2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
37 #include <scsi/scsi_cmnd.h>
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(struct request_queue *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
47 * For the allocated request tables
49 static struct kmem_cache *request_cachep;
52 * For queue allocation
54 static struct kmem_cache *requestq_cachep;
57 * For io context allocations
59 static struct kmem_cache *iocontext_cachep;
62 * Controlling structure to kblockd
64 static struct workqueue_struct *kblockd_workqueue;
66 unsigned long blk_max_low_pfn, blk_max_pfn;
68 EXPORT_SYMBOL(blk_max_low_pfn);
69 EXPORT_SYMBOL(blk_max_pfn);
71 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
73 /* Amount of time in which a process may batch requests */
74 #define BLK_BATCH_TIME (HZ/50UL)
76 /* Number of requests a "batching" process may submit */
77 #define BLK_BATCH_REQ 32
80 * Return the threshold (number of used requests) at which the queue is
81 * considered to be congested. It include a little hysteresis to keep the
82 * context switch rate down.
84 static inline int queue_congestion_on_threshold(struct request_queue *q)
86 return q->nr_congestion_on;
90 * The threshold at which a queue is considered to be uncongested
92 static inline int queue_congestion_off_threshold(struct request_queue *q)
94 return q->nr_congestion_off;
97 static void blk_queue_congestion_threshold(struct request_queue *q)
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
104 q->nr_congestion_on = nr;
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 q->nr_congestion_off = nr;
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * Locates the passed device's request queue and returns the address of its
119 * Will return NULL if the request queue cannot be located.
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
127 ret = &q->backing_dev_info;
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
133 * blk_queue_prep_rq - set a prepare_request function for queue
135 * @pfn: prepare_request function
137 * It's possible for a queue to register a prepare_request callback which
138 * is invoked before the request is handed to the request_fn. The goal of
139 * the function is to prepare a request for I/O, it can be used to build a
140 * cdb from the request data for instance.
143 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
148 EXPORT_SYMBOL(blk_queue_prep_rq);
151 * blk_queue_merge_bvec - set a merge_bvec function for queue
153 * @mbfn: merge_bvec_fn
155 * Usually queues have static limitations on the max sectors or segments that
156 * we can put in a request. Stacking drivers may have some settings that
157 * are dynamic, and thus we have to query the queue whether it is ok to
158 * add a new bio_vec to a bio at a given offset or not. If the block device
159 * has such limitations, it needs to register a merge_bvec_fn to control
160 * the size of bio's sent to it. Note that a block device *must* allow a
161 * single page to be added to an empty bio. The block device driver may want
162 * to use the bio_split() function to deal with these bio's. By default
163 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
166 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
168 q->merge_bvec_fn = mbfn;
171 EXPORT_SYMBOL(blk_queue_merge_bvec);
173 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
175 q->softirq_done_fn = fn;
178 EXPORT_SYMBOL(blk_queue_softirq_done);
181 * blk_queue_make_request - define an alternate make_request function for a device
182 * @q: the request queue for the device to be affected
183 * @mfn: the alternate make_request function
186 * The normal way for &struct bios to be passed to a device
187 * driver is for them to be collected into requests on a request
188 * queue, and then to allow the device driver to select requests
189 * off that queue when it is ready. This works well for many block
190 * devices. However some block devices (typically virtual devices
191 * such as md or lvm) do not benefit from the processing on the
192 * request queue, and are served best by having the requests passed
193 * directly to them. This can be achieved by providing a function
194 * to blk_queue_make_request().
197 * The driver that does this *must* be able to deal appropriately
198 * with buffers in "highmemory". This can be accomplished by either calling
199 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
200 * blk_queue_bounce() to create a buffer in normal memory.
202 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
207 q->nr_requests = BLKDEV_MAX_RQ;
208 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
209 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
210 q->make_request_fn = mfn;
211 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
212 q->backing_dev_info.state = 0;
213 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
214 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
215 blk_queue_hardsect_size(q, 512);
216 blk_queue_dma_alignment(q, 511);
217 blk_queue_congestion_threshold(q);
218 q->nr_batching = BLK_BATCH_REQ;
220 q->unplug_thresh = 4; /* hmm */
221 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
222 if (q->unplug_delay == 0)
225 INIT_WORK(&q->unplug_work, blk_unplug_work);
227 q->unplug_timer.function = blk_unplug_timeout;
228 q->unplug_timer.data = (unsigned long)q;
231 * by default assume old behaviour and bounce for any highmem page
233 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
236 EXPORT_SYMBOL(blk_queue_make_request);
238 static void rq_init(struct request_queue *q, struct request *rq)
240 INIT_LIST_HEAD(&rq->queuelist);
241 INIT_LIST_HEAD(&rq->donelist);
244 rq->bio = rq->biotail = NULL;
245 INIT_HLIST_NODE(&rq->hash);
246 RB_CLEAR_NODE(&rq->rb_node);
254 rq->nr_phys_segments = 0;
257 rq->end_io_data = NULL;
258 rq->completion_data = NULL;
263 * blk_queue_ordered - does this queue support ordered writes
264 * @q: the request queue
265 * @ordered: one of QUEUE_ORDERED_*
266 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
269 * For journalled file systems, doing ordered writes on a commit
270 * block instead of explicitly doing wait_on_buffer (which is bad
271 * for performance) can be a big win. Block drivers supporting this
272 * feature should call this function and indicate so.
275 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
276 prepare_flush_fn *prepare_flush_fn)
278 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
279 prepare_flush_fn == NULL) {
280 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
284 if (ordered != QUEUE_ORDERED_NONE &&
285 ordered != QUEUE_ORDERED_DRAIN &&
286 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
287 ordered != QUEUE_ORDERED_DRAIN_FUA &&
288 ordered != QUEUE_ORDERED_TAG &&
289 ordered != QUEUE_ORDERED_TAG_FLUSH &&
290 ordered != QUEUE_ORDERED_TAG_FUA) {
291 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
295 q->ordered = ordered;
296 q->next_ordered = ordered;
297 q->prepare_flush_fn = prepare_flush_fn;
302 EXPORT_SYMBOL(blk_queue_ordered);
305 * blk_queue_issue_flush_fn - set function for issuing a flush
306 * @q: the request queue
307 * @iff: the function to be called issuing the flush
310 * If a driver supports issuing a flush command, the support is notified
311 * to the block layer by defining it through this call.
314 void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
316 q->issue_flush_fn = iff;
319 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
322 * Cache flushing for ordered writes handling
324 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
328 return 1 << ffz(q->ordseq);
331 unsigned blk_ordered_req_seq(struct request *rq)
333 struct request_queue *q = rq->q;
335 BUG_ON(q->ordseq == 0);
337 if (rq == &q->pre_flush_rq)
338 return QUEUE_ORDSEQ_PREFLUSH;
339 if (rq == &q->bar_rq)
340 return QUEUE_ORDSEQ_BAR;
341 if (rq == &q->post_flush_rq)
342 return QUEUE_ORDSEQ_POSTFLUSH;
345 * !fs requests don't need to follow barrier ordering. Always
346 * put them at the front. This fixes the following deadlock.
348 * http://thread.gmane.org/gmane.linux.kernel/537473
350 if (!blk_fs_request(rq))
351 return QUEUE_ORDSEQ_DRAIN;
353 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
354 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
355 return QUEUE_ORDSEQ_DRAIN;
357 return QUEUE_ORDSEQ_DONE;
360 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
365 if (error && !q->orderr)
368 BUG_ON(q->ordseq & seq);
371 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
375 * Okay, sequence complete.
378 uptodate = q->orderr ? q->orderr : 1;
382 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
383 end_that_request_last(rq, uptodate);
386 static void pre_flush_end_io(struct request *rq, int error)
388 elv_completed_request(rq->q, rq);
389 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
392 static void bar_end_io(struct request *rq, int error)
394 elv_completed_request(rq->q, rq);
395 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
398 static void post_flush_end_io(struct request *rq, int error)
400 elv_completed_request(rq->q, rq);
401 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
404 static void queue_flush(struct request_queue *q, unsigned which)
407 rq_end_io_fn *end_io;
409 if (which == QUEUE_ORDERED_PREFLUSH) {
410 rq = &q->pre_flush_rq;
411 end_io = pre_flush_end_io;
413 rq = &q->post_flush_rq;
414 end_io = post_flush_end_io;
417 rq->cmd_flags = REQ_HARDBARRIER;
419 rq->elevator_private = NULL;
420 rq->elevator_private2 = NULL;
421 rq->rq_disk = q->bar_rq.rq_disk;
423 q->prepare_flush_fn(q, rq);
425 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
428 static inline struct request *start_ordered(struct request_queue *q,
433 q->ordered = q->next_ordered;
434 q->ordseq |= QUEUE_ORDSEQ_STARTED;
437 * Prep proxy barrier request.
439 blkdev_dequeue_request(rq);
444 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
445 rq->cmd_flags |= REQ_RW;
446 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
447 rq->elevator_private = NULL;
448 rq->elevator_private2 = NULL;
449 init_request_from_bio(rq, q->orig_bar_rq->bio);
450 rq->end_io = bar_end_io;
453 * Queue ordered sequence. As we stack them at the head, we
454 * need to queue in reverse order. Note that we rely on that
455 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
456 * request gets inbetween ordered sequence.
458 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
459 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
461 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
463 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
465 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
466 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
467 rq = &q->pre_flush_rq;
469 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
471 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
472 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
479 int blk_do_ordered(struct request_queue *q, struct request **rqp)
481 struct request *rq = *rqp;
482 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
488 if (q->next_ordered != QUEUE_ORDERED_NONE) {
489 *rqp = start_ordered(q, rq);
493 * This can happen when the queue switches to
494 * ORDERED_NONE while this request is on it.
496 blkdev_dequeue_request(rq);
497 end_that_request_first(rq, -EOPNOTSUPP,
498 rq->hard_nr_sectors);
499 end_that_request_last(rq, -EOPNOTSUPP);
506 * Ordered sequence in progress
509 /* Special requests are not subject to ordering rules. */
510 if (!blk_fs_request(rq) &&
511 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
514 if (q->ordered & QUEUE_ORDERED_TAG) {
515 /* Ordered by tag. Blocking the next barrier is enough. */
516 if (is_barrier && rq != &q->bar_rq)
519 /* Ordered by draining. Wait for turn. */
520 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
521 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
528 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
530 struct request_queue *q = bio->bi_private;
533 * This is dry run, restore bio_sector and size. We'll finish
534 * this request again with the original bi_end_io after an
535 * error occurs or post flush is complete.
543 set_bit(BIO_UPTODATE, &bio->bi_flags);
544 bio->bi_size = q->bi_size;
545 bio->bi_sector -= (q->bi_size >> 9);
551 static int ordered_bio_endio(struct request *rq, struct bio *bio,
552 unsigned int nbytes, int error)
554 struct request_queue *q = rq->q;
558 if (&q->bar_rq != rq)
562 * Okay, this is the barrier request in progress, dry finish it.
564 if (error && !q->orderr)
567 endio = bio->bi_end_io;
568 private = bio->bi_private;
569 bio->bi_end_io = flush_dry_bio_endio;
572 bio_endio(bio, nbytes, error);
574 bio->bi_end_io = endio;
575 bio->bi_private = private;
581 * blk_queue_bounce_limit - set bounce buffer limit for queue
582 * @q: the request queue for the device
583 * @dma_addr: bus address limit
586 * Different hardware can have different requirements as to what pages
587 * it can do I/O directly to. A low level driver can call
588 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
589 * buffers for doing I/O to pages residing above @page.
591 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
593 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
596 q->bounce_gfp = GFP_NOIO;
597 #if BITS_PER_LONG == 64
598 /* Assume anything <= 4GB can be handled by IOMMU.
599 Actually some IOMMUs can handle everything, but I don't
600 know of a way to test this here. */
601 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
603 q->bounce_pfn = max_low_pfn;
605 if (bounce_pfn < blk_max_low_pfn)
607 q->bounce_pfn = bounce_pfn;
610 init_emergency_isa_pool();
611 q->bounce_gfp = GFP_NOIO | GFP_DMA;
612 q->bounce_pfn = bounce_pfn;
616 EXPORT_SYMBOL(blk_queue_bounce_limit);
619 * blk_queue_max_sectors - set max sectors for a request for this queue
620 * @q: the request queue for the device
621 * @max_sectors: max sectors in the usual 512b unit
624 * Enables a low level driver to set an upper limit on the size of
627 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
629 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
630 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
634 if (BLK_DEF_MAX_SECTORS > max_sectors)
635 q->max_hw_sectors = q->max_sectors = max_sectors;
637 q->max_sectors = BLK_DEF_MAX_SECTORS;
638 q->max_hw_sectors = max_sectors;
642 EXPORT_SYMBOL(blk_queue_max_sectors);
645 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
646 * @q: the request queue for the device
647 * @max_segments: max number of segments
650 * Enables a low level driver to set an upper limit on the number of
651 * physical data segments in a request. This would be the largest sized
652 * scatter list the driver could handle.
654 void blk_queue_max_phys_segments(struct request_queue *q,
655 unsigned short max_segments)
659 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
662 q->max_phys_segments = max_segments;
665 EXPORT_SYMBOL(blk_queue_max_phys_segments);
668 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
669 * @q: the request queue for the device
670 * @max_segments: max number of segments
673 * Enables a low level driver to set an upper limit on the number of
674 * hw data segments in a request. This would be the largest number of
675 * address/length pairs the host adapter can actually give as once
678 void blk_queue_max_hw_segments(struct request_queue *q,
679 unsigned short max_segments)
683 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
686 q->max_hw_segments = max_segments;
689 EXPORT_SYMBOL(blk_queue_max_hw_segments);
692 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
693 * @q: the request queue for the device
694 * @max_size: max size of segment in bytes
697 * Enables a low level driver to set an upper limit on the size of a
700 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
702 if (max_size < PAGE_CACHE_SIZE) {
703 max_size = PAGE_CACHE_SIZE;
704 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
707 q->max_segment_size = max_size;
710 EXPORT_SYMBOL(blk_queue_max_segment_size);
713 * blk_queue_hardsect_size - set hardware sector size for the queue
714 * @q: the request queue for the device
715 * @size: the hardware sector size, in bytes
718 * This should typically be set to the lowest possible sector size
719 * that the hardware can operate on (possible without reverting to
720 * even internal read-modify-write operations). Usually the default
721 * of 512 covers most hardware.
723 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
725 q->hardsect_size = size;
728 EXPORT_SYMBOL(blk_queue_hardsect_size);
731 * Returns the minimum that is _not_ zero, unless both are zero.
733 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
736 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
737 * @t: the stacking driver (top)
738 * @b: the underlying device (bottom)
740 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
742 /* zero is "infinity" */
743 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
744 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
746 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
747 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
748 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
749 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
750 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
751 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
754 EXPORT_SYMBOL(blk_queue_stack_limits);
757 * blk_queue_segment_boundary - set boundary rules for segment merging
758 * @q: the request queue for the device
759 * @mask: the memory boundary mask
761 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
763 if (mask < PAGE_CACHE_SIZE - 1) {
764 mask = PAGE_CACHE_SIZE - 1;
765 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
768 q->seg_boundary_mask = mask;
771 EXPORT_SYMBOL(blk_queue_segment_boundary);
774 * blk_queue_dma_alignment - set dma length and memory alignment
775 * @q: the request queue for the device
776 * @mask: alignment mask
779 * set required memory and length aligment for direct dma transactions.
780 * this is used when buiding direct io requests for the queue.
783 void blk_queue_dma_alignment(struct request_queue *q, int mask)
785 q->dma_alignment = mask;
788 EXPORT_SYMBOL(blk_queue_dma_alignment);
791 * blk_queue_find_tag - find a request by its tag and queue
792 * @q: The request queue for the device
793 * @tag: The tag of the request
796 * Should be used when a device returns a tag and you want to match
799 * no locks need be held.
801 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
803 return blk_map_queue_find_tag(q->queue_tags, tag);
806 EXPORT_SYMBOL(blk_queue_find_tag);
809 * __blk_free_tags - release a given set of tag maintenance info
810 * @bqt: the tag map to free
812 * Tries to free the specified @bqt@. Returns true if it was
813 * actually freed and false if there are still references using it
815 static int __blk_free_tags(struct blk_queue_tag *bqt)
819 retval = atomic_dec_and_test(&bqt->refcnt);
822 BUG_ON(!list_empty(&bqt->busy_list));
824 kfree(bqt->tag_index);
825 bqt->tag_index = NULL;
838 * __blk_queue_free_tags - release tag maintenance info
839 * @q: the request queue for the device
842 * blk_cleanup_queue() will take care of calling this function, if tagging
843 * has been used. So there's no need to call this directly.
845 static void __blk_queue_free_tags(struct request_queue *q)
847 struct blk_queue_tag *bqt = q->queue_tags;
852 __blk_free_tags(bqt);
854 q->queue_tags = NULL;
855 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
860 * blk_free_tags - release a given set of tag maintenance info
861 * @bqt: the tag map to free
863 * For externally managed @bqt@ frees the map. Callers of this
864 * function must guarantee to have released all the queues that
865 * might have been using this tag map.
867 void blk_free_tags(struct blk_queue_tag *bqt)
869 if (unlikely(!__blk_free_tags(bqt)))
872 EXPORT_SYMBOL(blk_free_tags);
875 * blk_queue_free_tags - release tag maintenance info
876 * @q: the request queue for the device
879 * This is used to disabled tagged queuing to a device, yet leave
882 void blk_queue_free_tags(struct request_queue *q)
884 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
887 EXPORT_SYMBOL(blk_queue_free_tags);
890 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
892 struct request **tag_index;
893 unsigned long *tag_map;
896 if (q && depth > q->nr_requests * 2) {
897 depth = q->nr_requests * 2;
898 printk(KERN_ERR "%s: adjusted depth to %d\n",
899 __FUNCTION__, depth);
902 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
906 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
907 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
911 tags->real_max_depth = depth;
912 tags->max_depth = depth;
913 tags->tag_index = tag_index;
914 tags->tag_map = tag_map;
922 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
925 struct blk_queue_tag *tags;
927 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
931 if (init_tag_map(q, tags, depth))
934 INIT_LIST_HEAD(&tags->busy_list);
936 atomic_set(&tags->refcnt, 1);
944 * blk_init_tags - initialize the tag info for an external tag map
945 * @depth: the maximum queue depth supported
946 * @tags: the tag to use
948 struct blk_queue_tag *blk_init_tags(int depth)
950 return __blk_queue_init_tags(NULL, depth);
952 EXPORT_SYMBOL(blk_init_tags);
955 * blk_queue_init_tags - initialize the queue tag info
956 * @q: the request queue for the device
957 * @depth: the maximum queue depth supported
958 * @tags: the tag to use
960 int blk_queue_init_tags(struct request_queue *q, int depth,
961 struct blk_queue_tag *tags)
965 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
967 if (!tags && !q->queue_tags) {
968 tags = __blk_queue_init_tags(q, depth);
972 } else if (q->queue_tags) {
973 if ((rc = blk_queue_resize_tags(q, depth)))
975 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
978 atomic_inc(&tags->refcnt);
981 * assign it, all done
983 q->queue_tags = tags;
984 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
991 EXPORT_SYMBOL(blk_queue_init_tags);
994 * blk_queue_resize_tags - change the queueing depth
995 * @q: the request queue for the device
996 * @new_depth: the new max command queueing depth
999 * Must be called with the queue lock held.
1001 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1003 struct blk_queue_tag *bqt = q->queue_tags;
1004 struct request **tag_index;
1005 unsigned long *tag_map;
1006 int max_depth, nr_ulongs;
1012 * if we already have large enough real_max_depth. just
1013 * adjust max_depth. *NOTE* as requests with tag value
1014 * between new_depth and real_max_depth can be in-flight, tag
1015 * map can not be shrunk blindly here.
1017 if (new_depth <= bqt->real_max_depth) {
1018 bqt->max_depth = new_depth;
1023 * Currently cannot replace a shared tag map with a new
1024 * one, so error out if this is the case
1026 if (atomic_read(&bqt->refcnt) != 1)
1030 * save the old state info, so we can copy it back
1032 tag_index = bqt->tag_index;
1033 tag_map = bqt->tag_map;
1034 max_depth = bqt->real_max_depth;
1036 if (init_tag_map(q, bqt, new_depth))
1039 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1040 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1041 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1048 EXPORT_SYMBOL(blk_queue_resize_tags);
1051 * blk_queue_end_tag - end tag operations for a request
1052 * @q: the request queue for the device
1053 * @rq: the request that has completed
1056 * Typically called when end_that_request_first() returns 0, meaning
1057 * all transfers have been done for a request. It's important to call
1058 * this function before end_that_request_last(), as that will put the
1059 * request back on the free list thus corrupting the internal tag list.
1062 * queue lock must be held.
1064 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1066 struct blk_queue_tag *bqt = q->queue_tags;
1071 if (unlikely(tag >= bqt->real_max_depth))
1073 * This can happen after tag depth has been reduced.
1074 * FIXME: how about a warning or info message here?
1078 list_del_init(&rq->queuelist);
1079 rq->cmd_flags &= ~REQ_QUEUED;
1082 if (unlikely(bqt->tag_index[tag] == NULL))
1083 printk(KERN_ERR "%s: tag %d is missing\n",
1086 bqt->tag_index[tag] = NULL;
1088 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1089 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1097 EXPORT_SYMBOL(blk_queue_end_tag);
1100 * blk_queue_start_tag - find a free tag and assign it
1101 * @q: the request queue for the device
1102 * @rq: the block request that needs tagging
1105 * This can either be used as a stand-alone helper, or possibly be
1106 * assigned as the queue &prep_rq_fn (in which case &struct request
1107 * automagically gets a tag assigned). Note that this function
1108 * assumes that any type of request can be queued! if this is not
1109 * true for your device, you must check the request type before
1110 * calling this function. The request will also be removed from
1111 * the request queue, so it's the drivers responsibility to readd
1112 * it if it should need to be restarted for some reason.
1115 * queue lock must be held.
1117 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1119 struct blk_queue_tag *bqt = q->queue_tags;
1122 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1124 "%s: request %p for device [%s] already tagged %d",
1126 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1131 * Protect against shared tag maps, as we may not have exclusive
1132 * access to the tag map.
1135 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1136 if (tag >= bqt->max_depth)
1139 } while (test_and_set_bit(tag, bqt->tag_map));
1141 rq->cmd_flags |= REQ_QUEUED;
1143 bqt->tag_index[tag] = rq;
1144 blkdev_dequeue_request(rq);
1145 list_add(&rq->queuelist, &bqt->busy_list);
1150 EXPORT_SYMBOL(blk_queue_start_tag);
1153 * blk_queue_invalidate_tags - invalidate all pending tags
1154 * @q: the request queue for the device
1157 * Hardware conditions may dictate a need to stop all pending requests.
1158 * In this case, we will safely clear the block side of the tag queue and
1159 * readd all requests to the request queue in the right order.
1162 * queue lock must be held.
1164 void blk_queue_invalidate_tags(struct request_queue *q)
1166 struct blk_queue_tag *bqt = q->queue_tags;
1167 struct list_head *tmp, *n;
1170 list_for_each_safe(tmp, n, &bqt->busy_list) {
1171 rq = list_entry_rq(tmp);
1173 if (rq->tag == -1) {
1175 "%s: bad tag found on list\n", __FUNCTION__);
1176 list_del_init(&rq->queuelist);
1177 rq->cmd_flags &= ~REQ_QUEUED;
1179 blk_queue_end_tag(q, rq);
1181 rq->cmd_flags &= ~REQ_STARTED;
1182 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1186 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1188 void blk_dump_rq_flags(struct request *rq, char *msg)
1192 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1193 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1196 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1198 rq->current_nr_sectors);
1199 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1201 if (blk_pc_request(rq)) {
1203 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1204 printk("%02x ", rq->cmd[bit]);
1209 EXPORT_SYMBOL(blk_dump_rq_flags);
1211 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1213 struct bio_vec *bv, *bvprv = NULL;
1214 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1215 int high, highprv = 1;
1217 if (unlikely(!bio->bi_io_vec))
1220 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1221 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1222 bio_for_each_segment(bv, bio, i) {
1224 * the trick here is making sure that a high page is never
1225 * considered part of another segment, since that might
1226 * change with the bounce page.
1228 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1229 if (high || highprv)
1230 goto new_hw_segment;
1232 if (seg_size + bv->bv_len > q->max_segment_size)
1234 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1236 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1238 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1239 goto new_hw_segment;
1241 seg_size += bv->bv_len;
1242 hw_seg_size += bv->bv_len;
1247 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1248 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1249 hw_seg_size += bv->bv_len;
1252 if (hw_seg_size > bio->bi_hw_front_size)
1253 bio->bi_hw_front_size = hw_seg_size;
1254 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1260 seg_size = bv->bv_len;
1263 if (hw_seg_size > bio->bi_hw_back_size)
1264 bio->bi_hw_back_size = hw_seg_size;
1265 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1266 bio->bi_hw_front_size = hw_seg_size;
1267 bio->bi_phys_segments = nr_phys_segs;
1268 bio->bi_hw_segments = nr_hw_segs;
1269 bio->bi_flags |= (1 << BIO_SEG_VALID);
1271 EXPORT_SYMBOL(blk_recount_segments);
1273 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1276 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1279 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1281 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1285 * bio and nxt are contigous in memory, check if the queue allows
1286 * these two to be merged into one
1288 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1294 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1297 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1298 blk_recount_segments(q, bio);
1299 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1300 blk_recount_segments(q, nxt);
1301 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1302 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1304 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1311 * map a request to scatterlist, return number of sg entries setup. Caller
1312 * must make sure sg can hold rq->nr_phys_segments entries
1314 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1315 struct scatterlist *sg)
1317 struct bio_vec *bvec, *bvprv;
1319 int nsegs, i, cluster;
1322 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1325 * for each bio in rq
1328 rq_for_each_bio(bio, rq) {
1330 * for each segment in bio
1332 bio_for_each_segment(bvec, bio, i) {
1333 int nbytes = bvec->bv_len;
1335 if (bvprv && cluster) {
1336 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1339 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1341 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1344 sg[nsegs - 1].length += nbytes;
1347 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1348 sg[nsegs].page = bvec->bv_page;
1349 sg[nsegs].length = nbytes;
1350 sg[nsegs].offset = bvec->bv_offset;
1355 } /* segments in bio */
1361 EXPORT_SYMBOL(blk_rq_map_sg);
1364 * the standard queue merge functions, can be overridden with device
1365 * specific ones if so desired
1368 static inline int ll_new_mergeable(struct request_queue *q,
1369 struct request *req,
1372 int nr_phys_segs = bio_phys_segments(q, bio);
1374 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1375 req->cmd_flags |= REQ_NOMERGE;
1376 if (req == q->last_merge)
1377 q->last_merge = NULL;
1382 * A hw segment is just getting larger, bump just the phys
1385 req->nr_phys_segments += nr_phys_segs;
1389 static inline int ll_new_hw_segment(struct request_queue *q,
1390 struct request *req,
1393 int nr_hw_segs = bio_hw_segments(q, bio);
1394 int nr_phys_segs = bio_phys_segments(q, bio);
1396 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1397 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1398 req->cmd_flags |= REQ_NOMERGE;
1399 if (req == q->last_merge)
1400 q->last_merge = NULL;
1405 * This will form the start of a new hw segment. Bump both
1408 req->nr_hw_segments += nr_hw_segs;
1409 req->nr_phys_segments += nr_phys_segs;
1413 int ll_back_merge_fn(struct request_queue *q, struct request *req, struct bio *bio)
1415 unsigned short max_sectors;
1418 if (unlikely(blk_pc_request(req)))
1419 max_sectors = q->max_hw_sectors;
1421 max_sectors = q->max_sectors;
1423 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1424 req->cmd_flags |= REQ_NOMERGE;
1425 if (req == q->last_merge)
1426 q->last_merge = NULL;
1429 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1430 blk_recount_segments(q, req->biotail);
1431 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1432 blk_recount_segments(q, bio);
1433 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1434 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1435 !BIOVEC_VIRT_OVERSIZE(len)) {
1436 int mergeable = ll_new_mergeable(q, req, bio);
1439 if (req->nr_hw_segments == 1)
1440 req->bio->bi_hw_front_size = len;
1441 if (bio->bi_hw_segments == 1)
1442 bio->bi_hw_back_size = len;
1447 return ll_new_hw_segment(q, req, bio);
1449 EXPORT_SYMBOL(ll_back_merge_fn);
1451 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1454 unsigned short max_sectors;
1457 if (unlikely(blk_pc_request(req)))
1458 max_sectors = q->max_hw_sectors;
1460 max_sectors = q->max_sectors;
1463 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1464 req->cmd_flags |= REQ_NOMERGE;
1465 if (req == q->last_merge)
1466 q->last_merge = NULL;
1469 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1470 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1471 blk_recount_segments(q, bio);
1472 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1473 blk_recount_segments(q, req->bio);
1474 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1475 !BIOVEC_VIRT_OVERSIZE(len)) {
1476 int mergeable = ll_new_mergeable(q, req, bio);
1479 if (bio->bi_hw_segments == 1)
1480 bio->bi_hw_front_size = len;
1481 if (req->nr_hw_segments == 1)
1482 req->biotail->bi_hw_back_size = len;
1487 return ll_new_hw_segment(q, req, bio);
1490 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1491 struct request *next)
1493 int total_phys_segments;
1494 int total_hw_segments;
1497 * First check if the either of the requests are re-queued
1498 * requests. Can't merge them if they are.
1500 if (req->special || next->special)
1504 * Will it become too large?
1506 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1509 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1510 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1511 total_phys_segments--;
1513 if (total_phys_segments > q->max_phys_segments)
1516 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1517 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1518 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1520 * propagate the combined length to the end of the requests
1522 if (req->nr_hw_segments == 1)
1523 req->bio->bi_hw_front_size = len;
1524 if (next->nr_hw_segments == 1)
1525 next->biotail->bi_hw_back_size = len;
1526 total_hw_segments--;
1529 if (total_hw_segments > q->max_hw_segments)
1532 /* Merge is OK... */
1533 req->nr_phys_segments = total_phys_segments;
1534 req->nr_hw_segments = total_hw_segments;
1539 * "plug" the device if there are no outstanding requests: this will
1540 * force the transfer to start only after we have put all the requests
1543 * This is called with interrupts off and no requests on the queue and
1544 * with the queue lock held.
1546 void blk_plug_device(struct request_queue *q)
1548 WARN_ON(!irqs_disabled());
1551 * don't plug a stopped queue, it must be paired with blk_start_queue()
1552 * which will restart the queueing
1554 if (blk_queue_stopped(q))
1557 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1558 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1559 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1563 EXPORT_SYMBOL(blk_plug_device);
1566 * remove the queue from the plugged list, if present. called with
1567 * queue lock held and interrupts disabled.
1569 int blk_remove_plug(struct request_queue *q)
1571 WARN_ON(!irqs_disabled());
1573 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1576 del_timer(&q->unplug_timer);
1580 EXPORT_SYMBOL(blk_remove_plug);
1583 * remove the plug and let it rip..
1585 void __generic_unplug_device(struct request_queue *q)
1587 if (unlikely(blk_queue_stopped(q)))
1590 if (!blk_remove_plug(q))
1595 EXPORT_SYMBOL(__generic_unplug_device);
1598 * generic_unplug_device - fire a request queue
1599 * @q: The &struct request_queue in question
1602 * Linux uses plugging to build bigger requests queues before letting
1603 * the device have at them. If a queue is plugged, the I/O scheduler
1604 * is still adding and merging requests on the queue. Once the queue
1605 * gets unplugged, the request_fn defined for the queue is invoked and
1606 * transfers started.
1608 void generic_unplug_device(struct request_queue *q)
1610 spin_lock_irq(q->queue_lock);
1611 __generic_unplug_device(q);
1612 spin_unlock_irq(q->queue_lock);
1614 EXPORT_SYMBOL(generic_unplug_device);
1616 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1619 struct request_queue *q = bdi->unplug_io_data;
1622 * devices don't necessarily have an ->unplug_fn defined
1625 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1626 q->rq.count[READ] + q->rq.count[WRITE]);
1632 static void blk_unplug_work(struct work_struct *work)
1634 struct request_queue *q =
1635 container_of(work, struct request_queue, unplug_work);
1637 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1638 q->rq.count[READ] + q->rq.count[WRITE]);
1643 static void blk_unplug_timeout(unsigned long data)
1645 struct request_queue *q = (struct request_queue *)data;
1647 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1648 q->rq.count[READ] + q->rq.count[WRITE]);
1650 kblockd_schedule_work(&q->unplug_work);
1654 * blk_start_queue - restart a previously stopped queue
1655 * @q: The &struct request_queue in question
1658 * blk_start_queue() will clear the stop flag on the queue, and call
1659 * the request_fn for the queue if it was in a stopped state when
1660 * entered. Also see blk_stop_queue(). Queue lock must be held.
1662 void blk_start_queue(struct request_queue *q)
1664 WARN_ON(!irqs_disabled());
1666 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1669 * one level of recursion is ok and is much faster than kicking
1670 * the unplug handling
1672 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1674 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1677 kblockd_schedule_work(&q->unplug_work);
1681 EXPORT_SYMBOL(blk_start_queue);
1684 * blk_stop_queue - stop a queue
1685 * @q: The &struct request_queue in question
1688 * The Linux block layer assumes that a block driver will consume all
1689 * entries on the request queue when the request_fn strategy is called.
1690 * Often this will not happen, because of hardware limitations (queue
1691 * depth settings). If a device driver gets a 'queue full' response,
1692 * or if it simply chooses not to queue more I/O at one point, it can
1693 * call this function to prevent the request_fn from being called until
1694 * the driver has signalled it's ready to go again. This happens by calling
1695 * blk_start_queue() to restart queue operations. Queue lock must be held.
1697 void blk_stop_queue(struct request_queue *q)
1700 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1702 EXPORT_SYMBOL(blk_stop_queue);
1705 * blk_sync_queue - cancel any pending callbacks on a queue
1709 * The block layer may perform asynchronous callback activity
1710 * on a queue, such as calling the unplug function after a timeout.
1711 * A block device may call blk_sync_queue to ensure that any
1712 * such activity is cancelled, thus allowing it to release resources
1713 * that the callbacks might use. The caller must already have made sure
1714 * that its ->make_request_fn will not re-add plugging prior to calling
1718 void blk_sync_queue(struct request_queue *q)
1720 del_timer_sync(&q->unplug_timer);
1722 EXPORT_SYMBOL(blk_sync_queue);
1725 * blk_run_queue - run a single device queue
1726 * @q: The queue to run
1728 void blk_run_queue(struct request_queue *q)
1730 unsigned long flags;
1732 spin_lock_irqsave(q->queue_lock, flags);
1736 * Only recurse once to avoid overrunning the stack, let the unplug
1737 * handling reinvoke the handler shortly if we already got there.
1739 if (!elv_queue_empty(q)) {
1740 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1742 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1745 kblockd_schedule_work(&q->unplug_work);
1749 spin_unlock_irqrestore(q->queue_lock, flags);
1751 EXPORT_SYMBOL(blk_run_queue);
1754 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1755 * @kobj: the kobj belonging of the request queue to be released
1758 * blk_cleanup_queue is the pair to blk_init_queue() or
1759 * blk_queue_make_request(). It should be called when a request queue is
1760 * being released; typically when a block device is being de-registered.
1761 * Currently, its primary task it to free all the &struct request
1762 * structures that were allocated to the queue and the queue itself.
1765 * Hopefully the low level driver will have finished any
1766 * outstanding requests first...
1768 static void blk_release_queue(struct kobject *kobj)
1770 struct request_queue *q =
1771 container_of(kobj, struct request_queue, kobj);
1772 struct request_list *rl = &q->rq;
1777 mempool_destroy(rl->rq_pool);
1780 __blk_queue_free_tags(q);
1782 blk_trace_shutdown(q);
1784 kmem_cache_free(requestq_cachep, q);
1787 void blk_put_queue(struct request_queue *q)
1789 kobject_put(&q->kobj);
1791 EXPORT_SYMBOL(blk_put_queue);
1793 void blk_cleanup_queue(struct request_queue * q)
1795 mutex_lock(&q->sysfs_lock);
1796 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1797 mutex_unlock(&q->sysfs_lock);
1800 elevator_exit(q->elevator);
1805 EXPORT_SYMBOL(blk_cleanup_queue);
1807 static int blk_init_free_list(struct request_queue *q)
1809 struct request_list *rl = &q->rq;
1811 rl->count[READ] = rl->count[WRITE] = 0;
1812 rl->starved[READ] = rl->starved[WRITE] = 0;
1814 init_waitqueue_head(&rl->wait[READ]);
1815 init_waitqueue_head(&rl->wait[WRITE]);
1817 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1818 mempool_free_slab, request_cachep, q->node);
1826 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1828 return blk_alloc_queue_node(gfp_mask, -1);
1830 EXPORT_SYMBOL(blk_alloc_queue);
1832 static struct kobj_type queue_ktype;
1834 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1836 struct request_queue *q;
1838 q = kmem_cache_alloc_node(requestq_cachep,
1839 gfp_mask | __GFP_ZERO, node_id);
1843 init_timer(&q->unplug_timer);
1845 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1846 q->kobj.ktype = &queue_ktype;
1847 kobject_init(&q->kobj);
1849 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1850 q->backing_dev_info.unplug_io_data = q;
1852 mutex_init(&q->sysfs_lock);
1856 EXPORT_SYMBOL(blk_alloc_queue_node);
1859 * blk_init_queue - prepare a request queue for use with a block device
1860 * @rfn: The function to be called to process requests that have been
1861 * placed on the queue.
1862 * @lock: Request queue spin lock
1865 * If a block device wishes to use the standard request handling procedures,
1866 * which sorts requests and coalesces adjacent requests, then it must
1867 * call blk_init_queue(). The function @rfn will be called when there
1868 * are requests on the queue that need to be processed. If the device
1869 * supports plugging, then @rfn may not be called immediately when requests
1870 * are available on the queue, but may be called at some time later instead.
1871 * Plugged queues are generally unplugged when a buffer belonging to one
1872 * of the requests on the queue is needed, or due to memory pressure.
1874 * @rfn is not required, or even expected, to remove all requests off the
1875 * queue, but only as many as it can handle at a time. If it does leave
1876 * requests on the queue, it is responsible for arranging that the requests
1877 * get dealt with eventually.
1879 * The queue spin lock must be held while manipulating the requests on the
1880 * request queue; this lock will be taken also from interrupt context, so irq
1881 * disabling is needed for it.
1883 * Function returns a pointer to the initialized request queue, or NULL if
1884 * it didn't succeed.
1887 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1888 * when the block device is deactivated (such as at module unload).
1891 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1893 return blk_init_queue_node(rfn, lock, -1);
1895 EXPORT_SYMBOL(blk_init_queue);
1897 struct request_queue *
1898 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1900 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1906 if (blk_init_free_list(q)) {
1907 kmem_cache_free(requestq_cachep, q);
1912 * if caller didn't supply a lock, they get per-queue locking with
1916 spin_lock_init(&q->__queue_lock);
1917 lock = &q->__queue_lock;
1920 q->request_fn = rfn;
1921 q->prep_rq_fn = NULL;
1922 q->unplug_fn = generic_unplug_device;
1923 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1924 q->queue_lock = lock;
1926 blk_queue_segment_boundary(q, 0xffffffff);
1928 blk_queue_make_request(q, __make_request);
1929 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1931 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1932 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1934 q->sg_reserved_size = INT_MAX;
1939 if (!elevator_init(q, NULL)) {
1940 blk_queue_congestion_threshold(q);
1947 EXPORT_SYMBOL(blk_init_queue_node);
1949 int blk_get_queue(struct request_queue *q)
1951 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1952 kobject_get(&q->kobj);
1959 EXPORT_SYMBOL(blk_get_queue);
1961 static inline void blk_free_request(struct request_queue *q, struct request *rq)
1963 if (rq->cmd_flags & REQ_ELVPRIV)
1964 elv_put_request(q, rq);
1965 mempool_free(rq, q->rq.rq_pool);
1968 static struct request *
1969 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1971 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1977 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1978 * see bio.h and blkdev.h
1980 rq->cmd_flags = rw | REQ_ALLOCED;
1983 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1984 mempool_free(rq, q->rq.rq_pool);
1987 rq->cmd_flags |= REQ_ELVPRIV;
1994 * ioc_batching returns true if the ioc is a valid batching request and
1995 * should be given priority access to a request.
1997 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
2003 * Make sure the process is able to allocate at least 1 request
2004 * even if the batch times out, otherwise we could theoretically
2007 return ioc->nr_batch_requests == q->nr_batching ||
2008 (ioc->nr_batch_requests > 0
2009 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2013 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2014 * will cause the process to be a "batcher" on all queues in the system. This
2015 * is the behaviour we want though - once it gets a wakeup it should be given
2018 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2020 if (!ioc || ioc_batching(q, ioc))
2023 ioc->nr_batch_requests = q->nr_batching;
2024 ioc->last_waited = jiffies;
2027 static void __freed_request(struct request_queue *q, int rw)
2029 struct request_list *rl = &q->rq;
2031 if (rl->count[rw] < queue_congestion_off_threshold(q))
2032 blk_clear_queue_congested(q, rw);
2034 if (rl->count[rw] + 1 <= q->nr_requests) {
2035 if (waitqueue_active(&rl->wait[rw]))
2036 wake_up(&rl->wait[rw]);
2038 blk_clear_queue_full(q, rw);
2043 * A request has just been released. Account for it, update the full and
2044 * congestion status, wake up any waiters. Called under q->queue_lock.
2046 static void freed_request(struct request_queue *q, int rw, int priv)
2048 struct request_list *rl = &q->rq;
2054 __freed_request(q, rw);
2056 if (unlikely(rl->starved[rw ^ 1]))
2057 __freed_request(q, rw ^ 1);
2060 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2062 * Get a free request, queue_lock must be held.
2063 * Returns NULL on failure, with queue_lock held.
2064 * Returns !NULL on success, with queue_lock *not held*.
2066 static struct request *get_request(struct request_queue *q, int rw_flags,
2067 struct bio *bio, gfp_t gfp_mask)
2069 struct request *rq = NULL;
2070 struct request_list *rl = &q->rq;
2071 struct io_context *ioc = NULL;
2072 const int rw = rw_flags & 0x01;
2073 int may_queue, priv;
2075 may_queue = elv_may_queue(q, rw_flags);
2076 if (may_queue == ELV_MQUEUE_NO)
2079 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2080 if (rl->count[rw]+1 >= q->nr_requests) {
2081 ioc = current_io_context(GFP_ATOMIC, q->node);
2083 * The queue will fill after this allocation, so set
2084 * it as full, and mark this process as "batching".
2085 * This process will be allowed to complete a batch of
2086 * requests, others will be blocked.
2088 if (!blk_queue_full(q, rw)) {
2089 ioc_set_batching(q, ioc);
2090 blk_set_queue_full(q, rw);
2092 if (may_queue != ELV_MQUEUE_MUST
2093 && !ioc_batching(q, ioc)) {
2095 * The queue is full and the allocating
2096 * process is not a "batcher", and not
2097 * exempted by the IO scheduler
2103 blk_set_queue_congested(q, rw);
2107 * Only allow batching queuers to allocate up to 50% over the defined
2108 * limit of requests, otherwise we could have thousands of requests
2109 * allocated with any setting of ->nr_requests
2111 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2115 rl->starved[rw] = 0;
2117 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2121 spin_unlock_irq(q->queue_lock);
2123 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2124 if (unlikely(!rq)) {
2126 * Allocation failed presumably due to memory. Undo anything
2127 * we might have messed up.
2129 * Allocating task should really be put onto the front of the
2130 * wait queue, but this is pretty rare.
2132 spin_lock_irq(q->queue_lock);
2133 freed_request(q, rw, priv);
2136 * in the very unlikely event that allocation failed and no
2137 * requests for this direction was pending, mark us starved
2138 * so that freeing of a request in the other direction will
2139 * notice us. another possible fix would be to split the
2140 * rq mempool into READ and WRITE
2143 if (unlikely(rl->count[rw] == 0))
2144 rl->starved[rw] = 1;
2150 * ioc may be NULL here, and ioc_batching will be false. That's
2151 * OK, if the queue is under the request limit then requests need
2152 * not count toward the nr_batch_requests limit. There will always
2153 * be some limit enforced by BLK_BATCH_TIME.
2155 if (ioc_batching(q, ioc))
2156 ioc->nr_batch_requests--;
2160 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2166 * No available requests for this queue, unplug the device and wait for some
2167 * requests to become available.
2169 * Called with q->queue_lock held, and returns with it unlocked.
2171 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2174 const int rw = rw_flags & 0x01;
2177 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2180 struct request_list *rl = &q->rq;
2182 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2183 TASK_UNINTERRUPTIBLE);
2185 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2188 struct io_context *ioc;
2190 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2192 __generic_unplug_device(q);
2193 spin_unlock_irq(q->queue_lock);
2197 * After sleeping, we become a "batching" process and
2198 * will be able to allocate at least one request, and
2199 * up to a big batch of them for a small period time.
2200 * See ioc_batching, ioc_set_batching
2202 ioc = current_io_context(GFP_NOIO, q->node);
2203 ioc_set_batching(q, ioc);
2205 spin_lock_irq(q->queue_lock);
2207 finish_wait(&rl->wait[rw], &wait);
2213 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2217 BUG_ON(rw != READ && rw != WRITE);
2219 spin_lock_irq(q->queue_lock);
2220 if (gfp_mask & __GFP_WAIT) {
2221 rq = get_request_wait(q, rw, NULL);
2223 rq = get_request(q, rw, NULL, gfp_mask);
2225 spin_unlock_irq(q->queue_lock);
2227 /* q->queue_lock is unlocked at this point */
2231 EXPORT_SYMBOL(blk_get_request);
2234 * blk_start_queueing - initiate dispatch of requests to device
2235 * @q: request queue to kick into gear
2237 * This is basically a helper to remove the need to know whether a queue
2238 * is plugged or not if someone just wants to initiate dispatch of requests
2241 * The queue lock must be held with interrupts disabled.
2243 void blk_start_queueing(struct request_queue *q)
2245 if (!blk_queue_plugged(q))
2248 __generic_unplug_device(q);
2250 EXPORT_SYMBOL(blk_start_queueing);
2253 * blk_requeue_request - put a request back on queue
2254 * @q: request queue where request should be inserted
2255 * @rq: request to be inserted
2258 * Drivers often keep queueing requests until the hardware cannot accept
2259 * more, when that condition happens we need to put the request back
2260 * on the queue. Must be called with queue lock held.
2262 void blk_requeue_request(struct request_queue *q, struct request *rq)
2264 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2266 if (blk_rq_tagged(rq))
2267 blk_queue_end_tag(q, rq);
2269 elv_requeue_request(q, rq);
2272 EXPORT_SYMBOL(blk_requeue_request);
2275 * blk_insert_request - insert a special request in to a request queue
2276 * @q: request queue where request should be inserted
2277 * @rq: request to be inserted
2278 * @at_head: insert request at head or tail of queue
2279 * @data: private data
2282 * Many block devices need to execute commands asynchronously, so they don't
2283 * block the whole kernel from preemption during request execution. This is
2284 * accomplished normally by inserting aritficial requests tagged as
2285 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2286 * scheduled for actual execution by the request queue.
2288 * We have the option of inserting the head or the tail of the queue.
2289 * Typically we use the tail for new ioctls and so forth. We use the head
2290 * of the queue for things like a QUEUE_FULL message from a device, or a
2291 * host that is unable to accept a particular command.
2293 void blk_insert_request(struct request_queue *q, struct request *rq,
2294 int at_head, void *data)
2296 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2297 unsigned long flags;
2300 * tell I/O scheduler that this isn't a regular read/write (ie it
2301 * must not attempt merges on this) and that it acts as a soft
2304 rq->cmd_type = REQ_TYPE_SPECIAL;
2305 rq->cmd_flags |= REQ_SOFTBARRIER;
2309 spin_lock_irqsave(q->queue_lock, flags);
2312 * If command is tagged, release the tag
2314 if (blk_rq_tagged(rq))
2315 blk_queue_end_tag(q, rq);
2317 drive_stat_acct(rq, rq->nr_sectors, 1);
2318 __elv_add_request(q, rq, where, 0);
2319 blk_start_queueing(q);
2320 spin_unlock_irqrestore(q->queue_lock, flags);
2323 EXPORT_SYMBOL(blk_insert_request);
2325 static int __blk_rq_unmap_user(struct bio *bio)
2330 if (bio_flagged(bio, BIO_USER_MAPPED))
2331 bio_unmap_user(bio);
2333 ret = bio_uncopy_user(bio);
2339 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2340 void __user *ubuf, unsigned int len)
2342 unsigned long uaddr;
2343 struct bio *bio, *orig_bio;
2346 reading = rq_data_dir(rq) == READ;
2349 * if alignment requirement is satisfied, map in user pages for
2350 * direct dma. else, set up kernel bounce buffers
2352 uaddr = (unsigned long) ubuf;
2353 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2354 bio = bio_map_user(q, NULL, uaddr, len, reading);
2356 bio = bio_copy_user(q, uaddr, len, reading);
2359 return PTR_ERR(bio);
2362 blk_queue_bounce(q, &bio);
2365 * We link the bounce buffer in and could have to traverse it
2366 * later so we have to get a ref to prevent it from being freed
2371 blk_rq_bio_prep(q, rq, bio);
2372 else if (!ll_back_merge_fn(q, rq, bio)) {
2376 rq->biotail->bi_next = bio;
2379 rq->data_len += bio->bi_size;
2382 return bio->bi_size;
2385 /* if it was boucned we must call the end io function */
2386 bio_endio(bio, bio->bi_size, 0);
2387 __blk_rq_unmap_user(orig_bio);
2393 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2394 * @q: request queue where request should be inserted
2395 * @rq: request structure to fill
2396 * @ubuf: the user buffer
2397 * @len: length of user data
2400 * Data will be mapped directly for zero copy io, if possible. Otherwise
2401 * a kernel bounce buffer is used.
2403 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2404 * still in process context.
2406 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2407 * before being submitted to the device, as pages mapped may be out of
2408 * reach. It's the callers responsibility to make sure this happens. The
2409 * original bio must be passed back in to blk_rq_unmap_user() for proper
2412 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2413 void __user *ubuf, unsigned long len)
2415 unsigned long bytes_read = 0;
2416 struct bio *bio = NULL;
2419 if (len > (q->max_hw_sectors << 9))
2424 while (bytes_read != len) {
2425 unsigned long map_len, end, start;
2427 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2428 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2430 start = (unsigned long)ubuf >> PAGE_SHIFT;
2433 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2434 * pages. If this happens we just lower the requested
2435 * mapping len by a page so that we can fit
2437 if (end - start > BIO_MAX_PAGES)
2438 map_len -= PAGE_SIZE;
2440 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2449 rq->buffer = rq->data = NULL;
2452 blk_rq_unmap_user(bio);
2456 EXPORT_SYMBOL(blk_rq_map_user);
2459 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2460 * @q: request queue where request should be inserted
2461 * @rq: request to map data to
2462 * @iov: pointer to the iovec
2463 * @iov_count: number of elements in the iovec
2464 * @len: I/O byte count
2467 * Data will be mapped directly for zero copy io, if possible. Otherwise
2468 * a kernel bounce buffer is used.
2470 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2471 * still in process context.
2473 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2474 * before being submitted to the device, as pages mapped may be out of
2475 * reach. It's the callers responsibility to make sure this happens. The
2476 * original bio must be passed back in to blk_rq_unmap_user() for proper
2479 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2480 struct sg_iovec *iov, int iov_count, unsigned int len)
2484 if (!iov || iov_count <= 0)
2487 /* we don't allow misaligned data like bio_map_user() does. If the
2488 * user is using sg, they're expected to know the alignment constraints
2489 * and respect them accordingly */
2490 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2492 return PTR_ERR(bio);
2494 if (bio->bi_size != len) {
2495 bio_endio(bio, bio->bi_size, 0);
2496 bio_unmap_user(bio);
2501 blk_rq_bio_prep(q, rq, bio);
2502 rq->buffer = rq->data = NULL;
2506 EXPORT_SYMBOL(blk_rq_map_user_iov);
2509 * blk_rq_unmap_user - unmap a request with user data
2510 * @bio: start of bio list
2513 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2514 * supply the original rq->bio from the blk_rq_map_user() return, since
2515 * the io completion may have changed rq->bio.
2517 int blk_rq_unmap_user(struct bio *bio)
2519 struct bio *mapped_bio;
2524 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2525 mapped_bio = bio->bi_private;
2527 ret2 = __blk_rq_unmap_user(mapped_bio);
2533 bio_put(mapped_bio);
2539 EXPORT_SYMBOL(blk_rq_unmap_user);
2542 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2543 * @q: request queue where request should be inserted
2544 * @rq: request to fill
2545 * @kbuf: the kernel buffer
2546 * @len: length of user data
2547 * @gfp_mask: memory allocation flags
2549 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2550 unsigned int len, gfp_t gfp_mask)
2554 if (len > (q->max_hw_sectors << 9))
2559 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2561 return PTR_ERR(bio);
2563 if (rq_data_dir(rq) == WRITE)
2564 bio->bi_rw |= (1 << BIO_RW);
2566 blk_rq_bio_prep(q, rq, bio);
2567 blk_queue_bounce(q, &rq->bio);
2568 rq->buffer = rq->data = NULL;
2572 EXPORT_SYMBOL(blk_rq_map_kern);
2575 * blk_execute_rq_nowait - insert a request into queue for execution
2576 * @q: queue to insert the request in
2577 * @bd_disk: matching gendisk
2578 * @rq: request to insert
2579 * @at_head: insert request at head or tail of queue
2580 * @done: I/O completion handler
2583 * Insert a fully prepared request at the back of the io scheduler queue
2584 * for execution. Don't wait for completion.
2586 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2587 struct request *rq, int at_head,
2590 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2592 rq->rq_disk = bd_disk;
2593 rq->cmd_flags |= REQ_NOMERGE;
2595 WARN_ON(irqs_disabled());
2596 spin_lock_irq(q->queue_lock);
2597 __elv_add_request(q, rq, where, 1);
2598 __generic_unplug_device(q);
2599 spin_unlock_irq(q->queue_lock);
2601 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2604 * blk_execute_rq - insert a request into queue for execution
2605 * @q: queue to insert the request in
2606 * @bd_disk: matching gendisk
2607 * @rq: request to insert
2608 * @at_head: insert request at head or tail of queue
2611 * Insert a fully prepared request at the back of the io scheduler queue
2612 * for execution and wait for completion.
2614 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2615 struct request *rq, int at_head)
2617 DECLARE_COMPLETION_ONSTACK(wait);
2618 char sense[SCSI_SENSE_BUFFERSIZE];
2622 * we need an extra reference to the request, so we can look at
2623 * it after io completion
2628 memset(sense, 0, sizeof(sense));
2633 rq->end_io_data = &wait;
2634 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2635 wait_for_completion(&wait);
2643 EXPORT_SYMBOL(blk_execute_rq);
2646 * blkdev_issue_flush - queue a flush
2647 * @bdev: blockdev to issue flush for
2648 * @error_sector: error sector
2651 * Issue a flush for the block device in question. Caller can supply
2652 * room for storing the error offset in case of a flush error, if they
2653 * wish to. Caller must run wait_for_completion() on its own.
2655 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2657 struct request_queue *q;
2659 if (bdev->bd_disk == NULL)
2662 q = bdev_get_queue(bdev);
2665 if (!q->issue_flush_fn)
2668 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2671 EXPORT_SYMBOL(blkdev_issue_flush);
2673 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2675 int rw = rq_data_dir(rq);
2677 if (!blk_fs_request(rq) || !rq->rq_disk)
2681 __disk_stat_inc(rq->rq_disk, merges[rw]);
2683 disk_round_stats(rq->rq_disk);
2684 rq->rq_disk->in_flight++;
2689 * add-request adds a request to the linked list.
2690 * queue lock is held and interrupts disabled, as we muck with the
2691 * request queue list.
2693 static inline void add_request(struct request_queue * q, struct request * req)
2695 drive_stat_acct(req, req->nr_sectors, 1);
2698 * elevator indicated where it wants this request to be
2699 * inserted at elevator_merge time
2701 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2705 * disk_round_stats() - Round off the performance stats on a struct
2708 * The average IO queue length and utilisation statistics are maintained
2709 * by observing the current state of the queue length and the amount of
2710 * time it has been in this state for.
2712 * Normally, that accounting is done on IO completion, but that can result
2713 * in more than a second's worth of IO being accounted for within any one
2714 * second, leading to >100% utilisation. To deal with that, we call this
2715 * function to do a round-off before returning the results when reading
2716 * /proc/diskstats. This accounts immediately for all queue usage up to
2717 * the current jiffies and restarts the counters again.
2719 void disk_round_stats(struct gendisk *disk)
2721 unsigned long now = jiffies;
2723 if (now == disk->stamp)
2726 if (disk->in_flight) {
2727 __disk_stat_add(disk, time_in_queue,
2728 disk->in_flight * (now - disk->stamp));
2729 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2734 EXPORT_SYMBOL_GPL(disk_round_stats);
2737 * queue lock must be held
2739 void __blk_put_request(struct request_queue *q, struct request *req)
2743 if (unlikely(--req->ref_count))
2746 elv_completed_request(q, req);
2749 * Request may not have originated from ll_rw_blk. if not,
2750 * it didn't come out of our reserved rq pools
2752 if (req->cmd_flags & REQ_ALLOCED) {
2753 int rw = rq_data_dir(req);
2754 int priv = req->cmd_flags & REQ_ELVPRIV;
2756 BUG_ON(!list_empty(&req->queuelist));
2757 BUG_ON(!hlist_unhashed(&req->hash));
2759 blk_free_request(q, req);
2760 freed_request(q, rw, priv);
2764 EXPORT_SYMBOL_GPL(__blk_put_request);
2766 void blk_put_request(struct request *req)
2768 unsigned long flags;
2769 struct request_queue *q = req->q;
2772 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2773 * following if (q) test.
2776 spin_lock_irqsave(q->queue_lock, flags);
2777 __blk_put_request(q, req);
2778 spin_unlock_irqrestore(q->queue_lock, flags);
2782 EXPORT_SYMBOL(blk_put_request);
2785 * blk_end_sync_rq - executes a completion event on a request
2786 * @rq: request to complete
2787 * @error: end io status of the request
2789 void blk_end_sync_rq(struct request *rq, int error)
2791 struct completion *waiting = rq->end_io_data;
2793 rq->end_io_data = NULL;
2794 __blk_put_request(rq->q, rq);
2797 * complete last, if this is a stack request the process (and thus
2798 * the rq pointer) could be invalid right after this complete()
2802 EXPORT_SYMBOL(blk_end_sync_rq);
2805 * Has to be called with the request spinlock acquired
2807 static int attempt_merge(struct request_queue *q, struct request *req,
2808 struct request *next)
2810 if (!rq_mergeable(req) || !rq_mergeable(next))
2816 if (req->sector + req->nr_sectors != next->sector)
2819 if (rq_data_dir(req) != rq_data_dir(next)
2820 || req->rq_disk != next->rq_disk
2825 * If we are allowed to merge, then append bio list
2826 * from next to rq and release next. merge_requests_fn
2827 * will have updated segment counts, update sector
2830 if (!ll_merge_requests_fn(q, req, next))
2834 * At this point we have either done a back merge
2835 * or front merge. We need the smaller start_time of
2836 * the merged requests to be the current request
2837 * for accounting purposes.
2839 if (time_after(req->start_time, next->start_time))
2840 req->start_time = next->start_time;
2842 req->biotail->bi_next = next->bio;
2843 req->biotail = next->biotail;
2845 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2847 elv_merge_requests(q, req, next);
2850 disk_round_stats(req->rq_disk);
2851 req->rq_disk->in_flight--;
2854 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2856 __blk_put_request(q, next);
2860 static inline int attempt_back_merge(struct request_queue *q,
2863 struct request *next = elv_latter_request(q, rq);
2866 return attempt_merge(q, rq, next);
2871 static inline int attempt_front_merge(struct request_queue *q,
2874 struct request *prev = elv_former_request(q, rq);
2877 return attempt_merge(q, prev, rq);
2882 static void init_request_from_bio(struct request *req, struct bio *bio)
2884 req->cmd_type = REQ_TYPE_FS;
2887 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2889 if (bio_rw_ahead(bio) || bio_failfast(bio))
2890 req->cmd_flags |= REQ_FAILFAST;
2893 * REQ_BARRIER implies no merging, but lets make it explicit
2895 if (unlikely(bio_barrier(bio)))
2896 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2899 req->cmd_flags |= REQ_RW_SYNC;
2900 if (bio_rw_meta(bio))
2901 req->cmd_flags |= REQ_RW_META;
2904 req->hard_sector = req->sector = bio->bi_sector;
2905 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2906 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2907 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2908 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2909 req->buffer = bio_data(bio); /* see ->buffer comment above */
2910 req->bio = req->biotail = bio;
2911 req->ioprio = bio_prio(bio);
2912 req->rq_disk = bio->bi_bdev->bd_disk;
2913 req->start_time = jiffies;
2916 static int __make_request(struct request_queue *q, struct bio *bio)
2918 struct request *req;
2919 int el_ret, nr_sectors, barrier, err;
2920 const unsigned short prio = bio_prio(bio);
2921 const int sync = bio_sync(bio);
2924 nr_sectors = bio_sectors(bio);
2927 * low level driver can indicate that it wants pages above a
2928 * certain limit bounced to low memory (ie for highmem, or even
2929 * ISA dma in theory)
2931 blk_queue_bounce(q, &bio);
2933 barrier = bio_barrier(bio);
2934 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2939 spin_lock_irq(q->queue_lock);
2941 if (unlikely(barrier) || elv_queue_empty(q))
2944 el_ret = elv_merge(q, &req, bio);
2946 case ELEVATOR_BACK_MERGE:
2947 BUG_ON(!rq_mergeable(req));
2949 if (!ll_back_merge_fn(q, req, bio))
2952 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2954 req->biotail->bi_next = bio;
2956 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2957 req->ioprio = ioprio_best(req->ioprio, prio);
2958 drive_stat_acct(req, nr_sectors, 0);
2959 if (!attempt_back_merge(q, req))
2960 elv_merged_request(q, req, el_ret);
2963 case ELEVATOR_FRONT_MERGE:
2964 BUG_ON(!rq_mergeable(req));
2966 if (!ll_front_merge_fn(q, req, bio))
2969 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2971 bio->bi_next = req->bio;
2975 * may not be valid. if the low level driver said
2976 * it didn't need a bounce buffer then it better
2977 * not touch req->buffer either...
2979 req->buffer = bio_data(bio);
2980 req->current_nr_sectors = bio_cur_sectors(bio);
2981 req->hard_cur_sectors = req->current_nr_sectors;
2982 req->sector = req->hard_sector = bio->bi_sector;
2983 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2984 req->ioprio = ioprio_best(req->ioprio, prio);
2985 drive_stat_acct(req, nr_sectors, 0);
2986 if (!attempt_front_merge(q, req))
2987 elv_merged_request(q, req, el_ret);
2990 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2997 * This sync check and mask will be re-done in init_request_from_bio(),
2998 * but we need to set it earlier to expose the sync flag to the
2999 * rq allocator and io schedulers.
3001 rw_flags = bio_data_dir(bio);
3003 rw_flags |= REQ_RW_SYNC;
3006 * Grab a free request. This is might sleep but can not fail.
3007 * Returns with the queue unlocked.
3009 req = get_request_wait(q, rw_flags, bio);
3012 * After dropping the lock and possibly sleeping here, our request
3013 * may now be mergeable after it had proven unmergeable (above).
3014 * We don't worry about that case for efficiency. It won't happen
3015 * often, and the elevators are able to handle it.
3017 init_request_from_bio(req, bio);
3019 spin_lock_irq(q->queue_lock);
3020 if (elv_queue_empty(q))
3022 add_request(q, req);
3025 __generic_unplug_device(q);
3027 spin_unlock_irq(q->queue_lock);
3031 bio_endio(bio, nr_sectors << 9, err);
3036 * If bio->bi_dev is a partition, remap the location
3038 static inline void blk_partition_remap(struct bio *bio)
3040 struct block_device *bdev = bio->bi_bdev;
3042 if (bdev != bdev->bd_contains) {
3043 struct hd_struct *p = bdev->bd_part;
3044 const int rw = bio_data_dir(bio);
3046 p->sectors[rw] += bio_sectors(bio);
3049 bio->bi_sector += p->start_sect;
3050 bio->bi_bdev = bdev->bd_contains;
3052 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3053 bdev->bd_dev, bio->bi_sector,
3054 bio->bi_sector - p->start_sect);
3058 static void handle_bad_sector(struct bio *bio)
3060 char b[BDEVNAME_SIZE];
3062 printk(KERN_INFO "attempt to access beyond end of device\n");
3063 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3064 bdevname(bio->bi_bdev, b),
3066 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3067 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3069 set_bit(BIO_EOF, &bio->bi_flags);
3072 #ifdef CONFIG_FAIL_MAKE_REQUEST
3074 static DECLARE_FAULT_ATTR(fail_make_request);
3076 static int __init setup_fail_make_request(char *str)
3078 return setup_fault_attr(&fail_make_request, str);
3080 __setup("fail_make_request=", setup_fail_make_request);
3082 static int should_fail_request(struct bio *bio)
3084 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3085 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3086 return should_fail(&fail_make_request, bio->bi_size);
3091 static int __init fail_make_request_debugfs(void)
3093 return init_fault_attr_dentries(&fail_make_request,
3094 "fail_make_request");
3097 late_initcall(fail_make_request_debugfs);
3099 #else /* CONFIG_FAIL_MAKE_REQUEST */
3101 static inline int should_fail_request(struct bio *bio)
3106 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3109 * generic_make_request: hand a buffer to its device driver for I/O
3110 * @bio: The bio describing the location in memory and on the device.
3112 * generic_make_request() is used to make I/O requests of block
3113 * devices. It is passed a &struct bio, which describes the I/O that needs
3116 * generic_make_request() does not return any status. The
3117 * success/failure status of the request, along with notification of
3118 * completion, is delivered asynchronously through the bio->bi_end_io
3119 * function described (one day) else where.
3121 * The caller of generic_make_request must make sure that bi_io_vec
3122 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3123 * set to describe the device address, and the
3124 * bi_end_io and optionally bi_private are set to describe how
3125 * completion notification should be signaled.
3127 * generic_make_request and the drivers it calls may use bi_next if this
3128 * bio happens to be merged with someone else, and may change bi_dev and
3129 * bi_sector for remaps as it sees fit. So the values of these fields
3130 * should NOT be depended on after the call to generic_make_request.
3132 static inline void __generic_make_request(struct bio *bio)
3134 struct request_queue *q;
3136 sector_t old_sector;
3137 int ret, nr_sectors = bio_sectors(bio);
3141 /* Test device or partition size, when known. */
3142 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3144 sector_t sector = bio->bi_sector;
3146 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3148 * This may well happen - the kernel calls bread()
3149 * without checking the size of the device, e.g., when
3150 * mounting a device.
3152 handle_bad_sector(bio);
3158 * Resolve the mapping until finished. (drivers are
3159 * still free to implement/resolve their own stacking
3160 * by explicitly returning 0)
3162 * NOTE: we don't repeat the blk_size check for each new device.
3163 * Stacking drivers are expected to know what they are doing.
3168 char b[BDEVNAME_SIZE];
3170 q = bdev_get_queue(bio->bi_bdev);
3173 "generic_make_request: Trying to access "
3174 "nonexistent block-device %s (%Lu)\n",
3175 bdevname(bio->bi_bdev, b),
3176 (long long) bio->bi_sector);
3178 bio_endio(bio, bio->bi_size, -EIO);
3182 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3183 printk("bio too big device %s (%u > %u)\n",
3184 bdevname(bio->bi_bdev, b),
3190 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3193 if (should_fail_request(bio))
3197 * If this device has partitions, remap block n
3198 * of partition p to block n+start(p) of the disk.
3200 blk_partition_remap(bio);
3202 if (old_sector != -1)
3203 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3206 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3208 old_sector = bio->bi_sector;
3209 old_dev = bio->bi_bdev->bd_dev;
3211 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3213 sector_t sector = bio->bi_sector;
3215 if (maxsector < nr_sectors ||
3216 maxsector - nr_sectors < sector) {
3218 * This may well happen - partitions are not
3219 * checked to make sure they are within the size
3220 * of the whole device.
3222 handle_bad_sector(bio);
3227 ret = q->make_request_fn(q, bio);
3232 * We only want one ->make_request_fn to be active at a time,
3233 * else stack usage with stacked devices could be a problem.
3234 * So use current->bio_{list,tail} to keep a list of requests
3235 * submited by a make_request_fn function.
3236 * current->bio_tail is also used as a flag to say if
3237 * generic_make_request is currently active in this task or not.
3238 * If it is NULL, then no make_request is active. If it is non-NULL,
3239 * then a make_request is active, and new requests should be added
3242 void generic_make_request(struct bio *bio)
3244 if (current->bio_tail) {
3245 /* make_request is active */
3246 *(current->bio_tail) = bio;
3247 bio->bi_next = NULL;
3248 current->bio_tail = &bio->bi_next;
3251 /* following loop may be a bit non-obvious, and so deserves some
3253 * Before entering the loop, bio->bi_next is NULL (as all callers
3254 * ensure that) so we have a list with a single bio.
3255 * We pretend that we have just taken it off a longer list, so
3256 * we assign bio_list to the next (which is NULL) and bio_tail
3257 * to &bio_list, thus initialising the bio_list of new bios to be
3258 * added. __generic_make_request may indeed add some more bios
3259 * through a recursive call to generic_make_request. If it
3260 * did, we find a non-NULL value in bio_list and re-enter the loop
3261 * from the top. In this case we really did just take the bio
3262 * of the top of the list (no pretending) and so fixup bio_list and
3263 * bio_tail or bi_next, and call into __generic_make_request again.
3265 * The loop was structured like this to make only one call to
3266 * __generic_make_request (which is important as it is large and
3267 * inlined) and to keep the structure simple.
3269 BUG_ON(bio->bi_next);
3271 current->bio_list = bio->bi_next;
3272 if (bio->bi_next == NULL)
3273 current->bio_tail = ¤t->bio_list;
3275 bio->bi_next = NULL;
3276 __generic_make_request(bio);
3277 bio = current->bio_list;
3279 current->bio_tail = NULL; /* deactivate */
3282 EXPORT_SYMBOL(generic_make_request);
3285 * submit_bio: submit a bio to the block device layer for I/O
3286 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3287 * @bio: The &struct bio which describes the I/O
3289 * submit_bio() is very similar in purpose to generic_make_request(), and
3290 * uses that function to do most of the work. Both are fairly rough
3291 * interfaces, @bio must be presetup and ready for I/O.
3294 void submit_bio(int rw, struct bio *bio)
3296 int count = bio_sectors(bio);
3298 BIO_BUG_ON(!bio->bi_size);
3299 BIO_BUG_ON(!bio->bi_io_vec);
3302 count_vm_events(PGPGOUT, count);
3304 task_io_account_read(bio->bi_size);
3305 count_vm_events(PGPGIN, count);
3308 if (unlikely(block_dump)) {
3309 char b[BDEVNAME_SIZE];
3310 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3311 current->comm, current->pid,
3312 (rw & WRITE) ? "WRITE" : "READ",
3313 (unsigned long long)bio->bi_sector,
3314 bdevname(bio->bi_bdev,b));
3317 generic_make_request(bio);
3320 EXPORT_SYMBOL(submit_bio);
3322 static void blk_recalc_rq_segments(struct request *rq)
3324 struct bio *bio, *prevbio = NULL;
3325 int nr_phys_segs, nr_hw_segs;
3326 unsigned int phys_size, hw_size;
3327 struct request_queue *q = rq->q;
3332 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3333 rq_for_each_bio(bio, rq) {
3334 /* Force bio hw/phys segs to be recalculated. */
3335 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3337 nr_phys_segs += bio_phys_segments(q, bio);
3338 nr_hw_segs += bio_hw_segments(q, bio);
3340 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3341 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3343 if (blk_phys_contig_segment(q, prevbio, bio) &&
3344 pseg <= q->max_segment_size) {
3346 phys_size += prevbio->bi_size + bio->bi_size;
3350 if (blk_hw_contig_segment(q, prevbio, bio) &&
3351 hseg <= q->max_segment_size) {
3353 hw_size += prevbio->bi_size + bio->bi_size;
3360 rq->nr_phys_segments = nr_phys_segs;
3361 rq->nr_hw_segments = nr_hw_segs;
3364 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3366 if (blk_fs_request(rq)) {
3367 rq->hard_sector += nsect;
3368 rq->hard_nr_sectors -= nsect;
3371 * Move the I/O submission pointers ahead if required.
3373 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3374 (rq->sector <= rq->hard_sector)) {
3375 rq->sector = rq->hard_sector;
3376 rq->nr_sectors = rq->hard_nr_sectors;
3377 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3378 rq->current_nr_sectors = rq->hard_cur_sectors;
3379 rq->buffer = bio_data(rq->bio);
3383 * if total number of sectors is less than the first segment
3384 * size, something has gone terribly wrong
3386 if (rq->nr_sectors < rq->current_nr_sectors) {
3387 printk("blk: request botched\n");
3388 rq->nr_sectors = rq->current_nr_sectors;
3393 static int __end_that_request_first(struct request *req, int uptodate,
3396 int total_bytes, bio_nbytes, error, next_idx = 0;
3399 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3402 * extend uptodate bool to allow < 0 value to be direct io error
3405 if (end_io_error(uptodate))
3406 error = !uptodate ? -EIO : uptodate;
3409 * for a REQ_BLOCK_PC request, we want to carry any eventual
3410 * sense key with us all the way through
3412 if (!blk_pc_request(req))
3416 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3417 printk("end_request: I/O error, dev %s, sector %llu\n",
3418 req->rq_disk ? req->rq_disk->disk_name : "?",
3419 (unsigned long long)req->sector);
3422 if (blk_fs_request(req) && req->rq_disk) {
3423 const int rw = rq_data_dir(req);
3425 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3428 total_bytes = bio_nbytes = 0;
3429 while ((bio = req->bio) != NULL) {
3432 if (nr_bytes >= bio->bi_size) {
3433 req->bio = bio->bi_next;
3434 nbytes = bio->bi_size;
3435 if (!ordered_bio_endio(req, bio, nbytes, error))
3436 bio_endio(bio, nbytes, error);
3440 int idx = bio->bi_idx + next_idx;
3442 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3443 blk_dump_rq_flags(req, "__end_that");
3444 printk("%s: bio idx %d >= vcnt %d\n",
3446 bio->bi_idx, bio->bi_vcnt);
3450 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3451 BIO_BUG_ON(nbytes > bio->bi_size);
3454 * not a complete bvec done
3456 if (unlikely(nbytes > nr_bytes)) {
3457 bio_nbytes += nr_bytes;
3458 total_bytes += nr_bytes;
3463 * advance to the next vector
3466 bio_nbytes += nbytes;
3469 total_bytes += nbytes;
3472 if ((bio = req->bio)) {
3474 * end more in this run, or just return 'not-done'
3476 if (unlikely(nr_bytes <= 0))
3488 * if the request wasn't completed, update state
3491 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3492 bio_endio(bio, bio_nbytes, error);
3493 bio->bi_idx += next_idx;
3494 bio_iovec(bio)->bv_offset += nr_bytes;
3495 bio_iovec(bio)->bv_len -= nr_bytes;
3498 blk_recalc_rq_sectors(req, total_bytes >> 9);
3499 blk_recalc_rq_segments(req);
3504 * end_that_request_first - end I/O on a request
3505 * @req: the request being processed
3506 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3507 * @nr_sectors: number of sectors to end I/O on
3510 * Ends I/O on a number of sectors attached to @req, and sets it up
3511 * for the next range of segments (if any) in the cluster.
3514 * 0 - we are done with this request, call end_that_request_last()
3515 * 1 - still buffers pending for this request
3517 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3519 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3522 EXPORT_SYMBOL(end_that_request_first);
3525 * end_that_request_chunk - end I/O on a request
3526 * @req: the request being processed
3527 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3528 * @nr_bytes: number of bytes to complete
3531 * Ends I/O on a number of bytes attached to @req, and sets it up
3532 * for the next range of segments (if any). Like end_that_request_first(),
3533 * but deals with bytes instead of sectors.
3536 * 0 - we are done with this request, call end_that_request_last()
3537 * 1 - still buffers pending for this request
3539 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3541 return __end_that_request_first(req, uptodate, nr_bytes);
3544 EXPORT_SYMBOL(end_that_request_chunk);
3547 * splice the completion data to a local structure and hand off to
3548 * process_completion_queue() to complete the requests
3550 static void blk_done_softirq(struct softirq_action *h)
3552 struct list_head *cpu_list, local_list;
3554 local_irq_disable();
3555 cpu_list = &__get_cpu_var(blk_cpu_done);
3556 list_replace_init(cpu_list, &local_list);
3559 while (!list_empty(&local_list)) {
3560 struct request *rq = list_entry(local_list.next, struct request, donelist);
3562 list_del_init(&rq->donelist);
3563 rq->q->softirq_done_fn(rq);
3567 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3571 * If a CPU goes away, splice its entries to the current CPU
3572 * and trigger a run of the softirq
3574 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3575 int cpu = (unsigned long) hcpu;
3577 local_irq_disable();
3578 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3579 &__get_cpu_var(blk_cpu_done));
3580 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3588 static struct notifier_block __devinitdata blk_cpu_notifier = {
3589 .notifier_call = blk_cpu_notify,
3593 * blk_complete_request - end I/O on a request
3594 * @req: the request being processed
3597 * Ends all I/O on a request. It does not handle partial completions,
3598 * unless the driver actually implements this in its completion callback
3599 * through requeueing. Theh actual completion happens out-of-order,
3600 * through a softirq handler. The user must have registered a completion
3601 * callback through blk_queue_softirq_done().
3604 void blk_complete_request(struct request *req)
3606 struct list_head *cpu_list;
3607 unsigned long flags;
3609 BUG_ON(!req->q->softirq_done_fn);
3611 local_irq_save(flags);
3613 cpu_list = &__get_cpu_var(blk_cpu_done);
3614 list_add_tail(&req->donelist, cpu_list);
3615 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3617 local_irq_restore(flags);
3620 EXPORT_SYMBOL(blk_complete_request);
3623 * queue lock must be held
3625 void end_that_request_last(struct request *req, int uptodate)
3627 struct gendisk *disk = req->rq_disk;
3631 * extend uptodate bool to allow < 0 value to be direct io error
3634 if (end_io_error(uptodate))
3635 error = !uptodate ? -EIO : uptodate;
3637 if (unlikely(laptop_mode) && blk_fs_request(req))
3638 laptop_io_completion();
3641 * Account IO completion. bar_rq isn't accounted as a normal
3642 * IO on queueing nor completion. Accounting the containing
3643 * request is enough.
3645 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3646 unsigned long duration = jiffies - req->start_time;
3647 const int rw = rq_data_dir(req);
3649 __disk_stat_inc(disk, ios[rw]);
3650 __disk_stat_add(disk, ticks[rw], duration);
3651 disk_round_stats(disk);
3655 req->end_io(req, error);
3657 __blk_put_request(req->q, req);
3660 EXPORT_SYMBOL(end_that_request_last);
3662 void end_request(struct request *req, int uptodate)
3664 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3665 add_disk_randomness(req->rq_disk);
3666 blkdev_dequeue_request(req);
3667 end_that_request_last(req, uptodate);
3671 EXPORT_SYMBOL(end_request);
3673 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3676 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3677 rq->cmd_flags |= (bio->bi_rw & 3);
3679 rq->nr_phys_segments = bio_phys_segments(q, bio);
3680 rq->nr_hw_segments = bio_hw_segments(q, bio);
3681 rq->current_nr_sectors = bio_cur_sectors(bio);
3682 rq->hard_cur_sectors = rq->current_nr_sectors;
3683 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3684 rq->buffer = bio_data(bio);
3685 rq->data_len = bio->bi_size;
3687 rq->bio = rq->biotail = bio;
3690 EXPORT_SYMBOL(blk_rq_bio_prep);
3692 int kblockd_schedule_work(struct work_struct *work)
3694 return queue_work(kblockd_workqueue, work);
3697 EXPORT_SYMBOL(kblockd_schedule_work);
3699 void kblockd_flush_work(struct work_struct *work)
3701 cancel_work_sync(work);
3703 EXPORT_SYMBOL(kblockd_flush_work);
3705 int __init blk_dev_init(void)
3709 kblockd_workqueue = create_workqueue("kblockd");
3710 if (!kblockd_workqueue)
3711 panic("Failed to create kblockd\n");
3713 request_cachep = kmem_cache_create("blkdev_requests",
3714 sizeof(struct request), 0, SLAB_PANIC, NULL);
3716 requestq_cachep = kmem_cache_create("blkdev_queue",
3717 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3719 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3720 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3722 for_each_possible_cpu(i)
3723 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3725 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3726 register_hotcpu_notifier(&blk_cpu_notifier);
3728 blk_max_low_pfn = max_low_pfn - 1;
3729 blk_max_pfn = max_pfn - 1;
3735 * IO Context helper functions
3737 void put_io_context(struct io_context *ioc)
3742 BUG_ON(atomic_read(&ioc->refcount) == 0);
3744 if (atomic_dec_and_test(&ioc->refcount)) {
3745 struct cfq_io_context *cic;
3748 if (ioc->aic && ioc->aic->dtor)
3749 ioc->aic->dtor(ioc->aic);
3750 if (ioc->cic_root.rb_node != NULL) {
3751 struct rb_node *n = rb_first(&ioc->cic_root);
3753 cic = rb_entry(n, struct cfq_io_context, rb_node);
3758 kmem_cache_free(iocontext_cachep, ioc);
3761 EXPORT_SYMBOL(put_io_context);
3763 /* Called by the exitting task */
3764 void exit_io_context(void)
3766 struct io_context *ioc;
3767 struct cfq_io_context *cic;
3770 ioc = current->io_context;
3771 current->io_context = NULL;
3772 task_unlock(current);
3775 if (ioc->aic && ioc->aic->exit)
3776 ioc->aic->exit(ioc->aic);
3777 if (ioc->cic_root.rb_node != NULL) {
3778 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3782 put_io_context(ioc);
3786 * If the current task has no IO context then create one and initialise it.
3787 * Otherwise, return its existing IO context.
3789 * This returned IO context doesn't have a specifically elevated refcount,
3790 * but since the current task itself holds a reference, the context can be
3791 * used in general code, so long as it stays within `current` context.
3793 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3795 struct task_struct *tsk = current;
3796 struct io_context *ret;
3798 ret = tsk->io_context;
3802 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3804 atomic_set(&ret->refcount, 1);
3805 ret->task = current;
3806 ret->ioprio_changed = 0;
3807 ret->last_waited = jiffies; /* doesn't matter... */
3808 ret->nr_batch_requests = 0; /* because this is 0 */
3810 ret->cic_root.rb_node = NULL;
3811 ret->ioc_data = NULL;
3812 /* make sure set_task_ioprio() sees the settings above */
3814 tsk->io_context = ret;
3821 * If the current task has no IO context then create one and initialise it.
3822 * If it does have a context, take a ref on it.
3824 * This is always called in the context of the task which submitted the I/O.
3826 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3828 struct io_context *ret;
3829 ret = current_io_context(gfp_flags, node);
3831 atomic_inc(&ret->refcount);
3834 EXPORT_SYMBOL(get_io_context);
3836 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3838 struct io_context *src = *psrc;
3839 struct io_context *dst = *pdst;
3842 BUG_ON(atomic_read(&src->refcount) == 0);
3843 atomic_inc(&src->refcount);
3844 put_io_context(dst);
3848 EXPORT_SYMBOL(copy_io_context);
3850 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3852 struct io_context *temp;
3857 EXPORT_SYMBOL(swap_io_context);
3862 struct queue_sysfs_entry {
3863 struct attribute attr;
3864 ssize_t (*show)(struct request_queue *, char *);
3865 ssize_t (*store)(struct request_queue *, const char *, size_t);
3869 queue_var_show(unsigned int var, char *page)
3871 return sprintf(page, "%d\n", var);
3875 queue_var_store(unsigned long *var, const char *page, size_t count)
3877 char *p = (char *) page;
3879 *var = simple_strtoul(p, &p, 10);
3883 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3885 return queue_var_show(q->nr_requests, (page));
3889 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3891 struct request_list *rl = &q->rq;
3893 int ret = queue_var_store(&nr, page, count);
3894 if (nr < BLKDEV_MIN_RQ)
3897 spin_lock_irq(q->queue_lock);
3898 q->nr_requests = nr;
3899 blk_queue_congestion_threshold(q);
3901 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3902 blk_set_queue_congested(q, READ);
3903 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3904 blk_clear_queue_congested(q, READ);
3906 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3907 blk_set_queue_congested(q, WRITE);
3908 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3909 blk_clear_queue_congested(q, WRITE);
3911 if (rl->count[READ] >= q->nr_requests) {
3912 blk_set_queue_full(q, READ);
3913 } else if (rl->count[READ]+1 <= q->nr_requests) {
3914 blk_clear_queue_full(q, READ);
3915 wake_up(&rl->wait[READ]);
3918 if (rl->count[WRITE] >= q->nr_requests) {
3919 blk_set_queue_full(q, WRITE);
3920 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3921 blk_clear_queue_full(q, WRITE);
3922 wake_up(&rl->wait[WRITE]);
3924 spin_unlock_irq(q->queue_lock);
3928 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3930 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3932 return queue_var_show(ra_kb, (page));
3936 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3938 unsigned long ra_kb;
3939 ssize_t ret = queue_var_store(&ra_kb, page, count);
3941 spin_lock_irq(q->queue_lock);
3942 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3943 spin_unlock_irq(q->queue_lock);
3948 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3950 int max_sectors_kb = q->max_sectors >> 1;
3952 return queue_var_show(max_sectors_kb, (page));
3956 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3958 unsigned long max_sectors_kb,
3959 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3960 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3961 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3964 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3967 * Take the queue lock to update the readahead and max_sectors
3968 * values synchronously:
3970 spin_lock_irq(q->queue_lock);
3972 * Trim readahead window as well, if necessary:
3974 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3975 if (ra_kb > max_sectors_kb)
3976 q->backing_dev_info.ra_pages =
3977 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3979 q->max_sectors = max_sectors_kb << 1;
3980 spin_unlock_irq(q->queue_lock);
3985 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3987 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3989 return queue_var_show(max_hw_sectors_kb, (page));
3993 static struct queue_sysfs_entry queue_requests_entry = {
3994 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3995 .show = queue_requests_show,
3996 .store = queue_requests_store,
3999 static struct queue_sysfs_entry queue_ra_entry = {
4000 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4001 .show = queue_ra_show,
4002 .store = queue_ra_store,
4005 static struct queue_sysfs_entry queue_max_sectors_entry = {
4006 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4007 .show = queue_max_sectors_show,
4008 .store = queue_max_sectors_store,
4011 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4012 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4013 .show = queue_max_hw_sectors_show,
4016 static struct queue_sysfs_entry queue_iosched_entry = {
4017 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4018 .show = elv_iosched_show,
4019 .store = elv_iosched_store,
4022 static struct attribute *default_attrs[] = {
4023 &queue_requests_entry.attr,
4024 &queue_ra_entry.attr,
4025 &queue_max_hw_sectors_entry.attr,
4026 &queue_max_sectors_entry.attr,
4027 &queue_iosched_entry.attr,
4031 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4034 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4036 struct queue_sysfs_entry *entry = to_queue(attr);
4037 struct request_queue *q =
4038 container_of(kobj, struct request_queue, kobj);
4043 mutex_lock(&q->sysfs_lock);
4044 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4045 mutex_unlock(&q->sysfs_lock);
4048 res = entry->show(q, page);
4049 mutex_unlock(&q->sysfs_lock);
4054 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4055 const char *page, size_t length)
4057 struct queue_sysfs_entry *entry = to_queue(attr);
4058 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4064 mutex_lock(&q->sysfs_lock);
4065 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4066 mutex_unlock(&q->sysfs_lock);
4069 res = entry->store(q, page, length);
4070 mutex_unlock(&q->sysfs_lock);
4074 static struct sysfs_ops queue_sysfs_ops = {
4075 .show = queue_attr_show,
4076 .store = queue_attr_store,
4079 static struct kobj_type queue_ktype = {
4080 .sysfs_ops = &queue_sysfs_ops,
4081 .default_attrs = default_attrs,
4082 .release = blk_release_queue,
4085 int blk_register_queue(struct gendisk *disk)
4089 struct request_queue *q = disk->queue;
4091 if (!q || !q->request_fn)
4094 q->kobj.parent = kobject_get(&disk->kobj);
4096 ret = kobject_add(&q->kobj);
4100 kobject_uevent(&q->kobj, KOBJ_ADD);
4102 ret = elv_register_queue(q);
4104 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4105 kobject_del(&q->kobj);
4112 void blk_unregister_queue(struct gendisk *disk)
4114 struct request_queue *q = disk->queue;
4116 if (q && q->request_fn) {
4117 elv_unregister_queue(q);
4119 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4120 kobject_del(&q->kobj);
4121 kobject_put(&disk->kobj);