2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
22 #include <asm/pgtable.h>
25 #include <linux/hugetlb.h>
28 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
29 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
30 unsigned long hugepages_treat_as_movable;
32 static int max_hstate;
33 unsigned int default_hstate_idx;
34 struct hstate hstates[HUGE_MAX_HSTATE];
36 __initdata LIST_HEAD(huge_boot_pages);
38 /* for command line parsing */
39 static struct hstate * __initdata parsed_hstate;
40 static unsigned long __initdata default_hstate_max_huge_pages;
41 static unsigned long __initdata default_hstate_size;
43 #define for_each_hstate(h) \
44 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
47 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 static DEFINE_SPINLOCK(hugetlb_lock);
52 * Region tracking -- allows tracking of reservations and instantiated pages
53 * across the pages in a mapping.
55 * The region data structures are protected by a combination of the mmap_sem
56 * and the hugetlb_instantion_mutex. To access or modify a region the caller
57 * must either hold the mmap_sem for write, or the mmap_sem for read and
58 * the hugetlb_instantiation mutex:
60 * down_write(&mm->mmap_sem);
62 * down_read(&mm->mmap_sem);
63 * mutex_lock(&hugetlb_instantiation_mutex);
66 struct list_head link;
71 static long region_add(struct list_head *head, long f, long t)
73 struct file_region *rg, *nrg, *trg;
75 /* Locate the region we are either in or before. */
76 list_for_each_entry(rg, head, link)
80 /* Round our left edge to the current segment if it encloses us. */
84 /* Check for and consume any regions we now overlap with. */
86 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
87 if (&rg->link == head)
92 /* If this area reaches higher then extend our area to
93 * include it completely. If this is not the first area
94 * which we intend to reuse, free it. */
107 static long region_chg(struct list_head *head, long f, long t)
109 struct file_region *rg, *nrg;
112 /* Locate the region we are before or in. */
113 list_for_each_entry(rg, head, link)
117 /* If we are below the current region then a new region is required.
118 * Subtle, allocate a new region at the position but make it zero
119 * size such that we can guarantee to record the reservation. */
120 if (&rg->link == head || t < rg->from) {
121 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
126 INIT_LIST_HEAD(&nrg->link);
127 list_add(&nrg->link, rg->link.prev);
132 /* Round our left edge to the current segment if it encloses us. */
137 /* Check for and consume any regions we now overlap with. */
138 list_for_each_entry(rg, rg->link.prev, link) {
139 if (&rg->link == head)
144 /* We overlap with this area, if it extends futher than
145 * us then we must extend ourselves. Account for its
146 * existing reservation. */
151 chg -= rg->to - rg->from;
156 static long region_truncate(struct list_head *head, long end)
158 struct file_region *rg, *trg;
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg, head, link)
165 if (&rg->link == head)
168 /* If we are in the middle of a region then adjust it. */
169 if (end > rg->from) {
172 rg = list_entry(rg->link.next, typeof(*rg), link);
175 /* Drop any remaining regions. */
176 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
177 if (&rg->link == head)
179 chg += rg->to - rg->from;
186 static long region_count(struct list_head *head, long f, long t)
188 struct file_region *rg;
191 /* Locate each segment we overlap with, and count that overlap. */
192 list_for_each_entry(rg, head, link) {
201 seg_from = max(rg->from, f);
202 seg_to = min(rg->to, t);
204 chg += seg_to - seg_from;
211 * Convert the address within this vma to the page offset within
212 * the mapping, in pagecache page units; huge pages here.
214 static pgoff_t vma_hugecache_offset(struct hstate *h,
215 struct vm_area_struct *vma, unsigned long address)
217 return ((address - vma->vm_start) >> huge_page_shift(h)) +
218 (vma->vm_pgoff >> huge_page_order(h));
222 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
223 * bits of the reservation map pointer, which are always clear due to
226 #define HPAGE_RESV_OWNER (1UL << 0)
227 #define HPAGE_RESV_UNMAPPED (1UL << 1)
228 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
231 * These helpers are used to track how many pages are reserved for
232 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
233 * is guaranteed to have their future faults succeed.
235 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
236 * the reserve counters are updated with the hugetlb_lock held. It is safe
237 * to reset the VMA at fork() time as it is not in use yet and there is no
238 * chance of the global counters getting corrupted as a result of the values.
240 * The private mapping reservation is represented in a subtly different
241 * manner to a shared mapping. A shared mapping has a region map associated
242 * with the underlying file, this region map represents the backing file
243 * pages which have ever had a reservation assigned which this persists even
244 * after the page is instantiated. A private mapping has a region map
245 * associated with the original mmap which is attached to all VMAs which
246 * reference it, this region map represents those offsets which have consumed
247 * reservation ie. where pages have been instantiated.
249 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
251 return (unsigned long)vma->vm_private_data;
254 static void set_vma_private_data(struct vm_area_struct *vma,
257 vma->vm_private_data = (void *)value;
262 struct list_head regions;
265 static struct resv_map *resv_map_alloc(void)
267 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
271 kref_init(&resv_map->refs);
272 INIT_LIST_HEAD(&resv_map->regions);
277 static void resv_map_release(struct kref *ref)
279 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
281 /* Clear out any active regions before we release the map. */
282 region_truncate(&resv_map->regions, 0);
286 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
288 VM_BUG_ON(!is_vm_hugetlb_page(vma));
289 if (!(vma->vm_flags & VM_SHARED))
290 return (struct resv_map *)(get_vma_private_data(vma) &
295 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
297 VM_BUG_ON(!is_vm_hugetlb_page(vma));
298 VM_BUG_ON(vma->vm_flags & VM_SHARED);
300 set_vma_private_data(vma, (get_vma_private_data(vma) &
301 HPAGE_RESV_MASK) | (unsigned long)map);
304 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
306 VM_BUG_ON(!is_vm_hugetlb_page(vma));
307 VM_BUG_ON(vma->vm_flags & VM_SHARED);
309 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
312 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
314 VM_BUG_ON(!is_vm_hugetlb_page(vma));
316 return (get_vma_private_data(vma) & flag) != 0;
319 /* Decrement the reserved pages in the hugepage pool by one */
320 static void decrement_hugepage_resv_vma(struct hstate *h,
321 struct vm_area_struct *vma)
323 if (vma->vm_flags & VM_NORESERVE)
326 if (vma->vm_flags & VM_SHARED) {
327 /* Shared mappings always use reserves */
328 h->resv_huge_pages--;
329 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
331 * Only the process that called mmap() has reserves for
334 h->resv_huge_pages--;
338 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
339 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
341 VM_BUG_ON(!is_vm_hugetlb_page(vma));
342 if (!(vma->vm_flags & VM_SHARED))
343 vma->vm_private_data = (void *)0;
346 /* Returns true if the VMA has associated reserve pages */
347 static int vma_has_reserves(struct vm_area_struct *vma)
349 if (vma->vm_flags & VM_SHARED)
351 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
356 static void clear_huge_page(struct page *page,
357 unsigned long addr, unsigned long sz)
362 for (i = 0; i < sz/PAGE_SIZE; i++) {
364 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
368 static void copy_huge_page(struct page *dst, struct page *src,
369 unsigned long addr, struct vm_area_struct *vma)
372 struct hstate *h = hstate_vma(vma);
375 for (i = 0; i < pages_per_huge_page(h); i++) {
377 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
381 static void enqueue_huge_page(struct hstate *h, struct page *page)
383 int nid = page_to_nid(page);
384 list_add(&page->lru, &h->hugepage_freelists[nid]);
385 h->free_huge_pages++;
386 h->free_huge_pages_node[nid]++;
389 static struct page *dequeue_huge_page(struct hstate *h)
392 struct page *page = NULL;
394 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
395 if (!list_empty(&h->hugepage_freelists[nid])) {
396 page = list_entry(h->hugepage_freelists[nid].next,
398 list_del(&page->lru);
399 h->free_huge_pages--;
400 h->free_huge_pages_node[nid]--;
407 static struct page *dequeue_huge_page_vma(struct hstate *h,
408 struct vm_area_struct *vma,
409 unsigned long address, int avoid_reserve)
412 struct page *page = NULL;
413 struct mempolicy *mpol;
414 nodemask_t *nodemask;
415 struct zonelist *zonelist = huge_zonelist(vma, address,
416 htlb_alloc_mask, &mpol, &nodemask);
421 * A child process with MAP_PRIVATE mappings created by their parent
422 * have no page reserves. This check ensures that reservations are
423 * not "stolen". The child may still get SIGKILLed
425 if (!vma_has_reserves(vma) &&
426 h->free_huge_pages - h->resv_huge_pages == 0)
429 /* If reserves cannot be used, ensure enough pages are in the pool */
430 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
433 for_each_zone_zonelist_nodemask(zone, z, zonelist,
434 MAX_NR_ZONES - 1, nodemask) {
435 nid = zone_to_nid(zone);
436 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
437 !list_empty(&h->hugepage_freelists[nid])) {
438 page = list_entry(h->hugepage_freelists[nid].next,
440 list_del(&page->lru);
441 h->free_huge_pages--;
442 h->free_huge_pages_node[nid]--;
445 decrement_hugepage_resv_vma(h, vma);
454 static void update_and_free_page(struct hstate *h, struct page *page)
459 h->nr_huge_pages_node[page_to_nid(page)]--;
460 for (i = 0; i < pages_per_huge_page(h); i++) {
461 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
462 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
463 1 << PG_private | 1<< PG_writeback);
465 set_compound_page_dtor(page, NULL);
466 set_page_refcounted(page);
467 arch_release_hugepage(page);
468 __free_pages(page, huge_page_order(h));
471 struct hstate *size_to_hstate(unsigned long size)
476 if (huge_page_size(h) == size)
482 static void free_huge_page(struct page *page)
485 * Can't pass hstate in here because it is called from the
486 * compound page destructor.
488 struct hstate *h = page_hstate(page);
489 int nid = page_to_nid(page);
490 struct address_space *mapping;
492 mapping = (struct address_space *) page_private(page);
493 set_page_private(page, 0);
494 BUG_ON(page_count(page));
495 INIT_LIST_HEAD(&page->lru);
497 spin_lock(&hugetlb_lock);
498 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
499 update_and_free_page(h, page);
500 h->surplus_huge_pages--;
501 h->surplus_huge_pages_node[nid]--;
503 enqueue_huge_page(h, page);
505 spin_unlock(&hugetlb_lock);
507 hugetlb_put_quota(mapping, 1);
511 * Increment or decrement surplus_huge_pages. Keep node-specific counters
512 * balanced by operating on them in a round-robin fashion.
513 * Returns 1 if an adjustment was made.
515 static int adjust_pool_surplus(struct hstate *h, int delta)
521 VM_BUG_ON(delta != -1 && delta != 1);
523 nid = next_node(nid, node_online_map);
524 if (nid == MAX_NUMNODES)
525 nid = first_node(node_online_map);
527 /* To shrink on this node, there must be a surplus page */
528 if (delta < 0 && !h->surplus_huge_pages_node[nid])
530 /* Surplus cannot exceed the total number of pages */
531 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
532 h->nr_huge_pages_node[nid])
535 h->surplus_huge_pages += delta;
536 h->surplus_huge_pages_node[nid] += delta;
539 } while (nid != prev_nid);
545 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
547 set_compound_page_dtor(page, free_huge_page);
548 spin_lock(&hugetlb_lock);
550 h->nr_huge_pages_node[nid]++;
551 spin_unlock(&hugetlb_lock);
552 put_page(page); /* free it into the hugepage allocator */
555 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
559 if (h->order >= MAX_ORDER)
562 page = alloc_pages_node(nid,
563 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
564 __GFP_REPEAT|__GFP_NOWARN,
567 if (arch_prepare_hugepage(page)) {
568 __free_pages(page, huge_page_order(h));
571 prep_new_huge_page(h, page, nid);
578 * Use a helper variable to find the next node and then
579 * copy it back to hugetlb_next_nid afterwards:
580 * otherwise there's a window in which a racer might
581 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
582 * But we don't need to use a spin_lock here: it really
583 * doesn't matter if occasionally a racer chooses the
584 * same nid as we do. Move nid forward in the mask even
585 * if we just successfully allocated a hugepage so that
586 * the next caller gets hugepages on the next node.
588 static int hstate_next_node(struct hstate *h)
591 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
592 if (next_nid == MAX_NUMNODES)
593 next_nid = first_node(node_online_map);
594 h->hugetlb_next_nid = next_nid;
598 static int alloc_fresh_huge_page(struct hstate *h)
605 start_nid = h->hugetlb_next_nid;
608 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
611 next_nid = hstate_next_node(h);
612 } while (!page && h->hugetlb_next_nid != start_nid);
615 count_vm_event(HTLB_BUDDY_PGALLOC);
617 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
622 static struct page *alloc_buddy_huge_page(struct hstate *h,
623 struct vm_area_struct *vma, unsigned long address)
628 if (h->order >= MAX_ORDER)
632 * Assume we will successfully allocate the surplus page to
633 * prevent racing processes from causing the surplus to exceed
636 * This however introduces a different race, where a process B
637 * tries to grow the static hugepage pool while alloc_pages() is
638 * called by process A. B will only examine the per-node
639 * counters in determining if surplus huge pages can be
640 * converted to normal huge pages in adjust_pool_surplus(). A
641 * won't be able to increment the per-node counter, until the
642 * lock is dropped by B, but B doesn't drop hugetlb_lock until
643 * no more huge pages can be converted from surplus to normal
644 * state (and doesn't try to convert again). Thus, we have a
645 * case where a surplus huge page exists, the pool is grown, and
646 * the surplus huge page still exists after, even though it
647 * should just have been converted to a normal huge page. This
648 * does not leak memory, though, as the hugepage will be freed
649 * once it is out of use. It also does not allow the counters to
650 * go out of whack in adjust_pool_surplus() as we don't modify
651 * the node values until we've gotten the hugepage and only the
652 * per-node value is checked there.
654 spin_lock(&hugetlb_lock);
655 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
656 spin_unlock(&hugetlb_lock);
660 h->surplus_huge_pages++;
662 spin_unlock(&hugetlb_lock);
664 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
665 __GFP_REPEAT|__GFP_NOWARN,
668 if (page && arch_prepare_hugepage(page)) {
669 __free_pages(page, huge_page_order(h));
673 spin_lock(&hugetlb_lock);
676 * This page is now managed by the hugetlb allocator and has
677 * no users -- drop the buddy allocator's reference.
679 put_page_testzero(page);
680 VM_BUG_ON(page_count(page));
681 nid = page_to_nid(page);
682 set_compound_page_dtor(page, free_huge_page);
684 * We incremented the global counters already
686 h->nr_huge_pages_node[nid]++;
687 h->surplus_huge_pages_node[nid]++;
688 __count_vm_event(HTLB_BUDDY_PGALLOC);
691 h->surplus_huge_pages--;
692 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
694 spin_unlock(&hugetlb_lock);
700 * Increase the hugetlb pool such that it can accomodate a reservation
703 static int gather_surplus_pages(struct hstate *h, int delta)
705 struct list_head surplus_list;
706 struct page *page, *tmp;
708 int needed, allocated;
710 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
712 h->resv_huge_pages += delta;
717 INIT_LIST_HEAD(&surplus_list);
721 spin_unlock(&hugetlb_lock);
722 for (i = 0; i < needed; i++) {
723 page = alloc_buddy_huge_page(h, NULL, 0);
726 * We were not able to allocate enough pages to
727 * satisfy the entire reservation so we free what
728 * we've allocated so far.
730 spin_lock(&hugetlb_lock);
735 list_add(&page->lru, &surplus_list);
740 * After retaking hugetlb_lock, we need to recalculate 'needed'
741 * because either resv_huge_pages or free_huge_pages may have changed.
743 spin_lock(&hugetlb_lock);
744 needed = (h->resv_huge_pages + delta) -
745 (h->free_huge_pages + allocated);
750 * The surplus_list now contains _at_least_ the number of extra pages
751 * needed to accomodate the reservation. Add the appropriate number
752 * of pages to the hugetlb pool and free the extras back to the buddy
753 * allocator. Commit the entire reservation here to prevent another
754 * process from stealing the pages as they are added to the pool but
755 * before they are reserved.
758 h->resv_huge_pages += delta;
761 /* Free the needed pages to the hugetlb pool */
762 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
765 list_del(&page->lru);
766 enqueue_huge_page(h, page);
769 /* Free unnecessary surplus pages to the buddy allocator */
770 if (!list_empty(&surplus_list)) {
771 spin_unlock(&hugetlb_lock);
772 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
773 list_del(&page->lru);
775 * The page has a reference count of zero already, so
776 * call free_huge_page directly instead of using
777 * put_page. This must be done with hugetlb_lock
778 * unlocked which is safe because free_huge_page takes
779 * hugetlb_lock before deciding how to free the page.
781 free_huge_page(page);
783 spin_lock(&hugetlb_lock);
790 * When releasing a hugetlb pool reservation, any surplus pages that were
791 * allocated to satisfy the reservation must be explicitly freed if they were
794 static void return_unused_surplus_pages(struct hstate *h,
795 unsigned long unused_resv_pages)
799 unsigned long nr_pages;
802 * We want to release as many surplus pages as possible, spread
803 * evenly across all nodes. Iterate across all nodes until we
804 * can no longer free unreserved surplus pages. This occurs when
805 * the nodes with surplus pages have no free pages.
807 unsigned long remaining_iterations = num_online_nodes();
809 /* Uncommit the reservation */
810 h->resv_huge_pages -= unused_resv_pages;
812 /* Cannot return gigantic pages currently */
813 if (h->order >= MAX_ORDER)
816 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
818 while (remaining_iterations-- && nr_pages) {
819 nid = next_node(nid, node_online_map);
820 if (nid == MAX_NUMNODES)
821 nid = first_node(node_online_map);
823 if (!h->surplus_huge_pages_node[nid])
826 if (!list_empty(&h->hugepage_freelists[nid])) {
827 page = list_entry(h->hugepage_freelists[nid].next,
829 list_del(&page->lru);
830 update_and_free_page(h, page);
831 h->free_huge_pages--;
832 h->free_huge_pages_node[nid]--;
833 h->surplus_huge_pages--;
834 h->surplus_huge_pages_node[nid]--;
836 remaining_iterations = num_online_nodes();
842 * Determine if the huge page at addr within the vma has an associated
843 * reservation. Where it does not we will need to logically increase
844 * reservation and actually increase quota before an allocation can occur.
845 * Where any new reservation would be required the reservation change is
846 * prepared, but not committed. Once the page has been quota'd allocated
847 * an instantiated the change should be committed via vma_commit_reservation.
848 * No action is required on failure.
850 static int vma_needs_reservation(struct hstate *h,
851 struct vm_area_struct *vma, unsigned long addr)
853 struct address_space *mapping = vma->vm_file->f_mapping;
854 struct inode *inode = mapping->host;
856 if (vma->vm_flags & VM_SHARED) {
857 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
858 return region_chg(&inode->i_mapping->private_list,
861 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
866 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
867 struct resv_map *reservations = vma_resv_map(vma);
869 err = region_chg(&reservations->regions, idx, idx + 1);
875 static void vma_commit_reservation(struct hstate *h,
876 struct vm_area_struct *vma, unsigned long addr)
878 struct address_space *mapping = vma->vm_file->f_mapping;
879 struct inode *inode = mapping->host;
881 if (vma->vm_flags & VM_SHARED) {
882 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
883 region_add(&inode->i_mapping->private_list, idx, idx + 1);
885 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
886 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
887 struct resv_map *reservations = vma_resv_map(vma);
889 /* Mark this page used in the map. */
890 region_add(&reservations->regions, idx, idx + 1);
894 static struct page *alloc_huge_page(struct vm_area_struct *vma,
895 unsigned long addr, int avoid_reserve)
897 struct hstate *h = hstate_vma(vma);
899 struct address_space *mapping = vma->vm_file->f_mapping;
900 struct inode *inode = mapping->host;
904 * Processes that did not create the mapping will have no reserves and
905 * will not have accounted against quota. Check that the quota can be
906 * made before satisfying the allocation
907 * MAP_NORESERVE mappings may also need pages and quota allocated
908 * if no reserve mapping overlaps.
910 chg = vma_needs_reservation(h, vma, addr);
914 if (hugetlb_get_quota(inode->i_mapping, chg))
915 return ERR_PTR(-ENOSPC);
917 spin_lock(&hugetlb_lock);
918 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
919 spin_unlock(&hugetlb_lock);
922 page = alloc_buddy_huge_page(h, vma, addr);
924 hugetlb_put_quota(inode->i_mapping, chg);
925 return ERR_PTR(-VM_FAULT_OOM);
929 set_page_refcounted(page);
930 set_page_private(page, (unsigned long) mapping);
932 vma_commit_reservation(h, vma, addr);
937 __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
939 struct huge_bootmem_page *m;
940 int nr_nodes = nodes_weight(node_online_map);
945 addr = __alloc_bootmem_node_nopanic(
946 NODE_DATA(h->hugetlb_next_nid),
947 huge_page_size(h), huge_page_size(h), 0);
951 * Use the beginning of the huge page to store the
952 * huge_bootmem_page struct (until gather_bootmem
953 * puts them into the mem_map).
965 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
966 /* Put them into a private list first because mem_map is not up yet */
967 list_add(&m->list, &huge_boot_pages);
972 /* Put bootmem huge pages into the standard lists after mem_map is up */
973 static void __init gather_bootmem_prealloc(void)
975 struct huge_bootmem_page *m;
977 list_for_each_entry(m, &huge_boot_pages, list) {
978 struct page *page = virt_to_page(m);
979 struct hstate *h = m->hstate;
980 __ClearPageReserved(page);
981 WARN_ON(page_count(page) != 1);
982 prep_compound_page(page, h->order);
983 prep_new_huge_page(h, page, page_to_nid(page));
987 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
991 for (i = 0; i < h->max_huge_pages; ++i) {
992 if (h->order >= MAX_ORDER) {
993 if (!alloc_bootmem_huge_page(h))
995 } else if (!alloc_fresh_huge_page(h))
998 h->max_huge_pages = i;
1001 static void __init hugetlb_init_hstates(void)
1005 for_each_hstate(h) {
1006 /* oversize hugepages were init'ed in early boot */
1007 if (h->order < MAX_ORDER)
1008 hugetlb_hstate_alloc_pages(h);
1012 static char * __init memfmt(char *buf, unsigned long n)
1014 if (n >= (1UL << 30))
1015 sprintf(buf, "%lu GB", n >> 30);
1016 else if (n >= (1UL << 20))
1017 sprintf(buf, "%lu MB", n >> 20);
1019 sprintf(buf, "%lu KB", n >> 10);
1023 static void __init report_hugepages(void)
1027 for_each_hstate(h) {
1029 printk(KERN_INFO "HugeTLB registered %s page size, "
1030 "pre-allocated %ld pages\n",
1031 memfmt(buf, huge_page_size(h)),
1032 h->free_huge_pages);
1036 #ifdef CONFIG_HIGHMEM
1037 static void try_to_free_low(struct hstate *h, unsigned long count)
1041 if (h->order >= MAX_ORDER)
1044 for (i = 0; i < MAX_NUMNODES; ++i) {
1045 struct page *page, *next;
1046 struct list_head *freel = &h->hugepage_freelists[i];
1047 list_for_each_entry_safe(page, next, freel, lru) {
1048 if (count >= h->nr_huge_pages)
1050 if (PageHighMem(page))
1052 list_del(&page->lru);
1053 update_and_free_page(h, page);
1054 h->free_huge_pages--;
1055 h->free_huge_pages_node[page_to_nid(page)]--;
1060 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1065 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1066 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1068 unsigned long min_count, ret;
1070 if (h->order >= MAX_ORDER)
1071 return h->max_huge_pages;
1074 * Increase the pool size
1075 * First take pages out of surplus state. Then make up the
1076 * remaining difference by allocating fresh huge pages.
1078 * We might race with alloc_buddy_huge_page() here and be unable
1079 * to convert a surplus huge page to a normal huge page. That is
1080 * not critical, though, it just means the overall size of the
1081 * pool might be one hugepage larger than it needs to be, but
1082 * within all the constraints specified by the sysctls.
1084 spin_lock(&hugetlb_lock);
1085 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1086 if (!adjust_pool_surplus(h, -1))
1090 while (count > persistent_huge_pages(h)) {
1092 * If this allocation races such that we no longer need the
1093 * page, free_huge_page will handle it by freeing the page
1094 * and reducing the surplus.
1096 spin_unlock(&hugetlb_lock);
1097 ret = alloc_fresh_huge_page(h);
1098 spin_lock(&hugetlb_lock);
1105 * Decrease the pool size
1106 * First return free pages to the buddy allocator (being careful
1107 * to keep enough around to satisfy reservations). Then place
1108 * pages into surplus state as needed so the pool will shrink
1109 * to the desired size as pages become free.
1111 * By placing pages into the surplus state independent of the
1112 * overcommit value, we are allowing the surplus pool size to
1113 * exceed overcommit. There are few sane options here. Since
1114 * alloc_buddy_huge_page() is checking the global counter,
1115 * though, we'll note that we're not allowed to exceed surplus
1116 * and won't grow the pool anywhere else. Not until one of the
1117 * sysctls are changed, or the surplus pages go out of use.
1119 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1120 min_count = max(count, min_count);
1121 try_to_free_low(h, min_count);
1122 while (min_count < persistent_huge_pages(h)) {
1123 struct page *page = dequeue_huge_page(h);
1126 update_and_free_page(h, page);
1128 while (count < persistent_huge_pages(h)) {
1129 if (!adjust_pool_surplus(h, 1))
1133 ret = persistent_huge_pages(h);
1134 spin_unlock(&hugetlb_lock);
1138 #define HSTATE_ATTR_RO(_name) \
1139 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1141 #define HSTATE_ATTR(_name) \
1142 static struct kobj_attribute _name##_attr = \
1143 __ATTR(_name, 0644, _name##_show, _name##_store)
1145 static struct kobject *hugepages_kobj;
1146 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1148 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1151 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1152 if (hstate_kobjs[i] == kobj)
1158 static ssize_t nr_hugepages_show(struct kobject *kobj,
1159 struct kobj_attribute *attr, char *buf)
1161 struct hstate *h = kobj_to_hstate(kobj);
1162 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1164 static ssize_t nr_hugepages_store(struct kobject *kobj,
1165 struct kobj_attribute *attr, const char *buf, size_t count)
1168 unsigned long input;
1169 struct hstate *h = kobj_to_hstate(kobj);
1171 err = strict_strtoul(buf, 10, &input);
1175 h->max_huge_pages = set_max_huge_pages(h, input);
1179 HSTATE_ATTR(nr_hugepages);
1181 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1182 struct kobj_attribute *attr, char *buf)
1184 struct hstate *h = kobj_to_hstate(kobj);
1185 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1187 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1188 struct kobj_attribute *attr, const char *buf, size_t count)
1191 unsigned long input;
1192 struct hstate *h = kobj_to_hstate(kobj);
1194 err = strict_strtoul(buf, 10, &input);
1198 spin_lock(&hugetlb_lock);
1199 h->nr_overcommit_huge_pages = input;
1200 spin_unlock(&hugetlb_lock);
1204 HSTATE_ATTR(nr_overcommit_hugepages);
1206 static ssize_t free_hugepages_show(struct kobject *kobj,
1207 struct kobj_attribute *attr, char *buf)
1209 struct hstate *h = kobj_to_hstate(kobj);
1210 return sprintf(buf, "%lu\n", h->free_huge_pages);
1212 HSTATE_ATTR_RO(free_hugepages);
1214 static ssize_t resv_hugepages_show(struct kobject *kobj,
1215 struct kobj_attribute *attr, char *buf)
1217 struct hstate *h = kobj_to_hstate(kobj);
1218 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1220 HSTATE_ATTR_RO(resv_hugepages);
1222 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1223 struct kobj_attribute *attr, char *buf)
1225 struct hstate *h = kobj_to_hstate(kobj);
1226 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1228 HSTATE_ATTR_RO(surplus_hugepages);
1230 static struct attribute *hstate_attrs[] = {
1231 &nr_hugepages_attr.attr,
1232 &nr_overcommit_hugepages_attr.attr,
1233 &free_hugepages_attr.attr,
1234 &resv_hugepages_attr.attr,
1235 &surplus_hugepages_attr.attr,
1239 static struct attribute_group hstate_attr_group = {
1240 .attrs = hstate_attrs,
1243 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1247 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1249 if (!hstate_kobjs[h - hstates])
1252 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1253 &hstate_attr_group);
1255 kobject_put(hstate_kobjs[h - hstates]);
1260 static void __init hugetlb_sysfs_init(void)
1265 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1266 if (!hugepages_kobj)
1269 for_each_hstate(h) {
1270 err = hugetlb_sysfs_add_hstate(h);
1272 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1277 static void __exit hugetlb_exit(void)
1281 for_each_hstate(h) {
1282 kobject_put(hstate_kobjs[h - hstates]);
1285 kobject_put(hugepages_kobj);
1287 module_exit(hugetlb_exit);
1289 static int __init hugetlb_init(void)
1291 /* Some platform decide whether they support huge pages at boot
1292 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1293 * there is no such support
1295 if (HPAGE_SHIFT == 0)
1298 if (!size_to_hstate(default_hstate_size)) {
1299 default_hstate_size = HPAGE_SIZE;
1300 if (!size_to_hstate(default_hstate_size))
1301 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1303 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1304 if (default_hstate_max_huge_pages)
1305 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1307 hugetlb_init_hstates();
1309 gather_bootmem_prealloc();
1313 hugetlb_sysfs_init();
1317 module_init(hugetlb_init);
1319 /* Should be called on processing a hugepagesz=... option */
1320 void __init hugetlb_add_hstate(unsigned order)
1325 if (size_to_hstate(PAGE_SIZE << order)) {
1326 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1329 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1331 h = &hstates[max_hstate++];
1333 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1334 h->nr_huge_pages = 0;
1335 h->free_huge_pages = 0;
1336 for (i = 0; i < MAX_NUMNODES; ++i)
1337 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1338 h->hugetlb_next_nid = first_node(node_online_map);
1339 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1340 huge_page_size(h)/1024);
1345 static int __init hugetlb_nrpages_setup(char *s)
1348 static unsigned long *last_mhp;
1351 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1352 * so this hugepages= parameter goes to the "default hstate".
1355 mhp = &default_hstate_max_huge_pages;
1357 mhp = &parsed_hstate->max_huge_pages;
1359 if (mhp == last_mhp) {
1360 printk(KERN_WARNING "hugepages= specified twice without "
1361 "interleaving hugepagesz=, ignoring\n");
1365 if (sscanf(s, "%lu", mhp) <= 0)
1369 * Global state is always initialized later in hugetlb_init.
1370 * But we need to allocate >= MAX_ORDER hstates here early to still
1371 * use the bootmem allocator.
1373 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1374 hugetlb_hstate_alloc_pages(parsed_hstate);
1380 __setup("hugepages=", hugetlb_nrpages_setup);
1382 static int __init hugetlb_default_setup(char *s)
1384 default_hstate_size = memparse(s, &s);
1387 __setup("default_hugepagesz=", hugetlb_default_setup);
1389 static unsigned int cpuset_mems_nr(unsigned int *array)
1392 unsigned int nr = 0;
1394 for_each_node_mask(node, cpuset_current_mems_allowed)
1400 #ifdef CONFIG_SYSCTL
1401 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1402 struct file *file, void __user *buffer,
1403 size_t *length, loff_t *ppos)
1405 struct hstate *h = &default_hstate;
1409 tmp = h->max_huge_pages;
1412 table->maxlen = sizeof(unsigned long);
1413 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1416 h->max_huge_pages = set_max_huge_pages(h, tmp);
1421 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1422 struct file *file, void __user *buffer,
1423 size_t *length, loff_t *ppos)
1425 proc_dointvec(table, write, file, buffer, length, ppos);
1426 if (hugepages_treat_as_movable)
1427 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1429 htlb_alloc_mask = GFP_HIGHUSER;
1433 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1434 struct file *file, void __user *buffer,
1435 size_t *length, loff_t *ppos)
1437 struct hstate *h = &default_hstate;
1441 tmp = h->nr_overcommit_huge_pages;
1444 table->maxlen = sizeof(unsigned long);
1445 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1448 spin_lock(&hugetlb_lock);
1449 h->nr_overcommit_huge_pages = tmp;
1450 spin_unlock(&hugetlb_lock);
1456 #endif /* CONFIG_SYSCTL */
1458 int hugetlb_report_meminfo(char *buf)
1460 struct hstate *h = &default_hstate;
1462 "HugePages_Total: %5lu\n"
1463 "HugePages_Free: %5lu\n"
1464 "HugePages_Rsvd: %5lu\n"
1465 "HugePages_Surp: %5lu\n"
1466 "Hugepagesize: %8lu kB\n",
1470 h->surplus_huge_pages,
1471 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1474 int hugetlb_report_node_meminfo(int nid, char *buf)
1476 struct hstate *h = &default_hstate;
1478 "Node %d HugePages_Total: %5u\n"
1479 "Node %d HugePages_Free: %5u\n"
1480 "Node %d HugePages_Surp: %5u\n",
1481 nid, h->nr_huge_pages_node[nid],
1482 nid, h->free_huge_pages_node[nid],
1483 nid, h->surplus_huge_pages_node[nid]);
1486 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1487 unsigned long hugetlb_total_pages(void)
1489 struct hstate *h = &default_hstate;
1490 return h->nr_huge_pages * pages_per_huge_page(h);
1493 static int hugetlb_acct_memory(struct hstate *h, long delta)
1497 spin_lock(&hugetlb_lock);
1499 * When cpuset is configured, it breaks the strict hugetlb page
1500 * reservation as the accounting is done on a global variable. Such
1501 * reservation is completely rubbish in the presence of cpuset because
1502 * the reservation is not checked against page availability for the
1503 * current cpuset. Application can still potentially OOM'ed by kernel
1504 * with lack of free htlb page in cpuset that the task is in.
1505 * Attempt to enforce strict accounting with cpuset is almost
1506 * impossible (or too ugly) because cpuset is too fluid that
1507 * task or memory node can be dynamically moved between cpusets.
1509 * The change of semantics for shared hugetlb mapping with cpuset is
1510 * undesirable. However, in order to preserve some of the semantics,
1511 * we fall back to check against current free page availability as
1512 * a best attempt and hopefully to minimize the impact of changing
1513 * semantics that cpuset has.
1516 if (gather_surplus_pages(h, delta) < 0)
1519 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1520 return_unused_surplus_pages(h, delta);
1527 return_unused_surplus_pages(h, (unsigned long) -delta);
1530 spin_unlock(&hugetlb_lock);
1534 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1536 struct resv_map *reservations = vma_resv_map(vma);
1539 * This new VMA should share its siblings reservation map if present.
1540 * The VMA will only ever have a valid reservation map pointer where
1541 * it is being copied for another still existing VMA. As that VMA
1542 * has a reference to the reservation map it cannot dissappear until
1543 * after this open call completes. It is therefore safe to take a
1544 * new reference here without additional locking.
1547 kref_get(&reservations->refs);
1550 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1552 struct hstate *h = hstate_vma(vma);
1553 struct resv_map *reservations = vma_resv_map(vma);
1554 unsigned long reserve;
1555 unsigned long start;
1559 start = vma_hugecache_offset(h, vma, vma->vm_start);
1560 end = vma_hugecache_offset(h, vma, vma->vm_end);
1562 reserve = (end - start) -
1563 region_count(&reservations->regions, start, end);
1565 kref_put(&reservations->refs, resv_map_release);
1568 hugetlb_acct_memory(h, -reserve);
1569 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1575 * We cannot handle pagefaults against hugetlb pages at all. They cause
1576 * handle_mm_fault() to try to instantiate regular-sized pages in the
1577 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1580 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1586 struct vm_operations_struct hugetlb_vm_ops = {
1587 .fault = hugetlb_vm_op_fault,
1588 .open = hugetlb_vm_op_open,
1589 .close = hugetlb_vm_op_close,
1592 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1599 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1601 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1603 entry = pte_mkyoung(entry);
1604 entry = pte_mkhuge(entry);
1609 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1610 unsigned long address, pte_t *ptep)
1614 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1615 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1616 update_mmu_cache(vma, address, entry);
1621 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1622 struct vm_area_struct *vma)
1624 pte_t *src_pte, *dst_pte, entry;
1625 struct page *ptepage;
1628 struct hstate *h = hstate_vma(vma);
1629 unsigned long sz = huge_page_size(h);
1631 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1633 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1634 src_pte = huge_pte_offset(src, addr);
1637 dst_pte = huge_pte_alloc(dst, addr, sz);
1641 /* If the pagetables are shared don't copy or take references */
1642 if (dst_pte == src_pte)
1645 spin_lock(&dst->page_table_lock);
1646 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1647 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1649 huge_ptep_set_wrprotect(src, addr, src_pte);
1650 entry = huge_ptep_get(src_pte);
1651 ptepage = pte_page(entry);
1653 set_huge_pte_at(dst, addr, dst_pte, entry);
1655 spin_unlock(&src->page_table_lock);
1656 spin_unlock(&dst->page_table_lock);
1664 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1665 unsigned long end, struct page *ref_page)
1667 struct mm_struct *mm = vma->vm_mm;
1668 unsigned long address;
1673 struct hstate *h = hstate_vma(vma);
1674 unsigned long sz = huge_page_size(h);
1677 * A page gathering list, protected by per file i_mmap_lock. The
1678 * lock is used to avoid list corruption from multiple unmapping
1679 * of the same page since we are using page->lru.
1681 LIST_HEAD(page_list);
1683 WARN_ON(!is_vm_hugetlb_page(vma));
1684 BUG_ON(start & ~huge_page_mask(h));
1685 BUG_ON(end & ~huge_page_mask(h));
1687 mmu_notifier_invalidate_range_start(mm, start, end);
1688 spin_lock(&mm->page_table_lock);
1689 for (address = start; address < end; address += sz) {
1690 ptep = huge_pte_offset(mm, address);
1694 if (huge_pmd_unshare(mm, &address, ptep))
1698 * If a reference page is supplied, it is because a specific
1699 * page is being unmapped, not a range. Ensure the page we
1700 * are about to unmap is the actual page of interest.
1703 pte = huge_ptep_get(ptep);
1704 if (huge_pte_none(pte))
1706 page = pte_page(pte);
1707 if (page != ref_page)
1711 * Mark the VMA as having unmapped its page so that
1712 * future faults in this VMA will fail rather than
1713 * looking like data was lost
1715 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1718 pte = huge_ptep_get_and_clear(mm, address, ptep);
1719 if (huge_pte_none(pte))
1722 page = pte_page(pte);
1724 set_page_dirty(page);
1725 list_add(&page->lru, &page_list);
1727 spin_unlock(&mm->page_table_lock);
1728 flush_tlb_range(vma, start, end);
1729 mmu_notifier_invalidate_range_end(mm, start, end);
1730 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1731 list_del(&page->lru);
1736 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1737 unsigned long end, struct page *ref_page)
1739 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1740 __unmap_hugepage_range(vma, start, end, ref_page);
1741 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1745 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1746 * mappping it owns the reserve page for. The intention is to unmap the page
1747 * from other VMAs and let the children be SIGKILLed if they are faulting the
1750 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1751 struct page *page, unsigned long address)
1753 struct vm_area_struct *iter_vma;
1754 struct address_space *mapping;
1755 struct prio_tree_iter iter;
1759 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1760 * from page cache lookup which is in HPAGE_SIZE units.
1762 address = address & huge_page_mask(hstate_vma(vma));
1763 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1764 + (vma->vm_pgoff >> PAGE_SHIFT);
1765 mapping = (struct address_space *)page_private(page);
1767 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1768 /* Do not unmap the current VMA */
1769 if (iter_vma == vma)
1773 * Unmap the page from other VMAs without their own reserves.
1774 * They get marked to be SIGKILLed if they fault in these
1775 * areas. This is because a future no-page fault on this VMA
1776 * could insert a zeroed page instead of the data existing
1777 * from the time of fork. This would look like data corruption
1779 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1780 unmap_hugepage_range(iter_vma,
1781 address, address + HPAGE_SIZE,
1788 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1789 unsigned long address, pte_t *ptep, pte_t pte,
1790 struct page *pagecache_page)
1792 struct hstate *h = hstate_vma(vma);
1793 struct page *old_page, *new_page;
1795 int outside_reserve = 0;
1797 old_page = pte_page(pte);
1800 /* If no-one else is actually using this page, avoid the copy
1801 * and just make the page writable */
1802 avoidcopy = (page_count(old_page) == 1);
1804 set_huge_ptep_writable(vma, address, ptep);
1809 * If the process that created a MAP_PRIVATE mapping is about to
1810 * perform a COW due to a shared page count, attempt to satisfy
1811 * the allocation without using the existing reserves. The pagecache
1812 * page is used to determine if the reserve at this address was
1813 * consumed or not. If reserves were used, a partial faulted mapping
1814 * at the time of fork() could consume its reserves on COW instead
1815 * of the full address range.
1817 if (!(vma->vm_flags & VM_SHARED) &&
1818 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1819 old_page != pagecache_page)
1820 outside_reserve = 1;
1822 page_cache_get(old_page);
1823 new_page = alloc_huge_page(vma, address, outside_reserve);
1825 if (IS_ERR(new_page)) {
1826 page_cache_release(old_page);
1829 * If a process owning a MAP_PRIVATE mapping fails to COW,
1830 * it is due to references held by a child and an insufficient
1831 * huge page pool. To guarantee the original mappers
1832 * reliability, unmap the page from child processes. The child
1833 * may get SIGKILLed if it later faults.
1835 if (outside_reserve) {
1836 BUG_ON(huge_pte_none(pte));
1837 if (unmap_ref_private(mm, vma, old_page, address)) {
1838 BUG_ON(page_count(old_page) != 1);
1839 BUG_ON(huge_pte_none(pte));
1840 goto retry_avoidcopy;
1845 return -PTR_ERR(new_page);
1848 spin_unlock(&mm->page_table_lock);
1849 copy_huge_page(new_page, old_page, address, vma);
1850 __SetPageUptodate(new_page);
1851 spin_lock(&mm->page_table_lock);
1853 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1854 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1856 huge_ptep_clear_flush(vma, address, ptep);
1857 set_huge_pte_at(mm, address, ptep,
1858 make_huge_pte(vma, new_page, 1));
1859 /* Make the old page be freed below */
1860 new_page = old_page;
1862 page_cache_release(new_page);
1863 page_cache_release(old_page);
1867 /* Return the pagecache page at a given address within a VMA */
1868 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1869 struct vm_area_struct *vma, unsigned long address)
1871 struct address_space *mapping;
1874 mapping = vma->vm_file->f_mapping;
1875 idx = vma_hugecache_offset(h, vma, address);
1877 return find_lock_page(mapping, idx);
1880 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1881 unsigned long address, pte_t *ptep, int write_access)
1883 struct hstate *h = hstate_vma(vma);
1884 int ret = VM_FAULT_SIGBUS;
1888 struct address_space *mapping;
1892 * Currently, we are forced to kill the process in the event the
1893 * original mapper has unmapped pages from the child due to a failed
1894 * COW. Warn that such a situation has occured as it may not be obvious
1896 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1898 "PID %d killed due to inadequate hugepage pool\n",
1903 mapping = vma->vm_file->f_mapping;
1904 idx = vma_hugecache_offset(h, vma, address);
1907 * Use page lock to guard against racing truncation
1908 * before we get page_table_lock.
1911 page = find_lock_page(mapping, idx);
1913 size = i_size_read(mapping->host) >> huge_page_shift(h);
1916 page = alloc_huge_page(vma, address, 0);
1918 ret = -PTR_ERR(page);
1921 clear_huge_page(page, address, huge_page_size(h));
1922 __SetPageUptodate(page);
1924 if (vma->vm_flags & VM_SHARED) {
1926 struct inode *inode = mapping->host;
1928 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1936 spin_lock(&inode->i_lock);
1937 inode->i_blocks += blocks_per_huge_page(h);
1938 spin_unlock(&inode->i_lock);
1944 * If we are going to COW a private mapping later, we examine the
1945 * pending reservations for this page now. This will ensure that
1946 * any allocations necessary to record that reservation occur outside
1949 if (write_access && !(vma->vm_flags & VM_SHARED))
1950 if (vma_needs_reservation(h, vma, address) < 0) {
1952 goto backout_unlocked;
1955 spin_lock(&mm->page_table_lock);
1956 size = i_size_read(mapping->host) >> huge_page_shift(h);
1961 if (!huge_pte_none(huge_ptep_get(ptep)))
1964 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1965 && (vma->vm_flags & VM_SHARED)));
1966 set_huge_pte_at(mm, address, ptep, new_pte);
1968 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1969 /* Optimization, do the COW without a second fault */
1970 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1973 spin_unlock(&mm->page_table_lock);
1979 spin_unlock(&mm->page_table_lock);
1986 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1987 unsigned long address, int write_access)
1992 struct page *pagecache_page = NULL;
1993 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1994 struct hstate *h = hstate_vma(vma);
1996 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1998 return VM_FAULT_OOM;
2001 * Serialize hugepage allocation and instantiation, so that we don't
2002 * get spurious allocation failures if two CPUs race to instantiate
2003 * the same page in the page cache.
2005 mutex_lock(&hugetlb_instantiation_mutex);
2006 entry = huge_ptep_get(ptep);
2007 if (huge_pte_none(entry)) {
2008 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2015 * If we are going to COW the mapping later, we examine the pending
2016 * reservations for this page now. This will ensure that any
2017 * allocations necessary to record that reservation occur outside the
2018 * spinlock. For private mappings, we also lookup the pagecache
2019 * page now as it is used to determine if a reservation has been
2022 if (write_access && !pte_write(entry)) {
2023 if (vma_needs_reservation(h, vma, address) < 0) {
2028 if (!(vma->vm_flags & VM_SHARED))
2029 pagecache_page = hugetlbfs_pagecache_page(h,
2033 spin_lock(&mm->page_table_lock);
2034 /* Check for a racing update before calling hugetlb_cow */
2035 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2036 goto out_page_table_lock;
2040 if (!pte_write(entry)) {
2041 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2043 goto out_page_table_lock;
2045 entry = pte_mkdirty(entry);
2047 entry = pte_mkyoung(entry);
2048 if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2049 update_mmu_cache(vma, address, entry);
2051 out_page_table_lock:
2052 spin_unlock(&mm->page_table_lock);
2054 if (pagecache_page) {
2055 unlock_page(pagecache_page);
2056 put_page(pagecache_page);
2060 mutex_unlock(&hugetlb_instantiation_mutex);
2065 /* Can be overriden by architectures */
2066 __attribute__((weak)) struct page *
2067 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2068 pud_t *pud, int write)
2074 static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2076 if (!ptep || write || shared)
2079 return huge_pte_none(huge_ptep_get(ptep));
2082 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2083 struct page **pages, struct vm_area_struct **vmas,
2084 unsigned long *position, int *length, int i,
2087 unsigned long pfn_offset;
2088 unsigned long vaddr = *position;
2089 int remainder = *length;
2090 struct hstate *h = hstate_vma(vma);
2091 int zeropage_ok = 0;
2092 int shared = vma->vm_flags & VM_SHARED;
2094 spin_lock(&mm->page_table_lock);
2095 while (vaddr < vma->vm_end && remainder) {
2100 * Some archs (sparc64, sh*) have multiple pte_ts to
2101 * each hugepage. We have to make * sure we get the
2102 * first, for the page indexing below to work.
2104 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2105 if (huge_zeropage_ok(pte, write, shared))
2109 (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2110 (write && !pte_write(huge_ptep_get(pte)))) {
2113 spin_unlock(&mm->page_table_lock);
2114 ret = hugetlb_fault(mm, vma, vaddr, write);
2115 spin_lock(&mm->page_table_lock);
2116 if (!(ret & VM_FAULT_ERROR))
2125 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2126 page = pte_page(huge_ptep_get(pte));
2130 pages[i] = ZERO_PAGE(0);
2132 pages[i] = page + pfn_offset;
2143 if (vaddr < vma->vm_end && remainder &&
2144 pfn_offset < pages_per_huge_page(h)) {
2146 * We use pfn_offset to avoid touching the pageframes
2147 * of this compound page.
2152 spin_unlock(&mm->page_table_lock);
2153 *length = remainder;
2159 void hugetlb_change_protection(struct vm_area_struct *vma,
2160 unsigned long address, unsigned long end, pgprot_t newprot)
2162 struct mm_struct *mm = vma->vm_mm;
2163 unsigned long start = address;
2166 struct hstate *h = hstate_vma(vma);
2168 BUG_ON(address >= end);
2169 flush_cache_range(vma, address, end);
2171 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2172 spin_lock(&mm->page_table_lock);
2173 for (; address < end; address += huge_page_size(h)) {
2174 ptep = huge_pte_offset(mm, address);
2177 if (huge_pmd_unshare(mm, &address, ptep))
2179 if (!huge_pte_none(huge_ptep_get(ptep))) {
2180 pte = huge_ptep_get_and_clear(mm, address, ptep);
2181 pte = pte_mkhuge(pte_modify(pte, newprot));
2182 set_huge_pte_at(mm, address, ptep, pte);
2185 spin_unlock(&mm->page_table_lock);
2186 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2188 flush_tlb_range(vma, start, end);
2191 int hugetlb_reserve_pages(struct inode *inode,
2193 struct vm_area_struct *vma)
2196 struct hstate *h = hstate_inode(inode);
2198 if (vma && vma->vm_flags & VM_NORESERVE)
2202 * Shared mappings base their reservation on the number of pages that
2203 * are already allocated on behalf of the file. Private mappings need
2204 * to reserve the full area even if read-only as mprotect() may be
2205 * called to make the mapping read-write. Assume !vma is a shm mapping
2207 if (!vma || vma->vm_flags & VM_SHARED)
2208 chg = region_chg(&inode->i_mapping->private_list, from, to);
2210 struct resv_map *resv_map = resv_map_alloc();
2216 set_vma_resv_map(vma, resv_map);
2217 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2223 if (hugetlb_get_quota(inode->i_mapping, chg))
2225 ret = hugetlb_acct_memory(h, chg);
2227 hugetlb_put_quota(inode->i_mapping, chg);
2230 if (!vma || vma->vm_flags & VM_SHARED)
2231 region_add(&inode->i_mapping->private_list, from, to);
2235 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2237 struct hstate *h = hstate_inode(inode);
2238 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2240 spin_lock(&inode->i_lock);
2241 inode->i_blocks -= blocks_per_huge_page(h);
2242 spin_unlock(&inode->i_lock);
2244 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2245 hugetlb_acct_memory(h, -(chg - freed));