2  * MTD map driver for AMD compatible flash chips (non-CFI)
 
   4  * Author: Jonas Holmberg <jonas.holmberg@axis.com>
 
   6  * $Id: amd_flash.c,v 1.28 2005/11/07 11:14:22 gleixner Exp $
 
   8  * Copyright (c) 2001 Axis Communications AB
 
  10  * This file is under GPL.
 
  14 #include <linux/module.h>
 
  15 #include <linux/types.h>
 
  16 #include <linux/kernel.h>
 
  17 #include <linux/sched.h>
 
  18 #include <linux/errno.h>
 
  19 #include <linux/slab.h>
 
  20 #include <linux/delay.h>
 
  21 #include <linux/interrupt.h>
 
  22 #include <linux/init.h>
 
  23 #include <linux/mtd/map.h>
 
  24 #include <linux/mtd/mtd.h>
 
  25 #include <linux/mtd/flashchip.h>
 
  27 /* There's no limit. It exists only to avoid realloc. */
 
  28 #define MAX_AMD_CHIPS 8
 
  30 #define DEVICE_TYPE_X8  (8 / 8)
 
  31 #define DEVICE_TYPE_X16 (16 / 8)
 
  32 #define DEVICE_TYPE_X32 (32 / 8)
 
  35 #define ADDR_MANUFACTURER               0x0000
 
  36 #define ADDR_DEVICE_ID                  0x0001
 
  37 #define ADDR_SECTOR_LOCK                0x0002
 
  38 #define ADDR_HANDSHAKE                  0x0003
 
  39 #define ADDR_UNLOCK_1                   0x0555
 
  40 #define ADDR_UNLOCK_2                   0x02AA
 
  43 #define CMD_UNLOCK_DATA_1               0x00AA
 
  44 #define CMD_UNLOCK_DATA_2               0x0055
 
  45 #define CMD_MANUFACTURER_UNLOCK_DATA    0x0090
 
  46 #define CMD_UNLOCK_BYPASS_MODE          0x0020
 
  47 #define CMD_PROGRAM_UNLOCK_DATA         0x00A0
 
  48 #define CMD_RESET_DATA                  0x00F0
 
  49 #define CMD_SECTOR_ERASE_UNLOCK_DATA    0x0080
 
  50 #define CMD_SECTOR_ERASE_UNLOCK_DATA_2  0x0030
 
  52 #define CMD_UNLOCK_SECTOR               0x0060
 
  55 #define MANUFACTURER_AMD        0x0001
 
  56 #define MANUFACTURER_ATMEL      0x001F
 
  57 #define MANUFACTURER_FUJITSU    0x0004
 
  58 #define MANUFACTURER_ST         0x0020
 
  59 #define MANUFACTURER_SST        0x00BF
 
  60 #define MANUFACTURER_TOSHIBA    0x0098
 
  63 #define AM29F800BB      0x2258
 
  64 #define AM29F800BT      0x22D6
 
  65 #define AM29LV800BB     0x225B
 
  66 #define AM29LV800BT     0x22DA
 
  67 #define AM29LV160DT     0x22C4
 
  68 #define AM29LV160DB     0x2249
 
  69 #define AM29BDS323D     0x22D1
 
  72 #define AT49xV16x       0x00C0
 
  73 #define AT49xV16xT      0x00C2
 
  76 #define MBM29LV160TE    0x22C4
 
  77 #define MBM29LV160BE    0x2249
 
  78 #define MBM29LV800BB    0x225B
 
  81 #define M29W800T        0x00D7
 
  82 #define M29W160DT       0x22C4
 
  83 #define M29W160DB       0x2249
 
  86 #define SST39LF800      0x2781
 
  87 #define SST39LF160      0x2782
 
  90 #define TC58FVT160      0x00C2
 
  91 #define TC58FVB160      0x0043
 
  95 struct amd_flash_private {
 
  99         unsigned long chipshift;
 
 100 //      const char *im_name;
 
 101         struct flchip chips[0];
 
 104 struct amd_flash_info {
 
 109         const int numeraseregions;
 
 110         const struct mtd_erase_region_info regions[4];
 
 115 static int amd_flash_read(struct mtd_info *, loff_t, size_t, size_t *,
 
 117 static int amd_flash_write(struct mtd_info *, loff_t, size_t, size_t *,
 
 119 static int amd_flash_erase(struct mtd_info *, struct erase_info *);
 
 120 static void amd_flash_sync(struct mtd_info *);
 
 121 static int amd_flash_suspend(struct mtd_info *);
 
 122 static void amd_flash_resume(struct mtd_info *);
 
 123 static void amd_flash_destroy(struct mtd_info *);
 
 124 static struct mtd_info *amd_flash_probe(struct map_info *map);
 
 127 static struct mtd_chip_driver amd_flash_chipdrv = {
 
 128         .probe = amd_flash_probe,
 
 129         .destroy = amd_flash_destroy,
 
 131         .module = THIS_MODULE
 
 136 static const char im_name[] = "amd_flash";
 
 140 static inline __u32 wide_read(struct map_info *map, __u32 addr)
 
 142         if (map->buswidth == 1) {
 
 143                 return map_read8(map, addr);
 
 144         } else if (map->buswidth == 2) {
 
 145                 return map_read16(map, addr);
 
 146         } else if (map->buswidth == 4) {
 
 147                 return map_read32(map, addr);
 
 153 static inline void wide_write(struct map_info *map, __u32 val, __u32 addr)
 
 155         if (map->buswidth == 1) {
 
 156                 map_write8(map, val, addr);
 
 157         } else if (map->buswidth == 2) {
 
 158                 map_write16(map, val, addr);
 
 159         } else if (map->buswidth == 4) {
 
 160                 map_write32(map, val, addr);
 
 164 static inline __u32 make_cmd(struct map_info *map, __u32 cmd)
 
 166         const struct amd_flash_private *private = map->fldrv_priv;
 
 167         if ((private->interleave == 2) &&
 
 168             (private->device_type == DEVICE_TYPE_X16)) {
 
 175 static inline void send_unlock(struct map_info *map, unsigned long base)
 
 177         wide_write(map, (CMD_UNLOCK_DATA_1 << 16) | CMD_UNLOCK_DATA_1,
 
 178                    base + (map->buswidth * ADDR_UNLOCK_1));
 
 179         wide_write(map, (CMD_UNLOCK_DATA_2 << 16) | CMD_UNLOCK_DATA_2,
 
 180                    base + (map->buswidth * ADDR_UNLOCK_2));
 
 183 static inline void send_cmd(struct map_info *map, unsigned long base, __u32 cmd)
 
 185         send_unlock(map, base);
 
 186         wide_write(map, make_cmd(map, cmd),
 
 187                    base + (map->buswidth * ADDR_UNLOCK_1));
 
 190 static inline void send_cmd_to_addr(struct map_info *map, unsigned long base,
 
 191                                     __u32 cmd, unsigned long addr)
 
 193         send_unlock(map, base);
 
 194         wide_write(map, make_cmd(map, cmd), addr);
 
 197 static inline int flash_is_busy(struct map_info *map, unsigned long addr,
 
 201         if ((interleave == 2) && (map->buswidth == 4)) {
 
 204                 read1 = wide_read(map, addr);
 
 205                 read2 = wide_read(map, addr);
 
 207                 return (((read1 >> 16) & D6_MASK) !=
 
 208                         ((read2 >> 16) & D6_MASK)) ||
 
 209                        (((read1 & 0xffff) & D6_MASK) !=
 
 210                         ((read2 & 0xffff) & D6_MASK));
 
 213         return ((wide_read(map, addr) & D6_MASK) !=
 
 214                 (wide_read(map, addr) & D6_MASK));
 
 217 static inline void unlock_sector(struct map_info *map, unsigned long sect_addr,
 
 220         /* Sector lock address. A6 = 1 for unlock, A6 = 0 for lock */
 
 222                 (sect_addr |  (0x40 * map->buswidth)) :
 
 223                 (sect_addr & ~(0x40 * map->buswidth)) ;
 
 225         __u32 cmd = make_cmd(map, CMD_UNLOCK_SECTOR);
 
 227         wide_write(map, make_cmd(map, CMD_RESET_DATA), 0);
 
 228         wide_write(map, cmd, SLA); /* 1st cycle: write cmd to any address */
 
 229         wide_write(map, cmd, SLA); /* 2nd cycle: write cmd to any address */
 
 230         wide_write(map, cmd, SLA); /* 3rd cycle: write cmd to SLA */
 
 233 static inline int is_sector_locked(struct map_info *map,
 
 234                                    unsigned long sect_addr)
 
 238         wide_write(map, CMD_RESET_DATA, 0);
 
 239         send_cmd(map, sect_addr, CMD_MANUFACTURER_UNLOCK_DATA);
 
 241         /* status is 0x0000 for unlocked and 0x0001 for locked */
 
 242         status = wide_read(map, sect_addr + (map->buswidth * ADDR_SECTOR_LOCK));
 
 243         wide_write(map, CMD_RESET_DATA, 0);
 
 247 static int amd_flash_do_unlock(struct mtd_info *mtd, loff_t ofs, size_t len,
 
 250         struct map_info *map;
 
 251         struct mtd_erase_region_info *merip;
 
 252         int eraseoffset, erasesize, eraseblocks;
 
 259         /* Pass the whole chip through sector by sector and check for each
 
 260            sector if the sector and the given interval overlap */
 
 261         for(i = 0; i < mtd->numeraseregions; i++) {
 
 262                 merip = &mtd->eraseregions[i];
 
 264                 eraseoffset = merip->offset;
 
 265                 erasesize = merip->erasesize;
 
 266                 eraseblocks = merip->numblocks;
 
 268                 if (ofs > eraseoffset + erasesize)
 
 271                 while (eraseblocks > 0) {
 
 272                         if (ofs < eraseoffset + erasesize && ofs + len > eraseoffset) {
 
 273                                 unlock_sector(map, eraseoffset, is_unlock);
 
 275                                 lock_status = is_sector_locked(map, eraseoffset);
 
 277                                 if (is_unlock && lock_status) {
 
 278                                         printk("Cannot unlock sector at address %x length %xx\n",
 
 279                                                eraseoffset, merip->erasesize);
 
 281                                 } else if (!is_unlock && !lock_status) {
 
 282                                         printk("Cannot lock sector at address %x length %x\n",
 
 283                                                eraseoffset, merip->erasesize);
 
 287                         eraseoffset += erasesize;
 
 294 static int amd_flash_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
 
 296         return amd_flash_do_unlock(mtd, ofs, len, 1);
 
 299 static int amd_flash_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
 
 301         return amd_flash_do_unlock(mtd, ofs, len, 0);
 
 306  * Reads JEDEC manufacturer ID and device ID and returns the index of the first
 
 307  * matching table entry (-1 if not found or alias for already found chip).
 
 309 static int probe_new_chip(struct mtd_info *mtd, __u32 base,
 
 310                           struct flchip *chips,
 
 311                           struct amd_flash_private *private,
 
 312                           const struct amd_flash_info *table, int table_size)
 
 316         struct map_info *map = mtd->priv;
 
 317         struct amd_flash_private temp;
 
 320         temp.device_type = DEVICE_TYPE_X16;     // Assume X16 (FIXME)
 
 322         map->fldrv_priv = &temp;
 
 324         /* Enter autoselect mode. */
 
 325         send_cmd(map, base, CMD_RESET_DATA);
 
 326         send_cmd(map, base, CMD_MANUFACTURER_UNLOCK_DATA);
 
 328         mfr_id = wide_read(map, base + (map->buswidth * ADDR_MANUFACTURER));
 
 329         dev_id = wide_read(map, base + (map->buswidth * ADDR_DEVICE_ID));
 
 331         if ((map->buswidth == 4) && ((mfr_id >> 16) == (mfr_id & 0xffff)) &&
 
 332             ((dev_id >> 16) == (dev_id & 0xffff))) {
 
 339         for (i = 0; i < table_size; i++) {
 
 340                 if ((mfr_id == table[i].mfr_id) &&
 
 341                     (dev_id == table[i].dev_id)) {
 
 345                                 /* Is this an alias for an already found chip?
 
 346                                  * In that case that chip should be in
 
 347                                  * autoselect mode now.
 
 349                                 for (j = 0; j < private->numchips; j++) {
 
 354                                                 wide_read(map, chips[j].start +
 
 359                                                 wide_read(map, chips[j].start +
 
 362                                         if (temp.interleave == 2) {
 
 363                                                 mfr_id_other &= 0xffff;
 
 364                                                 dev_id_other &= 0xffff;
 
 366                                         if ((mfr_id_other == mfr_id) &&
 
 367                                             (dev_id_other == dev_id)) {
 
 369                                                 /* Exit autoselect mode. */
 
 377                                 if (private->numchips == MAX_AMD_CHIPS) {
 
 379                                                "%s: Too many flash chips "
 
 380                                                "detected. Increase "
 
 381                                                "MAX_AMD_CHIPS from %d.\n",
 
 382                                                map->name, MAX_AMD_CHIPS);
 
 387                                 chips[private->numchips].start = base;
 
 388                                 chips[private->numchips].state = FL_READY;
 
 389                                 chips[private->numchips].mutex =
 
 390                                         &chips[private->numchips]._spinlock;
 
 394                         printk("%s: Found %d x %ldMiB %s at 0x%x\n", map->name,
 
 395                                temp.interleave, (table[i].size)/(1024*1024),
 
 396                                table[i].name, base);
 
 398                         mtd->size += table[i].size * temp.interleave;
 
 399                         mtd->numeraseregions += table[i].numeraseregions;
 
 405         /* Exit autoselect mode. */
 
 406         send_cmd(map, base, CMD_RESET_DATA);
 
 408         if (i == table_size) {
 
 409                 printk(KERN_DEBUG "%s: unknown flash device at 0x%x, "
 
 410                        "mfr id 0x%x, dev id 0x%x\n", map->name,
 
 411                        base, mfr_id, dev_id);
 
 412                 map->fldrv_priv = NULL;
 
 417         private->device_type = temp.device_type;
 
 418         private->interleave = temp.interleave;
 
 425 static struct mtd_info *amd_flash_probe(struct map_info *map)
 
 427         static const struct amd_flash_info table[] = {
 
 429                 .mfr_id = MANUFACTURER_AMD,
 
 430                 .dev_id = AM29LV160DT,
 
 431                 .name = "AMD AM29LV160DT",
 
 433                 .numeraseregions = 4,
 
 435                         { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
 
 436                         { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks =  1 },
 
 437                         { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks =  2 },
 
 438                         { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks =  1 }
 
 441                 .mfr_id = MANUFACTURER_AMD,
 
 442                 .dev_id = AM29LV160DB,
 
 443                 .name = "AMD AM29LV160DB",
 
 445                 .numeraseregions = 4,
 
 447                         { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
 
 448                         { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
 
 449                         { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
 
 450                         { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
 
 453                 .mfr_id = MANUFACTURER_TOSHIBA,
 
 454                 .dev_id = TC58FVT160,
 
 455                 .name = "Toshiba TC58FVT160",
 
 457                 .numeraseregions = 4,
 
 459                         { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
 
 460                         { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks =  1 },
 
 461                         { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks =  2 },
 
 462                         { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks =  1 }
 
 465                 .mfr_id = MANUFACTURER_FUJITSU,
 
 466                 .dev_id = MBM29LV160TE,
 
 467                 .name = "Fujitsu MBM29LV160TE",
 
 469                 .numeraseregions = 4,
 
 471                         { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
 
 472                         { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks =  1 },
 
 473                         { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks =  2 },
 
 474                         { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks =  1 }
 
 477                 .mfr_id = MANUFACTURER_TOSHIBA,
 
 478                 .dev_id = TC58FVB160,
 
 479                 .name = "Toshiba TC58FVB160",
 
 481                 .numeraseregions = 4,
 
 483                         { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
 
 484                         { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
 
 485                         { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
 
 486                         { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
 
 489                 .mfr_id = MANUFACTURER_FUJITSU,
 
 490                 .dev_id = MBM29LV160BE,
 
 491                 .name = "Fujitsu MBM29LV160BE",
 
 493                 .numeraseregions = 4,
 
 495                         { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
 
 496                         { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
 
 497                         { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
 
 498                         { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
 
 501                 .mfr_id = MANUFACTURER_AMD,
 
 502                 .dev_id = AM29LV800BB,
 
 503                 .name = "AMD AM29LV800BB",
 
 505                 .numeraseregions = 4,
 
 507                         { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
 
 508                         { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
 
 509                         { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
 
 510                         { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 }
 
 513                 .mfr_id = MANUFACTURER_AMD,
 
 514                 .dev_id = AM29F800BB,
 
 515                 .name = "AMD AM29F800BB",
 
 517                 .numeraseregions = 4,
 
 519                         { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
 
 520                         { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
 
 521                         { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
 
 522                         { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 }
 
 525                 .mfr_id = MANUFACTURER_AMD,
 
 526                 .dev_id = AM29LV800BT,
 
 527                 .name = "AMD AM29LV800BT",
 
 529                 .numeraseregions = 4,
 
 531                         { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
 
 532                         { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks =  1 },
 
 533                         { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks =  2 },
 
 534                         { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks =  1 }
 
 537                 .mfr_id = MANUFACTURER_AMD,
 
 538                 .dev_id = AM29F800BT,
 
 539                 .name = "AMD AM29F800BT",
 
 541                 .numeraseregions = 4,
 
 543                         { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
 
 544                         { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks =  1 },
 
 545                         { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks =  2 },
 
 546                         { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks =  1 }
 
 549                 .mfr_id = MANUFACTURER_AMD,
 
 550                 .dev_id = AM29LV800BB,
 
 551                 .name = "AMD AM29LV800BB",
 
 553                 .numeraseregions = 4,
 
 555                         { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
 
 556                         { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks =  1 },
 
 557                         { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks =  2 },
 
 558                         { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks =  1 }
 
 561                 .mfr_id = MANUFACTURER_FUJITSU,
 
 562                 .dev_id = MBM29LV800BB,
 
 563                 .name = "Fujitsu MBM29LV800BB",
 
 565                 .numeraseregions = 4,
 
 567                         { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
 
 568                         { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
 
 569                         { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
 
 570                         { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 }
 
 573                 .mfr_id = MANUFACTURER_ST,
 
 575                 .name = "ST M29W800T",
 
 577                 .numeraseregions = 4,
 
 579                         { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 },
 
 580                         { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks =  1 },
 
 581                         { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks =  2 },
 
 582                         { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks =  1 }
 
 585                 .mfr_id = MANUFACTURER_ST,
 
 587                 .name = "ST M29W160DT",
 
 589                 .numeraseregions = 4,
 
 591                         { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
 
 592                         { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks =  1 },
 
 593                         { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks =  2 },
 
 594                         { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks =  1 }
 
 597                 .mfr_id = MANUFACTURER_ST,
 
 599                 .name = "ST M29W160DB",
 
 601                 .numeraseregions = 4,
 
 603                         { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 },
 
 604                         { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 },
 
 605                         { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 },
 
 606                         { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
 
 609                 .mfr_id = MANUFACTURER_AMD,
 
 610                 .dev_id = AM29BDS323D,
 
 611                 .name = "AMD AM29BDS323D",
 
 613                 .numeraseregions = 3,
 
 615                         { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 48 },
 
 616                         { .offset = 0x300000, .erasesize = 0x10000, .numblocks = 15 },
 
 617                         { .offset = 0x3f0000, .erasesize = 0x02000, .numblocks =  8 },
 
 620                 .mfr_id = MANUFACTURER_ATMEL,
 
 622                 .name = "Atmel AT49xV16x",
 
 624                 .numeraseregions = 2,
 
 626                         { .offset = 0x000000, .erasesize = 0x02000, .numblocks =  8 },
 
 627                         { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 }
 
 630                 .mfr_id = MANUFACTURER_ATMEL,
 
 631                 .dev_id = AT49xV16xT,
 
 632                 .name = "Atmel AT49xV16xT",
 
 634                 .numeraseregions = 2,
 
 636                         { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 },
 
 637                         { .offset = 0x1F0000, .erasesize = 0x02000, .numblocks =  8 }
 
 642         struct mtd_info *mtd;
 
 643         struct flchip chips[MAX_AMD_CHIPS];
 
 644         int table_pos[MAX_AMD_CHIPS];
 
 645         struct amd_flash_private temp;
 
 646         struct amd_flash_private *private;
 
 653         mtd = (struct mtd_info*)kmalloc(sizeof(*mtd), GFP_KERNEL);
 
 656                        "%s: kmalloc failed for info structure\n", map->name);
 
 659         memset(mtd, 0, sizeof(*mtd));
 
 662         memset(&temp, 0, sizeof(temp));
 
 664         printk("%s: Probing for AMD compatible flash...\n", map->name);
 
 666         if ((table_pos[0] = probe_new_chip(mtd, 0, NULL, &temp, table,
 
 670                        "%s: Found no AMD compatible device at location zero\n",
 
 678         chips[0].state = FL_READY;
 
 679         chips[0].mutex = &chips[0]._spinlock;
 
 681         for (size = mtd->size; size > 1; size >>= 1) {
 
 684         switch (temp.interleave) {
 
 693         /* Find out if there are any more chips in the map. */
 
 694         for (base = (1 << temp.chipshift);
 
 696              base += (1 << temp.chipshift)) {
 
 697                 int numchips = temp.numchips;
 
 698                 table_pos[numchips] = probe_new_chip(mtd, base, chips,
 
 699                         &temp, table, ARRAY_SIZE(table));
 
 702         mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) *
 
 703                                     mtd->numeraseregions, GFP_KERNEL);
 
 704         if (!mtd->eraseregions) {
 
 705                 printk(KERN_WARNING "%s: Failed to allocate "
 
 706                        "memory for MTD erase region info\n", map->name);
 
 708                 map->fldrv_priv = NULL;
 
 714         for (i = 0; i < temp.numchips; i++) {
 
 719                 for (j = 0; j < table[table_pos[i]].numeraseregions; j++) {
 
 720                         mtd->eraseregions[reg_idx].offset = offset +
 
 721                                 (table[table_pos[i]].regions[j].offset *
 
 723                         mtd->eraseregions[reg_idx].erasesize =
 
 724                                 table[table_pos[i]].regions[j].erasesize *
 
 726                         mtd->eraseregions[reg_idx].numblocks =
 
 727                                 table[table_pos[i]].regions[j].numblocks;
 
 729                             mtd->eraseregions[reg_idx].erasesize) {
 
 731                                         mtd->eraseregions[reg_idx].erasesize;
 
 733                         dev_size += mtd->eraseregions[reg_idx].erasesize *
 
 734                                     mtd->eraseregions[reg_idx].numblocks;
 
 739         mtd->type = MTD_NORFLASH;
 
 740         mtd->flags = MTD_CAP_NORFLASH;
 
 741         mtd->name = map->name;
 
 742         mtd->erase = amd_flash_erase;
 
 743         mtd->read = amd_flash_read;
 
 744         mtd->write = amd_flash_write;
 
 745         mtd->sync = amd_flash_sync;
 
 746         mtd->suspend = amd_flash_suspend;
 
 747         mtd->resume = amd_flash_resume;
 
 748         mtd->lock = amd_flash_lock;
 
 749         mtd->unlock = amd_flash_unlock;
 
 751         private = kmalloc(sizeof(*private) + (sizeof(struct flchip) *
 
 752                                               temp.numchips), GFP_KERNEL);
 
 755                        "%s: kmalloc failed for private structure\n", map->name);
 
 757                 map->fldrv_priv = NULL;
 
 760         memcpy(private, &temp, sizeof(temp));
 
 761         memcpy(private->chips, chips,
 
 762                sizeof(struct flchip) * private->numchips);
 
 763         for (i = 0; i < private->numchips; i++) {
 
 764                 init_waitqueue_head(&private->chips[i].wq);
 
 765                 spin_lock_init(&private->chips[i]._spinlock);
 
 768         map->fldrv_priv = private;
 
 770         map->fldrv = &amd_flash_chipdrv;
 
 772         __module_get(THIS_MODULE);
 
 778 static inline int read_one_chip(struct map_info *map, struct flchip *chip,
 
 779                                loff_t adr, size_t len, u_char *buf)
 
 781         DECLARE_WAITQUEUE(wait, current);
 
 782         unsigned long timeo = jiffies + HZ;
 
 785         spin_lock_bh(chip->mutex);
 
 787         if (chip->state != FL_READY){
 
 788                 printk(KERN_INFO "%s: waiting for chip to read, state = %d\n",
 
 789                        map->name, chip->state);
 
 790                 set_current_state(TASK_UNINTERRUPTIBLE);
 
 791                 add_wait_queue(&chip->wq, &wait);
 
 793                 spin_unlock_bh(chip->mutex);
 
 796                 remove_wait_queue(&chip->wq, &wait);
 
 798                 if(signal_pending(current)) {
 
 802                 timeo = jiffies + HZ;
 
 809         chip->state = FL_READY;
 
 811         map_copy_from(map, buf, adr, len);
 
 814         spin_unlock_bh(chip->mutex);
 
 821 static int amd_flash_read(struct mtd_info *mtd, loff_t from, size_t len,
 
 822                           size_t *retlen, u_char *buf)
 
 824         struct map_info *map = mtd->priv;
 
 825         struct amd_flash_private *private = map->fldrv_priv;
 
 830         if ((from + len) > mtd->size) {
 
 831                 printk(KERN_WARNING "%s: read request past end of device "
 
 832                        "(0x%lx)\n", map->name, (unsigned long)from + len);
 
 837         /* Offset within the first chip that the first read should start. */
 
 838         chipnum = (from >> private->chipshift);
 
 839         ofs = from - (chipnum <<  private->chipshift);
 
 844                 unsigned long this_len;
 
 846                 if (chipnum >= private->numchips) {
 
 850                 if ((len + ofs - 1) >> private->chipshift) {
 
 851                         this_len = (1 << private->chipshift) - ofs;
 
 856                 ret = read_one_chip(map, &private->chips[chipnum], ofs,
 
 875 static int write_one_word(struct map_info *map, struct flchip *chip,
 
 876                           unsigned long adr, __u32 datum)
 
 878         unsigned long timeo = jiffies + HZ;
 
 879         struct amd_flash_private *private = map->fldrv_priv;
 
 880         DECLARE_WAITQUEUE(wait, current);
 
 885         spin_lock_bh(chip->mutex);
 
 887         if (chip->state != FL_READY){
 
 888                 printk("%s: waiting for chip to write, state = %d\n",
 
 889                        map->name, chip->state);
 
 890                 set_current_state(TASK_UNINTERRUPTIBLE);
 
 891                 add_wait_queue(&chip->wq, &wait);
 
 893                 spin_unlock_bh(chip->mutex);
 
 896                 remove_wait_queue(&chip->wq, &wait);
 
 897                 printk(KERN_INFO "%s: woke up to write\n", map->name);
 
 898                 if(signal_pending(current))
 
 901                 timeo = jiffies + HZ;
 
 906         chip->state = FL_WRITING;
 
 910         send_cmd(map, chip->start, CMD_PROGRAM_UNLOCK_DATA);
 
 911         wide_write(map, datum, adr);
 
 914         while (times_left-- && flash_is_busy(map, adr, private->interleave)) {
 
 915                 if (need_resched()) {
 
 916                         spin_unlock_bh(chip->mutex);
 
 918                         spin_lock_bh(chip->mutex);
 
 923                 printk(KERN_WARNING "%s: write to 0x%lx timed out!\n",
 
 928                 if ((verify = wide_read(map, adr)) != datum) {
 
 929                         printk(KERN_WARNING "%s: write to 0x%lx failed. "
 
 930                                "datum = %x, verify = %x\n",
 
 931                                map->name, adr, datum, verify);
 
 937         chip->state = FL_READY;
 
 939         spin_unlock_bh(chip->mutex);
 
 946 static int amd_flash_write(struct mtd_info *mtd, loff_t to , size_t len,
 
 947                            size_t *retlen, const u_char *buf)
 
 949         struct map_info *map = mtd->priv;
 
 950         struct amd_flash_private *private = map->fldrv_priv;
 
 954         unsigned long chipstart;
 
 961         chipnum = to >> private->chipshift;
 
 962         ofs = to  - (chipnum << private->chipshift);
 
 963         chipstart = private->chips[chipnum].start;
 
 965         /* If it's not bus-aligned, do the first byte write. */
 
 966         if (ofs & (map->buswidth - 1)) {
 
 967                 unsigned long bus_ofs = ofs & ~(map->buswidth - 1);
 
 968                 int i = ofs - bus_ofs;
 
 973                 map_copy_from(map, tmp_buf,
 
 974                                bus_ofs + private->chips[chipnum].start,
 
 976                 while (len && i < map->buswidth)
 
 977                         tmp_buf[i++] = buf[n++], len--;
 
 979                 if (map->buswidth == 2) {
 
 980                         datum = *(__u16*)tmp_buf;
 
 981                 } else if (map->buswidth == 4) {
 
 982                         datum = *(__u32*)tmp_buf;
 
 984                         return -EINVAL;  /* should never happen, but be safe */
 
 987                 ret = write_one_word(map, &private->chips[chipnum], bus_ofs,
 
 997                 if (ofs >> private->chipshift) {
 
1000                         if (chipnum == private->numchips) {
 
1006         /* We are now aligned, write as much as possible. */
 
1007         while(len >= map->buswidth) {
 
1010                 if (map->buswidth == 1) {
 
1011                         datum = *(__u8*)buf;
 
1012                 } else if (map->buswidth == 2) {
 
1013                         datum = *(__u16*)buf;
 
1014                 } else if (map->buswidth == 4) {
 
1015                         datum = *(__u32*)buf;
 
1020                 ret = write_one_word(map, &private->chips[chipnum], ofs, datum);
 
1026                 ofs += map->buswidth;
 
1027                 buf += map->buswidth;
 
1028                 (*retlen) += map->buswidth;
 
1029                 len -= map->buswidth;
 
1031                 if (ofs >> private->chipshift) {
 
1034                         if (chipnum == private->numchips) {
 
1037                         chipstart = private->chips[chipnum].start;
 
1041         if (len & (map->buswidth - 1)) {
 
1046                 map_copy_from(map, tmp_buf,
 
1047                                ofs + private->chips[chipnum].start,
 
1050                         tmp_buf[i++] = buf[n++];
 
1053                 if (map->buswidth == 2) {
 
1054                         datum = *(__u16*)tmp_buf;
 
1055                 } else if (map->buswidth == 4) {
 
1056                         datum = *(__u32*)tmp_buf;
 
1058                         return -EINVAL;  /* should never happen, but be safe */
 
1061                 ret = write_one_word(map, &private->chips[chipnum], ofs, datum);
 
1075 static inline int erase_one_block(struct map_info *map, struct flchip *chip,
 
1076                                   unsigned long adr, u_long size)
 
1078         unsigned long timeo = jiffies + HZ;
 
1079         struct amd_flash_private *private = map->fldrv_priv;
 
1080         DECLARE_WAITQUEUE(wait, current);
 
1083         spin_lock_bh(chip->mutex);
 
1085         if (chip->state != FL_READY){
 
1086                 set_current_state(TASK_UNINTERRUPTIBLE);
 
1087                 add_wait_queue(&chip->wq, &wait);
 
1089                 spin_unlock_bh(chip->mutex);
 
1092                 remove_wait_queue(&chip->wq, &wait);
 
1094                 if (signal_pending(current)) {
 
1098                 timeo = jiffies + HZ;
 
1103         chip->state = FL_ERASING;
 
1107         send_cmd(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA);
 
1108         send_cmd_to_addr(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA_2, adr);
 
1110         timeo = jiffies + (HZ * 20);
 
1112         spin_unlock_bh(chip->mutex);
 
1114         spin_lock_bh(chip->mutex);
 
1116         while (flash_is_busy(map, adr, private->interleave)) {
 
1118                 if (chip->state != FL_ERASING) {
 
1119                         /* Someone's suspended the erase. Sleep */
 
1120                         set_current_state(TASK_UNINTERRUPTIBLE);
 
1121                         add_wait_queue(&chip->wq, &wait);
 
1123                         spin_unlock_bh(chip->mutex);
 
1124                         printk(KERN_INFO "%s: erase suspended. Sleeping\n",
 
1127                         remove_wait_queue(&chip->wq, &wait);
 
1129                         if (signal_pending(current)) {
 
1133                         timeo = jiffies + (HZ*2); /* FIXME */
 
1134                         spin_lock_bh(chip->mutex);
 
1138                 /* OK Still waiting */
 
1139                 if (time_after(jiffies, timeo)) {
 
1140                         chip->state = FL_READY;
 
1141                         spin_unlock_bh(chip->mutex);
 
1142                         printk(KERN_WARNING "%s: waiting for erase to complete "
 
1143                                "timed out.\n", map->name);
 
1149                 /* Latency issues. Drop the lock, wait a while and retry */
 
1150                 spin_unlock_bh(chip->mutex);
 
1157                 spin_lock_bh(chip->mutex);
 
1160         /* Verify every single word */
 
1166                 for (address = adr; address < (adr + size); address++) {
 
1167                         if ((verify = map_read8(map, address)) != 0xFF) {
 
1173                         chip->state = FL_READY;
 
1174                         spin_unlock_bh(chip->mutex);
 
1176                                "%s: verify error at 0x%x, size %ld.\n",
 
1177                                map->name, address, size);
 
1185         chip->state = FL_READY;
 
1187         spin_unlock_bh(chip->mutex);
 
1194 static int amd_flash_erase(struct mtd_info *mtd, struct erase_info *instr)
 
1196         struct map_info *map = mtd->priv;
 
1197         struct amd_flash_private *private = map->fldrv_priv;
 
1198         unsigned long adr, len;
 
1203         struct mtd_erase_region_info *regions = mtd->eraseregions;
 
1205         if (instr->addr > mtd->size) {
 
1209         if ((instr->len + instr->addr) > mtd->size) {
 
1213         /* Check that both start and end of the requested erase are
 
1214          * aligned with the erasesize at the appropriate addresses.
 
1219         /* Skip all erase regions which are ended before the start of
 
1220            the requested erase. Actually, to save on the calculations,
 
1221            we skip to the first erase region which starts after the
 
1222            start of the requested erase, and then go back one.
 
1225         while ((i < mtd->numeraseregions) &&
 
1226                (instr->addr >= regions[i].offset)) {
 
1231         /* OK, now i is pointing at the erase region in which this
 
1232          * erase request starts. Check the start of the requested
 
1233          * erase range is aligned with the erase size which is in
 
1237         if (instr->addr & (regions[i].erasesize-1)) {
 
1241         /* Remember the erase region we start on. */
 
1245         /* Next, check that the end of the requested erase is aligned
 
1246          * with the erase region at that address.
 
1249         while ((i < mtd->numeraseregions) &&
 
1250                ((instr->addr + instr->len) >= regions[i].offset)) {
 
1254         /* As before, drop back one to point at the region in which
 
1255          * the address actually falls.
 
1260         if ((instr->addr + instr->len) & (regions[i].erasesize-1)) {
 
1264         chipnum = instr->addr >> private->chipshift;
 
1265         adr = instr->addr - (chipnum << private->chipshift);
 
1271                 ret = erase_one_block(map, &private->chips[chipnum], adr,
 
1272                                       regions[i].erasesize);
 
1278                 adr += regions[i].erasesize;
 
1279                 len -= regions[i].erasesize;
 
1281                 if ((adr % (1 << private->chipshift)) ==
 
1282                     ((regions[i].offset + (regions[i].erasesize *
 
1283                                            regions[i].numblocks))
 
1284                      % (1 << private->chipshift))) {
 
1288                 if (adr >> private->chipshift) {
 
1291                         if (chipnum >= private->numchips) {
 
1297         instr->state = MTD_ERASE_DONE;
 
1298         mtd_erase_callback(instr);
 
1305 static void amd_flash_sync(struct mtd_info *mtd)
 
1307         struct map_info *map = mtd->priv;
 
1308         struct amd_flash_private *private = map->fldrv_priv;
 
1310         struct flchip *chip;
 
1312         DECLARE_WAITQUEUE(wait, current);
 
1314         for (i = 0; !ret && (i < private->numchips); i++) {
 
1315                 chip = &private->chips[i];
 
1318                 spin_lock_bh(chip->mutex);
 
1320                 switch(chip->state) {
 
1324                 case FL_JEDEC_QUERY:
 
1325                         chip->oldstate = chip->state;
 
1326                         chip->state = FL_SYNCING;
 
1327                         /* No need to wake_up() on this state change -
 
1328                          * as the whole point is that nobody can do anything
 
1329                          * with the chip now anyway.
 
1332                         spin_unlock_bh(chip->mutex);
 
1336                         /* Not an idle state */
 
1337                         add_wait_queue(&chip->wq, &wait);
 
1339                         spin_unlock_bh(chip->mutex);
 
1343                         remove_wait_queue(&chip->wq, &wait);
 
1349         /* Unlock the chips again */
 
1350         for (i--; i >= 0; i--) {
 
1351                 chip = &private->chips[i];
 
1353                 spin_lock_bh(chip->mutex);
 
1355                 if (chip->state == FL_SYNCING) {
 
1356                         chip->state = chip->oldstate;
 
1359                 spin_unlock_bh(chip->mutex);
 
1365 static int amd_flash_suspend(struct mtd_info *mtd)
 
1367 printk("amd_flash_suspend(): not implemented!\n");
 
1373 static void amd_flash_resume(struct mtd_info *mtd)
 
1375 printk("amd_flash_resume(): not implemented!\n");
 
1380 static void amd_flash_destroy(struct mtd_info *mtd)
 
1382         struct map_info *map = mtd->priv;
 
1383         struct amd_flash_private *private = map->fldrv_priv;
 
1387 int __init amd_flash_init(void)
 
1389         register_mtd_chip_driver(&amd_flash_chipdrv);
 
1393 void __exit amd_flash_exit(void)
 
1395         unregister_mtd_chip_driver(&amd_flash_chipdrv);
 
1398 module_init(amd_flash_init);
 
1399 module_exit(amd_flash_exit);
 
1401 MODULE_LICENSE("GPL");
 
1402 MODULE_AUTHOR("Jonas Holmberg <jonas.holmberg@axis.com>");
 
1403 MODULE_DESCRIPTION("Old MTD chip driver for AMD flash chips");