6141 #endif /* CONFIG_PM */
6143 #endif /* CONFIG_PCI */
6145 static int __init ata_parse_force_one(char **cur,
6146 struct ata_force_ent *force_ent,
6147 const char **reason)
6149 /* FIXME: Currently, there's no way to tag init const data and
6150 * using __initdata causes build failure on some versions of
6151 * gcc. Once __initdataconst is implemented, add const to the
6152 * following structure.
6154 static struct ata_force_param force_tbl[] __initdata = {
6155 { "40c", .cbl = ATA_CBL_PATA40 },
6156 { "80c", .cbl = ATA_CBL_PATA80 },
6157 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6158 { "unk", .cbl = ATA_CBL_PATA_UNK },
6159 { "ign", .cbl = ATA_CBL_PATA_IGN },
6160 { "sata", .cbl = ATA_CBL_SATA },
6161 { "1.5Gbps", .spd_limit = 1 },
6162 { "3.0Gbps", .spd_limit = 2 },
6163 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6164 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6165 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6166 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6167 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6168 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6169 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6170 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6171 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6172 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6173 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6174 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6175 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6176 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6177 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6178 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6179 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6180 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6181 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6182 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6183 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6184 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6185 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6186 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6187 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6188 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6189 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6190 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6191 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6192 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6193 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6194 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6195 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6196 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6197 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6198 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6199 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6200 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6201 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6203 char *start = *cur, *p = *cur;
6204 char *id, *val, *endp;
6205 const struct ata_force_param *match_fp = NULL;
6206 int nr_matches = 0, i;
6208 /* find where this param ends and update *cur */
6209 while (*p != '\0' && *p != ',')
6220 p = strchr(start, ':');
6222 val = strstrip(start);
6227 id = strstrip(start);
6228 val = strstrip(p + 1);
6231 p = strchr(id, '.');
6234 force_ent->device = simple_strtoul(p, &endp, 10);
6235 if (p == endp || *endp != '\0') {
6236 *reason = "invalid device";
6241 force_ent->port = simple_strtoul(id, &endp, 10);
6242 if (p == endp || *endp != '\0') {
6243 *reason = "invalid port/link";
6248 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6249 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6250 const struct ata_force_param *fp = &force_tbl[i];
6252 if (strncasecmp(val, fp->name, strlen(val)))
6258 if (strcasecmp(val, fp->name) == 0) {
6265 *reason = "unknown value";
6268 if (nr_matches > 1) {
6269 *reason = "ambigious value";
6273 force_ent->param = *match_fp;
6278 static void __init ata_parse_force_param(void)
6280 int idx = 0, size = 1;
6281 int last_port = -1, last_device = -1;
6282 char *p, *cur, *next;
6284 /* calculate maximum number of params and allocate force_tbl */
6285 for (p = ata_force_param_buf; *p; p++)
6289 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6290 if (!ata_force_tbl) {
6291 printk(KERN_WARNING "ata: failed to extend force table, "
6292 "libata.force ignored\n");
6296 /* parse and populate the table */
6297 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6298 const char *reason = "";
6299 struct ata_force_ent te = { .port = -1, .device = -1 };
6302 if (ata_parse_force_one(&next, &te, &reason)) {
6303 printk(KERN_WARNING "ata: failed to parse force "
6304 "parameter \"%s\" (%s)\n",
6309 if (te.port == -1) {
6310 te.port = last_port;
6311 te.device = last_device;
6314 ata_force_tbl[idx++] = te;
6316 last_port = te.port;
6317 last_device = te.device;
6320 ata_force_tbl_size = idx;
6323 static int __init ata_init(void)
6325 ata_parse_force_param();
6327 ata_wq = create_workqueue("ata");
6329 goto free_force_tbl;
6331 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6335 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6339 destroy_workqueue(ata_wq);
6341 kfree(ata_force_tbl);
6345 static void __exit ata_exit(void)
6347 kfree(ata_force_tbl);
6348 destroy_workqueue(ata_wq);
6349 destroy_workqueue(ata_aux_wq);
6352 subsys_initcall(ata_init);
6353 module_exit(ata_exit);
6355 static unsigned long ratelimit_time;
6356 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6358 int ata_ratelimit(void)
6361 unsigned long flags;
6363 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6365 if (time_after(jiffies, ratelimit_time)) {
6367 ratelimit_time = jiffies + (HZ/5);
6371 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6377 * ata_wait_register - wait until register value changes
6378 * @reg: IO-mapped register
6379 * @mask: Mask to apply to read register value
6380 * @val: Wait condition
6381 * @interval: polling interval in milliseconds
6382 * @timeout: timeout in milliseconds
6384 * Waiting for some bits of register to change is a common
6385 * operation for ATA controllers. This function reads 32bit LE
6386 * IO-mapped register @reg and tests for the following condition.
6388 * (*@reg & mask) != val
6390 * If the condition is met, it returns; otherwise, the process is
6391 * repeated after @interval_msec until timeout.
6394 * Kernel thread context (may sleep)
6397 * The final register value.
6399 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6400 unsigned long interval, unsigned long timeout)
6402 unsigned long deadline;
6405 tmp = ioread32(reg);
6407 /* Calculate timeout _after_ the first read to make sure
6408 * preceding writes reach the controller before starting to
6409 * eat away the timeout.
6411 deadline = ata_deadline(jiffies, timeout);
6413 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6415 tmp = ioread32(reg);
6424 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6426 return AC_ERR_SYSTEM;
6429 static void ata_dummy_error_handler(struct ata_port *ap)
6434 struct ata_port_operations ata_dummy_port_ops = {
6435 .qc_prep = ata_noop_qc_prep,
6436 .qc_issue = ata_dummy_qc_issue,
6437 .error_handler = ata_dummy_error_handler,
6440 const struct ata_port_info ata_dummy_port_info = {
6441 .port_ops = &ata_dummy_port_ops,
6445 * libata is essentially a library of internal helper functions for
6446 * low-level ATA host controller drivers. As such, the API/ABI is
6447 * likely to change as new drivers are added and updated.
6448 * Do not depend on ABI/API stability.
6450 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6451 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6452 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6453 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6454 EXPORT_SYMBOL_GPL(sata_port_ops);
6455 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6456 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6457 EXPORT_SYMBOL_GPL(__ata_port_next_link);
6458 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6459 EXPORT_SYMBOL_GPL(ata_host_init);
6460 EXPORT_SYMBOL_GPL(ata_host_alloc);
6461 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6462 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6463 EXPORT_SYMBOL_GPL(ata_host_start);
6464 EXPORT_SYMBOL_GPL(ata_host_register);
6465 EXPORT_SYMBOL_GPL(ata_host_activate);
6466 EXPORT_SYMBOL_GPL(ata_host_detach);
6467 EXPORT_SYMBOL_GPL(ata_sg_init);
6468 EXPORT_SYMBOL_GPL(ata_qc_complete);
6469 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6470 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6471 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6472 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6473 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6474 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6475 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6476 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6477 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6478 EXPORT_SYMBOL_GPL(ata_mode_string);
6479 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6480 EXPORT_SYMBOL_GPL(ata_port_start);
6481 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6482 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6483 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6484 EXPORT_SYMBOL_GPL(ata_port_probe);
6485 EXPORT_SYMBOL_GPL(ata_dev_disable);
6486 EXPORT_SYMBOL_GPL(sata_set_spd);
6487 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6488 EXPORT_SYMBOL_GPL(sata_link_debounce);
6489 EXPORT_SYMBOL_GPL(sata_link_resume);
6490 EXPORT_SYMBOL_GPL(ata_std_prereset);
6491 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6492 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6493 EXPORT_SYMBOL_GPL(ata_std_postreset);
6494 EXPORT_SYMBOL_GPL(ata_dev_classify);
6495 EXPORT_SYMBOL_GPL(ata_dev_pair);
6496 EXPORT_SYMBOL_GPL(ata_port_disable);
6497 EXPORT_SYMBOL_GPL(ata_ratelimit);
6498 EXPORT_SYMBOL_GPL(ata_wait_register);
6499 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6500 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6501 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6502 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6503 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6504 EXPORT_SYMBOL_GPL(sata_scr_valid);
6505 EXPORT_SYMBOL_GPL(sata_scr_read);
6506 EXPORT_SYMBOL_GPL(sata_scr_write);
6507 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6508 EXPORT_SYMBOL_GPL(ata_link_online);
6509 EXPORT_SYMBOL_GPL(ata_link_offline);
6511 EXPORT_SYMBOL_GPL(ata_host_suspend);
6512 EXPORT_SYMBOL_GPL(ata_host_resume);
6513 #endif /* CONFIG_PM */
6514 EXPORT_SYMBOL_GPL(ata_id_string);
6515 EXPORT_SYMBOL_GPL(ata_id_c_string);
6516 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6517 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6519 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6520 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6521 EXPORT_SYMBOL_GPL(ata_timing_compute);
6522 EXPORT_SYMBOL_GPL(ata_timing_merge);
6523 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6526 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6527 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6529 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6530 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6531 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6532 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6533 #endif /* CONFIG_PM */
6534 #endif /* CONFIG_PCI */
6536 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6537 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6538 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6539 EXPORT_SYMBOL_GPL(ata_port_desc);
6541 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6542 #endif /* CONFIG_PCI */
6543 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6544 EXPORT_SYMBOL_GPL(ata_link_abort);
6545 EXPORT_SYMBOL_GPL(ata_port_abort);
6546 EXPORT_SYMBOL_GPL(ata_port_freeze);
6547 EXPORT_SYMBOL_GPL(sata_async_notification);
6548 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6549 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6550 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6551 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6552 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6553 EXPORT_SYMBOL_GPL(ata_do_eh);
6554 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6556 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6557 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6558 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6559 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6560 EXPORT_SYMBOL_GPL(ata_cable_sata);