Merge branch 'for-rmk' of git://linux-arm.org/linux-2.6 into devel
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.20-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static struct pci_device_id e1000_pci_tbl[] = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135                                struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                struct e1000_rx_ring *rx_ring,
139                                int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141                                    struct e1000_rx_ring *rx_ring,
142                                    int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145                            int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152                                        struct sk_buff *skb);
153
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160 #ifdef CONFIG_PM
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
164
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
169
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174         "Maximum size of packet that is copied to a new buffer on receive");
175
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177                      pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
180
181 static struct pci_error_handlers e1000_err_handler = {
182         .error_detected = e1000_io_error_detected,
183         .slot_reset = e1000_io_slot_reset,
184         .resume = e1000_io_resume,
185 };
186
187 static struct pci_driver e1000_driver = {
188         .name     = e1000_driver_name,
189         .id_table = e1000_pci_tbl,
190         .probe    = e1000_probe,
191         .remove   = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193         /* Power Managment Hooks */
194         .suspend  = e1000_suspend,
195         .resume   = e1000_resume,
196 #endif
197         .shutdown = e1000_shutdown,
198         .err_handler = &e1000_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210 /**
211  * e1000_init_module - Driver Registration Routine
212  *
213  * e1000_init_module is the first routine called when the driver is
214  * loaded. All it does is register with the PCI subsystem.
215  **/
216
217 static int __init e1000_init_module(void)
218 {
219         int ret;
220         printk(KERN_INFO "%s - version %s\n",
221                e1000_driver_string, e1000_driver_version);
222
223         printk(KERN_INFO "%s\n", e1000_copyright);
224
225         ret = pci_register_driver(&e1000_driver);
226         if (copybreak != COPYBREAK_DEFAULT) {
227                 if (copybreak == 0)
228                         printk(KERN_INFO "e1000: copybreak disabled\n");
229                 else
230                         printk(KERN_INFO "e1000: copybreak enabled for "
231                                "packets <= %u bytes\n", copybreak);
232         }
233         return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244
245 static void __exit e1000_exit_module(void)
246 {
247         pci_unregister_driver(&e1000_driver);
248 }
249
250 module_exit(e1000_exit_module);
251
252 static int e1000_request_irq(struct e1000_adapter *adapter)
253 {
254         struct e1000_hw *hw = &adapter->hw;
255         struct net_device *netdev = adapter->netdev;
256         irq_handler_t handler = e1000_intr;
257         int irq_flags = IRQF_SHARED;
258         int err;
259
260         if (hw->mac_type >= e1000_82571) {
261                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262                 if (adapter->have_msi) {
263                         handler = e1000_intr_msi;
264                         irq_flags = 0;
265                 }
266         }
267
268         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269                           netdev);
270         if (err) {
271                 if (adapter->have_msi)
272                         pci_disable_msi(adapter->pdev);
273                 DPRINTK(PROBE, ERR,
274                         "Unable to allocate interrupt Error: %d\n", err);
275         }
276
277         return err;
278 }
279
280 static void e1000_free_irq(struct e1000_adapter *adapter)
281 {
282         struct net_device *netdev = adapter->netdev;
283
284         free_irq(adapter->pdev->irq, netdev);
285
286         if (adapter->have_msi)
287                 pci_disable_msi(adapter->pdev);
288 }
289
290 /**
291  * e1000_irq_disable - Mask off interrupt generation on the NIC
292  * @adapter: board private structure
293  **/
294
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297         struct e1000_hw *hw = &adapter->hw;
298
299         ew32(IMC, ~0);
300         E1000_WRITE_FLUSH();
301         synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305  * e1000_irq_enable - Enable default interrupt generation settings
306  * @adapter: board private structure
307  **/
308
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312
313         ew32(IMS, IMS_ENABLE_MASK);
314         E1000_WRITE_FLUSH();
315 }
316
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320         struct net_device *netdev = adapter->netdev;
321         u16 vid = hw->mng_cookie.vlan_id;
322         u16 old_vid = adapter->mng_vlan_id;
323         if (adapter->vlgrp) {
324                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325                         if (hw->mng_cookie.status &
326                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327                                 e1000_vlan_rx_add_vid(netdev, vid);
328                                 adapter->mng_vlan_id = vid;
329                         } else
330                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333                                         (vid != old_vid) &&
334                             !vlan_group_get_device(adapter->vlgrp, old_vid))
335                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
336                 } else
337                         adapter->mng_vlan_id = vid;
338         }
339 }
340
341 /**
342  * e1000_release_hw_control - release control of the h/w to f/w
343  * @adapter: address of board private structure
344  *
345  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346  * For ASF and Pass Through versions of f/w this means that the
347  * driver is no longer loaded. For AMT version (only with 82573) i
348  * of the f/w this means that the network i/f is closed.
349  *
350  **/
351
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
353 {
354         u32 ctrl_ext;
355         u32 swsm;
356         struct e1000_hw *hw = &adapter->hw;
357
358         /* Let firmware taken over control of h/w */
359         switch (hw->mac_type) {
360         case e1000_82573:
361                 swsm = er32(SWSM);
362                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363                 break;
364         case e1000_82571:
365         case e1000_82572:
366         case e1000_80003es2lan:
367         case e1000_ich8lan:
368                 ctrl_ext = er32(CTRL_EXT);
369                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370                 break;
371         default:
372                 break;
373         }
374 }
375
376 /**
377  * e1000_get_hw_control - get control of the h/w from f/w
378  * @adapter: address of board private structure
379  *
380  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381  * For ASF and Pass Through versions of f/w this means that
382  * the driver is loaded. For AMT version (only with 82573)
383  * of the f/w this means that the network i/f is open.
384  *
385  **/
386
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
388 {
389         u32 ctrl_ext;
390         u32 swsm;
391         struct e1000_hw *hw = &adapter->hw;
392
393         /* Let firmware know the driver has taken over */
394         switch (hw->mac_type) {
395         case e1000_82573:
396                 swsm = er32(SWSM);
397                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398                 break;
399         case e1000_82571:
400         case e1000_82572:
401         case e1000_80003es2lan:
402         case e1000_ich8lan:
403                 ctrl_ext = er32(CTRL_EXT);
404                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
412 {
413         struct e1000_hw *hw = &adapter->hw;
414
415         if (adapter->en_mng_pt) {
416                 u32 manc = er32(MANC);
417
418                 /* disable hardware interception of ARP */
419                 manc &= ~(E1000_MANC_ARP_EN);
420
421                 /* enable receiving management packets to the host */
422                 /* this will probably generate destination unreachable messages
423                  * from the host OS, but the packets will be handled on SMBUS */
424                 if (hw->has_manc2h) {
425                         u32 manc2h = er32(MANC2H);
426
427                         manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430                         manc2h |= E1000_MNG2HOST_PORT_623;
431                         manc2h |= E1000_MNG2HOST_PORT_664;
432                         ew32(MANC2H, manc2h);
433                 }
434
435                 ew32(MANC, manc);
436         }
437 }
438
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
440 {
441         struct e1000_hw *hw = &adapter->hw;
442
443         if (adapter->en_mng_pt) {
444                 u32 manc = er32(MANC);
445
446                 /* re-enable hardware interception of ARP */
447                 manc |= E1000_MANC_ARP_EN;
448
449                 if (hw->has_manc2h)
450                         manc &= ~E1000_MANC_EN_MNG2HOST;
451
452                 /* don't explicitly have to mess with MANC2H since
453                  * MANC has an enable disable that gates MANC2H */
454
455                 ew32(MANC, manc);
456         }
457 }
458
459 /**
460  * e1000_configure - configure the hardware for RX and TX
461  * @adapter = private board structure
462  **/
463 static void e1000_configure(struct e1000_adapter *adapter)
464 {
465         struct net_device *netdev = adapter->netdev;
466         int i;
467
468         e1000_set_rx_mode(netdev);
469
470         e1000_restore_vlan(adapter);
471         e1000_init_manageability(adapter);
472
473         e1000_configure_tx(adapter);
474         e1000_setup_rctl(adapter);
475         e1000_configure_rx(adapter);
476         /* call E1000_DESC_UNUSED which always leaves
477          * at least 1 descriptor unused to make sure
478          * next_to_use != next_to_clean */
479         for (i = 0; i < adapter->num_rx_queues; i++) {
480                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481                 adapter->alloc_rx_buf(adapter, ring,
482                                       E1000_DESC_UNUSED(ring));
483         }
484
485         adapter->tx_queue_len = netdev->tx_queue_len;
486 }
487
488 int e1000_up(struct e1000_adapter *adapter)
489 {
490         struct e1000_hw *hw = &adapter->hw;
491
492         /* hardware has been reset, we need to reload some things */
493         e1000_configure(adapter);
494
495         clear_bit(__E1000_DOWN, &adapter->flags);
496
497         napi_enable(&adapter->napi);
498
499         e1000_irq_enable(adapter);
500
501         /* fire a link change interrupt to start the watchdog */
502         ew32(ICS, E1000_ICS_LSC);
503         return 0;
504 }
505
506 /**
507  * e1000_power_up_phy - restore link in case the phy was powered down
508  * @adapter: address of board private structure
509  *
510  * The phy may be powered down to save power and turn off link when the
511  * driver is unloaded and wake on lan is not enabled (among others)
512  * *** this routine MUST be followed by a call to e1000_reset ***
513  *
514  **/
515
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u16 mii_reg = 0;
520
521         /* Just clear the power down bit to wake the phy back up */
522         if (hw->media_type == e1000_media_type_copper) {
523                 /* according to the manual, the phy will retain its
524                  * settings across a power-down/up cycle */
525                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526                 mii_reg &= ~MII_CR_POWER_DOWN;
527                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
528         }
529 }
530
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
532 {
533         struct e1000_hw *hw = &adapter->hw;
534
535         /* Power down the PHY so no link is implied when interface is down *
536          * The PHY cannot be powered down if any of the following is true *
537          * (a) WoL is enabled
538          * (b) AMT is active
539          * (c) SoL/IDER session is active */
540         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541            hw->media_type == e1000_media_type_copper) {
542                 u16 mii_reg = 0;
543
544                 switch (hw->mac_type) {
545                 case e1000_82540:
546                 case e1000_82545:
547                 case e1000_82545_rev_3:
548                 case e1000_82546:
549                 case e1000_82546_rev_3:
550                 case e1000_82541:
551                 case e1000_82541_rev_2:
552                 case e1000_82547:
553                 case e1000_82547_rev_2:
554                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
555                                 goto out;
556                         break;
557                 case e1000_82571:
558                 case e1000_82572:
559                 case e1000_82573:
560                 case e1000_80003es2lan:
561                 case e1000_ich8lan:
562                         if (e1000_check_mng_mode(hw) ||
563                             e1000_check_phy_reset_block(hw))
564                                 goto out;
565                         break;
566                 default:
567                         goto out;
568                 }
569                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570                 mii_reg |= MII_CR_POWER_DOWN;
571                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572                 mdelay(1);
573         }
574 out:
575         return;
576 }
577
578 void e1000_down(struct e1000_adapter *adapter)
579 {
580         struct net_device *netdev = adapter->netdev;
581
582         /* signal that we're down so the interrupt handler does not
583          * reschedule our watchdog timer */
584         set_bit(__E1000_DOWN, &adapter->flags);
585
586         napi_disable(&adapter->napi);
587
588         e1000_irq_disable(adapter);
589
590         del_timer_sync(&adapter->tx_fifo_stall_timer);
591         del_timer_sync(&adapter->watchdog_timer);
592         del_timer_sync(&adapter->phy_info_timer);
593
594         netdev->tx_queue_len = adapter->tx_queue_len;
595         adapter->link_speed = 0;
596         adapter->link_duplex = 0;
597         netif_carrier_off(netdev);
598         netif_stop_queue(netdev);
599
600         e1000_reset(adapter);
601         e1000_clean_all_tx_rings(adapter);
602         e1000_clean_all_rx_rings(adapter);
603 }
604
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
606 {
607         WARN_ON(in_interrupt());
608         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609                 msleep(1);
610         e1000_down(adapter);
611         e1000_up(adapter);
612         clear_bit(__E1000_RESETTING, &adapter->flags);
613 }
614
615 void e1000_reset(struct e1000_adapter *adapter)
616 {
617         struct e1000_hw *hw = &adapter->hw;
618         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620         bool legacy_pba_adjust = false;
621
622         /* Repartition Pba for greater than 9k mtu
623          * To take effect CTRL.RST is required.
624          */
625
626         switch (hw->mac_type) {
627         case e1000_82542_rev2_0:
628         case e1000_82542_rev2_1:
629         case e1000_82543:
630         case e1000_82544:
631         case e1000_82540:
632         case e1000_82541:
633         case e1000_82541_rev_2:
634                 legacy_pba_adjust = true;
635                 pba = E1000_PBA_48K;
636                 break;
637         case e1000_82545:
638         case e1000_82545_rev_3:
639         case e1000_82546:
640         case e1000_82546_rev_3:
641                 pba = E1000_PBA_48K;
642                 break;
643         case e1000_82547:
644         case e1000_82547_rev_2:
645                 legacy_pba_adjust = true;
646                 pba = E1000_PBA_30K;
647                 break;
648         case e1000_82571:
649         case e1000_82572:
650         case e1000_80003es2lan:
651                 pba = E1000_PBA_38K;
652                 break;
653         case e1000_82573:
654                 pba = E1000_PBA_20K;
655                 break;
656         case e1000_ich8lan:
657                 pba = E1000_PBA_8K;
658         case e1000_undefined:
659         case e1000_num_macs:
660                 break;
661         }
662
663         if (legacy_pba_adjust) {
664                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665                         pba -= 8; /* allocate more FIFO for Tx */
666
667                 if (hw->mac_type == e1000_82547) {
668                         adapter->tx_fifo_head = 0;
669                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670                         adapter->tx_fifo_size =
671                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672                         atomic_set(&adapter->tx_fifo_stall, 0);
673                 }
674         } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675                 /* adjust PBA for jumbo frames */
676                 ew32(PBA, pba);
677
678                 /* To maintain wire speed transmits, the Tx FIFO should be
679                  * large enough to accomodate two full transmit packets,
680                  * rounded up to the next 1KB and expressed in KB.  Likewise,
681                  * the Rx FIFO should be large enough to accomodate at least
682                  * one full receive packet and is similarly rounded up and
683                  * expressed in KB. */
684                 pba = er32(PBA);
685                 /* upper 16 bits has Tx packet buffer allocation size in KB */
686                 tx_space = pba >> 16;
687                 /* lower 16 bits has Rx packet buffer allocation size in KB */
688                 pba &= 0xffff;
689                 /* don't include ethernet FCS because hardware appends/strips */
690                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691                                VLAN_TAG_SIZE;
692                 min_tx_space = min_rx_space;
693                 min_tx_space *= 2;
694                 min_tx_space = ALIGN(min_tx_space, 1024);
695                 min_tx_space >>= 10;
696                 min_rx_space = ALIGN(min_rx_space, 1024);
697                 min_rx_space >>= 10;
698
699                 /* If current Tx allocation is less than the min Tx FIFO size,
700                  * and the min Tx FIFO size is less than the current Rx FIFO
701                  * allocation, take space away from current Rx allocation */
702                 if (tx_space < min_tx_space &&
703                     ((min_tx_space - tx_space) < pba)) {
704                         pba = pba - (min_tx_space - tx_space);
705
706                         /* PCI/PCIx hardware has PBA alignment constraints */
707                         switch (hw->mac_type) {
708                         case e1000_82545 ... e1000_82546_rev_3:
709                                 pba &= ~(E1000_PBA_8K - 1);
710                                 break;
711                         default:
712                                 break;
713                         }
714
715                         /* if short on rx space, rx wins and must trump tx
716                          * adjustment or use Early Receive if available */
717                         if (pba < min_rx_space) {
718                                 switch (hw->mac_type) {
719                                 case e1000_82573:
720                                         /* ERT enabled in e1000_configure_rx */
721                                         break;
722                                 default:
723                                         pba = min_rx_space;
724                                         break;
725                                 }
726                         }
727                 }
728         }
729
730         ew32(PBA, pba);
731
732         /* flow control settings */
733         /* Set the FC high water mark to 90% of the FIFO size.
734          * Required to clear last 3 LSB */
735         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736         /* We can't use 90% on small FIFOs because the remainder
737          * would be less than 1 full frame.  In this case, we size
738          * it to allow at least a full frame above the high water
739          *  mark. */
740         if (pba < E1000_PBA_16K)
741                 fc_high_water_mark = (pba * 1024) - 1600;
742
743         hw->fc_high_water = fc_high_water_mark;
744         hw->fc_low_water = fc_high_water_mark - 8;
745         if (hw->mac_type == e1000_80003es2lan)
746                 hw->fc_pause_time = 0xFFFF;
747         else
748                 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749         hw->fc_send_xon = 1;
750         hw->fc = hw->original_fc;
751
752         /* Allow time for pending master requests to run */
753         e1000_reset_hw(hw);
754         if (hw->mac_type >= e1000_82544)
755                 ew32(WUC, 0);
756
757         if (e1000_init_hw(hw))
758                 DPRINTK(PROBE, ERR, "Hardware Error\n");
759         e1000_update_mng_vlan(adapter);
760
761         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762         if (hw->mac_type >= e1000_82544 &&
763             hw->mac_type <= e1000_82547_rev_2 &&
764             hw->autoneg == 1 &&
765             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766                 u32 ctrl = er32(CTRL);
767                 /* clear phy power management bit if we are in gig only mode,
768                  * which if enabled will attempt negotiation to 100Mb, which
769                  * can cause a loss of link at power off or driver unload */
770                 ctrl &= ~E1000_CTRL_SWDPIN3;
771                 ew32(CTRL, ctrl);
772         }
773
774         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
776
777         e1000_reset_adaptive(hw);
778         e1000_phy_get_info(hw, &adapter->phy_info);
779
780         if (!adapter->smart_power_down &&
781             (hw->mac_type == e1000_82571 ||
782              hw->mac_type == e1000_82572)) {
783                 u16 phy_data = 0;
784                 /* speed up time to link by disabling smart power down, ignore
785                  * the return value of this function because there is nothing
786                  * different we would do if it failed */
787                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788                                    &phy_data);
789                 phy_data &= ~IGP02E1000_PM_SPD;
790                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791                                     phy_data);
792         }
793
794         e1000_release_manageability(adapter);
795 }
796
797 /**
798  *  Dump the eeprom for users having checksum issues
799  **/
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
801 {
802         struct net_device *netdev = adapter->netdev;
803         struct ethtool_eeprom eeprom;
804         const struct ethtool_ops *ops = netdev->ethtool_ops;
805         u8 *data;
806         int i;
807         u16 csum_old, csum_new = 0;
808
809         eeprom.len = ops->get_eeprom_len(netdev);
810         eeprom.offset = 0;
811
812         data = kmalloc(eeprom.len, GFP_KERNEL);
813         if (!data) {
814                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815                        " data\n");
816                 return;
817         }
818
819         ops->get_eeprom(netdev, &eeprom, data);
820
821         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824                 csum_new += data[i] + (data[i + 1] << 8);
825         csum_new = EEPROM_SUM - csum_new;
826
827         printk(KERN_ERR "/*********************/\n");
828         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
830
831         printk(KERN_ERR "Offset    Values\n");
832         printk(KERN_ERR "========  ======\n");
833         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
834
835         printk(KERN_ERR "Include this output when contacting your support "
836                "provider.\n");
837         printk(KERN_ERR "This is not a software error! Something bad "
838                "happened to your hardware or\n");
839         printk(KERN_ERR "EEPROM image. Ignoring this "
840                "problem could result in further problems,\n");
841         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843                "which is invalid\n");
844         printk(KERN_ERR "and requires you to set the proper MAC "
845                "address manually before continuing\n");
846         printk(KERN_ERR "to enable this network device.\n");
847         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848                "to your hardware vendor\n");
849         printk(KERN_ERR "or Intel Customer Support.\n");
850         printk(KERN_ERR "/*********************/\n");
851
852         kfree(data);
853 }
854
855 /**
856  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857  * @pdev: PCI device information struct
858  *
859  * Return true if an adapter needs ioport resources
860  **/
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
862 {
863         switch (pdev->device) {
864         case E1000_DEV_ID_82540EM:
865         case E1000_DEV_ID_82540EM_LOM:
866         case E1000_DEV_ID_82540EP:
867         case E1000_DEV_ID_82540EP_LOM:
868         case E1000_DEV_ID_82540EP_LP:
869         case E1000_DEV_ID_82541EI:
870         case E1000_DEV_ID_82541EI_MOBILE:
871         case E1000_DEV_ID_82541ER:
872         case E1000_DEV_ID_82541ER_LOM:
873         case E1000_DEV_ID_82541GI:
874         case E1000_DEV_ID_82541GI_LF:
875         case E1000_DEV_ID_82541GI_MOBILE:
876         case E1000_DEV_ID_82544EI_COPPER:
877         case E1000_DEV_ID_82544EI_FIBER:
878         case E1000_DEV_ID_82544GC_COPPER:
879         case E1000_DEV_ID_82544GC_LOM:
880         case E1000_DEV_ID_82545EM_COPPER:
881         case E1000_DEV_ID_82545EM_FIBER:
882         case E1000_DEV_ID_82546EB_COPPER:
883         case E1000_DEV_ID_82546EB_FIBER:
884         case E1000_DEV_ID_82546EB_QUAD_COPPER:
885                 return true;
886         default:
887                 return false;
888         }
889 }
890
891 /**
892  * e1000_probe - Device Initialization Routine
893  * @pdev: PCI device information struct
894  * @ent: entry in e1000_pci_tbl
895  *
896  * Returns 0 on success, negative on failure
897  *
898  * e1000_probe initializes an adapter identified by a pci_dev structure.
899  * The OS initialization, configuring of the adapter private structure,
900  * and a hardware reset occur.
901  **/
902 static int __devinit e1000_probe(struct pci_dev *pdev,
903                                  const struct pci_device_id *ent)
904 {
905         struct net_device *netdev;
906         struct e1000_adapter *adapter;
907         struct e1000_hw *hw;
908
909         static int cards_found = 0;
910         static int global_quad_port_a = 0; /* global ksp3 port a indication */
911         int i, err, pci_using_dac;
912         u16 eeprom_data = 0;
913         u16 eeprom_apme_mask = E1000_EEPROM_APME;
914         int bars, need_ioport;
915         DECLARE_MAC_BUF(mac);
916
917         /* do not allocate ioport bars when not needed */
918         need_ioport = e1000_is_need_ioport(pdev);
919         if (need_ioport) {
920                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
921                 err = pci_enable_device(pdev);
922         } else {
923                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
924                 err = pci_enable_device(pdev);
925         }
926         if (err)
927                 return err;
928
929         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
930             !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
931                 pci_using_dac = 1;
932         } else {
933                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
934                 if (err) {
935                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
936                         if (err) {
937                                 E1000_ERR("No usable DMA configuration, "
938                                           "aborting\n");
939                                 goto err_dma;
940                         }
941                 }
942                 pci_using_dac = 0;
943         }
944
945         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
946         if (err)
947                 goto err_pci_reg;
948
949         pci_set_master(pdev);
950
951         err = -ENOMEM;
952         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
953         if (!netdev)
954                 goto err_alloc_etherdev;
955
956         SET_NETDEV_DEV(netdev, &pdev->dev);
957
958         pci_set_drvdata(pdev, netdev);
959         adapter = netdev_priv(netdev);
960         adapter->netdev = netdev;
961         adapter->pdev = pdev;
962         adapter->msg_enable = (1 << debug) - 1;
963         adapter->bars = bars;
964         adapter->need_ioport = need_ioport;
965
966         hw = &adapter->hw;
967         hw->back = adapter;
968
969         err = -EIO;
970         hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
971                               pci_resource_len(pdev, BAR_0));
972         if (!hw->hw_addr)
973                 goto err_ioremap;
974
975         if (adapter->need_ioport) {
976                 for (i = BAR_1; i <= BAR_5; i++) {
977                         if (pci_resource_len(pdev, i) == 0)
978                                 continue;
979                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
980                                 hw->io_base = pci_resource_start(pdev, i);
981                                 break;
982                         }
983                 }
984         }
985
986         netdev->open = &e1000_open;
987         netdev->stop = &e1000_close;
988         netdev->hard_start_xmit = &e1000_xmit_frame;
989         netdev->get_stats = &e1000_get_stats;
990         netdev->set_rx_mode = &e1000_set_rx_mode;
991         netdev->set_mac_address = &e1000_set_mac;
992         netdev->change_mtu = &e1000_change_mtu;
993         netdev->do_ioctl = &e1000_ioctl;
994         e1000_set_ethtool_ops(netdev);
995         netdev->tx_timeout = &e1000_tx_timeout;
996         netdev->watchdog_timeo = 5 * HZ;
997         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
998         netdev->vlan_rx_register = e1000_vlan_rx_register;
999         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
1000         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
1001 #ifdef CONFIG_NET_POLL_CONTROLLER
1002         netdev->poll_controller = e1000_netpoll;
1003 #endif
1004         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1005
1006         adapter->bd_number = cards_found;
1007
1008         /* setup the private structure */
1009
1010         err = e1000_sw_init(adapter);
1011         if (err)
1012                 goto err_sw_init;
1013
1014         err = -EIO;
1015         /* Flash BAR mapping must happen after e1000_sw_init
1016          * because it depends on mac_type */
1017         if ((hw->mac_type == e1000_ich8lan) &&
1018            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1019                 hw->flash_address =
1020                         ioremap(pci_resource_start(pdev, 1),
1021                                 pci_resource_len(pdev, 1));
1022                 if (!hw->flash_address)
1023                         goto err_flashmap;
1024         }
1025
1026         if (e1000_check_phy_reset_block(hw))
1027                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1028
1029         if (hw->mac_type >= e1000_82543) {
1030                 netdev->features = NETIF_F_SG |
1031                                    NETIF_F_HW_CSUM |
1032                                    NETIF_F_HW_VLAN_TX |
1033                                    NETIF_F_HW_VLAN_RX |
1034                                    NETIF_F_HW_VLAN_FILTER;
1035                 if (hw->mac_type == e1000_ich8lan)
1036                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1037         }
1038
1039         if ((hw->mac_type >= e1000_82544) &&
1040            (hw->mac_type != e1000_82547))
1041                 netdev->features |= NETIF_F_TSO;
1042
1043         if (hw->mac_type > e1000_82547_rev_2)
1044                 netdev->features |= NETIF_F_TSO6;
1045         if (pci_using_dac)
1046                 netdev->features |= NETIF_F_HIGHDMA;
1047
1048         netdev->features |= NETIF_F_LLTX;
1049
1050         netdev->vlan_features |= NETIF_F_TSO;
1051         netdev->vlan_features |= NETIF_F_TSO6;
1052         netdev->vlan_features |= NETIF_F_HW_CSUM;
1053         netdev->vlan_features |= NETIF_F_SG;
1054
1055         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1056
1057         /* initialize eeprom parameters */
1058         if (e1000_init_eeprom_params(hw)) {
1059                 E1000_ERR("EEPROM initialization failed\n");
1060                 goto err_eeprom;
1061         }
1062
1063         /* before reading the EEPROM, reset the controller to
1064          * put the device in a known good starting state */
1065
1066         e1000_reset_hw(hw);
1067
1068         /* make sure the EEPROM is good */
1069         if (e1000_validate_eeprom_checksum(hw) < 0) {
1070                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1071                 e1000_dump_eeprom(adapter);
1072                 /*
1073                  * set MAC address to all zeroes to invalidate and temporary
1074                  * disable this device for the user. This blocks regular
1075                  * traffic while still permitting ethtool ioctls from reaching
1076                  * the hardware as well as allowing the user to run the
1077                  * interface after manually setting a hw addr using
1078                  * `ip set address`
1079                  */
1080                 memset(hw->mac_addr, 0, netdev->addr_len);
1081         } else {
1082                 /* copy the MAC address out of the EEPROM */
1083                 if (e1000_read_mac_addr(hw))
1084                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1085         }
1086         /* don't block initalization here due to bad MAC address */
1087         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1088         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1089
1090         if (!is_valid_ether_addr(netdev->perm_addr))
1091                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1092
1093         e1000_get_bus_info(hw);
1094
1095         init_timer(&adapter->tx_fifo_stall_timer);
1096         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1097         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1098
1099         init_timer(&adapter->watchdog_timer);
1100         adapter->watchdog_timer.function = &e1000_watchdog;
1101         adapter->watchdog_timer.data = (unsigned long) adapter;
1102
1103         init_timer(&adapter->phy_info_timer);
1104         adapter->phy_info_timer.function = &e1000_update_phy_info;
1105         adapter->phy_info_timer.data = (unsigned long)adapter;
1106
1107         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1108
1109         e1000_check_options(adapter);
1110
1111         /* Initial Wake on LAN setting
1112          * If APM wake is enabled in the EEPROM,
1113          * enable the ACPI Magic Packet filter
1114          */
1115
1116         switch (hw->mac_type) {
1117         case e1000_82542_rev2_0:
1118         case e1000_82542_rev2_1:
1119         case e1000_82543:
1120                 break;
1121         case e1000_82544:
1122                 e1000_read_eeprom(hw,
1123                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1124                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1125                 break;
1126         case e1000_ich8lan:
1127                 e1000_read_eeprom(hw,
1128                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1129                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1130                 break;
1131         case e1000_82546:
1132         case e1000_82546_rev_3:
1133         case e1000_82571:
1134         case e1000_80003es2lan:
1135                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1136                         e1000_read_eeprom(hw,
1137                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1138                         break;
1139                 }
1140                 /* Fall Through */
1141         default:
1142                 e1000_read_eeprom(hw,
1143                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1144                 break;
1145         }
1146         if (eeprom_data & eeprom_apme_mask)
1147                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1148
1149         /* now that we have the eeprom settings, apply the special cases
1150          * where the eeprom may be wrong or the board simply won't support
1151          * wake on lan on a particular port */
1152         switch (pdev->device) {
1153         case E1000_DEV_ID_82546GB_PCIE:
1154                 adapter->eeprom_wol = 0;
1155                 break;
1156         case E1000_DEV_ID_82546EB_FIBER:
1157         case E1000_DEV_ID_82546GB_FIBER:
1158         case E1000_DEV_ID_82571EB_FIBER:
1159                 /* Wake events only supported on port A for dual fiber
1160                  * regardless of eeprom setting */
1161                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1162                         adapter->eeprom_wol = 0;
1163                 break;
1164         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1165         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1166         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1167         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1168         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1169                 /* if quad port adapter, disable WoL on all but port A */
1170                 if (global_quad_port_a != 0)
1171                         adapter->eeprom_wol = 0;
1172                 else
1173                         adapter->quad_port_a = 1;
1174                 /* Reset for multiple quad port adapters */
1175                 if (++global_quad_port_a == 4)
1176                         global_quad_port_a = 0;
1177                 break;
1178         }
1179
1180         /* initialize the wol settings based on the eeprom settings */
1181         adapter->wol = adapter->eeprom_wol;
1182         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1183
1184         /* print bus type/speed/width info */
1185         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1186                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1187                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1188                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1189                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1190                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1191                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1192                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1193                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1194                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1195                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1196                  "32-bit"));
1197
1198         printk("%s\n", print_mac(mac, netdev->dev_addr));
1199
1200         if (hw->bus_type == e1000_bus_type_pci_express) {
1201                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1202                         "longer be supported by this driver in the future.\n",
1203                         pdev->vendor, pdev->device);
1204                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1205                         "driver instead.\n");
1206         }
1207
1208         /* reset the hardware with the new settings */
1209         e1000_reset(adapter);
1210
1211         /* If the controller is 82573 and f/w is AMT, do not set
1212          * DRV_LOAD until the interface is up.  For all other cases,
1213          * let the f/w know that the h/w is now under the control
1214          * of the driver. */
1215         if (hw->mac_type != e1000_82573 ||
1216             !e1000_check_mng_mode(hw))
1217                 e1000_get_hw_control(adapter);
1218
1219         /* tell the stack to leave us alone until e1000_open() is called */
1220         netif_carrier_off(netdev);
1221         netif_stop_queue(netdev);
1222
1223         strcpy(netdev->name, "eth%d");
1224         err = register_netdev(netdev);
1225         if (err)
1226                 goto err_register;
1227
1228         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1229
1230         cards_found++;
1231         return 0;
1232
1233 err_register:
1234         e1000_release_hw_control(adapter);
1235 err_eeprom:
1236         if (!e1000_check_phy_reset_block(hw))
1237                 e1000_phy_hw_reset(hw);
1238
1239         if (hw->flash_address)
1240                 iounmap(hw->flash_address);
1241 err_flashmap:
1242         for (i = 0; i < adapter->num_rx_queues; i++)
1243                 dev_put(&adapter->polling_netdev[i]);
1244
1245         kfree(adapter->tx_ring);
1246         kfree(adapter->rx_ring);
1247         kfree(adapter->polling_netdev);
1248 err_sw_init:
1249         iounmap(hw->hw_addr);
1250 err_ioremap:
1251         free_netdev(netdev);
1252 err_alloc_etherdev:
1253         pci_release_selected_regions(pdev, bars);
1254 err_pci_reg:
1255 err_dma:
1256         pci_disable_device(pdev);
1257         return err;
1258 }
1259
1260 /**
1261  * e1000_remove - Device Removal Routine
1262  * @pdev: PCI device information struct
1263  *
1264  * e1000_remove is called by the PCI subsystem to alert the driver
1265  * that it should release a PCI device.  The could be caused by a
1266  * Hot-Plug event, or because the driver is going to be removed from
1267  * memory.
1268  **/
1269
1270 static void __devexit e1000_remove(struct pci_dev *pdev)
1271 {
1272         struct net_device *netdev = pci_get_drvdata(pdev);
1273         struct e1000_adapter *adapter = netdev_priv(netdev);
1274         struct e1000_hw *hw = &adapter->hw;
1275         int i;
1276
1277         cancel_work_sync(&adapter->reset_task);
1278
1279         e1000_release_manageability(adapter);
1280
1281         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1282          * would have already happened in close and is redundant. */
1283         e1000_release_hw_control(adapter);
1284
1285         for (i = 0; i < adapter->num_rx_queues; i++)
1286                 dev_put(&adapter->polling_netdev[i]);
1287
1288         unregister_netdev(netdev);
1289
1290         if (!e1000_check_phy_reset_block(hw))
1291                 e1000_phy_hw_reset(hw);
1292
1293         kfree(adapter->tx_ring);
1294         kfree(adapter->rx_ring);
1295         kfree(adapter->polling_netdev);
1296
1297         iounmap(hw->hw_addr);
1298         if (hw->flash_address)
1299                 iounmap(hw->flash_address);
1300         pci_release_selected_regions(pdev, adapter->bars);
1301
1302         free_netdev(netdev);
1303
1304         pci_disable_device(pdev);
1305 }
1306
1307 /**
1308  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1309  * @adapter: board private structure to initialize
1310  *
1311  * e1000_sw_init initializes the Adapter private data structure.
1312  * Fields are initialized based on PCI device information and
1313  * OS network device settings (MTU size).
1314  **/
1315
1316 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1317 {
1318         struct e1000_hw *hw = &adapter->hw;
1319         struct net_device *netdev = adapter->netdev;
1320         struct pci_dev *pdev = adapter->pdev;
1321         int i;
1322
1323         /* PCI config space info */
1324
1325         hw->vendor_id = pdev->vendor;
1326         hw->device_id = pdev->device;
1327         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1328         hw->subsystem_id = pdev->subsystem_device;
1329         hw->revision_id = pdev->revision;
1330
1331         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1332
1333         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1334         hw->max_frame_size = netdev->mtu +
1335                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1336         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1337
1338         /* identify the MAC */
1339
1340         if (e1000_set_mac_type(hw)) {
1341                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1342                 return -EIO;
1343         }
1344
1345         switch (hw->mac_type) {
1346         default:
1347                 break;
1348         case e1000_82541:
1349         case e1000_82547:
1350         case e1000_82541_rev_2:
1351         case e1000_82547_rev_2:
1352                 hw->phy_init_script = 1;
1353                 break;
1354         }
1355
1356         e1000_set_media_type(hw);
1357
1358         hw->wait_autoneg_complete = false;
1359         hw->tbi_compatibility_en = true;
1360         hw->adaptive_ifs = true;
1361
1362         /* Copper options */
1363
1364         if (hw->media_type == e1000_media_type_copper) {
1365                 hw->mdix = AUTO_ALL_MODES;
1366                 hw->disable_polarity_correction = false;
1367                 hw->master_slave = E1000_MASTER_SLAVE;
1368         }
1369
1370         adapter->num_tx_queues = 1;
1371         adapter->num_rx_queues = 1;
1372
1373         if (e1000_alloc_queues(adapter)) {
1374                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1375                 return -ENOMEM;
1376         }
1377
1378         for (i = 0; i < adapter->num_rx_queues; i++) {
1379                 adapter->polling_netdev[i].priv = adapter;
1380                 dev_hold(&adapter->polling_netdev[i]);
1381                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1382         }
1383         spin_lock_init(&adapter->tx_queue_lock);
1384
1385         /* Explicitly disable IRQ since the NIC can be in any state. */
1386         e1000_irq_disable(adapter);
1387
1388         spin_lock_init(&adapter->stats_lock);
1389
1390         set_bit(__E1000_DOWN, &adapter->flags);
1391
1392         return 0;
1393 }
1394
1395 /**
1396  * e1000_alloc_queues - Allocate memory for all rings
1397  * @adapter: board private structure to initialize
1398  *
1399  * We allocate one ring per queue at run-time since we don't know the
1400  * number of queues at compile-time.  The polling_netdev array is
1401  * intended for Multiqueue, but should work fine with a single queue.
1402  **/
1403
1404 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1405 {
1406         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1407                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1408         if (!adapter->tx_ring)
1409                 return -ENOMEM;
1410
1411         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1412                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1413         if (!adapter->rx_ring) {
1414                 kfree(adapter->tx_ring);
1415                 return -ENOMEM;
1416         }
1417
1418         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1419                                           sizeof(struct net_device),
1420                                           GFP_KERNEL);
1421         if (!adapter->polling_netdev) {
1422                 kfree(adapter->tx_ring);
1423                 kfree(adapter->rx_ring);
1424                 return -ENOMEM;
1425         }
1426
1427         return E1000_SUCCESS;
1428 }
1429
1430 /**
1431  * e1000_open - Called when a network interface is made active
1432  * @netdev: network interface device structure
1433  *
1434  * Returns 0 on success, negative value on failure
1435  *
1436  * The open entry point is called when a network interface is made
1437  * active by the system (IFF_UP).  At this point all resources needed
1438  * for transmit and receive operations are allocated, the interrupt
1439  * handler is registered with the OS, the watchdog timer is started,
1440  * and the stack is notified that the interface is ready.
1441  **/
1442
1443 static int e1000_open(struct net_device *netdev)
1444 {
1445         struct e1000_adapter *adapter = netdev_priv(netdev);
1446         struct e1000_hw *hw = &adapter->hw;
1447         int err;
1448
1449         /* disallow open during test */
1450         if (test_bit(__E1000_TESTING, &adapter->flags))
1451                 return -EBUSY;
1452
1453         /* allocate transmit descriptors */
1454         err = e1000_setup_all_tx_resources(adapter);
1455         if (err)
1456                 goto err_setup_tx;
1457
1458         /* allocate receive descriptors */
1459         err = e1000_setup_all_rx_resources(adapter);
1460         if (err)
1461                 goto err_setup_rx;
1462
1463         e1000_power_up_phy(adapter);
1464
1465         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1466         if ((hw->mng_cookie.status &
1467                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1468                 e1000_update_mng_vlan(adapter);
1469         }
1470
1471         /* If AMT is enabled, let the firmware know that the network
1472          * interface is now open */
1473         if (hw->mac_type == e1000_82573 &&
1474             e1000_check_mng_mode(hw))
1475                 e1000_get_hw_control(adapter);
1476
1477         /* before we allocate an interrupt, we must be ready to handle it.
1478          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1479          * as soon as we call pci_request_irq, so we have to setup our
1480          * clean_rx handler before we do so.  */
1481         e1000_configure(adapter);
1482
1483         err = e1000_request_irq(adapter);
1484         if (err)
1485                 goto err_req_irq;
1486
1487         /* From here on the code is the same as e1000_up() */
1488         clear_bit(__E1000_DOWN, &adapter->flags);
1489
1490         napi_enable(&adapter->napi);
1491
1492         e1000_irq_enable(adapter);
1493
1494         netif_start_queue(netdev);
1495
1496         /* fire a link status change interrupt to start the watchdog */
1497         ew32(ICS, E1000_ICS_LSC);
1498
1499         return E1000_SUCCESS;
1500
1501 err_req_irq:
1502         e1000_release_hw_control(adapter);
1503         e1000_power_down_phy(adapter);
1504         e1000_free_all_rx_resources(adapter);
1505 err_setup_rx:
1506         e1000_free_all_tx_resources(adapter);
1507 err_setup_tx:
1508         e1000_reset(adapter);
1509
1510         return err;
1511 }
1512
1513 /**
1514  * e1000_close - Disables a network interface
1515  * @netdev: network interface device structure
1516  *
1517  * Returns 0, this is not allowed to fail
1518  *
1519  * The close entry point is called when an interface is de-activated
1520  * by the OS.  The hardware is still under the drivers control, but
1521  * needs to be disabled.  A global MAC reset is issued to stop the
1522  * hardware, and all transmit and receive resources are freed.
1523  **/
1524
1525 static int e1000_close(struct net_device *netdev)
1526 {
1527         struct e1000_adapter *adapter = netdev_priv(netdev);
1528         struct e1000_hw *hw = &adapter->hw;
1529
1530         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1531         e1000_down(adapter);
1532         e1000_power_down_phy(adapter);
1533         e1000_free_irq(adapter);
1534
1535         e1000_free_all_tx_resources(adapter);
1536         e1000_free_all_rx_resources(adapter);
1537
1538         /* kill manageability vlan ID if supported, but not if a vlan with
1539          * the same ID is registered on the host OS (let 8021q kill it) */
1540         if ((hw->mng_cookie.status &
1541                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1542              !(adapter->vlgrp &&
1543                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1544                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1545         }
1546
1547         /* If AMT is enabled, let the firmware know that the network
1548          * interface is now closed */
1549         if (hw->mac_type == e1000_82573 &&
1550             e1000_check_mng_mode(hw))
1551                 e1000_release_hw_control(adapter);
1552
1553         return 0;
1554 }
1555
1556 /**
1557  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1558  * @adapter: address of board private structure
1559  * @start: address of beginning of memory
1560  * @len: length of memory
1561  **/
1562 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1563                                   unsigned long len)
1564 {
1565         struct e1000_hw *hw = &adapter->hw;
1566         unsigned long begin = (unsigned long)start;
1567         unsigned long end = begin + len;
1568
1569         /* First rev 82545 and 82546 need to not allow any memory
1570          * write location to cross 64k boundary due to errata 23 */
1571         if (hw->mac_type == e1000_82545 ||
1572             hw->mac_type == e1000_82546) {
1573                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1574         }
1575
1576         return true;
1577 }
1578
1579 /**
1580  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1581  * @adapter: board private structure
1582  * @txdr:    tx descriptor ring (for a specific queue) to setup
1583  *
1584  * Return 0 on success, negative on failure
1585  **/
1586
1587 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1588                                     struct e1000_tx_ring *txdr)
1589 {
1590         struct pci_dev *pdev = adapter->pdev;
1591         int size;
1592
1593         size = sizeof(struct e1000_buffer) * txdr->count;
1594         txdr->buffer_info = vmalloc(size);
1595         if (!txdr->buffer_info) {
1596                 DPRINTK(PROBE, ERR,
1597                 "Unable to allocate memory for the transmit descriptor ring\n");
1598                 return -ENOMEM;
1599         }
1600         memset(txdr->buffer_info, 0, size);
1601
1602         /* round up to nearest 4K */
1603
1604         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1605         txdr->size = ALIGN(txdr->size, 4096);
1606
1607         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1608         if (!txdr->desc) {
1609 setup_tx_desc_die:
1610                 vfree(txdr->buffer_info);
1611                 DPRINTK(PROBE, ERR,
1612                 "Unable to allocate memory for the transmit descriptor ring\n");
1613                 return -ENOMEM;
1614         }
1615
1616         /* Fix for errata 23, can't cross 64kB boundary */
1617         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1618                 void *olddesc = txdr->desc;
1619                 dma_addr_t olddma = txdr->dma;
1620                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1621                                      "at %p\n", txdr->size, txdr->desc);
1622                 /* Try again, without freeing the previous */
1623                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1624                 /* Failed allocation, critical failure */
1625                 if (!txdr->desc) {
1626                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1627                         goto setup_tx_desc_die;
1628                 }
1629
1630                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1631                         /* give up */
1632                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1633                                             txdr->dma);
1634                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1635                         DPRINTK(PROBE, ERR,
1636                                 "Unable to allocate aligned memory "
1637                                 "for the transmit descriptor ring\n");
1638                         vfree(txdr->buffer_info);
1639                         return -ENOMEM;
1640                 } else {
1641                         /* Free old allocation, new allocation was successful */
1642                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1643                 }
1644         }
1645         memset(txdr->desc, 0, txdr->size);
1646
1647         txdr->next_to_use = 0;
1648         txdr->next_to_clean = 0;
1649         spin_lock_init(&txdr->tx_lock);
1650
1651         return 0;
1652 }
1653
1654 /**
1655  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1656  *                                (Descriptors) for all queues
1657  * @adapter: board private structure
1658  *
1659  * Return 0 on success, negative on failure
1660  **/
1661
1662 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1663 {
1664         int i, err = 0;
1665
1666         for (i = 0; i < adapter->num_tx_queues; i++) {
1667                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1668                 if (err) {
1669                         DPRINTK(PROBE, ERR,
1670                                 "Allocation for Tx Queue %u failed\n", i);
1671                         for (i-- ; i >= 0; i--)
1672                                 e1000_free_tx_resources(adapter,
1673                                                         &adapter->tx_ring[i]);
1674                         break;
1675                 }
1676         }
1677
1678         return err;
1679 }
1680
1681 /**
1682  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1683  * @adapter: board private structure
1684  *
1685  * Configure the Tx unit of the MAC after a reset.
1686  **/
1687
1688 static void e1000_configure_tx(struct e1000_adapter *adapter)
1689 {
1690         u64 tdba;
1691         struct e1000_hw *hw = &adapter->hw;
1692         u32 tdlen, tctl, tipg, tarc;
1693         u32 ipgr1, ipgr2;
1694
1695         /* Setup the HW Tx Head and Tail descriptor pointers */
1696
1697         switch (adapter->num_tx_queues) {
1698         case 1:
1699         default:
1700                 tdba = adapter->tx_ring[0].dma;
1701                 tdlen = adapter->tx_ring[0].count *
1702                         sizeof(struct e1000_tx_desc);
1703                 ew32(TDLEN, tdlen);
1704                 ew32(TDBAH, (tdba >> 32));
1705                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1706                 ew32(TDT, 0);
1707                 ew32(TDH, 0);
1708                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1709                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1710                 break;
1711         }
1712
1713         /* Set the default values for the Tx Inter Packet Gap timer */
1714         if (hw->mac_type <= e1000_82547_rev_2 &&
1715             (hw->media_type == e1000_media_type_fiber ||
1716              hw->media_type == e1000_media_type_internal_serdes))
1717                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1718         else
1719                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1720
1721         switch (hw->mac_type) {
1722         case e1000_82542_rev2_0:
1723         case e1000_82542_rev2_1:
1724                 tipg = DEFAULT_82542_TIPG_IPGT;
1725                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1726                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1727                 break;
1728         case e1000_80003es2lan:
1729                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1730                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1731                 break;
1732         default:
1733                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1734                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1735                 break;
1736         }
1737         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1738         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1739         ew32(TIPG, tipg);
1740
1741         /* Set the Tx Interrupt Delay register */
1742
1743         ew32(TIDV, adapter->tx_int_delay);
1744         if (hw->mac_type >= e1000_82540)
1745                 ew32(TADV, adapter->tx_abs_int_delay);
1746
1747         /* Program the Transmit Control Register */
1748
1749         tctl = er32(TCTL);
1750         tctl &= ~E1000_TCTL_CT;
1751         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1752                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1753
1754         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1755                 tarc = er32(TARC0);
1756                 /* set the speed mode bit, we'll clear it if we're not at
1757                  * gigabit link later */
1758                 tarc |= (1 << 21);
1759                 ew32(TARC0, tarc);
1760         } else if (hw->mac_type == e1000_80003es2lan) {
1761                 tarc = er32(TARC0);
1762                 tarc |= 1;
1763                 ew32(TARC0, tarc);
1764                 tarc = er32(TARC1);
1765                 tarc |= 1;
1766                 ew32(TARC1, tarc);
1767         }
1768
1769         e1000_config_collision_dist(hw);
1770
1771         /* Setup Transmit Descriptor Settings for eop descriptor */
1772         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1773
1774         /* only set IDE if we are delaying interrupts using the timers */
1775         if (adapter->tx_int_delay)
1776                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1777
1778         if (hw->mac_type < e1000_82543)
1779                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1780         else
1781                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1782
1783         /* Cache if we're 82544 running in PCI-X because we'll
1784          * need this to apply a workaround later in the send path. */
1785         if (hw->mac_type == e1000_82544 &&
1786             hw->bus_type == e1000_bus_type_pcix)
1787                 adapter->pcix_82544 = 1;
1788
1789         ew32(TCTL, tctl);
1790
1791 }
1792
1793 /**
1794  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1795  * @adapter: board private structure
1796  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1797  *
1798  * Returns 0 on success, negative on failure
1799  **/
1800
1801 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1802                                     struct e1000_rx_ring *rxdr)
1803 {
1804         struct e1000_hw *hw = &adapter->hw;
1805         struct pci_dev *pdev = adapter->pdev;
1806         int size, desc_len;
1807
1808         size = sizeof(struct e1000_buffer) * rxdr->count;
1809         rxdr->buffer_info = vmalloc(size);
1810         if (!rxdr->buffer_info) {
1811                 DPRINTK(PROBE, ERR,
1812                 "Unable to allocate memory for the receive descriptor ring\n");
1813                 return -ENOMEM;
1814         }
1815         memset(rxdr->buffer_info, 0, size);
1816
1817         if (hw->mac_type <= e1000_82547_rev_2)
1818                 desc_len = sizeof(struct e1000_rx_desc);
1819         else
1820                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1821
1822         /* Round up to nearest 4K */
1823
1824         rxdr->size = rxdr->count * desc_len;
1825         rxdr->size = ALIGN(rxdr->size, 4096);
1826
1827         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1828
1829         if (!rxdr->desc) {
1830                 DPRINTK(PROBE, ERR,
1831                 "Unable to allocate memory for the receive descriptor ring\n");
1832 setup_rx_desc_die:
1833                 vfree(rxdr->buffer_info);
1834                 return -ENOMEM;
1835         }
1836
1837         /* Fix for errata 23, can't cross 64kB boundary */
1838         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1839                 void *olddesc = rxdr->desc;
1840                 dma_addr_t olddma = rxdr->dma;
1841                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1842                                      "at %p\n", rxdr->size, rxdr->desc);
1843                 /* Try again, without freeing the previous */
1844                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1845                 /* Failed allocation, critical failure */
1846                 if (!rxdr->desc) {
1847                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1848                         DPRINTK(PROBE, ERR,
1849                                 "Unable to allocate memory "
1850                                 "for the receive descriptor ring\n");
1851                         goto setup_rx_desc_die;
1852                 }
1853
1854                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1855                         /* give up */
1856                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1857                                             rxdr->dma);
1858                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1859                         DPRINTK(PROBE, ERR,
1860                                 "Unable to allocate aligned memory "
1861                                 "for the receive descriptor ring\n");
1862                         goto setup_rx_desc_die;
1863                 } else {
1864                         /* Free old allocation, new allocation was successful */
1865                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1866                 }
1867         }
1868         memset(rxdr->desc, 0, rxdr->size);
1869
1870         rxdr->next_to_clean = 0;
1871         rxdr->next_to_use = 0;
1872
1873         return 0;
1874 }
1875
1876 /**
1877  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1878  *                                (Descriptors) for all queues
1879  * @adapter: board private structure
1880  *
1881  * Return 0 on success, negative on failure
1882  **/
1883
1884 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1885 {
1886         int i, err = 0;
1887
1888         for (i = 0; i < adapter->num_rx_queues; i++) {
1889                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1890                 if (err) {
1891                         DPRINTK(PROBE, ERR,
1892                                 "Allocation for Rx Queue %u failed\n", i);
1893                         for (i-- ; i >= 0; i--)
1894                                 e1000_free_rx_resources(adapter,
1895                                                         &adapter->rx_ring[i]);
1896                         break;
1897                 }
1898         }
1899
1900         return err;
1901 }
1902
1903 /**
1904  * e1000_setup_rctl - configure the receive control registers
1905  * @adapter: Board private structure
1906  **/
1907 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1908                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1909 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1910 {
1911         struct e1000_hw *hw = &adapter->hw;
1912         u32 rctl;
1913
1914         rctl = er32(RCTL);
1915
1916         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1917
1918         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1919                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1920                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1921
1922         if (hw->tbi_compatibility_on == 1)
1923                 rctl |= E1000_RCTL_SBP;
1924         else
1925                 rctl &= ~E1000_RCTL_SBP;
1926
1927         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1928                 rctl &= ~E1000_RCTL_LPE;
1929         else
1930                 rctl |= E1000_RCTL_LPE;
1931
1932         /* Setup buffer sizes */
1933         rctl &= ~E1000_RCTL_SZ_4096;
1934         rctl |= E1000_RCTL_BSEX;
1935         switch (adapter->rx_buffer_len) {
1936                 case E1000_RXBUFFER_256:
1937                         rctl |= E1000_RCTL_SZ_256;
1938                         rctl &= ~E1000_RCTL_BSEX;
1939                         break;
1940                 case E1000_RXBUFFER_512:
1941                         rctl |= E1000_RCTL_SZ_512;
1942                         rctl &= ~E1000_RCTL_BSEX;
1943                         break;
1944                 case E1000_RXBUFFER_1024:
1945                         rctl |= E1000_RCTL_SZ_1024;
1946                         rctl &= ~E1000_RCTL_BSEX;
1947                         break;
1948                 case E1000_RXBUFFER_2048:
1949                 default:
1950                         rctl |= E1000_RCTL_SZ_2048;
1951                         rctl &= ~E1000_RCTL_BSEX;
1952                         break;
1953                 case E1000_RXBUFFER_4096:
1954                         rctl |= E1000_RCTL_SZ_4096;
1955                         break;
1956                 case E1000_RXBUFFER_8192:
1957                         rctl |= E1000_RCTL_SZ_8192;
1958                         break;
1959                 case E1000_RXBUFFER_16384:
1960                         rctl |= E1000_RCTL_SZ_16384;
1961                         break;
1962         }
1963
1964         ew32(RCTL, rctl);
1965 }
1966
1967 /**
1968  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1969  * @adapter: board private structure
1970  *
1971  * Configure the Rx unit of the MAC after a reset.
1972  **/
1973
1974 static void e1000_configure_rx(struct e1000_adapter *adapter)
1975 {
1976         u64 rdba;
1977         struct e1000_hw *hw = &adapter->hw;
1978         u32 rdlen, rctl, rxcsum, ctrl_ext;
1979
1980         rdlen = adapter->rx_ring[0].count *
1981                 sizeof(struct e1000_rx_desc);
1982         adapter->clean_rx = e1000_clean_rx_irq;
1983         adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1984
1985         /* disable receives while setting up the descriptors */
1986         rctl = er32(RCTL);
1987         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1988
1989         /* set the Receive Delay Timer Register */
1990         ew32(RDTR, adapter->rx_int_delay);
1991
1992         if (hw->mac_type >= e1000_82540) {
1993                 ew32(RADV, adapter->rx_abs_int_delay);
1994                 if (adapter->itr_setting != 0)
1995                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1996         }
1997
1998         if (hw->mac_type >= e1000_82571) {
1999                 ctrl_ext = er32(CTRL_EXT);
2000                 /* Reset delay timers after every interrupt */
2001                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2002                 /* Auto-Mask interrupts upon ICR access */
2003                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2004                 ew32(IAM, 0xffffffff);
2005                 ew32(CTRL_EXT, ctrl_ext);
2006                 E1000_WRITE_FLUSH();
2007         }
2008
2009         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2010          * the Base and Length of the Rx Descriptor Ring */
2011         switch (adapter->num_rx_queues) {
2012         case 1:
2013         default:
2014                 rdba = adapter->rx_ring[0].dma;
2015                 ew32(RDLEN, rdlen);
2016                 ew32(RDBAH, (rdba >> 32));
2017                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2018                 ew32(RDT, 0);
2019                 ew32(RDH, 0);
2020                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2021                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2022                 break;
2023         }
2024
2025         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2026         if (hw->mac_type >= e1000_82543) {
2027                 rxcsum = er32(RXCSUM);
2028                 if (adapter->rx_csum)
2029                         rxcsum |= E1000_RXCSUM_TUOFL;
2030                 else
2031                         /* don't need to clear IPPCSE as it defaults to 0 */
2032                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2033                 ew32(RXCSUM, rxcsum);
2034         }
2035
2036         /* Enable Receives */
2037         ew32(RCTL, rctl);
2038 }
2039
2040 /**
2041  * e1000_free_tx_resources - Free Tx Resources per Queue
2042  * @adapter: board private structure
2043  * @tx_ring: Tx descriptor ring for a specific queue
2044  *
2045  * Free all transmit software resources
2046  **/
2047
2048 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2049                                     struct e1000_tx_ring *tx_ring)
2050 {
2051         struct pci_dev *pdev = adapter->pdev;
2052
2053         e1000_clean_tx_ring(adapter, tx_ring);
2054
2055         vfree(tx_ring->buffer_info);
2056         tx_ring->buffer_info = NULL;
2057
2058         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2059
2060         tx_ring->desc = NULL;
2061 }
2062
2063 /**
2064  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2065  * @adapter: board private structure
2066  *
2067  * Free all transmit software resources
2068  **/
2069
2070 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2071 {
2072         int i;
2073
2074         for (i = 0; i < adapter->num_tx_queues; i++)
2075                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2076 }
2077
2078 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2079                                              struct e1000_buffer *buffer_info)
2080 {
2081         if (buffer_info->dma) {
2082                 pci_unmap_page(adapter->pdev,
2083                                 buffer_info->dma,
2084                                 buffer_info->length,
2085                                 PCI_DMA_TODEVICE);
2086                 buffer_info->dma = 0;
2087         }
2088         if (buffer_info->skb) {
2089                 dev_kfree_skb_any(buffer_info->skb);
2090                 buffer_info->skb = NULL;
2091         }
2092         /* buffer_info must be completely set up in the transmit path */
2093 }
2094
2095 /**
2096  * e1000_clean_tx_ring - Free Tx Buffers
2097  * @adapter: board private structure
2098  * @tx_ring: ring to be cleaned
2099  **/
2100
2101 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2102                                 struct e1000_tx_ring *tx_ring)
2103 {
2104         struct e1000_hw *hw = &adapter->hw;
2105         struct e1000_buffer *buffer_info;
2106         unsigned long size;
2107         unsigned int i;
2108
2109         /* Free all the Tx ring sk_buffs */
2110
2111         for (i = 0; i < tx_ring->count; i++) {
2112                 buffer_info = &tx_ring->buffer_info[i];
2113                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2114         }
2115
2116         size = sizeof(struct e1000_buffer) * tx_ring->count;
2117         memset(tx_ring->buffer_info, 0, size);
2118
2119         /* Zero out the descriptor ring */
2120
2121         memset(tx_ring->desc, 0, tx_ring->size);
2122
2123         tx_ring->next_to_use = 0;
2124         tx_ring->next_to_clean = 0;
2125         tx_ring->last_tx_tso = 0;
2126
2127         writel(0, hw->hw_addr + tx_ring->tdh);
2128         writel(0, hw->hw_addr + tx_ring->tdt);
2129 }
2130
2131 /**
2132  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2133  * @adapter: board private structure
2134  **/
2135
2136 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2137 {
2138         int i;
2139
2140         for (i = 0; i < adapter->num_tx_queues; i++)
2141                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2142 }
2143
2144 /**
2145  * e1000_free_rx_resources - Free Rx Resources
2146  * @adapter: board private structure
2147  * @rx_ring: ring to clean the resources from
2148  *
2149  * Free all receive software resources
2150  **/
2151
2152 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2153                                     struct e1000_rx_ring *rx_ring)
2154 {
2155         struct pci_dev *pdev = adapter->pdev;
2156
2157         e1000_clean_rx_ring(adapter, rx_ring);
2158
2159         vfree(rx_ring->buffer_info);
2160         rx_ring->buffer_info = NULL;
2161
2162         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2163
2164         rx_ring->desc = NULL;
2165 }
2166
2167 /**
2168  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2169  * @adapter: board private structure
2170  *
2171  * Free all receive software resources
2172  **/
2173
2174 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2175 {
2176         int i;
2177
2178         for (i = 0; i < adapter->num_rx_queues; i++)
2179                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2180 }
2181
2182 /**
2183  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2184  * @adapter: board private structure
2185  * @rx_ring: ring to free buffers from
2186  **/
2187
2188 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2189                                 struct e1000_rx_ring *rx_ring)
2190 {
2191         struct e1000_hw *hw = &adapter->hw;
2192         struct e1000_buffer *buffer_info;
2193         struct pci_dev *pdev = adapter->pdev;
2194         unsigned long size;
2195         unsigned int i;
2196
2197         /* Free all the Rx ring sk_buffs */
2198         for (i = 0; i < rx_ring->count; i++) {
2199                 buffer_info = &rx_ring->buffer_info[i];
2200                 if (buffer_info->skb) {
2201                         pci_unmap_single(pdev,
2202                                          buffer_info->dma,
2203                                          buffer_info->length,
2204                                          PCI_DMA_FROMDEVICE);
2205
2206                         dev_kfree_skb(buffer_info->skb);
2207                         buffer_info->skb = NULL;
2208                 }
2209         }
2210
2211         size = sizeof(struct e1000_buffer) * rx_ring->count;
2212         memset(rx_ring->buffer_info, 0, size);
2213
2214         /* Zero out the descriptor ring */
2215
2216         memset(rx_ring->desc, 0, rx_ring->size);
2217
2218         rx_ring->next_to_clean = 0;
2219         rx_ring->next_to_use = 0;
2220
2221         writel(0, hw->hw_addr + rx_ring->rdh);
2222         writel(0, hw->hw_addr + rx_ring->rdt);
2223 }
2224
2225 /**
2226  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2227  * @adapter: board private structure
2228  **/
2229
2230 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2231 {
2232         int i;
2233
2234         for (i = 0; i < adapter->num_rx_queues; i++)
2235                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2236 }
2237
2238 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2239  * and memory write and invalidate disabled for certain operations
2240  */
2241 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2242 {
2243         struct e1000_hw *hw = &adapter->hw;
2244         struct net_device *netdev = adapter->netdev;
2245         u32 rctl;
2246
2247         e1000_pci_clear_mwi(hw);
2248
2249         rctl = er32(RCTL);
2250         rctl |= E1000_RCTL_RST;
2251         ew32(RCTL, rctl);
2252         E1000_WRITE_FLUSH();
2253         mdelay(5);
2254
2255         if (netif_running(netdev))
2256                 e1000_clean_all_rx_rings(adapter);
2257 }
2258
2259 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2260 {
2261         struct e1000_hw *hw = &adapter->hw;
2262         struct net_device *netdev = adapter->netdev;
2263         u32 rctl;
2264
2265         rctl = er32(RCTL);
2266         rctl &= ~E1000_RCTL_RST;
2267         ew32(RCTL, rctl);
2268         E1000_WRITE_FLUSH();
2269         mdelay(5);
2270
2271         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2272                 e1000_pci_set_mwi(hw);
2273
2274         if (netif_running(netdev)) {
2275                 /* No need to loop, because 82542 supports only 1 queue */
2276                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2277                 e1000_configure_rx(adapter);
2278                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2279         }
2280 }
2281
2282 /**
2283  * e1000_set_mac - Change the Ethernet Address of the NIC
2284  * @netdev: network interface device structure
2285  * @p: pointer to an address structure
2286  *
2287  * Returns 0 on success, negative on failure
2288  **/
2289
2290 static int e1000_set_mac(struct net_device *netdev, void *p)
2291 {
2292         struct e1000_adapter *adapter = netdev_priv(netdev);
2293         struct e1000_hw *hw = &adapter->hw;
2294         struct sockaddr *addr = p;
2295
2296         if (!is_valid_ether_addr(addr->sa_data))
2297                 return -EADDRNOTAVAIL;
2298
2299         /* 82542 2.0 needs to be in reset to write receive address registers */
2300
2301         if (hw->mac_type == e1000_82542_rev2_0)
2302                 e1000_enter_82542_rst(adapter);
2303
2304         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2305         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2306
2307         e1000_rar_set(hw, hw->mac_addr, 0);
2308
2309         /* With 82571 controllers, LAA may be overwritten (with the default)
2310          * due to controller reset from the other port. */
2311         if (hw->mac_type == e1000_82571) {
2312                 /* activate the work around */
2313                 hw->laa_is_present = 1;
2314
2315                 /* Hold a copy of the LAA in RAR[14] This is done so that
2316                  * between the time RAR[0] gets clobbered  and the time it
2317                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2318                  * of the RARs and no incoming packets directed to this port
2319                  * are dropped. Eventaully the LAA will be in RAR[0] and
2320                  * RAR[14] */
2321                 e1000_rar_set(hw, hw->mac_addr,
2322                                         E1000_RAR_ENTRIES - 1);
2323         }
2324
2325         if (hw->mac_type == e1000_82542_rev2_0)
2326                 e1000_leave_82542_rst(adapter);
2327
2328         return 0;
2329 }
2330
2331 /**
2332  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2333  * @netdev: network interface device structure
2334  *
2335  * The set_rx_mode entry point is called whenever the unicast or multicast
2336  * address lists or the network interface flags are updated. This routine is
2337  * responsible for configuring the hardware for proper unicast, multicast,
2338  * promiscuous mode, and all-multi behavior.
2339  **/
2340
2341 static void e1000_set_rx_mode(struct net_device *netdev)
2342 {
2343         struct e1000_adapter *adapter = netdev_priv(netdev);
2344         struct e1000_hw *hw = &adapter->hw;
2345         struct dev_addr_list *uc_ptr;
2346         struct dev_addr_list *mc_ptr;
2347         u32 rctl;
2348         u32 hash_value;
2349         int i, rar_entries = E1000_RAR_ENTRIES;
2350         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2351                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2352                                 E1000_NUM_MTA_REGISTERS;
2353
2354         if (hw->mac_type == e1000_ich8lan)
2355                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2356
2357         /* reserve RAR[14] for LAA over-write work-around */
2358         if (hw->mac_type == e1000_82571)
2359                 rar_entries--;
2360
2361         /* Check for Promiscuous and All Multicast modes */
2362
2363         rctl = er32(RCTL);
2364
2365         if (netdev->flags & IFF_PROMISC) {
2366                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2367                 rctl &= ~E1000_RCTL_VFE;
2368         } else {
2369                 if (netdev->flags & IFF_ALLMULTI) {
2370                         rctl |= E1000_RCTL_MPE;
2371                 } else {
2372                         rctl &= ~E1000_RCTL_MPE;
2373                 }
2374                 if (adapter->hw.mac_type != e1000_ich8lan)
2375                         rctl |= E1000_RCTL_VFE;
2376         }
2377
2378         uc_ptr = NULL;
2379         if (netdev->uc_count > rar_entries - 1) {
2380                 rctl |= E1000_RCTL_UPE;
2381         } else if (!(netdev->flags & IFF_PROMISC)) {
2382                 rctl &= ~E1000_RCTL_UPE;
2383                 uc_ptr = netdev->uc_list;
2384         }
2385
2386         ew32(RCTL, rctl);
2387
2388         /* 82542 2.0 needs to be in reset to write receive address registers */
2389
2390         if (hw->mac_type == e1000_82542_rev2_0)
2391                 e1000_enter_82542_rst(adapter);
2392
2393         /* load the first 14 addresses into the exact filters 1-14. Unicast
2394          * addresses take precedence to avoid disabling unicast filtering
2395          * when possible.
2396          *
2397          * RAR 0 is used for the station MAC adddress
2398          * if there are not 14 addresses, go ahead and clear the filters
2399          * -- with 82571 controllers only 0-13 entries are filled here
2400          */
2401         mc_ptr = netdev->mc_list;
2402
2403         for (i = 1; i < rar_entries; i++) {
2404                 if (uc_ptr) {
2405                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2406                         uc_ptr = uc_ptr->next;
2407                 } else if (mc_ptr) {
2408                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2409                         mc_ptr = mc_ptr->next;
2410                 } else {
2411                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2412                         E1000_WRITE_FLUSH();
2413                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2414                         E1000_WRITE_FLUSH();
2415                 }
2416         }
2417         WARN_ON(uc_ptr != NULL);
2418
2419         /* clear the old settings from the multicast hash table */
2420
2421         for (i = 0; i < mta_reg_count; i++) {
2422                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2423                 E1000_WRITE_FLUSH();
2424         }
2425
2426         /* load any remaining addresses into the hash table */
2427
2428         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2429                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2430                 e1000_mta_set(hw, hash_value);
2431         }
2432
2433         if (hw->mac_type == e1000_82542_rev2_0)
2434                 e1000_leave_82542_rst(adapter);
2435 }
2436
2437 /* Need to wait a few seconds after link up to get diagnostic information from
2438  * the phy */
2439
2440 static void e1000_update_phy_info(unsigned long data)
2441 {
2442         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2443         struct e1000_hw *hw = &adapter->hw;
2444         e1000_phy_get_info(hw, &adapter->phy_info);
2445 }
2446
2447 /**
2448  * e1000_82547_tx_fifo_stall - Timer Call-back
2449  * @data: pointer to adapter cast into an unsigned long
2450  **/
2451
2452 static void e1000_82547_tx_fifo_stall(unsigned long data)
2453 {
2454         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2455         struct e1000_hw *hw = &adapter->hw;
2456         struct net_device *netdev = adapter->netdev;
2457         u32 tctl;
2458
2459         if (atomic_read(&adapter->tx_fifo_stall)) {
2460                 if ((er32(TDT) == er32(TDH)) &&
2461                    (er32(TDFT) == er32(TDFH)) &&
2462                    (er32(TDFTS) == er32(TDFHS))) {
2463                         tctl = er32(TCTL);
2464                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2465                         ew32(TDFT, adapter->tx_head_addr);
2466                         ew32(TDFH, adapter->tx_head_addr);
2467                         ew32(TDFTS, adapter->tx_head_addr);
2468                         ew32(TDFHS, adapter->tx_head_addr);
2469                         ew32(TCTL, tctl);
2470                         E1000_WRITE_FLUSH();
2471
2472                         adapter->tx_fifo_head = 0;
2473                         atomic_set(&adapter->tx_fifo_stall, 0);
2474                         netif_wake_queue(netdev);
2475                 } else {
2476                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2477                 }
2478         }
2479 }
2480
2481 /**
2482  * e1000_watchdog - Timer Call-back
2483  * @data: pointer to adapter cast into an unsigned long
2484  **/
2485 static void e1000_watchdog(unsigned long data)
2486 {
2487         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2488         struct e1000_hw *hw = &adapter->hw;
2489         struct net_device *netdev = adapter->netdev;
2490         struct e1000_tx_ring *txdr = adapter->tx_ring;
2491         u32 link, tctl;
2492         s32 ret_val;
2493
2494         ret_val = e1000_check_for_link(hw);
2495         if ((ret_val == E1000_ERR_PHY) &&
2496             (hw->phy_type == e1000_phy_igp_3) &&
2497             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2498                 /* See e1000_kumeran_lock_loss_workaround() */
2499                 DPRINTK(LINK, INFO,
2500                         "Gigabit has been disabled, downgrading speed\n");
2501         }
2502
2503         if (hw->mac_type == e1000_82573) {
2504                 e1000_enable_tx_pkt_filtering(hw);
2505                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2506                         e1000_update_mng_vlan(adapter);
2507         }
2508
2509         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2510            !(er32(TXCW) & E1000_TXCW_ANE))
2511                 link = !hw->serdes_link_down;
2512         else
2513                 link = er32(STATUS) & E1000_STATUS_LU;
2514
2515         if (link) {
2516                 if (!netif_carrier_ok(netdev)) {
2517                         u32 ctrl;
2518                         bool txb2b = true;
2519                         e1000_get_speed_and_duplex(hw,
2520                                                    &adapter->link_speed,
2521                                                    &adapter->link_duplex);
2522
2523                         ctrl = er32(CTRL);
2524                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2525                                 "Flow Control: %s\n",
2526                                 adapter->link_speed,
2527                                 adapter->link_duplex == FULL_DUPLEX ?
2528                                 "Full Duplex" : "Half Duplex",
2529                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2530                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2531                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2532                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2533
2534                         /* tweak tx_queue_len according to speed/duplex
2535                          * and adjust the timeout factor */
2536                         netdev->tx_queue_len = adapter->tx_queue_len;
2537                         adapter->tx_timeout_factor = 1;
2538                         switch (adapter->link_speed) {
2539                         case SPEED_10:
2540                                 txb2b = false;
2541                                 netdev->tx_queue_len = 10;
2542                                 adapter->tx_timeout_factor = 8;
2543                                 break;
2544                         case SPEED_100:
2545                                 txb2b = false;
2546                                 netdev->tx_queue_len = 100;
2547                                 /* maybe add some timeout factor ? */
2548                                 break;
2549                         }
2550
2551                         if ((hw->mac_type == e1000_82571 ||
2552                              hw->mac_type == e1000_82572) &&
2553                             !txb2b) {
2554                                 u32 tarc0;
2555                                 tarc0 = er32(TARC0);
2556                                 tarc0 &= ~(1 << 21);
2557                                 ew32(TARC0, tarc0);
2558                         }
2559
2560                         /* disable TSO for pcie and 10/100 speeds, to avoid
2561                          * some hardware issues */
2562                         if (!adapter->tso_force &&
2563                             hw->bus_type == e1000_bus_type_pci_express){
2564                                 switch (adapter->link_speed) {
2565                                 case SPEED_10:
2566                                 case SPEED_100:
2567                                         DPRINTK(PROBE,INFO,
2568                                         "10/100 speed: disabling TSO\n");
2569                                         netdev->features &= ~NETIF_F_TSO;
2570                                         netdev->features &= ~NETIF_F_TSO6;
2571                                         break;
2572                                 case SPEED_1000:
2573                                         netdev->features |= NETIF_F_TSO;
2574                                         netdev->features |= NETIF_F_TSO6;
2575                                         break;
2576                                 default:
2577                                         /* oops */
2578                                         break;
2579                                 }
2580                         }
2581
2582                         /* enable transmits in the hardware, need to do this
2583                          * after setting TARC0 */
2584                         tctl = er32(TCTL);
2585                         tctl |= E1000_TCTL_EN;
2586                         ew32(TCTL, tctl);
2587
2588                         netif_carrier_on(netdev);
2589                         netif_wake_queue(netdev);
2590                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2591                         adapter->smartspeed = 0;
2592                 } else {
2593                         /* make sure the receive unit is started */
2594                         if (hw->rx_needs_kicking) {
2595                                 u32 rctl = er32(RCTL);
2596                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2597                         }
2598                 }
2599         } else {
2600                 if (netif_carrier_ok(netdev)) {
2601                         adapter->link_speed = 0;
2602                         adapter->link_duplex = 0;
2603                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2604                         netif_carrier_off(netdev);
2605                         netif_stop_queue(netdev);
2606                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2607
2608                         /* 80003ES2LAN workaround--
2609                          * For packet buffer work-around on link down event;
2610                          * disable receives in the ISR and
2611                          * reset device here in the watchdog
2612                          */
2613                         if (hw->mac_type == e1000_80003es2lan)
2614                                 /* reset device */
2615                                 schedule_work(&adapter->reset_task);
2616                 }
2617
2618                 e1000_smartspeed(adapter);
2619         }
2620
2621         e1000_update_stats(adapter);
2622
2623         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2624         adapter->tpt_old = adapter->stats.tpt;
2625         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2626         adapter->colc_old = adapter->stats.colc;
2627
2628         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2629         adapter->gorcl_old = adapter->stats.gorcl;
2630         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2631         adapter->gotcl_old = adapter->stats.gotcl;
2632
2633         e1000_update_adaptive(hw);
2634
2635         if (!netif_carrier_ok(netdev)) {
2636                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2637                         /* We've lost link, so the controller stops DMA,
2638                          * but we've got queued Tx work that's never going
2639                          * to get done, so reset controller to flush Tx.
2640                          * (Do the reset outside of interrupt context). */
2641                         adapter->tx_timeout_count++;
2642                         schedule_work(&adapter->reset_task);
2643                 }
2644         }
2645
2646         /* Cause software interrupt to ensure rx ring is cleaned */
2647         ew32(ICS, E1000_ICS_RXDMT0);
2648
2649         /* Force detection of hung controller every watchdog period */
2650         adapter->detect_tx_hung = true;
2651
2652         /* With 82571 controllers, LAA may be overwritten due to controller
2653          * reset from the other port. Set the appropriate LAA in RAR[0] */
2654         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2655                 e1000_rar_set(hw, hw->mac_addr, 0);
2656
2657         /* Reset the timer */
2658         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2659 }
2660
2661 enum latency_range {
2662         lowest_latency = 0,
2663         low_latency = 1,
2664         bulk_latency = 2,
2665         latency_invalid = 255
2666 };
2667
2668 /**
2669  * e1000_update_itr - update the dynamic ITR value based on statistics
2670  *      Stores a new ITR value based on packets and byte
2671  *      counts during the last interrupt.  The advantage of per interrupt
2672  *      computation is faster updates and more accurate ITR for the current
2673  *      traffic pattern.  Constants in this function were computed
2674  *      based on theoretical maximum wire speed and thresholds were set based
2675  *      on testing data as well as attempting to minimize response time
2676  *      while increasing bulk throughput.
2677  *      this functionality is controlled by the InterruptThrottleRate module
2678  *      parameter (see e1000_param.c)
2679  * @adapter: pointer to adapter
2680  * @itr_setting: current adapter->itr
2681  * @packets: the number of packets during this measurement interval
2682  * @bytes: the number of bytes during this measurement interval
2683  **/
2684 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2685                                      u16 itr_setting, int packets, int bytes)
2686 {
2687         unsigned int retval = itr_setting;
2688         struct e1000_hw *hw = &adapter->hw;
2689
2690         if (unlikely(hw->mac_type < e1000_82540))
2691                 goto update_itr_done;
2692
2693         if (packets == 0)
2694                 goto update_itr_done;
2695
2696         switch (itr_setting) {
2697         case lowest_latency:
2698                 /* jumbo frames get bulk treatment*/
2699                 if (bytes/packets > 8000)
2700                         retval = bulk_latency;
2701                 else if ((packets < 5) && (bytes > 512))
2702                         retval = low_latency;
2703                 break;
2704         case low_latency:  /* 50 usec aka 20000 ints/s */
2705                 if (bytes > 10000) {
2706                         /* jumbo frames need bulk latency setting */
2707                         if (bytes/packets > 8000)
2708                                 retval = bulk_latency;
2709                         else if ((packets < 10) || ((bytes/packets) > 1200))
2710                                 retval = bulk_latency;
2711                         else if ((packets > 35))
2712                                 retval = lowest_latency;
2713                 } else if (bytes/packets > 2000)
2714                         retval = bulk_latency;
2715                 else if (packets <= 2 && bytes < 512)
2716                         retval = lowest_latency;
2717                 break;
2718         case bulk_latency: /* 250 usec aka 4000 ints/s */
2719                 if (bytes > 25000) {
2720                         if (packets > 35)
2721                                 retval = low_latency;
2722                 } else if (bytes < 6000) {
2723                         retval = low_latency;
2724                 }
2725                 break;
2726         }
2727
2728 update_itr_done:
2729         return retval;
2730 }
2731
2732 static void e1000_set_itr(struct e1000_adapter *adapter)
2733 {
2734         struct e1000_hw *hw = &adapter->hw;
2735         u16 current_itr;
2736         u32 new_itr = adapter->itr;
2737
2738         if (unlikely(hw->mac_type < e1000_82540))
2739                 return;
2740
2741         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2742         if (unlikely(adapter->link_speed != SPEED_1000)) {
2743                 current_itr = 0;
2744                 new_itr = 4000;
2745                 goto set_itr_now;
2746         }
2747
2748         adapter->tx_itr = e1000_update_itr(adapter,
2749                                     adapter->tx_itr,
2750                                     adapter->total_tx_packets,
2751                                     adapter->total_tx_bytes);
2752         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2753         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2754                 adapter->tx_itr = low_latency;
2755
2756         adapter->rx_itr = e1000_update_itr(adapter,
2757                                     adapter->rx_itr,
2758                                     adapter->total_rx_packets,
2759                                     adapter->total_rx_bytes);
2760         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2761         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2762                 adapter->rx_itr = low_latency;
2763
2764         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2765
2766         switch (current_itr) {
2767         /* counts and packets in update_itr are dependent on these numbers */
2768         case lowest_latency:
2769                 new_itr = 70000;
2770                 break;
2771         case low_latency:
2772                 new_itr = 20000; /* aka hwitr = ~200 */
2773                 break;
2774         case bulk_latency:
2775                 new_itr = 4000;
2776                 break;
2777         default:
2778                 break;
2779         }
2780
2781 set_itr_now:
2782         if (new_itr != adapter->itr) {
2783                 /* this attempts to bias the interrupt rate towards Bulk
2784                  * by adding intermediate steps when interrupt rate is
2785                  * increasing */
2786                 new_itr = new_itr > adapter->itr ?
2787                              min(adapter->itr + (new_itr >> 2), new_itr) :
2788                              new_itr;
2789                 adapter->itr = new_itr;
2790                 ew32(ITR, 1000000000 / (new_itr * 256));
2791         }
2792
2793         return;
2794 }
2795
2796 #define E1000_TX_FLAGS_CSUM             0x00000001
2797 #define E1000_TX_FLAGS_VLAN             0x00000002
2798 #define E1000_TX_FLAGS_TSO              0x00000004
2799 #define E1000_TX_FLAGS_IPV4             0x00000008
2800 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2801 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2802
2803 static int e1000_tso(struct e1000_adapter *adapter,
2804                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2805 {
2806         struct e1000_context_desc *context_desc;
2807         struct e1000_buffer *buffer_info;
2808         unsigned int i;
2809         u32 cmd_length = 0;
2810         u16 ipcse = 0, tucse, mss;
2811         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2812         int err;
2813
2814         if (skb_is_gso(skb)) {
2815                 if (skb_header_cloned(skb)) {
2816                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2817                         if (err)
2818                                 return err;
2819                 }
2820
2821                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2822                 mss = skb_shinfo(skb)->gso_size;
2823                 if (skb->protocol == htons(ETH_P_IP)) {
2824                         struct iphdr *iph = ip_hdr(skb);
2825                         iph->tot_len = 0;
2826                         iph->check = 0;
2827                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2828                                                                  iph->daddr, 0,
2829                                                                  IPPROTO_TCP,
2830                                                                  0);
2831                         cmd_length = E1000_TXD_CMD_IP;
2832                         ipcse = skb_transport_offset(skb) - 1;
2833                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2834                         ipv6_hdr(skb)->payload_len = 0;
2835                         tcp_hdr(skb)->check =
2836                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2837                                                  &ipv6_hdr(skb)->daddr,
2838                                                  0, IPPROTO_TCP, 0);
2839                         ipcse = 0;
2840                 }
2841                 ipcss = skb_network_offset(skb);
2842                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2843                 tucss = skb_transport_offset(skb);
2844                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2845                 tucse = 0;
2846
2847                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2848                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2849
2850                 i = tx_ring->next_to_use;
2851                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2852                 buffer_info = &tx_ring->buffer_info[i];
2853
2854                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2855                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2856                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2857                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2858                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2859                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2860                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2861                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2862                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2863
2864                 buffer_info->time_stamp = jiffies;
2865                 buffer_info->next_to_watch = i;
2866
2867                 if (++i == tx_ring->count) i = 0;
2868                 tx_ring->next_to_use = i;
2869
2870                 return true;
2871         }
2872         return false;
2873 }
2874
2875 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2876                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2877 {
2878         struct e1000_context_desc *context_desc;
2879         struct e1000_buffer *buffer_info;
2880         unsigned int i;
2881         u8 css;
2882         u32 cmd_len = E1000_TXD_CMD_DEXT;
2883
2884         if (skb->ip_summed != CHECKSUM_PARTIAL)
2885                 return false;
2886
2887         switch (skb->protocol) {
2888         case __constant_htons(ETH_P_IP):
2889                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2890                         cmd_len |= E1000_TXD_CMD_TCP;
2891                 break;
2892         case __constant_htons(ETH_P_IPV6):
2893                 /* XXX not handling all IPV6 headers */
2894                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2895                         cmd_len |= E1000_TXD_CMD_TCP;
2896                 break;
2897         default:
2898                 if (unlikely(net_ratelimit()))
2899                         DPRINTK(DRV, WARNING,
2900                                 "checksum_partial proto=%x!\n", skb->protocol);
2901                 break;
2902         }
2903
2904         css = skb_transport_offset(skb);
2905
2906         i = tx_ring->next_to_use;
2907         buffer_info = &tx_ring->buffer_info[i];
2908         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2909
2910         context_desc->lower_setup.ip_config = 0;
2911         context_desc->upper_setup.tcp_fields.tucss = css;
2912         context_desc->upper_setup.tcp_fields.tucso =
2913                 css + skb->csum_offset;
2914         context_desc->upper_setup.tcp_fields.tucse = 0;
2915         context_desc->tcp_seg_setup.data = 0;
2916         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2917
2918         buffer_info->time_stamp = jiffies;
2919         buffer_info->next_to_watch = i;
2920
2921         if (unlikely(++i == tx_ring->count)) i = 0;
2922         tx_ring->next_to_use = i;
2923
2924         return true;
2925 }
2926
2927 #define E1000_MAX_TXD_PWR       12
2928 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2929
2930 static int e1000_tx_map(struct e1000_adapter *adapter,
2931                         struct e1000_tx_ring *tx_ring,
2932                         struct sk_buff *skb, unsigned int first,
2933                         unsigned int max_per_txd, unsigned int nr_frags,
2934                         unsigned int mss)
2935 {
2936         struct e1000_hw *hw = &adapter->hw;
2937         struct e1000_buffer *buffer_info;
2938         unsigned int len = skb->len;
2939         unsigned int offset = 0, size, count = 0, i;
2940         unsigned int f;
2941         len -= skb->data_len;
2942
2943         i = tx_ring->next_to_use;
2944
2945         while (len) {
2946                 buffer_info = &tx_ring->buffer_info[i];
2947                 size = min(len, max_per_txd);
2948                 /* Workaround for Controller erratum --
2949                  * descriptor for non-tso packet in a linear SKB that follows a
2950                  * tso gets written back prematurely before the data is fully
2951                  * DMA'd to the controller */
2952                 if (!skb->data_len && tx_ring->last_tx_tso &&
2953                     !skb_is_gso(skb)) {
2954                         tx_ring->last_tx_tso = 0;
2955                         size -= 4;
2956                 }
2957
2958                 /* Workaround for premature desc write-backs
2959                  * in TSO mode.  Append 4-byte sentinel desc */
2960                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2961                         size -= 4;
2962                 /* work-around for errata 10 and it applies
2963                  * to all controllers in PCI-X mode
2964                  * The fix is to make sure that the first descriptor of a
2965                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2966                  */
2967                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2968                                 (size > 2015) && count == 0))
2969                         size = 2015;
2970
2971                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2972                  * terminating buffers within evenly-aligned dwords. */
2973                 if (unlikely(adapter->pcix_82544 &&
2974                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2975                    size > 4))
2976                         size -= 4;
2977
2978                 buffer_info->length = size;
2979                 buffer_info->dma =
2980                         pci_map_single(adapter->pdev,
2981                                 skb->data + offset,
2982                                 size,
2983                                 PCI_DMA_TODEVICE);
2984                 buffer_info->time_stamp = jiffies;
2985                 buffer_info->next_to_watch = i;
2986
2987                 len -= size;
2988                 offset += size;
2989                 count++;
2990                 if (unlikely(++i == tx_ring->count)) i = 0;
2991         }
2992
2993         for (f = 0; f < nr_frags; f++) {
2994                 struct skb_frag_struct *frag;
2995
2996                 frag = &skb_shinfo(skb)->frags[f];
2997                 len = frag->size;
2998                 offset = frag->page_offset;
2999
3000                 while (len) {
3001                         buffer_info = &tx_ring->buffer_info[i];
3002                         size = min(len, max_per_txd);
3003                         /* Workaround for premature desc write-backs
3004                          * in TSO mode.  Append 4-byte sentinel desc */
3005                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3006                                 size -= 4;
3007                         /* Workaround for potential 82544 hang in PCI-X.
3008                          * Avoid terminating buffers within evenly-aligned
3009                          * dwords. */
3010                         if (unlikely(adapter->pcix_82544 &&
3011                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3012                            size > 4))
3013                                 size -= 4;
3014
3015                         buffer_info->length = size;
3016                         buffer_info->dma =
3017                                 pci_map_page(adapter->pdev,
3018                                         frag->page,
3019                                         offset,
3020                                         size,
3021                                         PCI_DMA_TODEVICE);
3022                         buffer_info->time_stamp = jiffies;
3023                         buffer_info->next_to_watch = i;
3024
3025                         len -= size;
3026                         offset += size;
3027                         count++;
3028                         if (unlikely(++i == tx_ring->count)) i = 0;
3029                 }
3030         }
3031
3032         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3033         tx_ring->buffer_info[i].skb = skb;
3034         tx_ring->buffer_info[first].next_to_watch = i;
3035
3036         return count;
3037 }
3038
3039 static void e1000_tx_queue(struct e1000_adapter *adapter,
3040                            struct e1000_tx_ring *tx_ring, int tx_flags,
3041                            int count)
3042 {
3043         struct e1000_hw *hw = &adapter->hw;
3044         struct e1000_tx_desc *tx_desc = NULL;
3045         struct e1000_buffer *buffer_info;
3046         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3047         unsigned int i;
3048
3049         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3050                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3051                              E1000_TXD_CMD_TSE;
3052                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3053
3054                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3055                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3056         }
3057
3058         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3059                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3060                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3061         }
3062
3063         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3064                 txd_lower |= E1000_TXD_CMD_VLE;
3065                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3066         }
3067
3068         i = tx_ring->next_to_use;
3069
3070         while (count--) {
3071                 buffer_info = &tx_ring->buffer_info[i];
3072                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3073                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3074                 tx_desc->lower.data =
3075                         cpu_to_le32(txd_lower | buffer_info->length);
3076                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3077                 if (unlikely(++i == tx_ring->count)) i = 0;
3078         }
3079
3080         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3081
3082         /* Force memory writes to complete before letting h/w
3083          * know there are new descriptors to fetch.  (Only
3084          * applicable for weak-ordered memory model archs,
3085          * such as IA-64). */
3086         wmb();
3087
3088         tx_ring->next_to_use = i;
3089         writel(i, hw->hw_addr + tx_ring->tdt);
3090         /* we need this if more than one processor can write to our tail
3091          * at a time, it syncronizes IO on IA64/Altix systems */
3092         mmiowb();
3093 }
3094
3095 /**
3096  * 82547 workaround to avoid controller hang in half-duplex environment.
3097  * The workaround is to avoid queuing a large packet that would span
3098  * the internal Tx FIFO ring boundary by notifying the stack to resend
3099  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3100  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3101  * to the beginning of the Tx FIFO.
3102  **/
3103
3104 #define E1000_FIFO_HDR                  0x10
3105 #define E1000_82547_PAD_LEN             0x3E0
3106
3107 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3108                                        struct sk_buff *skb)
3109 {
3110         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3111         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3112
3113         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3114
3115         if (adapter->link_duplex != HALF_DUPLEX)
3116                 goto no_fifo_stall_required;
3117
3118         if (atomic_read(&adapter->tx_fifo_stall))
3119                 return 1;
3120
3121         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3122                 atomic_set(&adapter->tx_fifo_stall, 1);
3123                 return 1;
3124         }
3125
3126 no_fifo_stall_required:
3127         adapter->tx_fifo_head += skb_fifo_len;
3128         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3129                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3130         return 0;
3131 }
3132
3133 #define MINIMUM_DHCP_PACKET_SIZE 282
3134 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3135                                     struct sk_buff *skb)
3136 {
3137         struct e1000_hw *hw =  &adapter->hw;
3138         u16 length, offset;
3139         if (vlan_tx_tag_present(skb)) {
3140                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3141                         ( hw->mng_cookie.status &
3142                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3143                         return 0;
3144         }
3145         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3146                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3147                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3148                         const struct iphdr *ip =
3149                                 (struct iphdr *)((u8 *)skb->data+14);
3150                         if (IPPROTO_UDP == ip->protocol) {
3151                                 struct udphdr *udp =
3152                                         (struct udphdr *)((u8 *)ip +
3153                                                 (ip->ihl << 2));
3154                                 if (ntohs(udp->dest) == 67) {
3155                                         offset = (u8 *)udp + 8 - skb->data;
3156                                         length = skb->len - offset;
3157
3158                                         return e1000_mng_write_dhcp_info(hw,
3159                                                         (u8 *)udp + 8,
3160                                                         length);
3161                                 }
3162                         }
3163                 }
3164         }
3165         return 0;
3166 }
3167
3168 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3169 {
3170         struct e1000_adapter *adapter = netdev_priv(netdev);
3171         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3172
3173         netif_stop_queue(netdev);
3174         /* Herbert's original patch had:
3175          *  smp_mb__after_netif_stop_queue();
3176          * but since that doesn't exist yet, just open code it. */
3177         smp_mb();
3178
3179         /* We need to check again in a case another CPU has just
3180          * made room available. */
3181         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3182                 return -EBUSY;
3183
3184         /* A reprieve! */
3185         netif_start_queue(netdev);
3186         ++adapter->restart_queue;
3187         return 0;
3188 }
3189
3190 static int e1000_maybe_stop_tx(struct net_device *netdev,
3191                                struct e1000_tx_ring *tx_ring, int size)
3192 {
3193         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3194                 return 0;
3195         return __e1000_maybe_stop_tx(netdev, size);
3196 }
3197
3198 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3199 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3200 {
3201         struct e1000_adapter *adapter = netdev_priv(netdev);
3202         struct e1000_hw *hw = &adapter->hw;
3203         struct e1000_tx_ring *tx_ring;
3204         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3205         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3206         unsigned int tx_flags = 0;
3207         unsigned int len = skb->len - skb->data_len;
3208         unsigned long flags;
3209         unsigned int nr_frags;
3210         unsigned int mss;
3211         int count = 0;
3212         int tso;
3213         unsigned int f;
3214
3215         /* This goes back to the question of how to logically map a tx queue
3216          * to a flow.  Right now, performance is impacted slightly negatively
3217          * if using multiple tx queues.  If the stack breaks away from a
3218          * single qdisc implementation, we can look at this again. */
3219         tx_ring = adapter->tx_ring;
3220
3221         if (unlikely(skb->len <= 0)) {
3222                 dev_kfree_skb_any(skb);
3223                 return NETDEV_TX_OK;
3224         }
3225
3226         /* 82571 and newer doesn't need the workaround that limited descriptor
3227          * length to 4kB */
3228         if (hw->mac_type >= e1000_82571)
3229                 max_per_txd = 8192;
3230
3231         mss = skb_shinfo(skb)->gso_size;
3232         /* The controller does a simple calculation to
3233          * make sure there is enough room in the FIFO before
3234          * initiating the DMA for each buffer.  The calc is:
3235          * 4 = ceil(buffer len/mss).  To make sure we don't
3236          * overrun the FIFO, adjust the max buffer len if mss
3237          * drops. */
3238         if (mss) {
3239                 u8 hdr_len;
3240                 max_per_txd = min(mss << 2, max_per_txd);
3241                 max_txd_pwr = fls(max_per_txd) - 1;
3242
3243                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3244                 * points to just header, pull a few bytes of payload from
3245                 * frags into skb->data */
3246                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3247                 if (skb->data_len && hdr_len == len) {
3248                         switch (hw->mac_type) {
3249                                 unsigned int pull_size;
3250                         case e1000_82544:
3251                                 /* Make sure we have room to chop off 4 bytes,
3252                                  * and that the end alignment will work out to
3253                                  * this hardware's requirements
3254                                  * NOTE: this is a TSO only workaround
3255                                  * if end byte alignment not correct move us
3256                                  * into the next dword */
3257                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3258                                         break;
3259                                 /* fall through */
3260                         case e1000_82571:
3261                         case e1000_82572:
3262                         case e1000_82573:
3263                         case e1000_ich8lan:
3264                                 pull_size = min((unsigned int)4, skb->data_len);
3265                                 if (!__pskb_pull_tail(skb, pull_size)) {
3266                                         DPRINTK(DRV, ERR,
3267                                                 "__pskb_pull_tail failed.\n");
3268                                         dev_kfree_skb_any(skb);
3269                                         return NETDEV_TX_OK;
3270                                 }
3271                                 len = skb->len - skb->data_len;
3272                                 break;
3273                         default:
3274                                 /* do nothing */
3275                                 break;
3276                         }
3277                 }
3278         }
3279
3280         /* reserve a descriptor for the offload context */
3281         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3282                 count++;
3283         count++;
3284
3285         /* Controller Erratum workaround */
3286         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3287                 count++;
3288
3289         count += TXD_USE_COUNT(len, max_txd_pwr);
3290
3291         if (adapter->pcix_82544)
3292                 count++;
3293
3294         /* work-around for errata 10 and it applies to all controllers
3295          * in PCI-X mode, so add one more descriptor to the count
3296          */
3297         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3298                         (len > 2015)))
3299                 count++;
3300
3301         nr_frags = skb_shinfo(skb)->nr_frags;
3302         for (f = 0; f < nr_frags; f++)
3303                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3304                                        max_txd_pwr);
3305         if (adapter->pcix_82544)
3306                 count += nr_frags;
3307
3308
3309         if (hw->tx_pkt_filtering &&
3310             (hw->mac_type == e1000_82573))
3311                 e1000_transfer_dhcp_info(adapter, skb);
3312
3313         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3314                 /* Collision - tell upper layer to requeue */
3315                 return NETDEV_TX_LOCKED;
3316
3317         /* need: count + 2 desc gap to keep tail from touching
3318          * head, otherwise try next time */
3319         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3320                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3321                 return NETDEV_TX_BUSY;
3322         }
3323
3324         if (unlikely(hw->mac_type == e1000_82547)) {
3325                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3326                         netif_stop_queue(netdev);
3327                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3328                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3329                         return NETDEV_TX_BUSY;
3330                 }
3331         }
3332
3333         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3334                 tx_flags |= E1000_TX_FLAGS_VLAN;
3335                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3336         }
3337
3338         first = tx_ring->next_to_use;
3339
3340         tso = e1000_tso(adapter, tx_ring, skb);
3341         if (tso < 0) {
3342                 dev_kfree_skb_any(skb);
3343                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3344                 return NETDEV_TX_OK;
3345         }
3346
3347         if (likely(tso)) {
3348                 tx_ring->last_tx_tso = 1;
3349                 tx_flags |= E1000_TX_FLAGS_TSO;
3350         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3351                 tx_flags |= E1000_TX_FLAGS_CSUM;
3352
3353         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3354          * 82571 hardware supports TSO capabilities for IPv6 as well...
3355          * no longer assume, we must. */
3356         if (likely(skb->protocol == htons(ETH_P_IP)))
3357                 tx_flags |= E1000_TX_FLAGS_IPV4;
3358
3359         e1000_tx_queue(adapter, tx_ring, tx_flags,
3360                        e1000_tx_map(adapter, tx_ring, skb, first,
3361                                     max_per_txd, nr_frags, mss));
3362
3363         netdev->trans_start = jiffies;
3364
3365         /* Make sure there is space in the ring for the next send. */
3366         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3367
3368         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3369         return NETDEV_TX_OK;
3370 }
3371
3372 /**
3373  * e1000_tx_timeout - Respond to a Tx Hang
3374  * @netdev: network interface device structure
3375  **/
3376
3377 static void e1000_tx_timeout(struct net_device *netdev)
3378 {
3379         struct e1000_adapter *adapter = netdev_priv(netdev);
3380
3381         /* Do the reset outside of interrupt context */
3382         adapter->tx_timeout_count++;
3383         schedule_work(&adapter->reset_task);
3384 }
3385
3386 static void e1000_reset_task(struct work_struct *work)
3387 {
3388         struct e1000_adapter *adapter =
3389                 container_of(work, struct e1000_adapter, reset_task);
3390
3391         e1000_reinit_locked(adapter);
3392 }
3393
3394 /**
3395  * e1000_get_stats - Get System Network Statistics
3396  * @netdev: network interface device structure
3397  *
3398  * Returns the address of the device statistics structure.
3399  * The statistics are actually updated from the timer callback.
3400  **/
3401
3402 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3403 {
3404         struct e1000_adapter *adapter = netdev_priv(netdev);
3405
3406         /* only return the current stats */
3407         return &adapter->net_stats;
3408 }
3409
3410 /**
3411  * e1000_change_mtu - Change the Maximum Transfer Unit
3412  * @netdev: network interface device structure
3413  * @new_mtu: new value for maximum frame size
3414  *
3415  * Returns 0 on success, negative on failure
3416  **/
3417
3418 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3419 {
3420         struct e1000_adapter *adapter = netdev_priv(netdev);
3421         struct e1000_hw *hw = &adapter->hw;
3422         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3423         u16 eeprom_data = 0;
3424
3425         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3426             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3427                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3428                 return -EINVAL;
3429         }
3430
3431         /* Adapter-specific max frame size limits. */
3432         switch (hw->mac_type) {
3433         case e1000_undefined ... e1000_82542_rev2_1:
3434         case e1000_ich8lan:
3435                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3436                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3437                         return -EINVAL;
3438                 }
3439                 break;
3440         case e1000_82573:
3441                 /* Jumbo Frames not supported if:
3442                  * - this is not an 82573L device
3443                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3444                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3445                                   &eeprom_data);
3446                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3447                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3448                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3449                                 DPRINTK(PROBE, ERR,
3450                                         "Jumbo Frames not supported.\n");
3451                                 return -EINVAL;
3452                         }
3453                         break;
3454                 }
3455                 /* ERT will be enabled later to enable wire speed receives */
3456
3457                 /* fall through to get support */
3458         case e1000_82571:
3459         case e1000_82572:
3460         case e1000_80003es2lan:
3461 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3462                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3463                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3464                         return -EINVAL;
3465                 }
3466                 break;
3467         default:
3468                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3469                 break;
3470         }
3471
3472         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3473          * means we reserve 2 more, this pushes us to allocate from the next
3474          * larger slab size
3475          * i.e. RXBUFFER_2048 --> size-4096 slab */
3476
3477         if (max_frame <= E1000_RXBUFFER_256)
3478                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3479         else if (max_frame <= E1000_RXBUFFER_512)
3480                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3481         else if (max_frame <= E1000_RXBUFFER_1024)
3482                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3483         else if (max_frame <= E1000_RXBUFFER_2048)
3484                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3485         else if (max_frame <= E1000_RXBUFFER_4096)
3486                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3487         else if (max_frame <= E1000_RXBUFFER_8192)
3488                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3489         else if (max_frame <= E1000_RXBUFFER_16384)
3490                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3491
3492         /* adjust allocation if LPE protects us, and we aren't using SBP */
3493         if (!hw->tbi_compatibility_on &&
3494             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3495              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3496                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3497
3498         netdev->mtu = new_mtu;
3499         hw->max_frame_size = max_frame;
3500
3501         if (netif_running(netdev))
3502                 e1000_reinit_locked(adapter);
3503
3504         return 0;
3505 }
3506
3507 /**
3508  * e1000_update_stats - Update the board statistics counters
3509  * @adapter: board private structure
3510  **/
3511
3512 void e1000_update_stats(struct e1000_adapter *adapter)
3513 {
3514         struct e1000_hw *hw = &adapter->hw;
3515         struct pci_dev *pdev = adapter->pdev;
3516         unsigned long flags;
3517         u16 phy_tmp;
3518
3519 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3520
3521         /*
3522          * Prevent stats update while adapter is being reset, or if the pci
3523          * connection is down.
3524          */
3525         if (adapter->link_speed == 0)
3526                 return;
3527         if (pci_channel_offline(pdev))
3528                 return;
3529
3530         spin_lock_irqsave(&adapter->stats_lock, flags);
3531
3532         /* these counters are modified from e1000_tbi_adjust_stats,
3533          * called from the interrupt context, so they must only
3534          * be written while holding adapter->stats_lock
3535          */
3536
3537         adapter->stats.crcerrs += er32(CRCERRS);
3538         adapter->stats.gprc += er32(GPRC);
3539         adapter->stats.gorcl += er32(GORCL);
3540         adapter->stats.gorch += er32(GORCH);
3541         adapter->stats.bprc += er32(BPRC);
3542         adapter->stats.mprc += er32(MPRC);
3543         adapter->stats.roc += er32(ROC);
3544
3545         if (hw->mac_type != e1000_ich8lan) {
3546                 adapter->stats.prc64 += er32(PRC64);
3547                 adapter->stats.prc127 += er32(PRC127);
3548                 adapter->stats.prc255 += er32(PRC255);
3549                 adapter->stats.prc511 += er32(PRC511);
3550                 adapter->stats.prc1023 += er32(PRC1023);
3551                 adapter->stats.prc1522 += er32(PRC1522);
3552         }
3553
3554         adapter->stats.symerrs += er32(SYMERRS);
3555         adapter->stats.mpc += er32(MPC);
3556         adapter->stats.scc += er32(SCC);
3557         adapter->stats.ecol += er32(ECOL);
3558         adapter->stats.mcc += er32(MCC);
3559         adapter->stats.latecol += er32(LATECOL);
3560         adapter->stats.dc += er32(DC);
3561         adapter->stats.sec += er32(SEC);
3562         adapter->stats.rlec += er32(RLEC);
3563         adapter->stats.xonrxc += er32(XONRXC);
3564         adapter->stats.xontxc += er32(XONTXC);
3565         adapter->stats.xoffrxc += er32(XOFFRXC);
3566         adapter->stats.xofftxc += er32(XOFFTXC);
3567         adapter->stats.fcruc += er32(FCRUC);
3568         adapter->stats.gptc += er32(GPTC);
3569         adapter->stats.gotcl += er32(GOTCL);
3570         adapter->stats.gotch += er32(GOTCH);
3571         adapter->stats.rnbc += er32(RNBC);
3572         adapter->stats.ruc += er32(RUC);
3573         adapter->stats.rfc += er32(RFC);
3574         adapter->stats.rjc += er32(RJC);
3575         adapter->stats.torl += er32(TORL);
3576         adapter->stats.torh += er32(TORH);
3577         adapter->stats.totl += er32(TOTL);
3578         adapter->stats.toth += er32(TOTH);
3579         adapter->stats.tpr += er32(TPR);
3580
3581         if (hw->mac_type != e1000_ich8lan) {
3582                 adapter->stats.ptc64 += er32(PTC64);
3583                 adapter->stats.ptc127 += er32(PTC127);
3584                 adapter->stats.ptc255 += er32(PTC255);
3585                 adapter->stats.ptc511 += er32(PTC511);
3586                 adapter->stats.ptc1023 += er32(PTC1023);
3587                 adapter->stats.ptc1522 += er32(PTC1522);
3588         }
3589
3590         adapter->stats.mptc += er32(MPTC);
3591         adapter->stats.bptc += er32(BPTC);
3592
3593         /* used for adaptive IFS */
3594
3595         hw->tx_packet_delta = er32(TPT);
3596         adapter->stats.tpt += hw->tx_packet_delta;
3597         hw->collision_delta = er32(COLC);
3598         adapter->stats.colc += hw->collision_delta;
3599
3600         if (hw->mac_type >= e1000_82543) {
3601                 adapter->stats.algnerrc += er32(ALGNERRC);
3602                 adapter->stats.rxerrc += er32(RXERRC);
3603                 adapter->stats.tncrs += er32(TNCRS);
3604                 adapter->stats.cexterr += er32(CEXTERR);
3605                 adapter->stats.tsctc += er32(TSCTC);
3606                 adapter->stats.tsctfc += er32(TSCTFC);
3607         }
3608         if (hw->mac_type > e1000_82547_rev_2) {
3609                 adapter->stats.iac += er32(IAC);
3610                 adapter->stats.icrxoc += er32(ICRXOC);
3611
3612                 if (hw->mac_type != e1000_ich8lan) {
3613                         adapter->stats.icrxptc += er32(ICRXPTC);
3614                         adapter->stats.icrxatc += er32(ICRXATC);
3615                         adapter->stats.ictxptc += er32(ICTXPTC);
3616                         adapter->stats.ictxatc += er32(ICTXATC);
3617                         adapter->stats.ictxqec += er32(ICTXQEC);
3618                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3619                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3620                 }
3621         }
3622
3623         /* Fill out the OS statistics structure */
3624         adapter->net_stats.multicast = adapter->stats.mprc;
3625         adapter->net_stats.collisions = adapter->stats.colc;
3626
3627         /* Rx Errors */
3628
3629         /* RLEC on some newer hardware can be incorrect so build
3630         * our own version based on RUC and ROC */
3631         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3632                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3633                 adapter->stats.ruc + adapter->stats.roc +
3634                 adapter->stats.cexterr;
3635         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3636         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3637         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3638         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3639         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3640
3641         /* Tx Errors */
3642         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3643         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3644         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3645         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3646         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3647         if (hw->bad_tx_carr_stats_fd &&
3648             adapter->link_duplex == FULL_DUPLEX) {
3649                 adapter->net_stats.tx_carrier_errors = 0;
3650                 adapter->stats.tncrs = 0;
3651         }
3652
3653         /* Tx Dropped needs to be maintained elsewhere */
3654
3655         /* Phy Stats */
3656         if (hw->media_type == e1000_media_type_copper) {
3657                 if ((adapter->link_speed == SPEED_1000) &&
3658                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3659                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3660                         adapter->phy_stats.idle_errors += phy_tmp;
3661                 }
3662
3663                 if ((hw->mac_type <= e1000_82546) &&
3664                    (hw->phy_type == e1000_phy_m88) &&
3665                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3666                         adapter->phy_stats.receive_errors += phy_tmp;
3667         }
3668
3669         /* Management Stats */
3670         if (hw->has_smbus) {
3671                 adapter->stats.mgptc += er32(MGTPTC);
3672                 adapter->stats.mgprc += er32(MGTPRC);
3673                 adapter->stats.mgpdc += er32(MGTPDC);
3674         }
3675
3676         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3677 }
3678
3679 /**
3680  * e1000_intr_msi - Interrupt Handler
3681  * @irq: interrupt number
3682  * @data: pointer to a network interface device structure
3683  **/
3684
3685 static irqreturn_t e1000_intr_msi(int irq, void *data)
3686 {
3687         struct net_device *netdev = data;
3688         struct e1000_adapter *adapter = netdev_priv(netdev);
3689         struct e1000_hw *hw = &adapter->hw;
3690         u32 icr = er32(ICR);
3691
3692         /* in NAPI mode read ICR disables interrupts using IAM */
3693
3694         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3695                 hw->get_link_status = 1;
3696                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3697                  * link down event; disable receives here in the ISR and reset
3698                  * adapter in watchdog */
3699                 if (netif_carrier_ok(netdev) &&
3700                     (hw->mac_type == e1000_80003es2lan)) {
3701                         /* disable receives */
3702                         u32 rctl = er32(RCTL);
3703                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3704                 }
3705                 /* guard against interrupt when we're going down */
3706                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3707                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3708         }
3709
3710         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3711                 adapter->total_tx_bytes = 0;
3712                 adapter->total_tx_packets = 0;
3713                 adapter->total_rx_bytes = 0;
3714                 adapter->total_rx_packets = 0;
3715                 __netif_rx_schedule(netdev, &adapter->napi);
3716         } else
3717                 e1000_irq_enable(adapter);
3718
3719         return IRQ_HANDLED;
3720 }
3721
3722 /**
3723  * e1000_intr - Interrupt Handler
3724  * @irq: interrupt number
3725  * @data: pointer to a network interface device structure
3726  **/
3727
3728 static irqreturn_t e1000_intr(int irq, void *data)
3729 {
3730         struct net_device *netdev = data;
3731         struct e1000_adapter *adapter = netdev_priv(netdev);
3732         struct e1000_hw *hw = &adapter->hw;
3733         u32 rctl, icr = er32(ICR);
3734
3735         if (unlikely(!icr))
3736                 return IRQ_NONE;  /* Not our interrupt */
3737
3738         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3739          * not set, then the adapter didn't send an interrupt */
3740         if (unlikely(hw->mac_type >= e1000_82571 &&
3741                      !(icr & E1000_ICR_INT_ASSERTED)))
3742                 return IRQ_NONE;
3743
3744         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3745          * need for the IMC write */
3746
3747         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3748                 hw->get_link_status = 1;
3749                 /* 80003ES2LAN workaround--
3750                  * For packet buffer work-around on link down event;
3751                  * disable receives here in the ISR and
3752                  * reset adapter in watchdog
3753                  */
3754                 if (netif_carrier_ok(netdev) &&
3755                     (hw->mac_type == e1000_80003es2lan)) {
3756                         /* disable receives */
3757                         rctl = er32(RCTL);
3758                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3759                 }
3760                 /* guard against interrupt when we're going down */
3761                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3762                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3763         }
3764
3765         if (unlikely(hw->mac_type < e1000_82571)) {
3766                 /* disable interrupts, without the synchronize_irq bit */
3767                 ew32(IMC, ~0);
3768                 E1000_WRITE_FLUSH();
3769         }
3770         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3771                 adapter->total_tx_bytes = 0;
3772                 adapter->total_tx_packets = 0;
3773                 adapter->total_rx_bytes = 0;
3774                 adapter->total_rx_packets = 0;
3775                 __netif_rx_schedule(netdev, &adapter->napi);
3776         } else
3777                 /* this really should not happen! if it does it is basically a
3778                  * bug, but not a hard error, so enable ints and continue */
3779                 e1000_irq_enable(adapter);
3780
3781         return IRQ_HANDLED;
3782 }
3783
3784 /**
3785  * e1000_clean - NAPI Rx polling callback
3786  * @adapter: board private structure
3787  **/
3788 static int e1000_clean(struct napi_struct *napi, int budget)
3789 {
3790         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3791         struct net_device *poll_dev = adapter->netdev;
3792         int tx_cleaned = 0, work_done = 0;
3793
3794         /* Must NOT use netdev_priv macro here. */
3795         adapter = poll_dev->priv;
3796
3797         /* e1000_clean is called per-cpu.  This lock protects
3798          * tx_ring[0] from being cleaned by multiple cpus
3799          * simultaneously.  A failure obtaining the lock means
3800          * tx_ring[0] is currently being cleaned anyway. */
3801         if (spin_trylock(&adapter->tx_queue_lock)) {
3802                 tx_cleaned = e1000_clean_tx_irq(adapter,
3803                                                 &adapter->tx_ring[0]);
3804                 spin_unlock(&adapter->tx_queue_lock);
3805         }
3806
3807         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3808                           &work_done, budget);
3809
3810         if (tx_cleaned)
3811                 work_done = budget;
3812
3813         /* If budget not fully consumed, exit the polling mode */
3814         if (work_done < budget) {
3815                 if (likely(adapter->itr_setting & 3))
3816                         e1000_set_itr(adapter);
3817                 netif_rx_complete(poll_dev, napi);
3818                 e1000_irq_enable(adapter);
3819         }
3820
3821         return work_done;
3822 }
3823
3824 /**
3825  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3826  * @adapter: board private structure
3827  **/
3828 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3829                                struct e1000_tx_ring *tx_ring)
3830 {
3831         struct e1000_hw *hw = &adapter->hw;
3832         struct net_device *netdev = adapter->netdev;
3833         struct e1000_tx_desc *tx_desc, *eop_desc;
3834         struct e1000_buffer *buffer_info;
3835         unsigned int i, eop;
3836         unsigned int count = 0;
3837         bool cleaned = false;
3838         unsigned int total_tx_bytes=0, total_tx_packets=0;
3839
3840         i = tx_ring->next_to_clean;
3841         eop = tx_ring->buffer_info[i].next_to_watch;
3842         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3843
3844         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3845                 for (cleaned = false; !cleaned; ) {
3846                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3847                         buffer_info = &tx_ring->buffer_info[i];
3848                         cleaned = (i == eop);
3849
3850                         if (cleaned) {
3851                                 struct sk_buff *skb = buffer_info->skb;
3852                                 unsigned int segs, bytecount;
3853                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3854                                 /* multiply data chunks by size of headers */
3855                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3856                                             skb->len;
3857                                 total_tx_packets += segs;
3858                                 total_tx_bytes += bytecount;
3859                         }
3860                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3861                         tx_desc->upper.data = 0;
3862
3863                         if (unlikely(++i == tx_ring->count)) i = 0;
3864                 }
3865
3866                 eop = tx_ring->buffer_info[i].next_to_watch;
3867                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3868 #define E1000_TX_WEIGHT 64
3869                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3870                 if (count++ == E1000_TX_WEIGHT)
3871                         break;
3872         }
3873
3874         tx_ring->next_to_clean = i;
3875
3876 #define TX_WAKE_THRESHOLD 32
3877         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3878                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3879                 /* Make sure that anybody stopping the queue after this
3880                  * sees the new next_to_clean.
3881                  */
3882                 smp_mb();
3883                 if (netif_queue_stopped(netdev)) {
3884                         netif_wake_queue(netdev);
3885                         ++adapter->restart_queue;
3886                 }
3887         }
3888
3889         if (adapter->detect_tx_hung) {
3890                 /* Detect a transmit hang in hardware, this serializes the
3891                  * check with the clearing of time_stamp and movement of i */
3892                 adapter->detect_tx_hung = false;
3893                 if (tx_ring->buffer_info[eop].dma &&
3894                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3895                                (adapter->tx_timeout_factor * HZ))
3896                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3897
3898                         /* detected Tx unit hang */
3899                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3900                                         "  Tx Queue             <%lu>\n"
3901                                         "  TDH                  <%x>\n"
3902                                         "  TDT                  <%x>\n"
3903                                         "  next_to_use          <%x>\n"
3904                                         "  next_to_clean        <%x>\n"
3905                                         "buffer_info[next_to_clean]\n"
3906                                         "  time_stamp           <%lx>\n"
3907                                         "  next_to_watch        <%x>\n"
3908                                         "  jiffies              <%lx>\n"
3909                                         "  next_to_watch.status <%x>\n",
3910                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3911                                         sizeof(struct e1000_tx_ring)),
3912                                 readl(hw->hw_addr + tx_ring->tdh),
3913                                 readl(hw->hw_addr + tx_ring->tdt),
3914                                 tx_ring->next_to_use,
3915                                 tx_ring->next_to_clean,
3916                                 tx_ring->buffer_info[eop].time_stamp,
3917                                 eop,
3918                                 jiffies,
3919                                 eop_desc->upper.fields.status);
3920                         netif_stop_queue(netdev);
3921                 }
3922         }
3923         adapter->total_tx_bytes += total_tx_bytes;
3924         adapter->total_tx_packets += total_tx_packets;
3925         adapter->net_stats.tx_bytes += total_tx_bytes;
3926         adapter->net_stats.tx_packets += total_tx_packets;
3927         return cleaned;
3928 }
3929
3930 /**
3931  * e1000_rx_checksum - Receive Checksum Offload for 82543
3932  * @adapter:     board private structure
3933  * @status_err:  receive descriptor status and error fields
3934  * @csum:        receive descriptor csum field
3935  * @sk_buff:     socket buffer with received data
3936  **/
3937
3938 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3939                               u32 csum, struct sk_buff *skb)
3940 {
3941         struct e1000_hw *hw = &adapter->hw;
3942         u16 status = (u16)status_err;
3943         u8 errors = (u8)(status_err >> 24);
3944         skb->ip_summed = CHECKSUM_NONE;
3945
3946         /* 82543 or newer only */
3947         if (unlikely(hw->mac_type < e1000_82543)) return;
3948         /* Ignore Checksum bit is set */
3949         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3950         /* TCP/UDP checksum error bit is set */
3951         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3952                 /* let the stack verify checksum errors */
3953                 adapter->hw_csum_err++;
3954                 return;
3955         }
3956         /* TCP/UDP Checksum has not been calculated */
3957         if (hw->mac_type <= e1000_82547_rev_2) {
3958                 if (!(status & E1000_RXD_STAT_TCPCS))
3959                         return;
3960         } else {
3961                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3962                         return;
3963         }
3964         /* It must be a TCP or UDP packet with a valid checksum */
3965         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3966                 /* TCP checksum is good */
3967                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3968         } else if (hw->mac_type > e1000_82547_rev_2) {
3969                 /* IP fragment with UDP payload */
3970                 /* Hardware complements the payload checksum, so we undo it
3971                  * and then put the value in host order for further stack use.
3972                  */
3973                 __sum16 sum = (__force __sum16)htons(csum);
3974                 skb->csum = csum_unfold(~sum);
3975                 skb->ip_summed = CHECKSUM_COMPLETE;
3976         }
3977         adapter->hw_csum_good++;
3978 }
3979
3980 /**
3981  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3982  * @adapter: board private structure
3983  **/
3984 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3985                                struct e1000_rx_ring *rx_ring,
3986                                int *work_done, int work_to_do)
3987 {
3988         struct e1000_hw *hw = &adapter->hw;
3989         struct net_device *netdev = adapter->netdev;
3990         struct pci_dev *pdev = adapter->pdev;
3991         struct e1000_rx_desc *rx_desc, *next_rxd;
3992         struct e1000_buffer *buffer_info, *next_buffer;
3993         unsigned long flags;
3994         u32 length;
3995         u8 last_byte;
3996         unsigned int i;
3997         int cleaned_count = 0;
3998         bool cleaned = false;
3999         unsigned int total_rx_bytes=0, total_rx_packets=0;
4000
4001         i = rx_ring->next_to_clean;
4002         rx_desc = E1000_RX_DESC(*rx_ring, i);
4003         buffer_info = &rx_ring->buffer_info[i];
4004
4005         while (rx_desc->status & E1000_RXD_STAT_DD) {
4006                 struct sk_buff *skb;
4007                 u8 status;
4008
4009                 if (*work_done >= work_to_do)
4010                         break;
4011                 (*work_done)++;
4012
4013                 status = rx_desc->status;
4014                 skb = buffer_info->skb;
4015                 buffer_info->skb = NULL;
4016
4017                 prefetch(skb->data - NET_IP_ALIGN);
4018
4019                 if (++i == rx_ring->count) i = 0;
4020                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4021                 prefetch(next_rxd);
4022
4023                 next_buffer = &rx_ring->buffer_info[i];
4024
4025                 cleaned = true;
4026                 cleaned_count++;
4027                 pci_unmap_single(pdev,
4028                                  buffer_info->dma,
4029                                  buffer_info->length,
4030                                  PCI_DMA_FROMDEVICE);
4031
4032                 length = le16_to_cpu(rx_desc->length);
4033
4034                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4035                         /* All receives must fit into a single buffer */
4036                         E1000_DBG("%s: Receive packet consumed multiple"
4037                                   " buffers\n", netdev->name);
4038                         /* recycle */
4039                         buffer_info->skb = skb;
4040                         goto next_desc;
4041                 }
4042
4043                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4044                         last_byte = *(skb->data + length - 1);
4045                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4046                                        last_byte)) {
4047                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4048                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4049                                                        length, skb->data);
4050                                 spin_unlock_irqrestore(&adapter->stats_lock,
4051                                                        flags);
4052                                 length--;
4053                         } else {
4054                                 /* recycle */
4055                                 buffer_info->skb = skb;
4056                                 goto next_desc;
4057                         }
4058                 }
4059
4060                 /* adjust length to remove Ethernet CRC, this must be
4061                  * done after the TBI_ACCEPT workaround above */
4062                 length -= 4;
4063
4064                 /* probably a little skewed due to removing CRC */
4065                 total_rx_bytes += length;
4066                 total_rx_packets++;
4067
4068                 /* code added for copybreak, this should improve
4069                  * performance for small packets with large amounts
4070                  * of reassembly being done in the stack */
4071                 if (length < copybreak) {
4072                         struct sk_buff *new_skb =
4073                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4074                         if (new_skb) {
4075                                 skb_reserve(new_skb, NET_IP_ALIGN);
4076                                 skb_copy_to_linear_data_offset(new_skb,
4077                                                                -NET_IP_ALIGN,
4078                                                                (skb->data -
4079                                                                 NET_IP_ALIGN),
4080                                                                (length +
4081                                                                 NET_IP_ALIGN));
4082                                 /* save the skb in buffer_info as good */
4083                                 buffer_info->skb = skb;
4084                                 skb = new_skb;
4085                         }
4086                         /* else just continue with the old one */
4087                 }
4088                 /* end copybreak code */
4089                 skb_put(skb, length);
4090
4091                 /* Receive Checksum Offload */
4092                 e1000_rx_checksum(adapter,
4093                                   (u32)(status) |
4094                                   ((u32)(rx_desc->errors) << 24),
4095                                   le16_to_cpu(rx_desc->csum), skb);
4096
4097                 skb->protocol = eth_type_trans(skb, netdev);
4098
4099                 if (unlikely(adapter->vlgrp &&
4100                             (status & E1000_RXD_STAT_VP))) {
4101                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4102                                                  le16_to_cpu(rx_desc->special));
4103                 } else {
4104                         netif_receive_skb(skb);
4105                 }
4106
4107                 netdev->last_rx = jiffies;
4108
4109 next_desc:
4110                 rx_desc->status = 0;
4111
4112                 /* return some buffers to hardware, one at a time is too slow */
4113                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4114                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4115                         cleaned_count = 0;
4116                 }
4117
4118                 /* use prefetched values */
4119                 rx_desc = next_rxd;
4120                 buffer_info = next_buffer;
4121         }
4122         rx_ring->next_to_clean = i;
4123
4124         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4125         if (cleaned_count)
4126                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4127
4128         adapter->total_rx_packets += total_rx_packets;
4129         adapter->total_rx_bytes += total_rx_bytes;
4130         adapter->net_stats.rx_bytes += total_rx_bytes;
4131         adapter->net_stats.rx_packets += total_rx_packets;
4132         return cleaned;
4133 }
4134
4135 /**
4136  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4137  * @adapter: address of board private structure
4138  **/
4139
4140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4141                                    struct e1000_rx_ring *rx_ring,
4142                                    int cleaned_count)
4143 {
4144         struct e1000_hw *hw = &adapter->hw;
4145         struct net_device *netdev = adapter->netdev;
4146         struct pci_dev *pdev = adapter->pdev;
4147         struct e1000_rx_desc *rx_desc;
4148         struct e1000_buffer *buffer_info;
4149         struct sk_buff *skb;
4150         unsigned int i;
4151         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4152
4153         i = rx_ring->next_to_use;
4154         buffer_info = &rx_ring->buffer_info[i];
4155
4156         while (cleaned_count--) {
4157                 skb = buffer_info->skb;
4158                 if (skb) {
4159                         skb_trim(skb, 0);
4160                         goto map_skb;
4161                 }
4162
4163                 skb = netdev_alloc_skb(netdev, bufsz);
4164                 if (unlikely(!skb)) {
4165                         /* Better luck next round */
4166                         adapter->alloc_rx_buff_failed++;
4167                         break;
4168                 }
4169
4170                 /* Fix for errata 23, can't cross 64kB boundary */
4171                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4172                         struct sk_buff *oldskb = skb;
4173                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4174                                              "at %p\n", bufsz, skb->data);
4175                         /* Try again, without freeing the previous */
4176                         skb = netdev_alloc_skb(netdev, bufsz);
4177                         /* Failed allocation, critical failure */
4178                         if (!skb) {
4179                                 dev_kfree_skb(oldskb);
4180                                 break;
4181                         }
4182
4183                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4184                                 /* give up */
4185                                 dev_kfree_skb(skb);
4186                                 dev_kfree_skb(oldskb);
4187                                 break; /* while !buffer_info->skb */
4188                         }
4189
4190                         /* Use new allocation */
4191                         dev_kfree_skb(oldskb);
4192                 }
4193                 /* Make buffer alignment 2 beyond a 16 byte boundary
4194                  * this will result in a 16 byte aligned IP header after
4195                  * the 14 byte MAC header is removed
4196                  */
4197                 skb_reserve(skb, NET_IP_ALIGN);
4198
4199                 buffer_info->skb = skb;
4200                 buffer_info->length = adapter->rx_buffer_len;
4201 map_skb:
4202                 buffer_info->dma = pci_map_single(pdev,
4203                                                   skb->data,
4204                                                   adapter->rx_buffer_len,
4205                                                   PCI_DMA_FROMDEVICE);
4206
4207                 /* Fix for errata 23, can't cross 64kB boundary */
4208                 if (!e1000_check_64k_bound(adapter,
4209                                         (void *)(unsigned long)buffer_info->dma,
4210                                         adapter->rx_buffer_len)) {
4211                         DPRINTK(RX_ERR, ERR,
4212                                 "dma align check failed: %u bytes at %p\n",
4213                                 adapter->rx_buffer_len,
4214                                 (void *)(unsigned long)buffer_info->dma);
4215                         dev_kfree_skb(skb);
4216                         buffer_info->skb = NULL;
4217
4218                         pci_unmap_single(pdev, buffer_info->dma,
4219                                          adapter->rx_buffer_len,
4220                                          PCI_DMA_FROMDEVICE);
4221
4222                         break; /* while !buffer_info->skb */
4223                 }
4224                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4225                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4226
4227                 if (unlikely(++i == rx_ring->count))
4228                         i = 0;
4229                 buffer_info = &rx_ring->buffer_info[i];
4230         }
4231
4232         if (likely(rx_ring->next_to_use != i)) {
4233                 rx_ring->next_to_use = i;
4234                 if (unlikely(i-- == 0))
4235                         i = (rx_ring->count - 1);
4236
4237                 /* Force memory writes to complete before letting h/w
4238                  * know there are new descriptors to fetch.  (Only
4239                  * applicable for weak-ordered memory model archs,
4240                  * such as IA-64). */
4241                 wmb();
4242                 writel(i, hw->hw_addr + rx_ring->rdt);
4243         }
4244 }
4245
4246 /**
4247  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4248  * @adapter:
4249  **/
4250
4251 static void e1000_smartspeed(struct e1000_adapter *adapter)
4252 {
4253         struct e1000_hw *hw = &adapter->hw;
4254         u16 phy_status;
4255         u16 phy_ctrl;
4256
4257         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4258            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4259                 return;
4260
4261         if (adapter->smartspeed == 0) {
4262                 /* If Master/Slave config fault is asserted twice,
4263                  * we assume back-to-back */
4264                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4265                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4266                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4267                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4268                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4269                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4270                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4271                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4272                                             phy_ctrl);
4273                         adapter->smartspeed++;
4274                         if (!e1000_phy_setup_autoneg(hw) &&
4275                            !e1000_read_phy_reg(hw, PHY_CTRL,
4276                                                &phy_ctrl)) {
4277                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4278                                              MII_CR_RESTART_AUTO_NEG);
4279                                 e1000_write_phy_reg(hw, PHY_CTRL,
4280                                                     phy_ctrl);
4281                         }
4282                 }
4283                 return;
4284         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4285                 /* If still no link, perhaps using 2/3 pair cable */
4286                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4287                 phy_ctrl |= CR_1000T_MS_ENABLE;
4288                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4289                 if (!e1000_phy_setup_autoneg(hw) &&
4290                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4291                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4292                                      MII_CR_RESTART_AUTO_NEG);
4293                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4294                 }
4295         }
4296         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4297         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4298                 adapter->smartspeed = 0;
4299 }
4300
4301 /**
4302  * e1000_ioctl -
4303  * @netdev:
4304  * @ifreq:
4305  * @cmd:
4306  **/
4307
4308 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4309 {
4310         switch (cmd) {
4311         case SIOCGMIIPHY:
4312         case SIOCGMIIREG:
4313         case SIOCSMIIREG:
4314                 return e1000_mii_ioctl(netdev, ifr, cmd);
4315         default:
4316                 return -EOPNOTSUPP;
4317         }
4318 }
4319
4320 /**
4321  * e1000_mii_ioctl -
4322  * @netdev:
4323  * @ifreq:
4324  * @cmd:
4325  **/
4326
4327 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4328                            int cmd)
4329 {
4330         struct e1000_adapter *adapter = netdev_priv(netdev);
4331         struct e1000_hw *hw = &adapter->hw;
4332         struct mii_ioctl_data *data = if_mii(ifr);
4333         int retval;
4334         u16 mii_reg;
4335         u16 spddplx;
4336         unsigned long flags;
4337
4338         if (hw->media_type != e1000_media_type_copper)
4339                 return -EOPNOTSUPP;
4340
4341         switch (cmd) {
4342         case SIOCGMIIPHY:
4343                 data->phy_id = hw->phy_addr;
4344                 break;
4345         case SIOCGMIIREG:
4346                 if (!capable(CAP_NET_ADMIN))
4347                         return -EPERM;
4348                 spin_lock_irqsave(&adapter->stats_lock, flags);
4349                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4350                                    &data->val_out)) {
4351                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4352                         return -EIO;
4353                 }
4354                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4355                 break;
4356         case SIOCSMIIREG:
4357                 if (!capable(CAP_NET_ADMIN))
4358                         return -EPERM;
4359                 if (data->reg_num & ~(0x1F))
4360                         return -EFAULT;
4361                 mii_reg = data->val_in;
4362                 spin_lock_irqsave(&adapter->stats_lock, flags);
4363                 if (e1000_write_phy_reg(hw, data->reg_num,
4364                                         mii_reg)) {
4365                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4366                         return -EIO;
4367                 }
4368                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4369                 if (hw->media_type == e1000_media_type_copper) {
4370                         switch (data->reg_num) {
4371                         case PHY_CTRL:
4372                                 if (mii_reg & MII_CR_POWER_DOWN)
4373                                         break;
4374                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4375                                         hw->autoneg = 1;
4376                                         hw->autoneg_advertised = 0x2F;
4377                                 } else {
4378                                         if (mii_reg & 0x40)
4379                                                 spddplx = SPEED_1000;
4380                                         else if (mii_reg & 0x2000)
4381                                                 spddplx = SPEED_100;
4382                                         else
4383                                                 spddplx = SPEED_10;
4384                                         spddplx += (mii_reg & 0x100)
4385                                                    ? DUPLEX_FULL :
4386                                                    DUPLEX_HALF;
4387                                         retval = e1000_set_spd_dplx(adapter,
4388                                                                     spddplx);
4389                                         if (retval)
4390                                                 return retval;
4391                                 }
4392                                 if (netif_running(adapter->netdev))
4393                                         e1000_reinit_locked(adapter);
4394                                 else
4395                                         e1000_reset(adapter);
4396                                 break;
4397                         case M88E1000_PHY_SPEC_CTRL:
4398                         case M88E1000_EXT_PHY_SPEC_CTRL:
4399                                 if (e1000_phy_reset(hw))
4400                                         return -EIO;
4401                                 break;
4402                         }
4403                 } else {
4404                         switch (data->reg_num) {
4405                         case PHY_CTRL:
4406                                 if (mii_reg & MII_CR_POWER_DOWN)
4407                                         break;
4408                                 if (netif_running(adapter->netdev))
4409                                         e1000_reinit_locked(adapter);
4410                                 else
4411                                         e1000_reset(adapter);
4412                                 break;
4413                         }
4414                 }
4415                 break;
4416         default:
4417                 return -EOPNOTSUPP;
4418         }
4419         return E1000_SUCCESS;
4420 }
4421
4422 void e1000_pci_set_mwi(struct e1000_hw *hw)
4423 {
4424         struct e1000_adapter *adapter = hw->back;
4425         int ret_val = pci_set_mwi(adapter->pdev);
4426
4427         if (ret_val)
4428                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4429 }
4430
4431 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4432 {
4433         struct e1000_adapter *adapter = hw->back;
4434
4435         pci_clear_mwi(adapter->pdev);
4436 }
4437
4438 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4439 {
4440         struct e1000_adapter *adapter = hw->back;
4441         return pcix_get_mmrbc(adapter->pdev);
4442 }
4443
4444 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4445 {
4446         struct e1000_adapter *adapter = hw->back;
4447         pcix_set_mmrbc(adapter->pdev, mmrbc);
4448 }
4449
4450 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4451 {
4452     struct e1000_adapter *adapter = hw->back;
4453     u16 cap_offset;
4454
4455     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4456     if (!cap_offset)
4457         return -E1000_ERR_CONFIG;
4458
4459     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4460
4461     return E1000_SUCCESS;
4462 }
4463
4464 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4465 {
4466         outl(value, port);
4467 }
4468
4469 static void e1000_vlan_rx_register(struct net_device *netdev,
4470                                    struct vlan_group *grp)
4471 {
4472         struct e1000_adapter *adapter = netdev_priv(netdev);
4473         struct e1000_hw *hw = &adapter->hw;
4474         u32 ctrl, rctl;
4475
4476         if (!test_bit(__E1000_DOWN, &adapter->flags))
4477                 e1000_irq_disable(adapter);
4478         adapter->vlgrp = grp;
4479
4480         if (grp) {
4481                 /* enable VLAN tag insert/strip */
4482                 ctrl = er32(CTRL);
4483                 ctrl |= E1000_CTRL_VME;
4484                 ew32(CTRL, ctrl);
4485
4486                 if (adapter->hw.mac_type != e1000_ich8lan) {
4487                         /* enable VLAN receive filtering */
4488                         rctl = er32(RCTL);
4489                         rctl &= ~E1000_RCTL_CFIEN;
4490                         ew32(RCTL, rctl);
4491                         e1000_update_mng_vlan(adapter);
4492                 }
4493         } else {
4494                 /* disable VLAN tag insert/strip */
4495                 ctrl = er32(CTRL);
4496                 ctrl &= ~E1000_CTRL_VME;
4497                 ew32(CTRL, ctrl);
4498
4499                 if (adapter->hw.mac_type != e1000_ich8lan) {
4500                         if (adapter->mng_vlan_id !=
4501                             (u16)E1000_MNG_VLAN_NONE) {
4502                                 e1000_vlan_rx_kill_vid(netdev,
4503                                                        adapter->mng_vlan_id);
4504                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4505                         }
4506                 }
4507         }
4508
4509         if (!test_bit(__E1000_DOWN, &adapter->flags))
4510                 e1000_irq_enable(adapter);
4511 }
4512
4513 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4514 {
4515         struct e1000_adapter *adapter = netdev_priv(netdev);
4516         struct e1000_hw *hw = &adapter->hw;
4517         u32 vfta, index;
4518
4519         if ((hw->mng_cookie.status &
4520              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4521             (vid == adapter->mng_vlan_id))
4522                 return;
4523         /* add VID to filter table */
4524         index = (vid >> 5) & 0x7F;
4525         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4526         vfta |= (1 << (vid & 0x1F));
4527         e1000_write_vfta(hw, index, vfta);
4528 }
4529
4530 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4531 {
4532         struct e1000_adapter *adapter = netdev_priv(netdev);
4533         struct e1000_hw *hw = &adapter->hw;
4534         u32 vfta, index;
4535
4536         if (!test_bit(__E1000_DOWN, &adapter->flags))
4537                 e1000_irq_disable(adapter);
4538         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4539         if (!test_bit(__E1000_DOWN, &adapter->flags))
4540                 e1000_irq_enable(adapter);
4541
4542         if ((hw->mng_cookie.status &
4543              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4544             (vid == adapter->mng_vlan_id)) {
4545                 /* release control to f/w */
4546                 e1000_release_hw_control(adapter);
4547                 return;
4548         }
4549
4550         /* remove VID from filter table */
4551         index = (vid >> 5) & 0x7F;
4552         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4553         vfta &= ~(1 << (vid & 0x1F));
4554         e1000_write_vfta(hw, index, vfta);
4555 }
4556
4557 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4558 {
4559         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4560
4561         if (adapter->vlgrp) {
4562                 u16 vid;
4563                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4564                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4565                                 continue;
4566                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4567                 }
4568         }
4569 }
4570
4571 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4572 {
4573         struct e1000_hw *hw = &adapter->hw;
4574
4575         hw->autoneg = 0;
4576
4577         /* Fiber NICs only allow 1000 gbps Full duplex */
4578         if ((hw->media_type == e1000_media_type_fiber) &&
4579                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4580                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4581                 return -EINVAL;
4582         }
4583
4584         switch (spddplx) {
4585         case SPEED_10 + DUPLEX_HALF:
4586                 hw->forced_speed_duplex = e1000_10_half;
4587                 break;
4588         case SPEED_10 + DUPLEX_FULL:
4589                 hw->forced_speed_duplex = e1000_10_full;
4590                 break;
4591         case SPEED_100 + DUPLEX_HALF:
4592                 hw->forced_speed_duplex = e1000_100_half;
4593                 break;
4594         case SPEED_100 + DUPLEX_FULL:
4595                 hw->forced_speed_duplex = e1000_100_full;
4596                 break;
4597         case SPEED_1000 + DUPLEX_FULL:
4598                 hw->autoneg = 1;
4599                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4600                 break;
4601         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4602         default:
4603                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4604                 return -EINVAL;
4605         }
4606         return 0;
4607 }
4608
4609 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4610 {
4611         struct net_device *netdev = pci_get_drvdata(pdev);
4612         struct e1000_adapter *adapter = netdev_priv(netdev);
4613         struct e1000_hw *hw = &adapter->hw;
4614         u32 ctrl, ctrl_ext, rctl, status;
4615         u32 wufc = adapter->wol;
4616 #ifdef CONFIG_PM
4617         int retval = 0;
4618 #endif
4619
4620         netif_device_detach(netdev);
4621
4622         if (netif_running(netdev)) {
4623                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4624                 e1000_down(adapter);
4625         }
4626
4627 #ifdef CONFIG_PM
4628         retval = pci_save_state(pdev);
4629         if (retval)
4630                 return retval;
4631 #endif
4632
4633         status = er32(STATUS);
4634         if (status & E1000_STATUS_LU)
4635                 wufc &= ~E1000_WUFC_LNKC;
4636
4637         if (wufc) {
4638                 e1000_setup_rctl(adapter);
4639                 e1000_set_rx_mode(netdev);
4640
4641                 /* turn on all-multi mode if wake on multicast is enabled */
4642                 if (wufc & E1000_WUFC_MC) {
4643                         rctl = er32(RCTL);
4644                         rctl |= E1000_RCTL_MPE;
4645                         ew32(RCTL, rctl);
4646                 }
4647
4648                 if (hw->mac_type >= e1000_82540) {
4649                         ctrl = er32(CTRL);
4650                         /* advertise wake from D3Cold */
4651                         #define E1000_CTRL_ADVD3WUC 0x00100000
4652                         /* phy power management enable */
4653                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4654                         ctrl |= E1000_CTRL_ADVD3WUC |
4655                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4656                         ew32(CTRL, ctrl);
4657                 }
4658
4659                 if (hw->media_type == e1000_media_type_fiber ||
4660                    hw->media_type == e1000_media_type_internal_serdes) {
4661                         /* keep the laser running in D3 */
4662                         ctrl_ext = er32(CTRL_EXT);
4663                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4664                         ew32(CTRL_EXT, ctrl_ext);
4665                 }
4666
4667                 /* Allow time for pending master requests to run */
4668                 e1000_disable_pciex_master(hw);
4669
4670                 ew32(WUC, E1000_WUC_PME_EN);
4671                 ew32(WUFC, wufc);
4672                 pci_enable_wake(pdev, PCI_D3hot, 1);
4673                 pci_enable_wake(pdev, PCI_D3cold, 1);
4674         } else {
4675                 ew32(WUC, 0);
4676                 ew32(WUFC, 0);
4677                 pci_enable_wake(pdev, PCI_D3hot, 0);
4678                 pci_enable_wake(pdev, PCI_D3cold, 0);
4679         }
4680
4681         e1000_release_manageability(adapter);
4682
4683         /* make sure adapter isn't asleep if manageability is enabled */
4684         if (adapter->en_mng_pt) {
4685                 pci_enable_wake(pdev, PCI_D3hot, 1);
4686                 pci_enable_wake(pdev, PCI_D3cold, 1);
4687         }
4688
4689         if (hw->phy_type == e1000_phy_igp_3)
4690                 e1000_phy_powerdown_workaround(hw);
4691
4692         if (netif_running(netdev))
4693                 e1000_free_irq(adapter);
4694
4695         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4696          * would have already happened in close and is redundant. */
4697         e1000_release_hw_control(adapter);
4698
4699         pci_disable_device(pdev);
4700
4701         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4702
4703         return 0;
4704 }
4705
4706 #ifdef CONFIG_PM
4707 static int e1000_resume(struct pci_dev *pdev)
4708 {
4709         struct net_device *netdev = pci_get_drvdata(pdev);
4710         struct e1000_adapter *adapter = netdev_priv(netdev);
4711         struct e1000_hw *hw = &adapter->hw;
4712         u32 err;
4713
4714         pci_set_power_state(pdev, PCI_D0);
4715         pci_restore_state(pdev);
4716
4717         if (adapter->need_ioport)
4718                 err = pci_enable_device(pdev);
4719         else
4720                 err = pci_enable_device_mem(pdev);
4721         if (err) {
4722                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4723                 return err;
4724         }
4725         pci_set_master(pdev);
4726
4727         pci_enable_wake(pdev, PCI_D3hot, 0);
4728         pci_enable_wake(pdev, PCI_D3cold, 0);
4729
4730         if (netif_running(netdev)) {
4731                 err = e1000_request_irq(adapter);
4732                 if (err)
4733                         return err;
4734         }
4735
4736         e1000_power_up_phy(adapter);
4737         e1000_reset(adapter);
4738         ew32(WUS, ~0);
4739
4740         e1000_init_manageability(adapter);
4741
4742         if (netif_running(netdev))
4743                 e1000_up(adapter);
4744
4745         netif_device_attach(netdev);
4746
4747         /* If the controller is 82573 and f/w is AMT, do not set
4748          * DRV_LOAD until the interface is up.  For all other cases,
4749          * let the f/w know that the h/w is now under the control
4750          * of the driver. */
4751         if (hw->mac_type != e1000_82573 ||
4752             !e1000_check_mng_mode(hw))
4753                 e1000_get_hw_control(adapter);
4754
4755         return 0;
4756 }
4757 #endif
4758
4759 static void e1000_shutdown(struct pci_dev *pdev)
4760 {
4761         e1000_suspend(pdev, PMSG_SUSPEND);
4762 }
4763
4764 #ifdef CONFIG_NET_POLL_CONTROLLER
4765 /*
4766  * Polling 'interrupt' - used by things like netconsole to send skbs
4767  * without having to re-enable interrupts. It's not called while
4768  * the interrupt routine is executing.
4769  */
4770 static void e1000_netpoll(struct net_device *netdev)
4771 {
4772         struct e1000_adapter *adapter = netdev_priv(netdev);
4773
4774         disable_irq(adapter->pdev->irq);
4775         e1000_intr(adapter->pdev->irq, netdev);
4776         enable_irq(adapter->pdev->irq);
4777 }
4778 #endif
4779
4780 /**
4781  * e1000_io_error_detected - called when PCI error is detected
4782  * @pdev: Pointer to PCI device
4783  * @state: The current pci conneection state
4784  *
4785  * This function is called after a PCI bus error affecting
4786  * this device has been detected.
4787  */
4788 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4789                                                 pci_channel_state_t state)
4790 {
4791         struct net_device *netdev = pci_get_drvdata(pdev);
4792         struct e1000_adapter *adapter = netdev->priv;
4793
4794         netif_device_detach(netdev);
4795
4796         if (netif_running(netdev))
4797                 e1000_down(adapter);
4798         pci_disable_device(pdev);
4799
4800         /* Request a slot slot reset. */
4801         return PCI_ERS_RESULT_NEED_RESET;
4802 }
4803
4804 /**
4805  * e1000_io_slot_reset - called after the pci bus has been reset.
4806  * @pdev: Pointer to PCI device
4807  *
4808  * Restart the card from scratch, as if from a cold-boot. Implementation
4809  * resembles the first-half of the e1000_resume routine.
4810  */
4811 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4812 {
4813         struct net_device *netdev = pci_get_drvdata(pdev);
4814         struct e1000_adapter *adapter = netdev->priv;
4815         struct e1000_hw *hw = &adapter->hw;
4816         int err;
4817
4818         if (adapter->need_ioport)
4819                 err = pci_enable_device(pdev);
4820         else
4821                 err = pci_enable_device_mem(pdev);
4822         if (err) {
4823                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4824                 return PCI_ERS_RESULT_DISCONNECT;
4825         }
4826         pci_set_master(pdev);
4827
4828         pci_enable_wake(pdev, PCI_D3hot, 0);
4829         pci_enable_wake(pdev, PCI_D3cold, 0);
4830
4831         e1000_reset(adapter);
4832         ew32(WUS, ~0);
4833
4834         return PCI_ERS_RESULT_RECOVERED;
4835 }
4836
4837 /**
4838  * e1000_io_resume - called when traffic can start flowing again.
4839  * @pdev: Pointer to PCI device
4840  *
4841  * This callback is called when the error recovery driver tells us that
4842  * its OK to resume normal operation. Implementation resembles the
4843  * second-half of the e1000_resume routine.
4844  */
4845 static void e1000_io_resume(struct pci_dev *pdev)
4846 {
4847         struct net_device *netdev = pci_get_drvdata(pdev);
4848         struct e1000_adapter *adapter = netdev->priv;
4849         struct e1000_hw *hw = &adapter->hw;
4850
4851         e1000_init_manageability(adapter);
4852
4853         if (netif_running(netdev)) {
4854                 if (e1000_up(adapter)) {
4855                         printk("e1000: can't bring device back up after reset\n");
4856                         return;
4857                 }
4858         }
4859
4860         netif_device_attach(netdev);
4861
4862         /* If the controller is 82573 and f/w is AMT, do not set
4863          * DRV_LOAD until the interface is up.  For all other cases,
4864          * let the f/w know that the h/w is now under the control
4865          * of the driver. */
4866         if (hw->mac_type != e1000_82573 ||
4867             !e1000_check_mng_mode(hw))
4868                 e1000_get_hw_control(adapter);
4869
4870 }
4871
4872 /* e1000_main.c */