2  * raid10.c : Multiple Devices driver for Linux
 
   4  * Copyright (C) 2000-2004 Neil Brown
 
   6  * RAID-10 support for md.
 
   8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
 
  11  * This program is free software; you can redistribute it and/or modify
 
  12  * it under the terms of the GNU General Public License as published by
 
  13  * the Free Software Foundation; either version 2, or (at your option)
 
  16  * You should have received a copy of the GNU General Public License
 
  17  * (for example /usr/src/linux/COPYING); if not, write to the Free
 
  18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 
  21 #include "dm-bio-list.h"
 
  22 #include <linux/raid/raid10.h>
 
  23 #include <linux/raid/bitmap.h>
 
  26  * RAID10 provides a combination of RAID0 and RAID1 functionality.
 
  27  * The layout of data is defined by
 
  30  *    near_copies (stored in low byte of layout)
 
  31  *    far_copies (stored in second byte of layout)
 
  32  *    far_offset (stored in bit 16 of layout )
 
  34  * The data to be stored is divided into chunks using chunksize.
 
  35  * Each device is divided into far_copies sections.
 
  36  * In each section, chunks are laid out in a style similar to raid0, but
 
  37  * near_copies copies of each chunk is stored (each on a different drive).
 
  38  * The starting device for each section is offset near_copies from the starting
 
  39  * device of the previous section.
 
  40  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
 
  42  * near_copies and far_copies must be at least one, and their product is at most
 
  45  * If far_offset is true, then the far_copies are handled a bit differently.
 
  46  * The copies are still in different stripes, but instead of be very far apart
 
  47  * on disk, there are adjacent stripes.
 
  51  * Number of guaranteed r10bios in case of extreme VM load:
 
  53 #define NR_RAID10_BIOS 256
 
  55 static void unplug_slaves(mddev_t *mddev);
 
  57 static void allow_barrier(conf_t *conf);
 
  58 static void lower_barrier(conf_t *conf);
 
  60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 
  64         int size = offsetof(struct r10bio_s, devs[conf->copies]);
 
  66         /* allocate a r10bio with room for raid_disks entries in the bios array */
 
  67         r10_bio = kzalloc(size, gfp_flags);
 
  69                 unplug_slaves(conf->mddev);
 
  74 static void r10bio_pool_free(void *r10_bio, void *data)
 
  79 #define RESYNC_BLOCK_SIZE (64*1024)
 
  80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
 
  81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 
  82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
 
  83 #define RESYNC_WINDOW (2048*1024)
 
  86  * When performing a resync, we need to read and compare, so
 
  87  * we need as many pages are there are copies.
 
  88  * When performing a recovery, we need 2 bios, one for read,
 
  89  * one for write (we recover only one drive per r10buf)
 
  92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 
 101         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 
 103                 unplug_slaves(conf->mddev);
 
 107         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
 
 108                 nalloc = conf->copies; /* resync */
 
 110                 nalloc = 2; /* recovery */
 
 115         for (j = nalloc ; j-- ; ) {
 
 116                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
 
 119                 r10_bio->devs[j].bio = bio;
 
 122          * Allocate RESYNC_PAGES data pages and attach them
 
 125         for (j = 0 ; j < nalloc; j++) {
 
 126                 bio = r10_bio->devs[j].bio;
 
 127                 for (i = 0; i < RESYNC_PAGES; i++) {
 
 128                         page = alloc_page(gfp_flags);
 
 132                         bio->bi_io_vec[i].bv_page = page;
 
 140                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
 
 142                 for (i = 0; i < RESYNC_PAGES ; i++)
 
 143                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 
 146         while ( ++j < nalloc )
 
 147                 bio_put(r10_bio->devs[j].bio);
 
 148         r10bio_pool_free(r10_bio, conf);
 
 152 static void r10buf_pool_free(void *__r10_bio, void *data)
 
 156         r10bio_t *r10bio = __r10_bio;
 
 159         for (j=0; j < conf->copies; j++) {
 
 160                 struct bio *bio = r10bio->devs[j].bio;
 
 162                         for (i = 0; i < RESYNC_PAGES; i++) {
 
 163                                 safe_put_page(bio->bi_io_vec[i].bv_page);
 
 164                                 bio->bi_io_vec[i].bv_page = NULL;
 
 169         r10bio_pool_free(r10bio, conf);
 
 172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
 
 176         for (i = 0; i < conf->copies; i++) {
 
 177                 struct bio **bio = & r10_bio->devs[i].bio;
 
 178                 if (*bio && *bio != IO_BLOCKED)
 
 184 static void free_r10bio(r10bio_t *r10_bio)
 
 186         conf_t *conf = mddev_to_conf(r10_bio->mddev);
 
 189          * Wake up any possible resync thread that waits for the device
 
 194         put_all_bios(conf, r10_bio);
 
 195         mempool_free(r10_bio, conf->r10bio_pool);
 
 198 static void put_buf(r10bio_t *r10_bio)
 
 200         conf_t *conf = mddev_to_conf(r10_bio->mddev);
 
 202         mempool_free(r10_bio, conf->r10buf_pool);
 
 207 static void reschedule_retry(r10bio_t *r10_bio)
 
 210         mddev_t *mddev = r10_bio->mddev;
 
 211         conf_t *conf = mddev_to_conf(mddev);
 
 213         spin_lock_irqsave(&conf->device_lock, flags);
 
 214         list_add(&r10_bio->retry_list, &conf->retry_list);
 
 216         spin_unlock_irqrestore(&conf->device_lock, flags);
 
 218         md_wakeup_thread(mddev->thread);
 
 222  * raid_end_bio_io() is called when we have finished servicing a mirrored
 
 223  * operation and are ready to return a success/failure code to the buffer
 
 226 static void raid_end_bio_io(r10bio_t *r10_bio)
 
 228         struct bio *bio = r10_bio->master_bio;
 
 231                 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
 
 232         free_r10bio(r10_bio);
 
 236  * Update disk head position estimator based on IRQ completion info.
 
 238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
 
 240         conf_t *conf = mddev_to_conf(r10_bio->mddev);
 
 242         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 
 243                 r10_bio->devs[slot].addr + (r10_bio->sectors);
 
 246 static void raid10_end_read_request(struct bio *bio, int error)
 
 248         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 
 249         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
 
 251         conf_t *conf = mddev_to_conf(r10_bio->mddev);
 
 254         slot = r10_bio->read_slot;
 
 255         dev = r10_bio->devs[slot].devnum;
 
 257          * this branch is our 'one mirror IO has finished' event handler:
 
 259         update_head_pos(slot, r10_bio);
 
 263                  * Set R10BIO_Uptodate in our master bio, so that
 
 264                  * we will return a good error code to the higher
 
 265                  * levels even if IO on some other mirrored buffer fails.
 
 267                  * The 'master' represents the composite IO operation to
 
 268                  * user-side. So if something waits for IO, then it will
 
 269                  * wait for the 'master' bio.
 
 271                 set_bit(R10BIO_Uptodate, &r10_bio->state);
 
 272                 raid_end_bio_io(r10_bio);
 
 277                 char b[BDEVNAME_SIZE];
 
 278                 if (printk_ratelimit())
 
 279                         printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
 
 280                                bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
 
 281                 reschedule_retry(r10_bio);
 
 284         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
 
 287 static void raid10_end_write_request(struct bio *bio, int error)
 
 289         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 
 290         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
 
 292         conf_t *conf = mddev_to_conf(r10_bio->mddev);
 
 294         for (slot = 0; slot < conf->copies; slot++)
 
 295                 if (r10_bio->devs[slot].bio == bio)
 
 297         dev = r10_bio->devs[slot].devnum;
 
 300          * this branch is our 'one mirror IO has finished' event handler:
 
 303                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
 
 304                 /* an I/O failed, we can't clear the bitmap */
 
 305                 set_bit(R10BIO_Degraded, &r10_bio->state);
 
 308                  * Set R10BIO_Uptodate in our master bio, so that
 
 309                  * we will return a good error code for to the higher
 
 310                  * levels even if IO on some other mirrored buffer fails.
 
 312                  * The 'master' represents the composite IO operation to
 
 313                  * user-side. So if something waits for IO, then it will
 
 314                  * wait for the 'master' bio.
 
 316                 set_bit(R10BIO_Uptodate, &r10_bio->state);
 
 318         update_head_pos(slot, r10_bio);
 
 322          * Let's see if all mirrored write operations have finished
 
 325         if (atomic_dec_and_test(&r10_bio->remaining)) {
 
 326                 /* clear the bitmap if all writes complete successfully */
 
 327                 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 
 329                                 !test_bit(R10BIO_Degraded, &r10_bio->state),
 
 331                 md_write_end(r10_bio->mddev);
 
 332                 raid_end_bio_io(r10_bio);
 
 335         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
 
 340  * RAID10 layout manager
 
 341  * Aswell as the chunksize and raid_disks count, there are two
 
 342  * parameters: near_copies and far_copies.
 
 343  * near_copies * far_copies must be <= raid_disks.
 
 344  * Normally one of these will be 1.
 
 345  * If both are 1, we get raid0.
 
 346  * If near_copies == raid_disks, we get raid1.
 
 348  * Chunks are layed out in raid0 style with near_copies copies of the
 
 349  * first chunk, followed by near_copies copies of the next chunk and
 
 351  * If far_copies > 1, then after 1/far_copies of the array has been assigned
 
 352  * as described above, we start again with a device offset of near_copies.
 
 353  * So we effectively have another copy of the whole array further down all
 
 354  * the drives, but with blocks on different drives.
 
 355  * With this layout, and block is never stored twice on the one device.
 
 357  * raid10_find_phys finds the sector offset of a given virtual sector
 
 358  * on each device that it is on.
 
 360  * raid10_find_virt does the reverse mapping, from a device and a
 
 361  * sector offset to a virtual address
 
 364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
 
 374         /* now calculate first sector/dev */
 
 375         chunk = r10bio->sector >> conf->chunk_shift;
 
 376         sector = r10bio->sector & conf->chunk_mask;
 
 378         chunk *= conf->near_copies;
 
 380         dev = sector_div(stripe, conf->raid_disks);
 
 381         if (conf->far_offset)
 
 382                 stripe *= conf->far_copies;
 
 384         sector += stripe << conf->chunk_shift;
 
 386         /* and calculate all the others */
 
 387         for (n=0; n < conf->near_copies; n++) {
 
 390                 r10bio->devs[slot].addr = sector;
 
 391                 r10bio->devs[slot].devnum = d;
 
 394                 for (f = 1; f < conf->far_copies; f++) {
 
 395                         d += conf->near_copies;
 
 396                         if (d >= conf->raid_disks)
 
 397                                 d -= conf->raid_disks;
 
 399                         r10bio->devs[slot].devnum = d;
 
 400                         r10bio->devs[slot].addr = s;
 
 404                 if (dev >= conf->raid_disks) {
 
 406                         sector += (conf->chunk_mask + 1);
 
 409         BUG_ON(slot != conf->copies);
 
 412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
 
 414         sector_t offset, chunk, vchunk;
 
 416         offset = sector & conf->chunk_mask;
 
 417         if (conf->far_offset) {
 
 419                 chunk = sector >> conf->chunk_shift;
 
 420                 fc = sector_div(chunk, conf->far_copies);
 
 421                 dev -= fc * conf->near_copies;
 
 423                         dev += conf->raid_disks;
 
 425                 while (sector >= conf->stride) {
 
 426                         sector -= conf->stride;
 
 427                         if (dev < conf->near_copies)
 
 428                                 dev += conf->raid_disks - conf->near_copies;
 
 430                                 dev -= conf->near_copies;
 
 432                 chunk = sector >> conf->chunk_shift;
 
 434         vchunk = chunk * conf->raid_disks + dev;
 
 435         sector_div(vchunk, conf->near_copies);
 
 436         return (vchunk << conf->chunk_shift) + offset;
 
 440  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
 
 442  *      @bio: the buffer head that's been built up so far
 
 443  *      @biovec: the request that could be merged to it.
 
 445  *      Return amount of bytes we can accept at this offset
 
 446  *      If near_copies == raid_disk, there are no striping issues,
 
 447  *      but in that case, the function isn't called at all.
 
 449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio,
 
 450                                 struct bio_vec *bio_vec)
 
 452         mddev_t *mddev = q->queuedata;
 
 453         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
 
 455         unsigned int chunk_sectors = mddev->chunk_size >> 9;
 
 456         unsigned int bio_sectors = bio->bi_size >> 9;
 
 458         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
 
 459         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
 
 460         if (max <= bio_vec->bv_len && bio_sectors == 0)
 
 461                 return bio_vec->bv_len;
 
 467  * This routine returns the disk from which the requested read should
 
 468  * be done. There is a per-array 'next expected sequential IO' sector
 
 469  * number - if this matches on the next IO then we use the last disk.
 
 470  * There is also a per-disk 'last know head position' sector that is
 
 471  * maintained from IRQ contexts, both the normal and the resync IO
 
 472  * completion handlers update this position correctly. If there is no
 
 473  * perfect sequential match then we pick the disk whose head is closest.
 
 475  * If there are 2 mirrors in the same 2 devices, performance degrades
 
 476  * because position is mirror, not device based.
 
 478  * The rdev for the device selected will have nr_pending incremented.
 
 482  * FIXME: possibly should rethink readbalancing and do it differently
 
 483  * depending on near_copies / far_copies geometry.
 
 485 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
 
 487         const unsigned long this_sector = r10_bio->sector;
 
 488         int disk, slot, nslot;
 
 489         const int sectors = r10_bio->sectors;
 
 490         sector_t new_distance, current_distance;
 
 493         raid10_find_phys(conf, r10_bio);
 
 496          * Check if we can balance. We can balance on the whole
 
 497          * device if no resync is going on (recovery is ok), or below
 
 498          * the resync window. We take the first readable disk when
 
 499          * above the resync window.
 
 501         if (conf->mddev->recovery_cp < MaxSector
 
 502             && (this_sector + sectors >= conf->next_resync)) {
 
 503                 /* make sure that disk is operational */
 
 505                 disk = r10_bio->devs[slot].devnum;
 
 507                 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
 
 508                        r10_bio->devs[slot].bio == IO_BLOCKED ||
 
 509                        !test_bit(In_sync, &rdev->flags)) {
 
 511                         if (slot == conf->copies) {
 
 516                         disk = r10_bio->devs[slot].devnum;
 
 522         /* make sure the disk is operational */
 
 524         disk = r10_bio->devs[slot].devnum;
 
 525         while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
 
 526                r10_bio->devs[slot].bio == IO_BLOCKED ||
 
 527                !test_bit(In_sync, &rdev->flags)) {
 
 529                 if (slot == conf->copies) {
 
 533                 disk = r10_bio->devs[slot].devnum;
 
 537         current_distance = abs(r10_bio->devs[slot].addr -
 
 538                                conf->mirrors[disk].head_position);
 
 540         /* Find the disk whose head is closest,
 
 541          * or - for far > 1 - find the closest to partition beginning */
 
 543         for (nslot = slot; nslot < conf->copies; nslot++) {
 
 544                 int ndisk = r10_bio->devs[nslot].devnum;
 
 547                 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
 
 548                     r10_bio->devs[nslot].bio == IO_BLOCKED ||
 
 549                     !test_bit(In_sync, &rdev->flags))
 
 552                 /* This optimisation is debatable, and completely destroys
 
 553                  * sequential read speed for 'far copies' arrays.  So only
 
 554                  * keep it for 'near' arrays, and review those later.
 
 556                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
 
 562                 /* for far > 1 always use the lowest address */
 
 563                 if (conf->far_copies > 1)
 
 564                         new_distance = r10_bio->devs[nslot].addr;
 
 566                         new_distance = abs(r10_bio->devs[nslot].addr -
 
 567                                            conf->mirrors[ndisk].head_position);
 
 568                 if (new_distance < current_distance) {
 
 569                         current_distance = new_distance;
 
 576         r10_bio->read_slot = slot;
 
 577 /*      conf->next_seq_sect = this_sector + sectors;*/
 
 579         if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
 
 580                 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
 
 588 static void unplug_slaves(mddev_t *mddev)
 
 590         conf_t *conf = mddev_to_conf(mddev);
 
 594         for (i=0; i<mddev->raid_disks; i++) {
 
 595                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
 596                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
 
 597                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
 
 599                         atomic_inc(&rdev->nr_pending);
 
 604                         rdev_dec_pending(rdev, mddev);
 
 611 static void raid10_unplug(struct request_queue *q)
 
 613         mddev_t *mddev = q->queuedata;
 
 615         unplug_slaves(q->queuedata);
 
 616         md_wakeup_thread(mddev->thread);
 
 619 static int raid10_congested(void *data, int bits)
 
 621         mddev_t *mddev = data;
 
 622         conf_t *conf = mddev_to_conf(mddev);
 
 626         for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
 
 627                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
 628                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
 
 629                         struct request_queue *q = bdev_get_queue(rdev->bdev);
 
 631                         ret |= bdi_congested(&q->backing_dev_info, bits);
 
 638 static int flush_pending_writes(conf_t *conf)
 
 640         /* Any writes that have been queued but are awaiting
 
 641          * bitmap updates get flushed here.
 
 642          * We return 1 if any requests were actually submitted.
 
 646         spin_lock_irq(&conf->device_lock);
 
 648         if (conf->pending_bio_list.head) {
 
 650                 bio = bio_list_get(&conf->pending_bio_list);
 
 651                 blk_remove_plug(conf->mddev->queue);
 
 652                 spin_unlock_irq(&conf->device_lock);
 
 653                 /* flush any pending bitmap writes to disk
 
 654                  * before proceeding w/ I/O */
 
 655                 bitmap_unplug(conf->mddev->bitmap);
 
 657                 while (bio) { /* submit pending writes */
 
 658                         struct bio *next = bio->bi_next;
 
 660                         generic_make_request(bio);
 
 665                 spin_unlock_irq(&conf->device_lock);
 
 669  * Sometimes we need to suspend IO while we do something else,
 
 670  * either some resync/recovery, or reconfigure the array.
 
 671  * To do this we raise a 'barrier'.
 
 672  * The 'barrier' is a counter that can be raised multiple times
 
 673  * to count how many activities are happening which preclude
 
 675  * We can only raise the barrier if there is no pending IO.
 
 676  * i.e. if nr_pending == 0.
 
 677  * We choose only to raise the barrier if no-one is waiting for the
 
 678  * barrier to go down.  This means that as soon as an IO request
 
 679  * is ready, no other operations which require a barrier will start
 
 680  * until the IO request has had a chance.
 
 682  * So: regular IO calls 'wait_barrier'.  When that returns there
 
 683  *    is no backgroup IO happening,  It must arrange to call
 
 684  *    allow_barrier when it has finished its IO.
 
 685  * backgroup IO calls must call raise_barrier.  Once that returns
 
 686  *    there is no normal IO happeing.  It must arrange to call
 
 687  *    lower_barrier when the particular background IO completes.
 
 689 #define RESYNC_DEPTH 32
 
 691 static void raise_barrier(conf_t *conf, int force)
 
 693         BUG_ON(force && !conf->barrier);
 
 694         spin_lock_irq(&conf->resync_lock);
 
 696         /* Wait until no block IO is waiting (unless 'force') */
 
 697         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 
 699                             raid10_unplug(conf->mddev->queue));
 
 701         /* block any new IO from starting */
 
 704         /* No wait for all pending IO to complete */
 
 705         wait_event_lock_irq(conf->wait_barrier,
 
 706                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 
 708                             raid10_unplug(conf->mddev->queue));
 
 710         spin_unlock_irq(&conf->resync_lock);
 
 713 static void lower_barrier(conf_t *conf)
 
 716         spin_lock_irqsave(&conf->resync_lock, flags);
 
 718         spin_unlock_irqrestore(&conf->resync_lock, flags);
 
 719         wake_up(&conf->wait_barrier);
 
 722 static void wait_barrier(conf_t *conf)
 
 724         spin_lock_irq(&conf->resync_lock);
 
 727                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
 
 729                                     raid10_unplug(conf->mddev->queue));
 
 733         spin_unlock_irq(&conf->resync_lock);
 
 736 static void allow_barrier(conf_t *conf)
 
 739         spin_lock_irqsave(&conf->resync_lock, flags);
 
 741         spin_unlock_irqrestore(&conf->resync_lock, flags);
 
 742         wake_up(&conf->wait_barrier);
 
 745 static void freeze_array(conf_t *conf)
 
 747         /* stop syncio and normal IO and wait for everything to
 
 749          * We increment barrier and nr_waiting, and then
 
 750          * wait until nr_pending match nr_queued+1
 
 751          * This is called in the context of one normal IO request
 
 752          * that has failed. Thus any sync request that might be pending
 
 753          * will be blocked by nr_pending, and we need to wait for
 
 754          * pending IO requests to complete or be queued for re-try.
 
 755          * Thus the number queued (nr_queued) plus this request (1)
 
 756          * must match the number of pending IOs (nr_pending) before
 
 759         spin_lock_irq(&conf->resync_lock);
 
 762         wait_event_lock_irq(conf->wait_barrier,
 
 763                             conf->nr_pending == conf->nr_queued+1,
 
 765                             ({ flush_pending_writes(conf);
 
 766                                raid10_unplug(conf->mddev->queue); }));
 
 767         spin_unlock_irq(&conf->resync_lock);
 
 770 static void unfreeze_array(conf_t *conf)
 
 772         /* reverse the effect of the freeze */
 
 773         spin_lock_irq(&conf->resync_lock);
 
 776         wake_up(&conf->wait_barrier);
 
 777         spin_unlock_irq(&conf->resync_lock);
 
 780 static int make_request(struct request_queue *q, struct bio * bio)
 
 782         mddev_t *mddev = q->queuedata;
 
 783         conf_t *conf = mddev_to_conf(mddev);
 
 784         mirror_info_t *mirror;
 
 786         struct bio *read_bio;
 
 788         int chunk_sects = conf->chunk_mask + 1;
 
 789         const int rw = bio_data_dir(bio);
 
 790         const int do_sync = bio_sync(bio);
 
 793         mdk_rdev_t *blocked_rdev;
 
 795         if (unlikely(bio_barrier(bio))) {
 
 796                 bio_endio(bio, -EOPNOTSUPP);
 
 800         /* If this request crosses a chunk boundary, we need to
 
 801          * split it.  This will only happen for 1 PAGE (or less) requests.
 
 803         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
 
 805                     conf->near_copies < conf->raid_disks)) {
 
 807                 /* Sanity check -- queue functions should prevent this happening */
 
 808                 if (bio->bi_vcnt != 1 ||
 
 811                 /* This is a one page bio that upper layers
 
 812                  * refuse to split for us, so we need to split it.
 
 814                 bp = bio_split(bio, bio_split_pool,
 
 815                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
 
 816                 if (make_request(q, &bp->bio1))
 
 817                         generic_make_request(&bp->bio1);
 
 818                 if (make_request(q, &bp->bio2))
 
 819                         generic_make_request(&bp->bio2);
 
 821                 bio_pair_release(bp);
 
 824                 printk("raid10_make_request bug: can't convert block across chunks"
 
 825                        " or bigger than %dk %llu %d\n", chunk_sects/2,
 
 826                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
 
 832         md_write_start(mddev, bio);
 
 835          * Register the new request and wait if the reconstruction
 
 836          * thread has put up a bar for new requests.
 
 837          * Continue immediately if no resync is active currently.
 
 841         disk_stat_inc(mddev->gendisk, ios[rw]);
 
 842         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
 
 844         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
 
 846         r10_bio->master_bio = bio;
 
 847         r10_bio->sectors = bio->bi_size >> 9;
 
 849         r10_bio->mddev = mddev;
 
 850         r10_bio->sector = bio->bi_sector;
 
 855                  * read balancing logic:
 
 857                 int disk = read_balance(conf, r10_bio);
 
 858                 int slot = r10_bio->read_slot;
 
 860                         raid_end_bio_io(r10_bio);
 
 863                 mirror = conf->mirrors + disk;
 
 865                 read_bio = bio_clone(bio, GFP_NOIO);
 
 867                 r10_bio->devs[slot].bio = read_bio;
 
 869                 read_bio->bi_sector = r10_bio->devs[slot].addr +
 
 870                         mirror->rdev->data_offset;
 
 871                 read_bio->bi_bdev = mirror->rdev->bdev;
 
 872                 read_bio->bi_end_io = raid10_end_read_request;
 
 873                 read_bio->bi_rw = READ | do_sync;
 
 874                 read_bio->bi_private = r10_bio;
 
 876                 generic_make_request(read_bio);
 
 883         /* first select target devices under rcu_lock and
 
 884          * inc refcount on their rdev.  Record them by setting
 
 887         raid10_find_phys(conf, r10_bio);
 
 891         for (i = 0;  i < conf->copies; i++) {
 
 892                 int d = r10_bio->devs[i].devnum;
 
 893                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
 
 894                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
 
 895                         atomic_inc(&rdev->nr_pending);
 
 899                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
 
 900                         atomic_inc(&rdev->nr_pending);
 
 901                         r10_bio->devs[i].bio = bio;
 
 903                         r10_bio->devs[i].bio = NULL;
 
 904                         set_bit(R10BIO_Degraded, &r10_bio->state);
 
 909         if (unlikely(blocked_rdev)) {
 
 910                 /* Have to wait for this device to get unblocked, then retry */
 
 914                 for (j = 0; j < i; j++)
 
 915                         if (r10_bio->devs[j].bio) {
 
 916                                 d = r10_bio->devs[j].devnum;
 
 917                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
 
 920                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
 
 925         atomic_set(&r10_bio->remaining, 0);
 
 928         for (i = 0; i < conf->copies; i++) {
 
 930                 int d = r10_bio->devs[i].devnum;
 
 931                 if (!r10_bio->devs[i].bio)
 
 934                 mbio = bio_clone(bio, GFP_NOIO);
 
 935                 r10_bio->devs[i].bio = mbio;
 
 937                 mbio->bi_sector = r10_bio->devs[i].addr+
 
 938                         conf->mirrors[d].rdev->data_offset;
 
 939                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
 
 940                 mbio->bi_end_io = raid10_end_write_request;
 
 941                 mbio->bi_rw = WRITE | do_sync;
 
 942                 mbio->bi_private = r10_bio;
 
 944                 atomic_inc(&r10_bio->remaining);
 
 945                 bio_list_add(&bl, mbio);
 
 948         if (unlikely(!atomic_read(&r10_bio->remaining))) {
 
 949                 /* the array is dead */
 
 951                 raid_end_bio_io(r10_bio);
 
 955         bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
 
 956         spin_lock_irqsave(&conf->device_lock, flags);
 
 957         bio_list_merge(&conf->pending_bio_list, &bl);
 
 958         blk_plug_device(mddev->queue);
 
 959         spin_unlock_irqrestore(&conf->device_lock, flags);
 
 961         /* In case raid10d snuck in to freeze_array */
 
 962         wake_up(&conf->wait_barrier);
 
 965                 md_wakeup_thread(mddev->thread);
 
 970 static void status(struct seq_file *seq, mddev_t *mddev)
 
 972         conf_t *conf = mddev_to_conf(mddev);
 
 975         if (conf->near_copies < conf->raid_disks)
 
 976                 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
 
 977         if (conf->near_copies > 1)
 
 978                 seq_printf(seq, " %d near-copies", conf->near_copies);
 
 979         if (conf->far_copies > 1) {
 
 980                 if (conf->far_offset)
 
 981                         seq_printf(seq, " %d offset-copies", conf->far_copies);
 
 983                         seq_printf(seq, " %d far-copies", conf->far_copies);
 
 985         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
 
 986                                         conf->raid_disks - mddev->degraded);
 
 987         for (i = 0; i < conf->raid_disks; i++)
 
 988                 seq_printf(seq, "%s",
 
 989                               conf->mirrors[i].rdev &&
 
 990                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
 
 991         seq_printf(seq, "]");
 
 994 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
 
 996         char b[BDEVNAME_SIZE];
 
 997         conf_t *conf = mddev_to_conf(mddev);
 
1000          * If it is not operational, then we have already marked it as dead
 
1001          * else if it is the last working disks, ignore the error, let the
 
1002          * next level up know.
 
1003          * else mark the drive as failed
 
1005         if (test_bit(In_sync, &rdev->flags)
 
1006             && conf->raid_disks-mddev->degraded == 1)
 
1008                  * Don't fail the drive, just return an IO error.
 
1009                  * The test should really be more sophisticated than
 
1010                  * "working_disks == 1", but it isn't critical, and
 
1011                  * can wait until we do more sophisticated "is the drive
 
1012                  * really dead" tests...
 
1015         if (test_and_clear_bit(In_sync, &rdev->flags)) {
 
1016                 unsigned long flags;
 
1017                 spin_lock_irqsave(&conf->device_lock, flags);
 
1019                 spin_unlock_irqrestore(&conf->device_lock, flags);
 
1021                  * if recovery is running, make sure it aborts.
 
1023                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
 
1025         set_bit(Faulty, &rdev->flags);
 
1026         set_bit(MD_CHANGE_DEVS, &mddev->flags);
 
1027         printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
 
1028                 "raid10: Operation continuing on %d devices.\n",
 
1029                 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
 
1032 static void print_conf(conf_t *conf)
 
1037         printk("RAID10 conf printout:\n");
 
1039                 printk("(!conf)\n");
 
1042         printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
 
1045         for (i = 0; i < conf->raid_disks; i++) {
 
1046                 char b[BDEVNAME_SIZE];
 
1047                 tmp = conf->mirrors + i;
 
1049                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
 
1050                                 i, !test_bit(In_sync, &tmp->rdev->flags),
 
1051                                 !test_bit(Faulty, &tmp->rdev->flags),
 
1052                                 bdevname(tmp->rdev->bdev,b));
 
1056 static void close_sync(conf_t *conf)
 
1059         allow_barrier(conf);
 
1061         mempool_destroy(conf->r10buf_pool);
 
1062         conf->r10buf_pool = NULL;
 
1065 /* check if there are enough drives for
 
1066  * every block to appear on atleast one
 
1068 static int enough(conf_t *conf)
 
1073                 int n = conf->copies;
 
1076                         if (conf->mirrors[first].rdev)
 
1078                         first = (first+1) % conf->raid_disks;
 
1082         } while (first != 0);
 
1086 static int raid10_spare_active(mddev_t *mddev)
 
1089         conf_t *conf = mddev->private;
 
1093          * Find all non-in_sync disks within the RAID10 configuration
 
1094          * and mark them in_sync
 
1096         for (i = 0; i < conf->raid_disks; i++) {
 
1097                 tmp = conf->mirrors + i;
 
1099                     && !test_bit(Faulty, &tmp->rdev->flags)
 
1100                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
 
1101                         unsigned long flags;
 
1102                         spin_lock_irqsave(&conf->device_lock, flags);
 
1104                         spin_unlock_irqrestore(&conf->device_lock, flags);
 
1113 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
 
1115         conf_t *conf = mddev->private;
 
1120         if (mddev->recovery_cp < MaxSector)
 
1121                 /* only hot-add to in-sync arrays, as recovery is
 
1122                  * very different from resync
 
1128         if (rdev->saved_raid_disk >= 0 &&
 
1129             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
 
1130                 mirror = rdev->saved_raid_disk;
 
1133         for ( ; mirror < mddev->raid_disks; mirror++)
 
1134                 if ( !(p=conf->mirrors+mirror)->rdev) {
 
1136                         blk_queue_stack_limits(mddev->queue,
 
1137                                                rdev->bdev->bd_disk->queue);
 
1138                         /* as we don't honour merge_bvec_fn, we must never risk
 
1139                          * violating it, so limit ->max_sector to one PAGE, as
 
1140                          * a one page request is never in violation.
 
1142                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
 
1143                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
 
1144                                 mddev->queue->max_sectors = (PAGE_SIZE>>9);
 
1146                         p->head_position = 0;
 
1147                         rdev->raid_disk = mirror;
 
1149                         if (rdev->saved_raid_disk != mirror)
 
1151                         rcu_assign_pointer(p->rdev, rdev);
 
1159 static int raid10_remove_disk(mddev_t *mddev, int number)
 
1161         conf_t *conf = mddev->private;
 
1164         mirror_info_t *p = conf->mirrors+ number;
 
1169                 if (test_bit(In_sync, &rdev->flags) ||
 
1170                     atomic_read(&rdev->nr_pending)) {
 
1176                 if (atomic_read(&rdev->nr_pending)) {
 
1177                         /* lost the race, try later */
 
1189 static void end_sync_read(struct bio *bio, int error)
 
1191         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
 
1192         conf_t *conf = mddev_to_conf(r10_bio->mddev);
 
1195         for (i=0; i<conf->copies; i++)
 
1196                 if (r10_bio->devs[i].bio == bio)
 
1198         BUG_ON(i == conf->copies);
 
1199         update_head_pos(i, r10_bio);
 
1200         d = r10_bio->devs[i].devnum;
 
1202         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
 
1203                 set_bit(R10BIO_Uptodate, &r10_bio->state);
 
1205                 atomic_add(r10_bio->sectors,
 
1206                            &conf->mirrors[d].rdev->corrected_errors);
 
1207                 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
 
1208                         md_error(r10_bio->mddev,
 
1209                                  conf->mirrors[d].rdev);
 
1212         /* for reconstruct, we always reschedule after a read.
 
1213          * for resync, only after all reads
 
1215         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
 
1216             atomic_dec_and_test(&r10_bio->remaining)) {
 
1217                 /* we have read all the blocks,
 
1218                  * do the comparison in process context in raid10d
 
1220                 reschedule_retry(r10_bio);
 
1222         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
 
1225 static void end_sync_write(struct bio *bio, int error)
 
1227         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 
1228         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
 
1229         mddev_t *mddev = r10_bio->mddev;
 
1230         conf_t *conf = mddev_to_conf(mddev);
 
1233         for (i = 0; i < conf->copies; i++)
 
1234                 if (r10_bio->devs[i].bio == bio)
 
1236         d = r10_bio->devs[i].devnum;
 
1239                 md_error(mddev, conf->mirrors[d].rdev);
 
1240         update_head_pos(i, r10_bio);
 
1242         while (atomic_dec_and_test(&r10_bio->remaining)) {
 
1243                 if (r10_bio->master_bio == NULL) {
 
1244                         /* the primary of several recovery bios */
 
1245                         md_done_sync(mddev, r10_bio->sectors, 1);
 
1249                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
 
1254         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
 
1258  * Note: sync and recover and handled very differently for raid10
 
1259  * This code is for resync.
 
1260  * For resync, we read through virtual addresses and read all blocks.
 
1261  * If there is any error, we schedule a write.  The lowest numbered
 
1262  * drive is authoritative.
 
1263  * However requests come for physical address, so we need to map.
 
1264  * For every physical address there are raid_disks/copies virtual addresses,
 
1265  * which is always are least one, but is not necessarly an integer.
 
1266  * This means that a physical address can span multiple chunks, so we may
 
1267  * have to submit multiple io requests for a single sync request.
 
1270  * We check if all blocks are in-sync and only write to blocks that
 
1273 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
 
1275         conf_t *conf = mddev_to_conf(mddev);
 
1277         struct bio *tbio, *fbio;
 
1279         atomic_set(&r10_bio->remaining, 1);
 
1281         /* find the first device with a block */
 
1282         for (i=0; i<conf->copies; i++)
 
1283                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
 
1286         if (i == conf->copies)
 
1290         fbio = r10_bio->devs[i].bio;
 
1292         /* now find blocks with errors */
 
1293         for (i=0 ; i < conf->copies ; i++) {
 
1295                 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
 
1297                 tbio = r10_bio->devs[i].bio;
 
1299                 if (tbio->bi_end_io != end_sync_read)
 
1303                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
 
1304                         /* We know that the bi_io_vec layout is the same for
 
1305                          * both 'first' and 'i', so we just compare them.
 
1306                          * All vec entries are PAGE_SIZE;
 
1308                         for (j = 0; j < vcnt; j++)
 
1309                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
 
1310                                            page_address(tbio->bi_io_vec[j].bv_page),
 
1315                         mddev->resync_mismatches += r10_bio->sectors;
 
1317                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
 
1318                         /* Don't fix anything. */
 
1320                 /* Ok, we need to write this bio
 
1321                  * First we need to fixup bv_offset, bv_len and
 
1322                  * bi_vecs, as the read request might have corrupted these
 
1324                 tbio->bi_vcnt = vcnt;
 
1325                 tbio->bi_size = r10_bio->sectors << 9;
 
1327                 tbio->bi_phys_segments = 0;
 
1328                 tbio->bi_hw_segments = 0;
 
1329                 tbio->bi_hw_front_size = 0;
 
1330                 tbio->bi_hw_back_size = 0;
 
1331                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
 
1332                 tbio->bi_flags |= 1 << BIO_UPTODATE;
 
1333                 tbio->bi_next = NULL;
 
1334                 tbio->bi_rw = WRITE;
 
1335                 tbio->bi_private = r10_bio;
 
1336                 tbio->bi_sector = r10_bio->devs[i].addr;
 
1338                 for (j=0; j < vcnt ; j++) {
 
1339                         tbio->bi_io_vec[j].bv_offset = 0;
 
1340                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
 
1342                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
 
1343                                page_address(fbio->bi_io_vec[j].bv_page),
 
1346                 tbio->bi_end_io = end_sync_write;
 
1348                 d = r10_bio->devs[i].devnum;
 
1349                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
 
1350                 atomic_inc(&r10_bio->remaining);
 
1351                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
 
1353                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
 
1354                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
 
1355                 generic_make_request(tbio);
 
1359         if (atomic_dec_and_test(&r10_bio->remaining)) {
 
1360                 md_done_sync(mddev, r10_bio->sectors, 1);
 
1366  * Now for the recovery code.
 
1367  * Recovery happens across physical sectors.
 
1368  * We recover all non-is_sync drives by finding the virtual address of
 
1369  * each, and then choose a working drive that also has that virt address.
 
1370  * There is a separate r10_bio for each non-in_sync drive.
 
1371  * Only the first two slots are in use. The first for reading,
 
1372  * The second for writing.
 
1376 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
 
1378         conf_t *conf = mddev_to_conf(mddev);
 
1380         struct bio *bio, *wbio;
 
1383         /* move the pages across to the second bio
 
1384          * and submit the write request
 
1386         bio = r10_bio->devs[0].bio;
 
1387         wbio = r10_bio->devs[1].bio;
 
1388         for (i=0; i < wbio->bi_vcnt; i++) {
 
1389                 struct page *p = bio->bi_io_vec[i].bv_page;
 
1390                 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
 
1391                 wbio->bi_io_vec[i].bv_page = p;
 
1393         d = r10_bio->devs[1].devnum;
 
1395         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
 
1396         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
 
1397         if (test_bit(R10BIO_Uptodate, &r10_bio->state))
 
1398                 generic_make_request(wbio);
 
1400                 bio_endio(wbio, -EIO);
 
1405  * This is a kernel thread which:
 
1407  *      1.      Retries failed read operations on working mirrors.
 
1408  *      2.      Updates the raid superblock when problems encounter.
 
1409  *      3.      Performs writes following reads for array synchronising.
 
1412 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
 
1414         int sect = 0; /* Offset from r10_bio->sector */
 
1415         int sectors = r10_bio->sectors;
 
1419                 int sl = r10_bio->read_slot;
 
1423                 if (s > (PAGE_SIZE>>9))
 
1428                         int d = r10_bio->devs[sl].devnum;
 
1429                         rdev = rcu_dereference(conf->mirrors[d].rdev);
 
1431                             test_bit(In_sync, &rdev->flags)) {
 
1432                                 atomic_inc(&rdev->nr_pending);
 
1434                                 success = sync_page_io(rdev->bdev,
 
1435                                                        r10_bio->devs[sl].addr +
 
1436                                                        sect + rdev->data_offset,
 
1438                                                        conf->tmppage, READ);
 
1439                                 rdev_dec_pending(rdev, mddev);
 
1445                         if (sl == conf->copies)
 
1447                 } while (!success && sl != r10_bio->read_slot);
 
1451                         /* Cannot read from anywhere -- bye bye array */
 
1452                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
 
1453                         md_error(mddev, conf->mirrors[dn].rdev);
 
1458                 /* write it back and re-read */
 
1460                 while (sl != r10_bio->read_slot) {
 
1465                         d = r10_bio->devs[sl].devnum;
 
1466                         rdev = rcu_dereference(conf->mirrors[d].rdev);
 
1468                             test_bit(In_sync, &rdev->flags)) {
 
1469                                 atomic_inc(&rdev->nr_pending);
 
1471                                 atomic_add(s, &rdev->corrected_errors);
 
1472                                 if (sync_page_io(rdev->bdev,
 
1473                                                  r10_bio->devs[sl].addr +
 
1474                                                  sect + rdev->data_offset,
 
1475                                                  s<<9, conf->tmppage, WRITE)
 
1477                                         /* Well, this device is dead */
 
1478                                         md_error(mddev, rdev);
 
1479                                 rdev_dec_pending(rdev, mddev);
 
1484                 while (sl != r10_bio->read_slot) {
 
1489                         d = r10_bio->devs[sl].devnum;
 
1490                         rdev = rcu_dereference(conf->mirrors[d].rdev);
 
1492                             test_bit(In_sync, &rdev->flags)) {
 
1493                                 char b[BDEVNAME_SIZE];
 
1494                                 atomic_inc(&rdev->nr_pending);
 
1496                                 if (sync_page_io(rdev->bdev,
 
1497                                                  r10_bio->devs[sl].addr +
 
1498                                                  sect + rdev->data_offset,
 
1499                                                  s<<9, conf->tmppage, READ) == 0)
 
1500                                         /* Well, this device is dead */
 
1501                                         md_error(mddev, rdev);
 
1504                                                "raid10:%s: read error corrected"
 
1505                                                " (%d sectors at %llu on %s)\n",
 
1507                                                (unsigned long long)(sect+
 
1509                                                bdevname(rdev->bdev, b));
 
1511                                 rdev_dec_pending(rdev, mddev);
 
1522 static void raid10d(mddev_t *mddev)
 
1526         unsigned long flags;
 
1527         conf_t *conf = mddev_to_conf(mddev);
 
1528         struct list_head *head = &conf->retry_list;
 
1532         md_check_recovery(mddev);
 
1535                 char b[BDEVNAME_SIZE];
 
1537                 unplug += flush_pending_writes(conf);
 
1539                 spin_lock_irqsave(&conf->device_lock, flags);
 
1540                 if (list_empty(head)) {
 
1541                         spin_unlock_irqrestore(&conf->device_lock, flags);
 
1544                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
 
1545                 list_del(head->prev);
 
1547                 spin_unlock_irqrestore(&conf->device_lock, flags);
 
1549                 mddev = r10_bio->mddev;
 
1550                 conf = mddev_to_conf(mddev);
 
1551                 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
 
1552                         sync_request_write(mddev, r10_bio);
 
1554                 } else  if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
 
1555                         recovery_request_write(mddev, r10_bio);
 
1559                         /* we got a read error. Maybe the drive is bad.  Maybe just
 
1560                          * the block and we can fix it.
 
1561                          * We freeze all other IO, and try reading the block from
 
1562                          * other devices.  When we find one, we re-write
 
1563                          * and check it that fixes the read error.
 
1564                          * This is all done synchronously while the array is
 
1567                         if (mddev->ro == 0) {
 
1569                                 fix_read_error(conf, mddev, r10_bio);
 
1570                                 unfreeze_array(conf);
 
1573                         bio = r10_bio->devs[r10_bio->read_slot].bio;
 
1574                         r10_bio->devs[r10_bio->read_slot].bio =
 
1575                                 mddev->ro ? IO_BLOCKED : NULL;
 
1576                         mirror = read_balance(conf, r10_bio);
 
1578                                 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
 
1579                                        " read error for block %llu\n",
 
1580                                        bdevname(bio->bi_bdev,b),
 
1581                                        (unsigned long long)r10_bio->sector);
 
1582                                 raid_end_bio_io(r10_bio);
 
1585                                 const int do_sync = bio_sync(r10_bio->master_bio);
 
1587                                 rdev = conf->mirrors[mirror].rdev;
 
1588                                 if (printk_ratelimit())
 
1589                                         printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
 
1590                                                " another mirror\n",
 
1591                                                bdevname(rdev->bdev,b),
 
1592                                                (unsigned long long)r10_bio->sector);
 
1593                                 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
 
1594                                 r10_bio->devs[r10_bio->read_slot].bio = bio;
 
1595                                 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
 
1596                                         + rdev->data_offset;
 
1597                                 bio->bi_bdev = rdev->bdev;
 
1598                                 bio->bi_rw = READ | do_sync;
 
1599                                 bio->bi_private = r10_bio;
 
1600                                 bio->bi_end_io = raid10_end_read_request;
 
1602                                 generic_make_request(bio);
 
1607                 unplug_slaves(mddev);
 
1611 static int init_resync(conf_t *conf)
 
1615         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
 
1616         BUG_ON(conf->r10buf_pool);
 
1617         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
 
1618         if (!conf->r10buf_pool)
 
1620         conf->next_resync = 0;
 
1625  * perform a "sync" on one "block"
 
1627  * We need to make sure that no normal I/O request - particularly write
 
1628  * requests - conflict with active sync requests.
 
1630  * This is achieved by tracking pending requests and a 'barrier' concept
 
1631  * that can be installed to exclude normal IO requests.
 
1633  * Resync and recovery are handled very differently.
 
1634  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
 
1636  * For resync, we iterate over virtual addresses, read all copies,
 
1637  * and update if there are differences.  If only one copy is live,
 
1639  * For recovery, we iterate over physical addresses, read a good
 
1640  * value for each non-in_sync drive, and over-write.
 
1642  * So, for recovery we may have several outstanding complex requests for a
 
1643  * given address, one for each out-of-sync device.  We model this by allocating
 
1644  * a number of r10_bio structures, one for each out-of-sync device.
 
1645  * As we setup these structures, we collect all bio's together into a list
 
1646  * which we then process collectively to add pages, and then process again
 
1647  * to pass to generic_make_request.
 
1649  * The r10_bio structures are linked using a borrowed master_bio pointer.
 
1650  * This link is counted in ->remaining.  When the r10_bio that points to NULL
 
1651  * has its remaining count decremented to 0, the whole complex operation
 
1656 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
 
1658         conf_t *conf = mddev_to_conf(mddev);
 
1660         struct bio *biolist = NULL, *bio;
 
1661         sector_t max_sector, nr_sectors;
 
1667         sector_t sectors_skipped = 0;
 
1668         int chunks_skipped = 0;
 
1670         if (!conf->r10buf_pool)
 
1671                 if (init_resync(conf))
 
1675         max_sector = mddev->size << 1;
 
1676         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
 
1677                 max_sector = mddev->resync_max_sectors;
 
1678         if (sector_nr >= max_sector) {
 
1679                 /* If we aborted, we need to abort the
 
1680                  * sync on the 'current' bitmap chucks (there can
 
1681                  * be several when recovering multiple devices).
 
1682                  * as we may have started syncing it but not finished.
 
1683                  * We can find the current address in
 
1684                  * mddev->curr_resync, but for recovery,
 
1685                  * we need to convert that to several
 
1686                  * virtual addresses.
 
1688                 if (mddev->curr_resync < max_sector) { /* aborted */
 
1689                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
 
1690                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
 
1692                         else for (i=0; i<conf->raid_disks; i++) {
 
1694                                         raid10_find_virt(conf, mddev->curr_resync, i);
 
1695                                 bitmap_end_sync(mddev->bitmap, sect,
 
1698                 } else /* completed sync */
 
1701                 bitmap_close_sync(mddev->bitmap);
 
1704                 return sectors_skipped;
 
1706         if (chunks_skipped >= conf->raid_disks) {
 
1707                 /* if there has been nothing to do on any drive,
 
1708                  * then there is nothing to do at all..
 
1711                 return (max_sector - sector_nr) + sectors_skipped;
 
1714         if (max_sector > mddev->resync_max)
 
1715                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
 
1717         /* make sure whole request will fit in a chunk - if chunks
 
1720         if (conf->near_copies < conf->raid_disks &&
 
1721             max_sector > (sector_nr | conf->chunk_mask))
 
1722                 max_sector = (sector_nr | conf->chunk_mask) + 1;
 
1724          * If there is non-resync activity waiting for us then
 
1725          * put in a delay to throttle resync.
 
1727         if (!go_faster && conf->nr_waiting)
 
1728                 msleep_interruptible(1000);
 
1730         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
 
1732         /* Again, very different code for resync and recovery.
 
1733          * Both must result in an r10bio with a list of bios that
 
1734          * have bi_end_io, bi_sector, bi_bdev set,
 
1735          * and bi_private set to the r10bio.
 
1736          * For recovery, we may actually create several r10bios
 
1737          * with 2 bios in each, that correspond to the bios in the main one.
 
1738          * In this case, the subordinate r10bios link back through a
 
1739          * borrowed master_bio pointer, and the counter in the master
 
1740          * includes a ref from each subordinate.
 
1742         /* First, we decide what to do and set ->bi_end_io
 
1743          * To end_sync_read if we want to read, and
 
1744          * end_sync_write if we will want to write.
 
1747         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
 
1748         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
 
1749                 /* recovery... the complicated one */
 
1753                 for (i=0 ; i<conf->raid_disks; i++)
 
1754                         if (conf->mirrors[i].rdev &&
 
1755                             !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
 
1756                                 int still_degraded = 0;
 
1757                                 /* want to reconstruct this device */
 
1758                                 r10bio_t *rb2 = r10_bio;
 
1759                                 sector_t sect = raid10_find_virt(conf, sector_nr, i);
 
1761                                 /* Unless we are doing a full sync, we only need
 
1762                                  * to recover the block if it is set in the bitmap
 
1764                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
 
1766                                 if (sync_blocks < max_sync)
 
1767                                         max_sync = sync_blocks;
 
1770                                         /* yep, skip the sync_blocks here, but don't assume
 
1771                                          * that there will never be anything to do here
 
1773                                         chunks_skipped = -1;
 
1777                                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 
1778                                 raise_barrier(conf, rb2 != NULL);
 
1779                                 atomic_set(&r10_bio->remaining, 0);
 
1781                                 r10_bio->master_bio = (struct bio*)rb2;
 
1783                                         atomic_inc(&rb2->remaining);
 
1784                                 r10_bio->mddev = mddev;
 
1785                                 set_bit(R10BIO_IsRecover, &r10_bio->state);
 
1786                                 r10_bio->sector = sect;
 
1788                                 raid10_find_phys(conf, r10_bio);
 
1789                                 /* Need to check if this section will still be
 
1792                                 for (j=0; j<conf->copies;j++) {
 
1793                                         int d = r10_bio->devs[j].devnum;
 
1794                                         if (conf->mirrors[d].rdev == NULL ||
 
1795                                             test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
 
1800                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
 
1801                                                               &sync_blocks, still_degraded);
 
1803                                 for (j=0; j<conf->copies;j++) {
 
1804                                         int d = r10_bio->devs[j].devnum;
 
1805                                         if (conf->mirrors[d].rdev &&
 
1806                                             test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
 
1807                                                 /* This is where we read from */
 
1808                                                 bio = r10_bio->devs[0].bio;
 
1809                                                 bio->bi_next = biolist;
 
1811                                                 bio->bi_private = r10_bio;
 
1812                                                 bio->bi_end_io = end_sync_read;
 
1814                                                 bio->bi_sector = r10_bio->devs[j].addr +
 
1815                                                         conf->mirrors[d].rdev->data_offset;
 
1816                                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
 
1817                                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
 
1818                                                 atomic_inc(&r10_bio->remaining);
 
1819                                                 /* and we write to 'i' */
 
1821                                                 for (k=0; k<conf->copies; k++)
 
1822                                                         if (r10_bio->devs[k].devnum == i)
 
1824                                                 BUG_ON(k == conf->copies);
 
1825                                                 bio = r10_bio->devs[1].bio;
 
1826                                                 bio->bi_next = biolist;
 
1828                                                 bio->bi_private = r10_bio;
 
1829                                                 bio->bi_end_io = end_sync_write;
 
1831                                                 bio->bi_sector = r10_bio->devs[k].addr +
 
1832                                                         conf->mirrors[i].rdev->data_offset;
 
1833                                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
 
1835                                                 r10_bio->devs[0].devnum = d;
 
1836                                                 r10_bio->devs[1].devnum = i;
 
1841                                 if (j == conf->copies) {
 
1842                                         /* Cannot recover, so abort the recovery */
 
1845                                                 atomic_dec(&rb2->remaining);
 
1847                                         if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
 
1848                                                 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
 
1853                 if (biolist == NULL) {
 
1855                                 r10bio_t *rb2 = r10_bio;
 
1856                                 r10_bio = (r10bio_t*) rb2->master_bio;
 
1857                                 rb2->master_bio = NULL;
 
1863                 /* resync. Schedule a read for every block at this virt offset */
 
1866                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
 
1867                                        &sync_blocks, mddev->degraded) &&
 
1868                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
 
1869                         /* We can skip this block */
 
1871                         return sync_blocks + sectors_skipped;
 
1873                 if (sync_blocks < max_sync)
 
1874                         max_sync = sync_blocks;
 
1875                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
 
1877                 r10_bio->mddev = mddev;
 
1878                 atomic_set(&r10_bio->remaining, 0);
 
1879                 raise_barrier(conf, 0);
 
1880                 conf->next_resync = sector_nr;
 
1882                 r10_bio->master_bio = NULL;
 
1883                 r10_bio->sector = sector_nr;
 
1884                 set_bit(R10BIO_IsSync, &r10_bio->state);
 
1885                 raid10_find_phys(conf, r10_bio);
 
1886                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
 
1888                 for (i=0; i<conf->copies; i++) {
 
1889                         int d = r10_bio->devs[i].devnum;
 
1890                         bio = r10_bio->devs[i].bio;
 
1891                         bio->bi_end_io = NULL;
 
1892                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
 
1893                         if (conf->mirrors[d].rdev == NULL ||
 
1894                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
 
1896                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
 
1897                         atomic_inc(&r10_bio->remaining);
 
1898                         bio->bi_next = biolist;
 
1900                         bio->bi_private = r10_bio;
 
1901                         bio->bi_end_io = end_sync_read;
 
1903                         bio->bi_sector = r10_bio->devs[i].addr +
 
1904                                 conf->mirrors[d].rdev->data_offset;
 
1905                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
 
1910                         for (i=0; i<conf->copies; i++) {
 
1911                                 int d = r10_bio->devs[i].devnum;
 
1912                                 if (r10_bio->devs[i].bio->bi_end_io)
 
1913                                         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
 
1921         for (bio = biolist; bio ; bio=bio->bi_next) {
 
1923                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
 
1925                         bio->bi_flags |= 1 << BIO_UPTODATE;
 
1928                 bio->bi_phys_segments = 0;
 
1929                 bio->bi_hw_segments = 0;
 
1934         if (sector_nr + max_sync < max_sector)
 
1935                 max_sector = sector_nr + max_sync;
 
1938                 int len = PAGE_SIZE;
 
1940                 if (sector_nr + (len>>9) > max_sector)
 
1941                         len = (max_sector - sector_nr) << 9;
 
1944                 for (bio= biolist ; bio ; bio=bio->bi_next) {
 
1945                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
 
1946                         if (bio_add_page(bio, page, len, 0) == 0) {
 
1949                                 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
 
1950                                 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
 
1951                                         /* remove last page from this bio */
 
1953                                         bio2->bi_size -= len;
 
1954                                         bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
 
1960                 nr_sectors += len>>9;
 
1961                 sector_nr += len>>9;
 
1962         } while (biolist->bi_vcnt < RESYNC_PAGES);
 
1964         r10_bio->sectors = nr_sectors;
 
1968                 biolist = biolist->bi_next;
 
1970                 bio->bi_next = NULL;
 
1971                 r10_bio = bio->bi_private;
 
1972                 r10_bio->sectors = nr_sectors;
 
1974                 if (bio->bi_end_io == end_sync_read) {
 
1975                         md_sync_acct(bio->bi_bdev, nr_sectors);
 
1976                         generic_make_request(bio);
 
1980         if (sectors_skipped)
 
1981                 /* pretend they weren't skipped, it makes
 
1982                  * no important difference in this case
 
1984                 md_done_sync(mddev, sectors_skipped, 1);
 
1986         return sectors_skipped + nr_sectors;
 
1988         /* There is nowhere to write, so all non-sync
 
1989          * drives must be failed, so try the next chunk...
 
1992         sector_t sec = max_sector - sector_nr;
 
1993         sectors_skipped += sec;
 
1995         sector_nr = max_sector;
 
2000 static int run(mddev_t *mddev)
 
2004         mirror_info_t *disk;
 
2006         struct list_head *tmp;
 
2008         sector_t stride, size;
 
2010         if (mddev->chunk_size == 0) {
 
2011                 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
 
2015         nc = mddev->layout & 255;
 
2016         fc = (mddev->layout >> 8) & 255;
 
2017         fo = mddev->layout & (1<<16);
 
2018         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
 
2019             (mddev->layout >> 17)) {
 
2020                 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
 
2021                        mdname(mddev), mddev->layout);
 
2025          * copy the already verified devices into our private RAID10
 
2026          * bookkeeping area. [whatever we allocate in run(),
 
2027          * should be freed in stop()]
 
2029         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
 
2030         mddev->private = conf;
 
2032                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
 
2036         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
 
2038         if (!conf->mirrors) {
 
2039                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
 
2044         conf->tmppage = alloc_page(GFP_KERNEL);
 
2048         conf->mddev = mddev;
 
2049         conf->raid_disks = mddev->raid_disks;
 
2050         conf->near_copies = nc;
 
2051         conf->far_copies = fc;
 
2052         conf->copies = nc*fc;
 
2053         conf->far_offset = fo;
 
2054         conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
 
2055         conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
 
2056         size = mddev->size >> (conf->chunk_shift-1);
 
2057         sector_div(size, fc);
 
2058         size = size * conf->raid_disks;
 
2059         sector_div(size, nc);
 
2060         /* 'size' is now the number of chunks in the array */
 
2061         /* calculate "used chunks per device" in 'stride' */
 
2062         stride = size * conf->copies;
 
2064         /* We need to round up when dividing by raid_disks to
 
2065          * get the stride size.
 
2067         stride += conf->raid_disks - 1;
 
2068         sector_div(stride, conf->raid_disks);
 
2069         mddev->size = stride  << (conf->chunk_shift-1);
 
2074                 sector_div(stride, fc);
 
2075         conf->stride = stride << conf->chunk_shift;
 
2077         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
 
2078                                                 r10bio_pool_free, conf);
 
2079         if (!conf->r10bio_pool) {
 
2080                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
 
2085         rdev_for_each(rdev, tmp, mddev) {
 
2086                 disk_idx = rdev->raid_disk;
 
2087                 if (disk_idx >= mddev->raid_disks
 
2090                 disk = conf->mirrors + disk_idx;
 
2094                 blk_queue_stack_limits(mddev->queue,
 
2095                                        rdev->bdev->bd_disk->queue);
 
2096                 /* as we don't honour merge_bvec_fn, we must never risk
 
2097                  * violating it, so limit ->max_sector to one PAGE, as
 
2098                  * a one page request is never in violation.
 
2100                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
 
2101                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
 
2102                         mddev->queue->max_sectors = (PAGE_SIZE>>9);
 
2104                 disk->head_position = 0;
 
2106         spin_lock_init(&conf->device_lock);
 
2107         INIT_LIST_HEAD(&conf->retry_list);
 
2109         spin_lock_init(&conf->resync_lock);
 
2110         init_waitqueue_head(&conf->wait_barrier);
 
2112         /* need to check that every block has at least one working mirror */
 
2113         if (!enough(conf)) {
 
2114                 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
 
2119         mddev->degraded = 0;
 
2120         for (i = 0; i < conf->raid_disks; i++) {
 
2122                 disk = conf->mirrors + i;
 
2125                     !test_bit(In_sync, &disk->rdev->flags)) {
 
2126                         disk->head_position = 0;
 
2132         mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
 
2133         if (!mddev->thread) {
 
2135                        "raid10: couldn't allocate thread for %s\n",
 
2141                 "raid10: raid set %s active with %d out of %d devices\n",
 
2142                 mdname(mddev), mddev->raid_disks - mddev->degraded,
 
2145          * Ok, everything is just fine now
 
2147         mddev->array_size = size << (conf->chunk_shift-1);
 
2148         mddev->resync_max_sectors = size << conf->chunk_shift;
 
2150         mddev->queue->unplug_fn = raid10_unplug;
 
2151         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
 
2152         mddev->queue->backing_dev_info.congested_data = mddev;
 
2154         /* Calculate max read-ahead size.
 
2155          * We need to readahead at least twice a whole stripe....
 
2159                 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
 
2160                 stripe /= conf->near_copies;
 
2161                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
 
2162                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
 
2165         if (conf->near_copies < mddev->raid_disks)
 
2166                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
 
2170         if (conf->r10bio_pool)
 
2171                 mempool_destroy(conf->r10bio_pool);
 
2172         safe_put_page(conf->tmppage);
 
2173         kfree(conf->mirrors);
 
2175         mddev->private = NULL;
 
2180 static int stop(mddev_t *mddev)
 
2182         conf_t *conf = mddev_to_conf(mddev);
 
2184         md_unregister_thread(mddev->thread);
 
2185         mddev->thread = NULL;
 
2186         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
 
2187         if (conf->r10bio_pool)
 
2188                 mempool_destroy(conf->r10bio_pool);
 
2189         kfree(conf->mirrors);
 
2191         mddev->private = NULL;
 
2195 static void raid10_quiesce(mddev_t *mddev, int state)
 
2197         conf_t *conf = mddev_to_conf(mddev);
 
2201                 raise_barrier(conf, 0);
 
2204                 lower_barrier(conf);
 
2207         if (mddev->thread) {
 
2209                         mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
 
2211                         mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
 
2212                 md_wakeup_thread(mddev->thread);
 
2216 static struct mdk_personality raid10_personality =
 
2220         .owner          = THIS_MODULE,
 
2221         .make_request   = make_request,
 
2225         .error_handler  = error,
 
2226         .hot_add_disk   = raid10_add_disk,
 
2227         .hot_remove_disk= raid10_remove_disk,
 
2228         .spare_active   = raid10_spare_active,
 
2229         .sync_request   = sync_request,
 
2230         .quiesce        = raid10_quiesce,
 
2233 static int __init raid_init(void)
 
2235         return register_md_personality(&raid10_personality);
 
2238 static void raid_exit(void)
 
2240         unregister_md_personality(&raid10_personality);
 
2243 module_init(raid_init);
 
2244 module_exit(raid_exit);
 
2245 MODULE_LICENSE("GPL");
 
2246 MODULE_ALIAS("md-personality-9"); /* RAID10 */
 
2247 MODULE_ALIAS("md-raid10");
 
2248 MODULE_ALIAS("md-level-10");