Merge branch 'master' into next
[linux-2.6] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37
38 #include "igb.h"
39
40 struct igb_stats {
41         char stat_string[ETH_GSTRING_LEN];
42         int sizeof_stat;
43         int stat_offset;
44 };
45
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47                       offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats[] = {
49         { "rx_packets", IGB_STAT(stats.gprc) },
50         { "tx_packets", IGB_STAT(stats.gptc) },
51         { "rx_bytes", IGB_STAT(stats.gorc) },
52         { "tx_bytes", IGB_STAT(stats.gotc) },
53         { "rx_broadcast", IGB_STAT(stats.bprc) },
54         { "tx_broadcast", IGB_STAT(stats.bptc) },
55         { "rx_multicast", IGB_STAT(stats.mprc) },
56         { "tx_multicast", IGB_STAT(stats.mptc) },
57         { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58         { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59         { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60         { "multicast", IGB_STAT(stats.mprc) },
61         { "collisions", IGB_STAT(stats.colc) },
62         { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63         { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64         { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65         { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66         { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67         { "rx_missed_errors", IGB_STAT(stats.mpc) },
68         { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69         { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70         { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71         { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72         { "tx_window_errors", IGB_STAT(stats.latecol) },
73         { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74         { "tx_deferred_ok", IGB_STAT(stats.dc) },
75         { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76         { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77         { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78         { "tx_restart_queue", IGB_STAT(restart_queue) },
79         { "rx_long_length_errors", IGB_STAT(stats.roc) },
80         { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81         { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82         { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83         { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84         { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85         { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86         { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87         { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88         { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89         { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90         { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
91         { "rx_header_split", IGB_STAT(rx_hdr_split) },
92         { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93         { "tx_smbus", IGB_STAT(stats.mgptc) },
94         { "rx_smbus", IGB_STAT(stats.mgprc) },
95         { "dropped_smbus", IGB_STAT(stats.mgpdc) },
96 #ifdef CONFIG_IGB_LRO
97         { "lro_aggregated", IGB_STAT(lro_aggregated) },
98         { "lro_flushed", IGB_STAT(lro_flushed) },
99         { "lro_no_desc", IGB_STAT(lro_no_desc) },
100 #endif
101 };
102
103 #define IGB_QUEUE_STATS_LEN \
104         ((((struct igb_adapter *)netdev->priv)->num_rx_queues + \
105          ((struct igb_adapter *)netdev->priv)->num_tx_queues) * \
106         (sizeof(struct igb_queue_stats) / sizeof(u64)))
107 #define IGB_GLOBAL_STATS_LEN    \
108         sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
109 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
110 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
111         "Register test  (offline)", "Eeprom test    (offline)",
112         "Interrupt test (offline)", "Loopback test  (offline)",
113         "Link test   (on/offline)"
114 };
115 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
116
117 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
118 {
119         struct igb_adapter *adapter = netdev_priv(netdev);
120         struct e1000_hw *hw = &adapter->hw;
121
122         if (hw->phy.media_type == e1000_media_type_copper) {
123
124                 ecmd->supported = (SUPPORTED_10baseT_Half |
125                                    SUPPORTED_10baseT_Full |
126                                    SUPPORTED_100baseT_Half |
127                                    SUPPORTED_100baseT_Full |
128                                    SUPPORTED_1000baseT_Full|
129                                    SUPPORTED_Autoneg |
130                                    SUPPORTED_TP);
131                 ecmd->advertising = ADVERTISED_TP;
132
133                 if (hw->mac.autoneg == 1) {
134                         ecmd->advertising |= ADVERTISED_Autoneg;
135                         /* the e1000 autoneg seems to match ethtool nicely */
136                         ecmd->advertising |= hw->phy.autoneg_advertised;
137                 }
138
139                 ecmd->port = PORT_TP;
140                 ecmd->phy_address = hw->phy.addr;
141         } else {
142                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
143                                      SUPPORTED_FIBRE |
144                                      SUPPORTED_Autoneg);
145
146                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
147                                      ADVERTISED_FIBRE |
148                                      ADVERTISED_Autoneg);
149
150                 ecmd->port = PORT_FIBRE;
151         }
152
153         ecmd->transceiver = XCVR_INTERNAL;
154
155         if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
156
157                 adapter->hw.mac.ops.get_speed_and_duplex(hw,
158                                         &adapter->link_speed,
159                                         &adapter->link_duplex);
160                 ecmd->speed = adapter->link_speed;
161
162                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
163                  *          and HALF_DUPLEX != DUPLEX_HALF */
164
165                 if (adapter->link_duplex == FULL_DUPLEX)
166                         ecmd->duplex = DUPLEX_FULL;
167                 else
168                         ecmd->duplex = DUPLEX_HALF;
169         } else {
170                 ecmd->speed = -1;
171                 ecmd->duplex = -1;
172         }
173
174         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
175                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176         return 0;
177 }
178
179 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
180 {
181         struct igb_adapter *adapter = netdev_priv(netdev);
182         struct e1000_hw *hw = &adapter->hw;
183
184         /* When SoL/IDER sessions are active, autoneg/speed/duplex
185          * cannot be changed */
186         if (igb_check_reset_block(hw)) {
187                 dev_err(&adapter->pdev->dev, "Cannot change link "
188                         "characteristics when SoL/IDER is active.\n");
189                 return -EINVAL;
190         }
191
192         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
193                 msleep(1);
194
195         if (ecmd->autoneg == AUTONEG_ENABLE) {
196                 hw->mac.autoneg = 1;
197                 if (hw->phy.media_type == e1000_media_type_fiber)
198                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
199                                                      ADVERTISED_FIBRE |
200                                                      ADVERTISED_Autoneg;
201                 else
202                         hw->phy.autoneg_advertised = ecmd->advertising |
203                                                      ADVERTISED_TP |
204                                                      ADVERTISED_Autoneg;
205                 ecmd->advertising = hw->phy.autoneg_advertised;
206         } else
207                 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
208                         clear_bit(__IGB_RESETTING, &adapter->state);
209                         return -EINVAL;
210                 }
211
212         /* reset the link */
213
214         if (netif_running(adapter->netdev)) {
215                 igb_down(adapter);
216                 igb_up(adapter);
217         } else
218                 igb_reset(adapter);
219
220         clear_bit(__IGB_RESETTING, &adapter->state);
221         return 0;
222 }
223
224 static void igb_get_pauseparam(struct net_device *netdev,
225                                struct ethtool_pauseparam *pause)
226 {
227         struct igb_adapter *adapter = netdev_priv(netdev);
228         struct e1000_hw *hw = &adapter->hw;
229
230         pause->autoneg =
231                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
232
233         if (hw->fc.type == e1000_fc_rx_pause)
234                 pause->rx_pause = 1;
235         else if (hw->fc.type == e1000_fc_tx_pause)
236                 pause->tx_pause = 1;
237         else if (hw->fc.type == e1000_fc_full) {
238                 pause->rx_pause = 1;
239                 pause->tx_pause = 1;
240         }
241 }
242
243 static int igb_set_pauseparam(struct net_device *netdev,
244                               struct ethtool_pauseparam *pause)
245 {
246         struct igb_adapter *adapter = netdev_priv(netdev);
247         struct e1000_hw *hw = &adapter->hw;
248         int retval = 0;
249
250         adapter->fc_autoneg = pause->autoneg;
251
252         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
253                 msleep(1);
254
255         if (pause->rx_pause && pause->tx_pause)
256                 hw->fc.type = e1000_fc_full;
257         else if (pause->rx_pause && !pause->tx_pause)
258                 hw->fc.type = e1000_fc_rx_pause;
259         else if (!pause->rx_pause && pause->tx_pause)
260                 hw->fc.type = e1000_fc_tx_pause;
261         else if (!pause->rx_pause && !pause->tx_pause)
262                 hw->fc.type = e1000_fc_none;
263
264         hw->fc.original_type = hw->fc.type;
265
266         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
267                 if (netif_running(adapter->netdev)) {
268                         igb_down(adapter);
269                         igb_up(adapter);
270                 } else
271                         igb_reset(adapter);
272         } else
273                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
274                           igb_setup_link(hw) : igb_force_mac_fc(hw));
275
276         clear_bit(__IGB_RESETTING, &adapter->state);
277         return retval;
278 }
279
280 static u32 igb_get_rx_csum(struct net_device *netdev)
281 {
282         struct igb_adapter *adapter = netdev_priv(netdev);
283         return adapter->rx_csum;
284 }
285
286 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
287 {
288         struct igb_adapter *adapter = netdev_priv(netdev);
289         adapter->rx_csum = data;
290
291         return 0;
292 }
293
294 static u32 igb_get_tx_csum(struct net_device *netdev)
295 {
296         return (netdev->features & NETIF_F_HW_CSUM) != 0;
297 }
298
299 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
300 {
301         if (data)
302                 netdev->features |= NETIF_F_HW_CSUM;
303         else
304                 netdev->features &= ~NETIF_F_HW_CSUM;
305
306         return 0;
307 }
308
309 static int igb_set_tso(struct net_device *netdev, u32 data)
310 {
311         struct igb_adapter *adapter = netdev_priv(netdev);
312
313         if (data)
314                 netdev->features |= NETIF_F_TSO;
315         else
316                 netdev->features &= ~NETIF_F_TSO;
317
318         if (data)
319                 netdev->features |= NETIF_F_TSO6;
320         else
321                 netdev->features &= ~NETIF_F_TSO6;
322
323         dev_info(&adapter->pdev->dev, "TSO is %s\n",
324                  data ? "Enabled" : "Disabled");
325         return 0;
326 }
327
328 static u32 igb_get_msglevel(struct net_device *netdev)
329 {
330         struct igb_adapter *adapter = netdev_priv(netdev);
331         return adapter->msg_enable;
332 }
333
334 static void igb_set_msglevel(struct net_device *netdev, u32 data)
335 {
336         struct igb_adapter *adapter = netdev_priv(netdev);
337         adapter->msg_enable = data;
338 }
339
340 static int igb_get_regs_len(struct net_device *netdev)
341 {
342 #define IGB_REGS_LEN 551
343         return IGB_REGS_LEN * sizeof(u32);
344 }
345
346 static void igb_get_regs(struct net_device *netdev,
347                          struct ethtool_regs *regs, void *p)
348 {
349         struct igb_adapter *adapter = netdev_priv(netdev);
350         struct e1000_hw *hw = &adapter->hw;
351         u32 *regs_buff = p;
352         u8 i;
353
354         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
355
356         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
357
358         /* General Registers */
359         regs_buff[0] = rd32(E1000_CTRL);
360         regs_buff[1] = rd32(E1000_STATUS);
361         regs_buff[2] = rd32(E1000_CTRL_EXT);
362         regs_buff[3] = rd32(E1000_MDIC);
363         regs_buff[4] = rd32(E1000_SCTL);
364         regs_buff[5] = rd32(E1000_CONNSW);
365         regs_buff[6] = rd32(E1000_VET);
366         regs_buff[7] = rd32(E1000_LEDCTL);
367         regs_buff[8] = rd32(E1000_PBA);
368         regs_buff[9] = rd32(E1000_PBS);
369         regs_buff[10] = rd32(E1000_FRTIMER);
370         regs_buff[11] = rd32(E1000_TCPTIMER);
371
372         /* NVM Register */
373         regs_buff[12] = rd32(E1000_EECD);
374
375         /* Interrupt */
376         /* Reading EICS for EICR because they read the
377          * same but EICS does not clear on read */
378         regs_buff[13] = rd32(E1000_EICS);
379         regs_buff[14] = rd32(E1000_EICS);
380         regs_buff[15] = rd32(E1000_EIMS);
381         regs_buff[16] = rd32(E1000_EIMC);
382         regs_buff[17] = rd32(E1000_EIAC);
383         regs_buff[18] = rd32(E1000_EIAM);
384         /* Reading ICS for ICR because they read the
385          * same but ICS does not clear on read */
386         regs_buff[19] = rd32(E1000_ICS);
387         regs_buff[20] = rd32(E1000_ICS);
388         regs_buff[21] = rd32(E1000_IMS);
389         regs_buff[22] = rd32(E1000_IMC);
390         regs_buff[23] = rd32(E1000_IAC);
391         regs_buff[24] = rd32(E1000_IAM);
392         regs_buff[25] = rd32(E1000_IMIRVP);
393
394         /* Flow Control */
395         regs_buff[26] = rd32(E1000_FCAL);
396         regs_buff[27] = rd32(E1000_FCAH);
397         regs_buff[28] = rd32(E1000_FCTTV);
398         regs_buff[29] = rd32(E1000_FCRTL);
399         regs_buff[30] = rd32(E1000_FCRTH);
400         regs_buff[31] = rd32(E1000_FCRTV);
401
402         /* Receive */
403         regs_buff[32] = rd32(E1000_RCTL);
404         regs_buff[33] = rd32(E1000_RXCSUM);
405         regs_buff[34] = rd32(E1000_RLPML);
406         regs_buff[35] = rd32(E1000_RFCTL);
407         regs_buff[36] = rd32(E1000_MRQC);
408         regs_buff[37] = rd32(E1000_VMD_CTL);
409
410         /* Transmit */
411         regs_buff[38] = rd32(E1000_TCTL);
412         regs_buff[39] = rd32(E1000_TCTL_EXT);
413         regs_buff[40] = rd32(E1000_TIPG);
414         regs_buff[41] = rd32(E1000_DTXCTL);
415
416         /* Wake Up */
417         regs_buff[42] = rd32(E1000_WUC);
418         regs_buff[43] = rd32(E1000_WUFC);
419         regs_buff[44] = rd32(E1000_WUS);
420         regs_buff[45] = rd32(E1000_IPAV);
421         regs_buff[46] = rd32(E1000_WUPL);
422
423         /* MAC */
424         regs_buff[47] = rd32(E1000_PCS_CFG0);
425         regs_buff[48] = rd32(E1000_PCS_LCTL);
426         regs_buff[49] = rd32(E1000_PCS_LSTAT);
427         regs_buff[50] = rd32(E1000_PCS_ANADV);
428         regs_buff[51] = rd32(E1000_PCS_LPAB);
429         regs_buff[52] = rd32(E1000_PCS_NPTX);
430         regs_buff[53] = rd32(E1000_PCS_LPABNP);
431
432         /* Statistics */
433         regs_buff[54] = adapter->stats.crcerrs;
434         regs_buff[55] = adapter->stats.algnerrc;
435         regs_buff[56] = adapter->stats.symerrs;
436         regs_buff[57] = adapter->stats.rxerrc;
437         regs_buff[58] = adapter->stats.mpc;
438         regs_buff[59] = adapter->stats.scc;
439         regs_buff[60] = adapter->stats.ecol;
440         regs_buff[61] = adapter->stats.mcc;
441         regs_buff[62] = adapter->stats.latecol;
442         regs_buff[63] = adapter->stats.colc;
443         regs_buff[64] = adapter->stats.dc;
444         regs_buff[65] = adapter->stats.tncrs;
445         regs_buff[66] = adapter->stats.sec;
446         regs_buff[67] = adapter->stats.htdpmc;
447         regs_buff[68] = adapter->stats.rlec;
448         regs_buff[69] = adapter->stats.xonrxc;
449         regs_buff[70] = adapter->stats.xontxc;
450         regs_buff[71] = adapter->stats.xoffrxc;
451         regs_buff[72] = adapter->stats.xofftxc;
452         regs_buff[73] = adapter->stats.fcruc;
453         regs_buff[74] = adapter->stats.prc64;
454         regs_buff[75] = adapter->stats.prc127;
455         regs_buff[76] = adapter->stats.prc255;
456         regs_buff[77] = adapter->stats.prc511;
457         regs_buff[78] = adapter->stats.prc1023;
458         regs_buff[79] = adapter->stats.prc1522;
459         regs_buff[80] = adapter->stats.gprc;
460         regs_buff[81] = adapter->stats.bprc;
461         regs_buff[82] = adapter->stats.mprc;
462         regs_buff[83] = adapter->stats.gptc;
463         regs_buff[84] = adapter->stats.gorc;
464         regs_buff[86] = adapter->stats.gotc;
465         regs_buff[88] = adapter->stats.rnbc;
466         regs_buff[89] = adapter->stats.ruc;
467         regs_buff[90] = adapter->stats.rfc;
468         regs_buff[91] = adapter->stats.roc;
469         regs_buff[92] = adapter->stats.rjc;
470         regs_buff[93] = adapter->stats.mgprc;
471         regs_buff[94] = adapter->stats.mgpdc;
472         regs_buff[95] = adapter->stats.mgptc;
473         regs_buff[96] = adapter->stats.tor;
474         regs_buff[98] = adapter->stats.tot;
475         regs_buff[100] = adapter->stats.tpr;
476         regs_buff[101] = adapter->stats.tpt;
477         regs_buff[102] = adapter->stats.ptc64;
478         regs_buff[103] = adapter->stats.ptc127;
479         regs_buff[104] = adapter->stats.ptc255;
480         regs_buff[105] = adapter->stats.ptc511;
481         regs_buff[106] = adapter->stats.ptc1023;
482         regs_buff[107] = adapter->stats.ptc1522;
483         regs_buff[108] = adapter->stats.mptc;
484         regs_buff[109] = adapter->stats.bptc;
485         regs_buff[110] = adapter->stats.tsctc;
486         regs_buff[111] = adapter->stats.iac;
487         regs_buff[112] = adapter->stats.rpthc;
488         regs_buff[113] = adapter->stats.hgptc;
489         regs_buff[114] = adapter->stats.hgorc;
490         regs_buff[116] = adapter->stats.hgotc;
491         regs_buff[118] = adapter->stats.lenerrs;
492         regs_buff[119] = adapter->stats.scvpc;
493         regs_buff[120] = adapter->stats.hrmpc;
494
495         /* These should probably be added to e1000_regs.h instead */
496         #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
497         #define E1000_RAL(_i)         (0x05400 + ((_i) * 8))
498         #define E1000_RAH(_i)         (0x05404 + ((_i) * 8))
499         #define E1000_IP4AT_REG(_i)   (0x05840 + ((_i) * 8))
500         #define E1000_IP6AT_REG(_i)   (0x05880 + ((_i) * 4))
501         #define E1000_WUPM_REG(_i)    (0x05A00 + ((_i) * 4))
502         #define E1000_FFMT_REG(_i)    (0x09000 + ((_i) * 8))
503         #define E1000_FFVT_REG(_i)    (0x09800 + ((_i) * 8))
504         #define E1000_FFLT_REG(_i)    (0x05F00 + ((_i) * 8))
505
506         for (i = 0; i < 4; i++)
507                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
508         for (i = 0; i < 4; i++)
509                 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
510         for (i = 0; i < 4; i++)
511                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
512         for (i = 0; i < 4; i++)
513                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
514         for (i = 0; i < 4; i++)
515                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
516         for (i = 0; i < 4; i++)
517                 regs_buff[141 + i] = rd32(E1000_RDH(i));
518         for (i = 0; i < 4; i++)
519                 regs_buff[145 + i] = rd32(E1000_RDT(i));
520         for (i = 0; i < 4; i++)
521                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
522
523         for (i = 0; i < 10; i++)
524                 regs_buff[153 + i] = rd32(E1000_EITR(i));
525         for (i = 0; i < 8; i++)
526                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
527         for (i = 0; i < 8; i++)
528                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
529         for (i = 0; i < 16; i++)
530                 regs_buff[179 + i] = rd32(E1000_RAL(i));
531         for (i = 0; i < 16; i++)
532                 regs_buff[195 + i] = rd32(E1000_RAH(i));
533
534         for (i = 0; i < 4; i++)
535                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
536         for (i = 0; i < 4; i++)
537                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
538         for (i = 0; i < 4; i++)
539                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
540         for (i = 0; i < 4; i++)
541                 regs_buff[223 + i] = rd32(E1000_TDH(i));
542         for (i = 0; i < 4; i++)
543                 regs_buff[227 + i] = rd32(E1000_TDT(i));
544         for (i = 0; i < 4; i++)
545                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
546         for (i = 0; i < 4; i++)
547                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
548         for (i = 0; i < 4; i++)
549                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
550         for (i = 0; i < 4; i++)
551                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
552
553         for (i = 0; i < 4; i++)
554                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
555         for (i = 0; i < 4; i++)
556                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
557         for (i = 0; i < 32; i++)
558                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
559         for (i = 0; i < 128; i++)
560                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
561         for (i = 0; i < 128; i++)
562                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
563         for (i = 0; i < 4; i++)
564                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
565
566         regs_buff[547] = rd32(E1000_TDFH);
567         regs_buff[548] = rd32(E1000_TDFT);
568         regs_buff[549] = rd32(E1000_TDFHS);
569         regs_buff[550] = rd32(E1000_TDFPC);
570
571 }
572
573 static int igb_get_eeprom_len(struct net_device *netdev)
574 {
575         struct igb_adapter *adapter = netdev_priv(netdev);
576         return adapter->hw.nvm.word_size * 2;
577 }
578
579 static int igb_get_eeprom(struct net_device *netdev,
580                           struct ethtool_eeprom *eeprom, u8 *bytes)
581 {
582         struct igb_adapter *adapter = netdev_priv(netdev);
583         struct e1000_hw *hw = &adapter->hw;
584         u16 *eeprom_buff;
585         int first_word, last_word;
586         int ret_val = 0;
587         u16 i;
588
589         if (eeprom->len == 0)
590                 return -EINVAL;
591
592         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
593
594         first_word = eeprom->offset >> 1;
595         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
596
597         eeprom_buff = kmalloc(sizeof(u16) *
598                         (last_word - first_word + 1), GFP_KERNEL);
599         if (!eeprom_buff)
600                 return -ENOMEM;
601
602         if (hw->nvm.type == e1000_nvm_eeprom_spi)
603                 ret_val = hw->nvm.ops.read_nvm(hw, first_word,
604                                             last_word - first_word + 1,
605                                             eeprom_buff);
606         else {
607                 for (i = 0; i < last_word - first_word + 1; i++) {
608                         ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1,
609                                                     &eeprom_buff[i]);
610                         if (ret_val)
611                                 break;
612                 }
613         }
614
615         /* Device's eeprom is always little-endian, word addressable */
616         for (i = 0; i < last_word - first_word + 1; i++)
617                 le16_to_cpus(&eeprom_buff[i]);
618
619         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
620                         eeprom->len);
621         kfree(eeprom_buff);
622
623         return ret_val;
624 }
625
626 static int igb_set_eeprom(struct net_device *netdev,
627                           struct ethtool_eeprom *eeprom, u8 *bytes)
628 {
629         struct igb_adapter *adapter = netdev_priv(netdev);
630         struct e1000_hw *hw = &adapter->hw;
631         u16 *eeprom_buff;
632         void *ptr;
633         int max_len, first_word, last_word, ret_val = 0;
634         u16 i;
635
636         if (eeprom->len == 0)
637                 return -EOPNOTSUPP;
638
639         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
640                 return -EFAULT;
641
642         max_len = hw->nvm.word_size * 2;
643
644         first_word = eeprom->offset >> 1;
645         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
646         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
647         if (!eeprom_buff)
648                 return -ENOMEM;
649
650         ptr = (void *)eeprom_buff;
651
652         if (eeprom->offset & 1) {
653                 /* need read/modify/write of first changed EEPROM word */
654                 /* only the second byte of the word is being modified */
655                 ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1,
656                                             &eeprom_buff[0]);
657                 ptr++;
658         }
659         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
660                 /* need read/modify/write of last changed EEPROM word */
661                 /* only the first byte of the word is being modified */
662                 ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1,
663                                    &eeprom_buff[last_word - first_word]);
664         }
665
666         /* Device's eeprom is always little-endian, word addressable */
667         for (i = 0; i < last_word - first_word + 1; i++)
668                 le16_to_cpus(&eeprom_buff[i]);
669
670         memcpy(ptr, bytes, eeprom->len);
671
672         for (i = 0; i < last_word - first_word + 1; i++)
673                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
674
675         ret_val = hw->nvm.ops.write_nvm(hw, first_word,
676                                      last_word - first_word + 1, eeprom_buff);
677
678         /* Update the checksum over the first part of the EEPROM if needed
679          * and flush shadow RAM for 82573 controllers */
680         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
681                 igb_update_nvm_checksum(hw);
682
683         kfree(eeprom_buff);
684         return ret_val;
685 }
686
687 static void igb_get_drvinfo(struct net_device *netdev,
688                             struct ethtool_drvinfo *drvinfo)
689 {
690         struct igb_adapter *adapter = netdev_priv(netdev);
691         char firmware_version[32];
692         u16 eeprom_data;
693
694         strncpy(drvinfo->driver,  igb_driver_name, 32);
695         strncpy(drvinfo->version, igb_driver_version, 32);
696
697         /* EEPROM image version # is reported as firmware version # for
698          * 82575 controllers */
699         adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data);
700         sprintf(firmware_version, "%d.%d-%d",
701                 (eeprom_data & 0xF000) >> 12,
702                 (eeprom_data & 0x0FF0) >> 4,
703                 eeprom_data & 0x000F);
704
705         strncpy(drvinfo->fw_version, firmware_version, 32);
706         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
707         drvinfo->n_stats = IGB_STATS_LEN;
708         drvinfo->testinfo_len = IGB_TEST_LEN;
709         drvinfo->regdump_len = igb_get_regs_len(netdev);
710         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
711 }
712
713 static void igb_get_ringparam(struct net_device *netdev,
714                               struct ethtool_ringparam *ring)
715 {
716         struct igb_adapter *adapter = netdev_priv(netdev);
717         struct igb_ring *tx_ring = adapter->tx_ring;
718         struct igb_ring *rx_ring = adapter->rx_ring;
719
720         ring->rx_max_pending = IGB_MAX_RXD;
721         ring->tx_max_pending = IGB_MAX_TXD;
722         ring->rx_mini_max_pending = 0;
723         ring->rx_jumbo_max_pending = 0;
724         ring->rx_pending = rx_ring->count;
725         ring->tx_pending = tx_ring->count;
726         ring->rx_mini_pending = 0;
727         ring->rx_jumbo_pending = 0;
728 }
729
730 static int igb_set_ringparam(struct net_device *netdev,
731                              struct ethtool_ringparam *ring)
732 {
733         struct igb_adapter *adapter = netdev_priv(netdev);
734         struct igb_buffer *old_buf;
735         struct igb_buffer *old_rx_buf;
736         void *old_desc;
737         int i, err;
738         u32 new_rx_count, new_tx_count, old_size;
739         dma_addr_t old_dma;
740
741         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
742                 return -EINVAL;
743
744         new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
745         new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
746         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
747
748         new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
749         new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
750         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
751
752         if ((new_tx_count == adapter->tx_ring->count) &&
753             (new_rx_count == adapter->rx_ring->count)) {
754                 /* nothing to do */
755                 return 0;
756         }
757
758         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
759                 msleep(1);
760
761         if (netif_running(adapter->netdev))
762                 igb_down(adapter);
763
764         /*
765          * We can't just free everything and then setup again,
766          * because the ISRs in MSI-X mode get passed pointers
767          * to the tx and rx ring structs.
768          */
769         if (new_tx_count != adapter->tx_ring->count) {
770                 for (i = 0; i < adapter->num_tx_queues; i++) {
771                         /* Save existing descriptor ring */
772                         old_buf = adapter->tx_ring[i].buffer_info;
773                         old_desc = adapter->tx_ring[i].desc;
774                         old_size = adapter->tx_ring[i].size;
775                         old_dma = adapter->tx_ring[i].dma;
776                         /* Try to allocate a new one */
777                         adapter->tx_ring[i].buffer_info = NULL;
778                         adapter->tx_ring[i].desc = NULL;
779                         adapter->tx_ring[i].count = new_tx_count;
780                         err = igb_setup_tx_resources(adapter,
781                                                 &adapter->tx_ring[i]);
782                         if (err) {
783                                 /* Restore the old one so at least
784                                    the adapter still works, even if
785                                    we failed the request */
786                                 adapter->tx_ring[i].buffer_info = old_buf;
787                                 adapter->tx_ring[i].desc = old_desc;
788                                 adapter->tx_ring[i].size = old_size;
789                                 adapter->tx_ring[i].dma = old_dma;
790                                 goto err_setup;
791                         }
792                         /* Free the old buffer manually */
793                         vfree(old_buf);
794                         pci_free_consistent(adapter->pdev, old_size,
795                                             old_desc, old_dma);
796                 }
797         }
798
799         if (new_rx_count != adapter->rx_ring->count) {
800                 for (i = 0; i < adapter->num_rx_queues; i++) {
801
802                         old_rx_buf = adapter->rx_ring[i].buffer_info;
803                         old_desc = adapter->rx_ring[i].desc;
804                         old_size = adapter->rx_ring[i].size;
805                         old_dma = adapter->rx_ring[i].dma;
806
807                         adapter->rx_ring[i].buffer_info = NULL;
808                         adapter->rx_ring[i].desc = NULL;
809                         adapter->rx_ring[i].dma = 0;
810                         adapter->rx_ring[i].count = new_rx_count;
811                         err = igb_setup_rx_resources(adapter,
812                                                      &adapter->rx_ring[i]);
813                         if (err) {
814                                 adapter->rx_ring[i].buffer_info = old_rx_buf;
815                                 adapter->rx_ring[i].desc = old_desc;
816                                 adapter->rx_ring[i].size = old_size;
817                                 adapter->rx_ring[i].dma = old_dma;
818                                 goto err_setup;
819                         }
820
821                         vfree(old_rx_buf);
822                         pci_free_consistent(adapter->pdev, old_size, old_desc,
823                                             old_dma);
824                 }
825         }
826
827         err = 0;
828 err_setup:
829         if (netif_running(adapter->netdev))
830                 igb_up(adapter);
831
832         clear_bit(__IGB_RESETTING, &adapter->state);
833         return err;
834 }
835
836 /* ethtool register test data */
837 struct igb_reg_test {
838         u16 reg;
839         u16 reg_offset;
840         u16 array_len;
841         u16 test_type;
842         u32 mask;
843         u32 write;
844 };
845
846 /* In the hardware, registers are laid out either singly, in arrays
847  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
848  * most tests take place on arrays or single registers (handled
849  * as a single-element array) and special-case the tables.
850  * Table tests are always pattern tests.
851  *
852  * We also make provision for some required setup steps by specifying
853  * registers to be written without any read-back testing.
854  */
855
856 #define PATTERN_TEST    1
857 #define SET_READ_TEST   2
858 #define WRITE_NO_TEST   3
859 #define TABLE32_TEST    4
860 #define TABLE64_TEST_LO 5
861 #define TABLE64_TEST_HI 6
862
863 /* 82576 reg test */
864 static struct igb_reg_test reg_test_82576[] = {
865         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
866         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
867         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
868         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
869         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
870         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
871         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
872         { E1000_RDBAL(4),  0x40,  8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
873         { E1000_RDBAH(4),  0x40,  8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
874         { E1000_RDLEN(4),  0x40,  8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
875         /* Enable all four RX queues before testing. */
876         { E1000_RXDCTL(0), 0x100, 1,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
877         /* RDH is read-only for 82576, only test RDT. */
878         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
879         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
880         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
881         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
882         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
883         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
884         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
885         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
886         { E1000_TDBAL(4),  0x40, 8,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
887         { E1000_TDBAH(4),  0x40, 8,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
888         { E1000_TDLEN(4),  0x40, 8,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
889         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
890         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
891         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
892         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
893         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
894         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
895         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
896         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
897         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
898         { 0, 0, 0, 0 }
899 };
900
901 /* 82575 register test */
902 static struct igb_reg_test reg_test_82575[] = {
903         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
904         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
905         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
906         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
907         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
908         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
909         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
910         /* Enable all four RX queues before testing. */
911         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
912         /* RDH is read-only for 82575, only test RDT. */
913         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
914         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
915         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
916         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
917         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
918         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
919         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
920         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
921         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
922         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
923         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
924         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
925         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
926         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
927         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
928         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
929         { 0, 0, 0, 0 }
930 };
931
932 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
933                              int reg, u32 mask, u32 write)
934 {
935         u32 pat, val;
936         u32 _test[] =
937                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
938         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
939                 writel((_test[pat] & write), (adapter->hw.hw_addr + reg));
940                 val = readl(adapter->hw.hw_addr + reg);
941                 if (val != (_test[pat] & write & mask)) {
942                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
943                                 "failed: got 0x%08X expected 0x%08X\n",
944                                 reg, val, (_test[pat] & write & mask));
945                         *data = reg;
946                         return 1;
947                 }
948         }
949         return 0;
950 }
951
952 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
953                               int reg, u32 mask, u32 write)
954 {
955         u32 val;
956         writel((write & mask), (adapter->hw.hw_addr + reg));
957         val = readl(adapter->hw.hw_addr + reg);
958         if ((write & mask) != (val & mask)) {
959                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
960                         " got 0x%08X expected 0x%08X\n", reg,
961                         (val & mask), (write & mask));
962                 *data = reg;
963                 return 1;
964         }
965         return 0;
966 }
967
968 #define REG_PATTERN_TEST(reg, mask, write) \
969         do { \
970                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
971                         return 1; \
972         } while (0)
973
974 #define REG_SET_AND_CHECK(reg, mask, write) \
975         do { \
976                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
977                         return 1; \
978         } while (0)
979
980 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
981 {
982         struct e1000_hw *hw = &adapter->hw;
983         struct igb_reg_test *test;
984         u32 value, before, after;
985         u32 i, toggle;
986
987         toggle = 0x7FFFF3FF;
988
989         switch (adapter->hw.mac.type) {
990         case e1000_82576:
991                 test = reg_test_82576;
992                 break;
993         default:
994                 test = reg_test_82575;
995                 break;
996         }
997
998         /* Because the status register is such a special case,
999          * we handle it separately from the rest of the register
1000          * tests.  Some bits are read-only, some toggle, and some
1001          * are writable on newer MACs.
1002          */
1003         before = rd32(E1000_STATUS);
1004         value = (rd32(E1000_STATUS) & toggle);
1005         wr32(E1000_STATUS, toggle);
1006         after = rd32(E1000_STATUS) & toggle;
1007         if (value != after) {
1008                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1009                         "got: 0x%08X expected: 0x%08X\n", after, value);
1010                 *data = 1;
1011                 return 1;
1012         }
1013         /* restore previous status */
1014         wr32(E1000_STATUS, before);
1015
1016         /* Perform the remainder of the register test, looping through
1017          * the test table until we either fail or reach the null entry.
1018          */
1019         while (test->reg) {
1020                 for (i = 0; i < test->array_len; i++) {
1021                         switch (test->test_type) {
1022                         case PATTERN_TEST:
1023                                 REG_PATTERN_TEST(test->reg + (i * test->reg_offset),
1024                                                 test->mask,
1025                                                 test->write);
1026                                 break;
1027                         case SET_READ_TEST:
1028                                 REG_SET_AND_CHECK(test->reg + (i * test->reg_offset),
1029                                                 test->mask,
1030                                                 test->write);
1031                                 break;
1032                         case WRITE_NO_TEST:
1033                                 writel(test->write,
1034                                     (adapter->hw.hw_addr + test->reg)
1035                                         + (i * test->reg_offset));
1036                                 break;
1037                         case TABLE32_TEST:
1038                                 REG_PATTERN_TEST(test->reg + (i * 4),
1039                                                 test->mask,
1040                                                 test->write);
1041                                 break;
1042                         case TABLE64_TEST_LO:
1043                                 REG_PATTERN_TEST(test->reg + (i * 8),
1044                                                 test->mask,
1045                                                 test->write);
1046                                 break;
1047                         case TABLE64_TEST_HI:
1048                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1049                                                 test->mask,
1050                                                 test->write);
1051                                 break;
1052                         }
1053                 }
1054                 test++;
1055         }
1056
1057         *data = 0;
1058         return 0;
1059 }
1060
1061 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1062 {
1063         u16 temp;
1064         u16 checksum = 0;
1065         u16 i;
1066
1067         *data = 0;
1068         /* Read and add up the contents of the EEPROM */
1069         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1070                 if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp))
1071                     < 0) {
1072                         *data = 1;
1073                         break;
1074                 }
1075                 checksum += temp;
1076         }
1077
1078         /* If Checksum is not Correct return error else test passed */
1079         if ((checksum != (u16) NVM_SUM) && !(*data))
1080                 *data = 2;
1081
1082         return *data;
1083 }
1084
1085 static irqreturn_t igb_test_intr(int irq, void *data)
1086 {
1087         struct net_device *netdev = (struct net_device *) data;
1088         struct igb_adapter *adapter = netdev_priv(netdev);
1089         struct e1000_hw *hw = &adapter->hw;
1090
1091         adapter->test_icr |= rd32(E1000_ICR);
1092
1093         return IRQ_HANDLED;
1094 }
1095
1096 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1097 {
1098         struct e1000_hw *hw = &adapter->hw;
1099         struct net_device *netdev = adapter->netdev;
1100         u32 mask, i = 0, shared_int = true;
1101         u32 irq = adapter->pdev->irq;
1102
1103         *data = 0;
1104
1105         /* Hook up test interrupt handler just for this test */
1106         if (adapter->msix_entries) {
1107                 /* NOTE: we don't test MSI-X interrupts here, yet */
1108                 return 0;
1109         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1110                 shared_int = false;
1111                 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1112                         *data = 1;
1113                         return -1;
1114                 }
1115         } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1116                                 netdev->name, netdev)) {
1117                 shared_int = false;
1118         } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1119                  netdev->name, netdev)) {
1120                 *data = 1;
1121                 return -1;
1122         }
1123         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1124                 (shared_int ? "shared" : "unshared"));
1125
1126         /* Disable all the interrupts */
1127         wr32(E1000_IMC, 0xFFFFFFFF);
1128         msleep(10);
1129
1130         /* Test each interrupt */
1131         for (; i < 10; i++) {
1132                 /* Interrupt to test */
1133                 mask = 1 << i;
1134
1135                 if (!shared_int) {
1136                         /* Disable the interrupt to be reported in
1137                          * the cause register and then force the same
1138                          * interrupt and see if one gets posted.  If
1139                          * an interrupt was posted to the bus, the
1140                          * test failed.
1141                          */
1142                         adapter->test_icr = 0;
1143                         wr32(E1000_IMC, ~mask & 0x00007FFF);
1144                         wr32(E1000_ICS, ~mask & 0x00007FFF);
1145                         msleep(10);
1146
1147                         if (adapter->test_icr & mask) {
1148                                 *data = 3;
1149                                 break;
1150                         }
1151                 }
1152
1153                 /* Enable the interrupt to be reported in
1154                  * the cause register and then force the same
1155                  * interrupt and see if one gets posted.  If
1156                  * an interrupt was not posted to the bus, the
1157                  * test failed.
1158                  */
1159                 adapter->test_icr = 0;
1160                 wr32(E1000_IMS, mask);
1161                 wr32(E1000_ICS, mask);
1162                 msleep(10);
1163
1164                 if (!(adapter->test_icr & mask)) {
1165                         *data = 4;
1166                         break;
1167                 }
1168
1169                 if (!shared_int) {
1170                         /* Disable the other interrupts to be reported in
1171                          * the cause register and then force the other
1172                          * interrupts and see if any get posted.  If
1173                          * an interrupt was posted to the bus, the
1174                          * test failed.
1175                          */
1176                         adapter->test_icr = 0;
1177                         wr32(E1000_IMC, ~mask & 0x00007FFF);
1178                         wr32(E1000_ICS, ~mask & 0x00007FFF);
1179                         msleep(10);
1180
1181                         if (adapter->test_icr) {
1182                                 *data = 5;
1183                                 break;
1184                         }
1185                 }
1186         }
1187
1188         /* Disable all the interrupts */
1189         wr32(E1000_IMC, 0xFFFFFFFF);
1190         msleep(10);
1191
1192         /* Unhook test interrupt handler */
1193         free_irq(irq, netdev);
1194
1195         return *data;
1196 }
1197
1198 static void igb_free_desc_rings(struct igb_adapter *adapter)
1199 {
1200         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1201         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1202         struct pci_dev *pdev = adapter->pdev;
1203         int i;
1204
1205         if (tx_ring->desc && tx_ring->buffer_info) {
1206                 for (i = 0; i < tx_ring->count; i++) {
1207                         struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1208                         if (buf->dma)
1209                                 pci_unmap_single(pdev, buf->dma, buf->length,
1210                                                  PCI_DMA_TODEVICE);
1211                         if (buf->skb)
1212                                 dev_kfree_skb(buf->skb);
1213                 }
1214         }
1215
1216         if (rx_ring->desc && rx_ring->buffer_info) {
1217                 for (i = 0; i < rx_ring->count; i++) {
1218                         struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1219                         if (buf->dma)
1220                                 pci_unmap_single(pdev, buf->dma,
1221                                                  IGB_RXBUFFER_2048,
1222                                                  PCI_DMA_FROMDEVICE);
1223                         if (buf->skb)
1224                                 dev_kfree_skb(buf->skb);
1225                 }
1226         }
1227
1228         if (tx_ring->desc) {
1229                 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1230                                     tx_ring->dma);
1231                 tx_ring->desc = NULL;
1232         }
1233         if (rx_ring->desc) {
1234                 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1235                                     rx_ring->dma);
1236                 rx_ring->desc = NULL;
1237         }
1238
1239         kfree(tx_ring->buffer_info);
1240         tx_ring->buffer_info = NULL;
1241         kfree(rx_ring->buffer_info);
1242         rx_ring->buffer_info = NULL;
1243
1244         return;
1245 }
1246
1247 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1248 {
1249         struct e1000_hw *hw = &adapter->hw;
1250         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1251         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1252         struct pci_dev *pdev = adapter->pdev;
1253         u32 rctl;
1254         int i, ret_val;
1255
1256         /* Setup Tx descriptor ring and Tx buffers */
1257
1258         if (!tx_ring->count)
1259                 tx_ring->count = IGB_DEFAULT_TXD;
1260
1261         tx_ring->buffer_info = kcalloc(tx_ring->count,
1262                                        sizeof(struct igb_buffer),
1263                                        GFP_KERNEL);
1264         if (!tx_ring->buffer_info) {
1265                 ret_val = 1;
1266                 goto err_nomem;
1267         }
1268
1269         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1270         tx_ring->size = ALIGN(tx_ring->size, 4096);
1271         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1272                                              &tx_ring->dma);
1273         if (!tx_ring->desc) {
1274                 ret_val = 2;
1275                 goto err_nomem;
1276         }
1277         tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1278
1279         wr32(E1000_TDBAL(0),
1280                         ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1281         wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1282         wr32(E1000_TDLEN(0),
1283                         tx_ring->count * sizeof(struct e1000_tx_desc));
1284         wr32(E1000_TDH(0), 0);
1285         wr32(E1000_TDT(0), 0);
1286         wr32(E1000_TCTL,
1287                         E1000_TCTL_PSP | E1000_TCTL_EN |
1288                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1289                         E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1290
1291         for (i = 0; i < tx_ring->count; i++) {
1292                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1293                 struct sk_buff *skb;
1294                 unsigned int size = 1024;
1295
1296                 skb = alloc_skb(size, GFP_KERNEL);
1297                 if (!skb) {
1298                         ret_val = 3;
1299                         goto err_nomem;
1300                 }
1301                 skb_put(skb, size);
1302                 tx_ring->buffer_info[i].skb = skb;
1303                 tx_ring->buffer_info[i].length = skb->len;
1304                 tx_ring->buffer_info[i].dma =
1305                         pci_map_single(pdev, skb->data, skb->len,
1306                                        PCI_DMA_TODEVICE);
1307                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1308                 tx_desc->lower.data = cpu_to_le32(skb->len);
1309                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1310                                                    E1000_TXD_CMD_IFCS |
1311                                                    E1000_TXD_CMD_RS);
1312                 tx_desc->upper.data = 0;
1313         }
1314
1315         /* Setup Rx descriptor ring and Rx buffers */
1316
1317         if (!rx_ring->count)
1318                 rx_ring->count = IGB_DEFAULT_RXD;
1319
1320         rx_ring->buffer_info = kcalloc(rx_ring->count,
1321                                        sizeof(struct igb_buffer),
1322                                        GFP_KERNEL);
1323         if (!rx_ring->buffer_info) {
1324                 ret_val = 4;
1325                 goto err_nomem;
1326         }
1327
1328         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1329         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1330                                              &rx_ring->dma);
1331         if (!rx_ring->desc) {
1332                 ret_val = 5;
1333                 goto err_nomem;
1334         }
1335         rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1336
1337         rctl = rd32(E1000_RCTL);
1338         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1339         wr32(E1000_RDBAL(0),
1340                         ((u64) rx_ring->dma & 0xFFFFFFFF));
1341         wr32(E1000_RDBAH(0),
1342                         ((u64) rx_ring->dma >> 32));
1343         wr32(E1000_RDLEN(0), rx_ring->size);
1344         wr32(E1000_RDH(0), 0);
1345         wr32(E1000_RDT(0), 0);
1346         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1347                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1348                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1349         wr32(E1000_RCTL, rctl);
1350         wr32(E1000_SRRCTL(0), 0);
1351
1352         for (i = 0; i < rx_ring->count; i++) {
1353                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1354                 struct sk_buff *skb;
1355
1356                 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1357                                 GFP_KERNEL);
1358                 if (!skb) {
1359                         ret_val = 6;
1360                         goto err_nomem;
1361                 }
1362                 skb_reserve(skb, NET_IP_ALIGN);
1363                 rx_ring->buffer_info[i].skb = skb;
1364                 rx_ring->buffer_info[i].dma =
1365                         pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048,
1366                                        PCI_DMA_FROMDEVICE);
1367                 rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma);
1368                 memset(skb->data, 0x00, skb->len);
1369         }
1370
1371         return 0;
1372
1373 err_nomem:
1374         igb_free_desc_rings(adapter);
1375         return ret_val;
1376 }
1377
1378 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1379 {
1380         struct e1000_hw *hw = &adapter->hw;
1381
1382         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1383         hw->phy.ops.write_phy_reg(hw, 29, 0x001F);
1384         hw->phy.ops.write_phy_reg(hw, 30, 0x8FFC);
1385         hw->phy.ops.write_phy_reg(hw, 29, 0x001A);
1386         hw->phy.ops.write_phy_reg(hw, 30, 0x8FF0);
1387 }
1388
1389 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1390 {
1391         struct e1000_hw *hw = &adapter->hw;
1392         u32 ctrl_reg = 0;
1393         u32 stat_reg = 0;
1394
1395         hw->mac.autoneg = false;
1396
1397         if (hw->phy.type == e1000_phy_m88) {
1398                 /* Auto-MDI/MDIX Off */
1399                 hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1400                 /* reset to update Auto-MDI/MDIX */
1401                 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x9140);
1402                 /* autoneg off */
1403                 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x8140);
1404         }
1405
1406         ctrl_reg = rd32(E1000_CTRL);
1407
1408         /* force 1000, set loopback */
1409         hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x4140);
1410
1411         /* Now set up the MAC to the same speed/duplex as the PHY. */
1412         ctrl_reg = rd32(E1000_CTRL);
1413         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1414         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1415                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1416                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1417                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1418
1419         if (hw->phy.media_type == e1000_media_type_copper &&
1420             hw->phy.type == e1000_phy_m88)
1421                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1422         else {
1423                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1424                  * detected. */
1425                 stat_reg = rd32(E1000_STATUS);
1426                 if ((stat_reg & E1000_STATUS_FD) == 0)
1427                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1428         }
1429
1430         wr32(E1000_CTRL, ctrl_reg);
1431
1432         /* Disable the receiver on the PHY so when a cable is plugged in, the
1433          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1434          */
1435         if (hw->phy.type == e1000_phy_m88)
1436                 igb_phy_disable_receiver(adapter);
1437
1438         udelay(500);
1439
1440         return 0;
1441 }
1442
1443 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1444 {
1445         return igb_integrated_phy_loopback(adapter);
1446 }
1447
1448 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1449 {
1450         struct e1000_hw *hw = &adapter->hw;
1451         u32 reg;
1452
1453         if (hw->phy.media_type == e1000_media_type_fiber ||
1454             hw->phy.media_type == e1000_media_type_internal_serdes) {
1455                 reg = rd32(E1000_RCTL);
1456                 reg |= E1000_RCTL_LBM_TCVR;
1457                 wr32(E1000_RCTL, reg);
1458
1459                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1460
1461                 reg = rd32(E1000_CTRL);
1462                 reg &= ~(E1000_CTRL_RFCE |
1463                          E1000_CTRL_TFCE |
1464                          E1000_CTRL_LRST);
1465                 reg |= E1000_CTRL_SLU |
1466                        E1000_CTRL_FD; 
1467                 wr32(E1000_CTRL, reg);
1468
1469                 /* Unset switch control to serdes energy detect */
1470                 reg = rd32(E1000_CONNSW);
1471                 reg &= ~E1000_CONNSW_ENRGSRC;
1472                 wr32(E1000_CONNSW, reg);
1473
1474                 /* Set PCS register for forced speed */
1475                 reg = rd32(E1000_PCS_LCTL);
1476                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1477                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1478                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1479                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1480                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1481                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1482                 wr32(E1000_PCS_LCTL, reg);
1483
1484                 return 0;
1485         } else if (hw->phy.media_type == e1000_media_type_copper) {
1486                 return igb_set_phy_loopback(adapter);
1487         }
1488
1489         return 7;
1490 }
1491
1492 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1493 {
1494         struct e1000_hw *hw = &adapter->hw;
1495         u32 rctl;
1496         u16 phy_reg;
1497
1498         rctl = rd32(E1000_RCTL);
1499         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1500         wr32(E1000_RCTL, rctl);
1501
1502         hw->mac.autoneg = true;
1503         hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1504         if (phy_reg & MII_CR_LOOPBACK) {
1505                 phy_reg &= ~MII_CR_LOOPBACK;
1506                 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_reg);
1507                 igb_phy_sw_reset(hw);
1508         }
1509 }
1510
1511 static void igb_create_lbtest_frame(struct sk_buff *skb,
1512                                     unsigned int frame_size)
1513 {
1514         memset(skb->data, 0xFF, frame_size);
1515         frame_size &= ~1;
1516         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1517         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1518         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1519 }
1520
1521 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1522 {
1523         frame_size &= ~1;
1524         if (*(skb->data + 3) == 0xFF)
1525                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1526                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1527                         return 0;
1528         return 13;
1529 }
1530
1531 static int igb_run_loopback_test(struct igb_adapter *adapter)
1532 {
1533         struct e1000_hw *hw = &adapter->hw;
1534         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1535         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1536         struct pci_dev *pdev = adapter->pdev;
1537         int i, j, k, l, lc, good_cnt;
1538         int ret_val = 0;
1539         unsigned long time;
1540
1541         wr32(E1000_RDT(0), rx_ring->count - 1);
1542
1543         /* Calculate the loop count based on the largest descriptor ring
1544          * The idea is to wrap the largest ring a number of times using 64
1545          * send/receive pairs during each loop
1546          */
1547
1548         if (rx_ring->count <= tx_ring->count)
1549                 lc = ((tx_ring->count / 64) * 2) + 1;
1550         else
1551                 lc = ((rx_ring->count / 64) * 2) + 1;
1552
1553         k = l = 0;
1554         for (j = 0; j <= lc; j++) { /* loop count loop */
1555                 for (i = 0; i < 64; i++) { /* send the packets */
1556                         igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1557                                                 1024);
1558                         pci_dma_sync_single_for_device(pdev,
1559                                 tx_ring->buffer_info[k].dma,
1560                                 tx_ring->buffer_info[k].length,
1561                                 PCI_DMA_TODEVICE);
1562                         k++;
1563                         if (k == tx_ring->count)
1564                                 k = 0;
1565                 }
1566                 wr32(E1000_TDT(0), k);
1567                 msleep(200);
1568                 time = jiffies; /* set the start time for the receive */
1569                 good_cnt = 0;
1570                 do { /* receive the sent packets */
1571                         pci_dma_sync_single_for_cpu(pdev,
1572                                         rx_ring->buffer_info[l].dma,
1573                                         IGB_RXBUFFER_2048,
1574                                         PCI_DMA_FROMDEVICE);
1575
1576                         ret_val = igb_check_lbtest_frame(
1577                                              rx_ring->buffer_info[l].skb, 1024);
1578                         if (!ret_val)
1579                                 good_cnt++;
1580                         l++;
1581                         if (l == rx_ring->count)
1582                                 l = 0;
1583                         /* time + 20 msecs (200 msecs on 2.4) is more than
1584                          * enough time to complete the receives, if it's
1585                          * exceeded, break and error off
1586                          */
1587                 } while (good_cnt < 64 && jiffies < (time + 20));
1588                 if (good_cnt != 64) {
1589                         ret_val = 13; /* ret_val is the same as mis-compare */
1590                         break;
1591                 }
1592                 if (jiffies >= (time + 20)) {
1593                         ret_val = 14; /* error code for time out error */
1594                         break;
1595                 }
1596         } /* end loop count loop */
1597         return ret_val;
1598 }
1599
1600 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1601 {
1602         /* PHY loopback cannot be performed if SoL/IDER
1603          * sessions are active */
1604         if (igb_check_reset_block(&adapter->hw)) {
1605                 dev_err(&adapter->pdev->dev,
1606                         "Cannot do PHY loopback test "
1607                         "when SoL/IDER is active.\n");
1608                 *data = 0;
1609                 goto out;
1610         }
1611         *data = igb_setup_desc_rings(adapter);
1612         if (*data)
1613                 goto out;
1614         *data = igb_setup_loopback_test(adapter);
1615         if (*data)
1616                 goto err_loopback;
1617         *data = igb_run_loopback_test(adapter);
1618         igb_loopback_cleanup(adapter);
1619
1620 err_loopback:
1621         igb_free_desc_rings(adapter);
1622 out:
1623         return *data;
1624 }
1625
1626 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1627 {
1628         struct e1000_hw *hw = &adapter->hw;
1629         *data = 0;
1630         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1631                 int i = 0;
1632                 hw->mac.serdes_has_link = false;
1633
1634                 /* On some blade server designs, link establishment
1635                  * could take as long as 2-3 minutes */
1636                 do {
1637                         hw->mac.ops.check_for_link(&adapter->hw);
1638                         if (hw->mac.serdes_has_link)
1639                                 return *data;
1640                         msleep(20);
1641                 } while (i++ < 3750);
1642
1643                 *data = 1;
1644         } else {
1645                 hw->mac.ops.check_for_link(&adapter->hw);
1646                 if (hw->mac.autoneg)
1647                         msleep(4000);
1648
1649                 if (!(rd32(E1000_STATUS) &
1650                       E1000_STATUS_LU))
1651                         *data = 1;
1652         }
1653         return *data;
1654 }
1655
1656 static void igb_diag_test(struct net_device *netdev,
1657                           struct ethtool_test *eth_test, u64 *data)
1658 {
1659         struct igb_adapter *adapter = netdev_priv(netdev);
1660         u16 autoneg_advertised;
1661         u8 forced_speed_duplex, autoneg;
1662         bool if_running = netif_running(netdev);
1663
1664         set_bit(__IGB_TESTING, &adapter->state);
1665         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1666                 /* Offline tests */
1667
1668                 /* save speed, duplex, autoneg settings */
1669                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1670                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1671                 autoneg = adapter->hw.mac.autoneg;
1672
1673                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1674
1675                 /* Link test performed before hardware reset so autoneg doesn't
1676                  * interfere with test result */
1677                 if (igb_link_test(adapter, &data[4]))
1678                         eth_test->flags |= ETH_TEST_FL_FAILED;
1679
1680                 if (if_running)
1681                         /* indicate we're in test mode */
1682                         dev_close(netdev);
1683                 else
1684                         igb_reset(adapter);
1685
1686                 if (igb_reg_test(adapter, &data[0]))
1687                         eth_test->flags |= ETH_TEST_FL_FAILED;
1688
1689                 igb_reset(adapter);
1690                 if (igb_eeprom_test(adapter, &data[1]))
1691                         eth_test->flags |= ETH_TEST_FL_FAILED;
1692
1693                 igb_reset(adapter);
1694                 if (igb_intr_test(adapter, &data[2]))
1695                         eth_test->flags |= ETH_TEST_FL_FAILED;
1696
1697                 igb_reset(adapter);
1698                 if (igb_loopback_test(adapter, &data[3]))
1699                         eth_test->flags |= ETH_TEST_FL_FAILED;
1700
1701                 /* restore speed, duplex, autoneg settings */
1702                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1703                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1704                 adapter->hw.mac.autoneg = autoneg;
1705
1706                 /* force this routine to wait until autoneg complete/timeout */
1707                 adapter->hw.phy.autoneg_wait_to_complete = true;
1708                 igb_reset(adapter);
1709                 adapter->hw.phy.autoneg_wait_to_complete = false;
1710
1711                 clear_bit(__IGB_TESTING, &adapter->state);
1712                 if (if_running)
1713                         dev_open(netdev);
1714         } else {
1715                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1716                 /* Online tests */
1717                 if (igb_link_test(adapter, &data[4]))
1718                         eth_test->flags |= ETH_TEST_FL_FAILED;
1719
1720                 /* Online tests aren't run; pass by default */
1721                 data[0] = 0;
1722                 data[1] = 0;
1723                 data[2] = 0;
1724                 data[3] = 0;
1725
1726                 clear_bit(__IGB_TESTING, &adapter->state);
1727         }
1728         msleep_interruptible(4 * 1000);
1729 }
1730
1731 static int igb_wol_exclusion(struct igb_adapter *adapter,
1732                              struct ethtool_wolinfo *wol)
1733 {
1734         struct e1000_hw *hw = &adapter->hw;
1735         int retval = 1; /* fail by default */
1736
1737         switch (hw->device_id) {
1738         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1739                 /* WoL not supported */
1740                 wol->supported = 0;
1741                 break;
1742         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1743         case E1000_DEV_ID_82576_FIBER:
1744         case E1000_DEV_ID_82576_SERDES:
1745                 /* Wake events not supported on port B */
1746                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1747                         wol->supported = 0;
1748                         break;
1749                 }
1750                 /* return success for non excluded adapter ports */
1751                 retval = 0;
1752                 break;
1753         default:
1754                 /* dual port cards only support WoL on port A from now on
1755                  * unless it was enabled in the eeprom for port B
1756                  * so exclude FUNC_1 ports from having WoL enabled */
1757                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1758                     !adapter->eeprom_wol) {
1759                         wol->supported = 0;
1760                         break;
1761                 }
1762
1763                 retval = 0;
1764         }
1765
1766         return retval;
1767 }
1768
1769 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1770 {
1771         struct igb_adapter *adapter = netdev_priv(netdev);
1772
1773         wol->supported = WAKE_UCAST | WAKE_MCAST |
1774                          WAKE_BCAST | WAKE_MAGIC;
1775         wol->wolopts = 0;
1776
1777         /* this function will set ->supported = 0 and return 1 if wol is not
1778          * supported by this hardware */
1779         if (igb_wol_exclusion(adapter, wol) ||
1780             !device_can_wakeup(&adapter->pdev->dev))
1781                 return;
1782
1783         /* apply any specific unsupported masks here */
1784         switch (adapter->hw.device_id) {
1785         default:
1786                 break;
1787         }
1788
1789         if (adapter->wol & E1000_WUFC_EX)
1790                 wol->wolopts |= WAKE_UCAST;
1791         if (adapter->wol & E1000_WUFC_MC)
1792                 wol->wolopts |= WAKE_MCAST;
1793         if (adapter->wol & E1000_WUFC_BC)
1794                 wol->wolopts |= WAKE_BCAST;
1795         if (adapter->wol & E1000_WUFC_MAG)
1796                 wol->wolopts |= WAKE_MAGIC;
1797
1798         return;
1799 }
1800
1801 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1802 {
1803         struct igb_adapter *adapter = netdev_priv(netdev);
1804         struct e1000_hw *hw = &adapter->hw;
1805
1806         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1807                 return -EOPNOTSUPP;
1808
1809         if (igb_wol_exclusion(adapter, wol) ||
1810             !device_can_wakeup(&adapter->pdev->dev))
1811                 return wol->wolopts ? -EOPNOTSUPP : 0;
1812
1813         switch (hw->device_id) {
1814         default:
1815                 break;
1816         }
1817
1818         /* these settings will always override what we currently have */
1819         adapter->wol = 0;
1820
1821         if (wol->wolopts & WAKE_UCAST)
1822                 adapter->wol |= E1000_WUFC_EX;
1823         if (wol->wolopts & WAKE_MCAST)
1824                 adapter->wol |= E1000_WUFC_MC;
1825         if (wol->wolopts & WAKE_BCAST)
1826                 adapter->wol |= E1000_WUFC_BC;
1827         if (wol->wolopts & WAKE_MAGIC)
1828                 adapter->wol |= E1000_WUFC_MAG;
1829
1830         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1831
1832         return 0;
1833 }
1834
1835 /* toggle LED 4 times per second = 2 "blinks" per second */
1836 #define IGB_ID_INTERVAL         (HZ/4)
1837
1838 /* bit defines for adapter->led_status */
1839 #define IGB_LED_ON              0
1840
1841 static int igb_phys_id(struct net_device *netdev, u32 data)
1842 {
1843         struct igb_adapter *adapter = netdev_priv(netdev);
1844         struct e1000_hw *hw = &adapter->hw;
1845
1846         if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1847                 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1848
1849         igb_blink_led(hw);
1850         msleep_interruptible(data * 1000);
1851
1852         igb_led_off(hw);
1853         clear_bit(IGB_LED_ON, &adapter->led_status);
1854         igb_cleanup_led(hw);
1855
1856         return 0;
1857 }
1858
1859 static int igb_set_coalesce(struct net_device *netdev,
1860                             struct ethtool_coalesce *ec)
1861 {
1862         struct igb_adapter *adapter = netdev_priv(netdev);
1863         struct e1000_hw *hw = &adapter->hw;
1864         int i;
1865
1866         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1867             ((ec->rx_coalesce_usecs > 3) &&
1868              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1869             (ec->rx_coalesce_usecs == 2))
1870                 return -EINVAL;
1871
1872         /* convert to rate of irq's per second */
1873         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1874                 adapter->itr_setting = ec->rx_coalesce_usecs;
1875                 adapter->itr = IGB_START_ITR;
1876         } else {
1877                 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1878                 adapter->itr = adapter->itr_setting;
1879         }
1880
1881         for (i = 0; i < adapter->num_rx_queues; i++)
1882                 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
1883
1884         return 0;
1885 }
1886
1887 static int igb_get_coalesce(struct net_device *netdev,
1888                             struct ethtool_coalesce *ec)
1889 {
1890         struct igb_adapter *adapter = netdev_priv(netdev);
1891
1892         if (adapter->itr_setting <= 3)
1893                 ec->rx_coalesce_usecs = adapter->itr_setting;
1894         else
1895                 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1896
1897         return 0;
1898 }
1899
1900
1901 static int igb_nway_reset(struct net_device *netdev)
1902 {
1903         struct igb_adapter *adapter = netdev_priv(netdev);
1904         if (netif_running(netdev))
1905                 igb_reinit_locked(adapter);
1906         return 0;
1907 }
1908
1909 static int igb_get_sset_count(struct net_device *netdev, int sset)
1910 {
1911         switch (sset) {
1912         case ETH_SS_STATS:
1913                 return IGB_STATS_LEN;
1914         case ETH_SS_TEST:
1915                 return IGB_TEST_LEN;
1916         default:
1917                 return -ENOTSUPP;
1918         }
1919 }
1920
1921 static void igb_get_ethtool_stats(struct net_device *netdev,
1922                                   struct ethtool_stats *stats, u64 *data)
1923 {
1924         struct igb_adapter *adapter = netdev_priv(netdev);
1925         u64 *queue_stat;
1926         int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1927         int j;
1928         int i;
1929 #ifdef CONFIG_IGB_LRO
1930         int aggregated = 0, flushed = 0, no_desc = 0;
1931
1932         for (i = 0; i < adapter->num_rx_queues; i++) {
1933                 aggregated += adapter->rx_ring[i].lro_mgr.stats.aggregated;
1934                 flushed += adapter->rx_ring[i].lro_mgr.stats.flushed;
1935                 no_desc += adapter->rx_ring[i].lro_mgr.stats.no_desc;
1936         }
1937         adapter->lro_aggregated = aggregated;
1938         adapter->lro_flushed = flushed;
1939         adapter->lro_no_desc = no_desc;
1940 #endif
1941
1942         igb_update_stats(adapter);
1943         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1944                 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1945                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1946                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1947         }
1948         for (j = 0; j < adapter->num_tx_queues; j++) {
1949                 int k;
1950                 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1951                 for (k = 0; k < stat_count; k++)
1952                         data[i + k] = queue_stat[k];
1953                 i += k;
1954         }
1955         for (j = 0; j < adapter->num_rx_queues; j++) {
1956                 int k;
1957                 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1958                 for (k = 0; k < stat_count; k++)
1959                         data[i + k] = queue_stat[k];
1960                 i += k;
1961         }
1962 }
1963
1964 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1965 {
1966         struct igb_adapter *adapter = netdev_priv(netdev);
1967         u8 *p = data;
1968         int i;
1969
1970         switch (stringset) {
1971         case ETH_SS_TEST:
1972                 memcpy(data, *igb_gstrings_test,
1973                         IGB_TEST_LEN*ETH_GSTRING_LEN);
1974                 break;
1975         case ETH_SS_STATS:
1976                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1977                         memcpy(p, igb_gstrings_stats[i].stat_string,
1978                                ETH_GSTRING_LEN);
1979                         p += ETH_GSTRING_LEN;
1980                 }
1981                 for (i = 0; i < adapter->num_tx_queues; i++) {
1982                         sprintf(p, "tx_queue_%u_packets", i);
1983                         p += ETH_GSTRING_LEN;
1984                         sprintf(p, "tx_queue_%u_bytes", i);
1985                         p += ETH_GSTRING_LEN;
1986                 }
1987                 for (i = 0; i < adapter->num_rx_queues; i++) {
1988                         sprintf(p, "rx_queue_%u_packets", i);
1989                         p += ETH_GSTRING_LEN;
1990                         sprintf(p, "rx_queue_%u_bytes", i);
1991                         p += ETH_GSTRING_LEN;
1992                 }
1993 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1994                 break;
1995         }
1996 }
1997
1998 static struct ethtool_ops igb_ethtool_ops = {
1999         .get_settings           = igb_get_settings,
2000         .set_settings           = igb_set_settings,
2001         .get_drvinfo            = igb_get_drvinfo,
2002         .get_regs_len           = igb_get_regs_len,
2003         .get_regs               = igb_get_regs,
2004         .get_wol                = igb_get_wol,
2005         .set_wol                = igb_set_wol,
2006         .get_msglevel           = igb_get_msglevel,
2007         .set_msglevel           = igb_set_msglevel,
2008         .nway_reset             = igb_nway_reset,
2009         .get_link               = ethtool_op_get_link,
2010         .get_eeprom_len         = igb_get_eeprom_len,
2011         .get_eeprom             = igb_get_eeprom,
2012         .set_eeprom             = igb_set_eeprom,
2013         .get_ringparam          = igb_get_ringparam,
2014         .set_ringparam          = igb_set_ringparam,
2015         .get_pauseparam         = igb_get_pauseparam,
2016         .set_pauseparam         = igb_set_pauseparam,
2017         .get_rx_csum            = igb_get_rx_csum,
2018         .set_rx_csum            = igb_set_rx_csum,
2019         .get_tx_csum            = igb_get_tx_csum,
2020         .set_tx_csum            = igb_set_tx_csum,
2021         .get_sg                 = ethtool_op_get_sg,
2022         .set_sg                 = ethtool_op_set_sg,
2023         .get_tso                = ethtool_op_get_tso,
2024         .set_tso                = igb_set_tso,
2025         .self_test              = igb_diag_test,
2026         .get_strings            = igb_get_strings,
2027         .phys_id                = igb_phys_id,
2028         .get_sset_count         = igb_get_sset_count,
2029         .get_ethtool_stats      = igb_get_ethtool_stats,
2030         .get_coalesce           = igb_get_coalesce,
2031         .set_coalesce           = igb_set_coalesce,
2032 };
2033
2034 void igb_set_ethtool_ops(struct net_device *netdev)
2035 {
2036         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2037 }