e1000e: add support for 82567LM-3 and 82567LF-3 (ICH10D) parts
[linux-2.6] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47
48 #include "e1000.h"
49
50 #define DRV_VERSION "0.3.3.3-k2"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
53
54 static const struct e1000_info *e1000_info_tbl[] = {
55         [board_82571]           = &e1000_82571_info,
56         [board_82572]           = &e1000_82572_info,
57         [board_82573]           = &e1000_82573_info,
58         [board_80003es2lan]     = &e1000_es2_info,
59         [board_ich8lan]         = &e1000_ich8_info,
60         [board_ich9lan]         = &e1000_ich9_info,
61         [board_ich10lan]        = &e1000_ich10_info,
62 };
63
64 #ifdef DEBUG
65 /**
66  * e1000_get_hw_dev_name - return device name string
67  * used by hardware layer to print debugging information
68  **/
69 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
70 {
71         return hw->adapter->netdev->name;
72 }
73 #endif
74
75 /**
76  * e1000_desc_unused - calculate if we have unused descriptors
77  **/
78 static int e1000_desc_unused(struct e1000_ring *ring)
79 {
80         if (ring->next_to_clean > ring->next_to_use)
81                 return ring->next_to_clean - ring->next_to_use - 1;
82
83         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
84 }
85
86 /**
87  * e1000_receive_skb - helper function to handle Rx indications
88  * @adapter: board private structure
89  * @status: descriptor status field as written by hardware
90  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
91  * @skb: pointer to sk_buff to be indicated to stack
92  **/
93 static void e1000_receive_skb(struct e1000_adapter *adapter,
94                               struct net_device *netdev,
95                               struct sk_buff *skb,
96                               u8 status, __le16 vlan)
97 {
98         skb->protocol = eth_type_trans(skb, netdev);
99
100         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
101                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
102                                          le16_to_cpu(vlan));
103         else
104                 netif_receive_skb(skb);
105
106         netdev->last_rx = jiffies;
107 }
108
109 /**
110  * e1000_rx_checksum - Receive Checksum Offload for 82543
111  * @adapter:     board private structure
112  * @status_err:  receive descriptor status and error fields
113  * @csum:       receive descriptor csum field
114  * @sk_buff:     socket buffer with received data
115  **/
116 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
117                               u32 csum, struct sk_buff *skb)
118 {
119         u16 status = (u16)status_err;
120         u8 errors = (u8)(status_err >> 24);
121         skb->ip_summed = CHECKSUM_NONE;
122
123         /* Ignore Checksum bit is set */
124         if (status & E1000_RXD_STAT_IXSM)
125                 return;
126         /* TCP/UDP checksum error bit is set */
127         if (errors & E1000_RXD_ERR_TCPE) {
128                 /* let the stack verify checksum errors */
129                 adapter->hw_csum_err++;
130                 return;
131         }
132
133         /* TCP/UDP Checksum has not been calculated */
134         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
135                 return;
136
137         /* It must be a TCP or UDP packet with a valid checksum */
138         if (status & E1000_RXD_STAT_TCPCS) {
139                 /* TCP checksum is good */
140                 skb->ip_summed = CHECKSUM_UNNECESSARY;
141         } else {
142                 /*
143                  * IP fragment with UDP payload
144                  * Hardware complements the payload checksum, so we undo it
145                  * and then put the value in host order for further stack use.
146                  */
147                 __sum16 sum = (__force __sum16)htons(csum);
148                 skb->csum = csum_unfold(~sum);
149                 skb->ip_summed = CHECKSUM_COMPLETE;
150         }
151         adapter->hw_csum_good++;
152 }
153
154 /**
155  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
156  * @adapter: address of board private structure
157  **/
158 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
159                                    int cleaned_count)
160 {
161         struct net_device *netdev = adapter->netdev;
162         struct pci_dev *pdev = adapter->pdev;
163         struct e1000_ring *rx_ring = adapter->rx_ring;
164         struct e1000_rx_desc *rx_desc;
165         struct e1000_buffer *buffer_info;
166         struct sk_buff *skb;
167         unsigned int i;
168         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
169
170         i = rx_ring->next_to_use;
171         buffer_info = &rx_ring->buffer_info[i];
172
173         while (cleaned_count--) {
174                 skb = buffer_info->skb;
175                 if (skb) {
176                         skb_trim(skb, 0);
177                         goto map_skb;
178                 }
179
180                 skb = netdev_alloc_skb(netdev, bufsz);
181                 if (!skb) {
182                         /* Better luck next round */
183                         adapter->alloc_rx_buff_failed++;
184                         break;
185                 }
186
187                 /*
188                  * Make buffer alignment 2 beyond a 16 byte boundary
189                  * this will result in a 16 byte aligned IP header after
190                  * the 14 byte MAC header is removed
191                  */
192                 skb_reserve(skb, NET_IP_ALIGN);
193
194                 buffer_info->skb = skb;
195 map_skb:
196                 buffer_info->dma = pci_map_single(pdev, skb->data,
197                                                   adapter->rx_buffer_len,
198                                                   PCI_DMA_FROMDEVICE);
199                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
200                         dev_err(&pdev->dev, "RX DMA map failed\n");
201                         adapter->rx_dma_failed++;
202                         break;
203                 }
204
205                 rx_desc = E1000_RX_DESC(*rx_ring, i);
206                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
207
208                 i++;
209                 if (i == rx_ring->count)
210                         i = 0;
211                 buffer_info = &rx_ring->buffer_info[i];
212         }
213
214         if (rx_ring->next_to_use != i) {
215                 rx_ring->next_to_use = i;
216                 if (i-- == 0)
217                         i = (rx_ring->count - 1);
218
219                 /*
220                  * Force memory writes to complete before letting h/w
221                  * know there are new descriptors to fetch.  (Only
222                  * applicable for weak-ordered memory model archs,
223                  * such as IA-64).
224                  */
225                 wmb();
226                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
227         }
228 }
229
230 /**
231  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
232  * @adapter: address of board private structure
233  **/
234 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
235                                       int cleaned_count)
236 {
237         struct net_device *netdev = adapter->netdev;
238         struct pci_dev *pdev = adapter->pdev;
239         union e1000_rx_desc_packet_split *rx_desc;
240         struct e1000_ring *rx_ring = adapter->rx_ring;
241         struct e1000_buffer *buffer_info;
242         struct e1000_ps_page *ps_page;
243         struct sk_buff *skb;
244         unsigned int i, j;
245
246         i = rx_ring->next_to_use;
247         buffer_info = &rx_ring->buffer_info[i];
248
249         while (cleaned_count--) {
250                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
251
252                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
253                         ps_page = &buffer_info->ps_pages[j];
254                         if (j >= adapter->rx_ps_pages) {
255                                 /* all unused desc entries get hw null ptr */
256                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
257                                 continue;
258                         }
259                         if (!ps_page->page) {
260                                 ps_page->page = alloc_page(GFP_ATOMIC);
261                                 if (!ps_page->page) {
262                                         adapter->alloc_rx_buff_failed++;
263                                         goto no_buffers;
264                                 }
265                                 ps_page->dma = pci_map_page(pdev,
266                                                    ps_page->page,
267                                                    0, PAGE_SIZE,
268                                                    PCI_DMA_FROMDEVICE);
269                                 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
270                                         dev_err(&adapter->pdev->dev,
271                                           "RX DMA page map failed\n");
272                                         adapter->rx_dma_failed++;
273                                         goto no_buffers;
274                                 }
275                         }
276                         /*
277                          * Refresh the desc even if buffer_addrs
278                          * didn't change because each write-back
279                          * erases this info.
280                          */
281                         rx_desc->read.buffer_addr[j+1] =
282                              cpu_to_le64(ps_page->dma);
283                 }
284
285                 skb = netdev_alloc_skb(netdev,
286                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
287
288                 if (!skb) {
289                         adapter->alloc_rx_buff_failed++;
290                         break;
291                 }
292
293                 /*
294                  * Make buffer alignment 2 beyond a 16 byte boundary
295                  * this will result in a 16 byte aligned IP header after
296                  * the 14 byte MAC header is removed
297                  */
298                 skb_reserve(skb, NET_IP_ALIGN);
299
300                 buffer_info->skb = skb;
301                 buffer_info->dma = pci_map_single(pdev, skb->data,
302                                                   adapter->rx_ps_bsize0,
303                                                   PCI_DMA_FROMDEVICE);
304                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
305                         dev_err(&pdev->dev, "RX DMA map failed\n");
306                         adapter->rx_dma_failed++;
307                         /* cleanup skb */
308                         dev_kfree_skb_any(skb);
309                         buffer_info->skb = NULL;
310                         break;
311                 }
312
313                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
314
315                 i++;
316                 if (i == rx_ring->count)
317                         i = 0;
318                 buffer_info = &rx_ring->buffer_info[i];
319         }
320
321 no_buffers:
322         if (rx_ring->next_to_use != i) {
323                 rx_ring->next_to_use = i;
324
325                 if (!(i--))
326                         i = (rx_ring->count - 1);
327
328                 /*
329                  * Force memory writes to complete before letting h/w
330                  * know there are new descriptors to fetch.  (Only
331                  * applicable for weak-ordered memory model archs,
332                  * such as IA-64).
333                  */
334                 wmb();
335                 /*
336                  * Hardware increments by 16 bytes, but packet split
337                  * descriptors are 32 bytes...so we increment tail
338                  * twice as much.
339                  */
340                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
341         }
342 }
343
344 /**
345  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
346  * @adapter: address of board private structure
347  * @rx_ring: pointer to receive ring structure
348  * @cleaned_count: number of buffers to allocate this pass
349  **/
350
351 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
352                                          int cleaned_count)
353 {
354         struct net_device *netdev = adapter->netdev;
355         struct pci_dev *pdev = adapter->pdev;
356         struct e1000_rx_desc *rx_desc;
357         struct e1000_ring *rx_ring = adapter->rx_ring;
358         struct e1000_buffer *buffer_info;
359         struct sk_buff *skb;
360         unsigned int i;
361         unsigned int bufsz = 256 -
362                              16 /* for skb_reserve */ -
363                              NET_IP_ALIGN;
364
365         i = rx_ring->next_to_use;
366         buffer_info = &rx_ring->buffer_info[i];
367
368         while (cleaned_count--) {
369                 skb = buffer_info->skb;
370                 if (skb) {
371                         skb_trim(skb, 0);
372                         goto check_page;
373                 }
374
375                 skb = netdev_alloc_skb(netdev, bufsz);
376                 if (unlikely(!skb)) {
377                         /* Better luck next round */
378                         adapter->alloc_rx_buff_failed++;
379                         break;
380                 }
381
382                 /* Make buffer alignment 2 beyond a 16 byte boundary
383                  * this will result in a 16 byte aligned IP header after
384                  * the 14 byte MAC header is removed
385                  */
386                 skb_reserve(skb, NET_IP_ALIGN);
387
388                 buffer_info->skb = skb;
389 check_page:
390                 /* allocate a new page if necessary */
391                 if (!buffer_info->page) {
392                         buffer_info->page = alloc_page(GFP_ATOMIC);
393                         if (unlikely(!buffer_info->page)) {
394                                 adapter->alloc_rx_buff_failed++;
395                                 break;
396                         }
397                 }
398
399                 if (!buffer_info->dma)
400                         buffer_info->dma = pci_map_page(pdev,
401                                                         buffer_info->page, 0,
402                                                         PAGE_SIZE,
403                                                         PCI_DMA_FROMDEVICE);
404
405                 rx_desc = E1000_RX_DESC(*rx_ring, i);
406                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
407
408                 if (unlikely(++i == rx_ring->count))
409                         i = 0;
410                 buffer_info = &rx_ring->buffer_info[i];
411         }
412
413         if (likely(rx_ring->next_to_use != i)) {
414                 rx_ring->next_to_use = i;
415                 if (unlikely(i-- == 0))
416                         i = (rx_ring->count - 1);
417
418                 /* Force memory writes to complete before letting h/w
419                  * know there are new descriptors to fetch.  (Only
420                  * applicable for weak-ordered memory model archs,
421                  * such as IA-64). */
422                 wmb();
423                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
424         }
425 }
426
427 /**
428  * e1000_clean_rx_irq - Send received data up the network stack; legacy
429  * @adapter: board private structure
430  *
431  * the return value indicates whether actual cleaning was done, there
432  * is no guarantee that everything was cleaned
433  **/
434 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
435                                int *work_done, int work_to_do)
436 {
437         struct net_device *netdev = adapter->netdev;
438         struct pci_dev *pdev = adapter->pdev;
439         struct e1000_ring *rx_ring = adapter->rx_ring;
440         struct e1000_rx_desc *rx_desc, *next_rxd;
441         struct e1000_buffer *buffer_info, *next_buffer;
442         u32 length;
443         unsigned int i;
444         int cleaned_count = 0;
445         bool cleaned = 0;
446         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
447
448         i = rx_ring->next_to_clean;
449         rx_desc = E1000_RX_DESC(*rx_ring, i);
450         buffer_info = &rx_ring->buffer_info[i];
451
452         while (rx_desc->status & E1000_RXD_STAT_DD) {
453                 struct sk_buff *skb;
454                 u8 status;
455
456                 if (*work_done >= work_to_do)
457                         break;
458                 (*work_done)++;
459
460                 status = rx_desc->status;
461                 skb = buffer_info->skb;
462                 buffer_info->skb = NULL;
463
464                 prefetch(skb->data - NET_IP_ALIGN);
465
466                 i++;
467                 if (i == rx_ring->count)
468                         i = 0;
469                 next_rxd = E1000_RX_DESC(*rx_ring, i);
470                 prefetch(next_rxd);
471
472                 next_buffer = &rx_ring->buffer_info[i];
473
474                 cleaned = 1;
475                 cleaned_count++;
476                 pci_unmap_single(pdev,
477                                  buffer_info->dma,
478                                  adapter->rx_buffer_len,
479                                  PCI_DMA_FROMDEVICE);
480                 buffer_info->dma = 0;
481
482                 length = le16_to_cpu(rx_desc->length);
483
484                 /* !EOP means multiple descriptors were used to store a single
485                  * packet, also make sure the frame isn't just CRC only */
486                 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
487                         /* All receives must fit into a single buffer */
488                         e_dbg("%s: Receive packet consumed multiple buffers\n",
489                               netdev->name);
490                         /* recycle */
491                         buffer_info->skb = skb;
492                         goto next_desc;
493                 }
494
495                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
496                         /* recycle */
497                         buffer_info->skb = skb;
498                         goto next_desc;
499                 }
500
501                 total_rx_bytes += length;
502                 total_rx_packets++;
503
504                 /*
505                  * code added for copybreak, this should improve
506                  * performance for small packets with large amounts
507                  * of reassembly being done in the stack
508                  */
509                 if (length < copybreak) {
510                         struct sk_buff *new_skb =
511                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
512                         if (new_skb) {
513                                 skb_reserve(new_skb, NET_IP_ALIGN);
514                                 skb_copy_to_linear_data_offset(new_skb,
515                                                                -NET_IP_ALIGN,
516                                                                (skb->data -
517                                                                 NET_IP_ALIGN),
518                                                                (length +
519                                                                 NET_IP_ALIGN));
520                                 /* save the skb in buffer_info as good */
521                                 buffer_info->skb = skb;
522                                 skb = new_skb;
523                         }
524                         /* else just continue with the old one */
525                 }
526                 /* end copybreak code */
527                 skb_put(skb, length);
528
529                 /* Receive Checksum Offload */
530                 e1000_rx_checksum(adapter,
531                                   (u32)(status) |
532                                   ((u32)(rx_desc->errors) << 24),
533                                   le16_to_cpu(rx_desc->csum), skb);
534
535                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
536
537 next_desc:
538                 rx_desc->status = 0;
539
540                 /* return some buffers to hardware, one at a time is too slow */
541                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
542                         adapter->alloc_rx_buf(adapter, cleaned_count);
543                         cleaned_count = 0;
544                 }
545
546                 /* use prefetched values */
547                 rx_desc = next_rxd;
548                 buffer_info = next_buffer;
549         }
550         rx_ring->next_to_clean = i;
551
552         cleaned_count = e1000_desc_unused(rx_ring);
553         if (cleaned_count)
554                 adapter->alloc_rx_buf(adapter, cleaned_count);
555
556         adapter->total_rx_bytes += total_rx_bytes;
557         adapter->total_rx_packets += total_rx_packets;
558         adapter->net_stats.rx_bytes += total_rx_bytes;
559         adapter->net_stats.rx_packets += total_rx_packets;
560         return cleaned;
561 }
562
563 static void e1000_put_txbuf(struct e1000_adapter *adapter,
564                              struct e1000_buffer *buffer_info)
565 {
566         if (buffer_info->dma) {
567                 pci_unmap_page(adapter->pdev, buffer_info->dma,
568                                buffer_info->length, PCI_DMA_TODEVICE);
569                 buffer_info->dma = 0;
570         }
571         if (buffer_info->skb) {
572                 dev_kfree_skb_any(buffer_info->skb);
573                 buffer_info->skb = NULL;
574         }
575 }
576
577 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
578 {
579         struct e1000_ring *tx_ring = adapter->tx_ring;
580         unsigned int i = tx_ring->next_to_clean;
581         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
582         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
583
584         /* detected Tx unit hang */
585         e_err("Detected Tx Unit Hang:\n"
586               "  TDH                  <%x>\n"
587               "  TDT                  <%x>\n"
588               "  next_to_use          <%x>\n"
589               "  next_to_clean        <%x>\n"
590               "buffer_info[next_to_clean]:\n"
591               "  time_stamp           <%lx>\n"
592               "  next_to_watch        <%x>\n"
593               "  jiffies              <%lx>\n"
594               "  next_to_watch.status <%x>\n",
595               readl(adapter->hw.hw_addr + tx_ring->head),
596               readl(adapter->hw.hw_addr + tx_ring->tail),
597               tx_ring->next_to_use,
598               tx_ring->next_to_clean,
599               tx_ring->buffer_info[eop].time_stamp,
600               eop,
601               jiffies,
602               eop_desc->upper.fields.status);
603 }
604
605 /**
606  * e1000_clean_tx_irq - Reclaim resources after transmit completes
607  * @adapter: board private structure
608  *
609  * the return value indicates whether actual cleaning was done, there
610  * is no guarantee that everything was cleaned
611  **/
612 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
613 {
614         struct net_device *netdev = adapter->netdev;
615         struct e1000_hw *hw = &adapter->hw;
616         struct e1000_ring *tx_ring = adapter->tx_ring;
617         struct e1000_tx_desc *tx_desc, *eop_desc;
618         struct e1000_buffer *buffer_info;
619         unsigned int i, eop;
620         unsigned int count = 0;
621         bool cleaned = 0;
622         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
623
624         i = tx_ring->next_to_clean;
625         eop = tx_ring->buffer_info[i].next_to_watch;
626         eop_desc = E1000_TX_DESC(*tx_ring, eop);
627
628         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
629                 for (cleaned = 0; !cleaned; ) {
630                         tx_desc = E1000_TX_DESC(*tx_ring, i);
631                         buffer_info = &tx_ring->buffer_info[i];
632                         cleaned = (i == eop);
633
634                         if (cleaned) {
635                                 struct sk_buff *skb = buffer_info->skb;
636                                 unsigned int segs, bytecount;
637                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
638                                 /* multiply data chunks by size of headers */
639                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
640                                             skb->len;
641                                 total_tx_packets += segs;
642                                 total_tx_bytes += bytecount;
643                         }
644
645                         e1000_put_txbuf(adapter, buffer_info);
646                         tx_desc->upper.data = 0;
647
648                         i++;
649                         if (i == tx_ring->count)
650                                 i = 0;
651                 }
652
653                 eop = tx_ring->buffer_info[i].next_to_watch;
654                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
655 #define E1000_TX_WEIGHT 64
656                 /* weight of a sort for tx, to avoid endless transmit cleanup */
657                 if (count++ == E1000_TX_WEIGHT)
658                         break;
659         }
660
661         tx_ring->next_to_clean = i;
662
663 #define TX_WAKE_THRESHOLD 32
664         if (cleaned && netif_carrier_ok(netdev) &&
665                      e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
666                 /* Make sure that anybody stopping the queue after this
667                  * sees the new next_to_clean.
668                  */
669                 smp_mb();
670
671                 if (netif_queue_stopped(netdev) &&
672                     !(test_bit(__E1000_DOWN, &adapter->state))) {
673                         netif_wake_queue(netdev);
674                         ++adapter->restart_queue;
675                 }
676         }
677
678         if (adapter->detect_tx_hung) {
679                 /*
680                  * Detect a transmit hang in hardware, this serializes the
681                  * check with the clearing of time_stamp and movement of i
682                  */
683                 adapter->detect_tx_hung = 0;
684                 if (tx_ring->buffer_info[eop].dma &&
685                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
686                                + (adapter->tx_timeout_factor * HZ))
687                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
688                         e1000_print_tx_hang(adapter);
689                         netif_stop_queue(netdev);
690                 }
691         }
692         adapter->total_tx_bytes += total_tx_bytes;
693         adapter->total_tx_packets += total_tx_packets;
694         adapter->net_stats.tx_bytes += total_tx_bytes;
695         adapter->net_stats.tx_packets += total_tx_packets;
696         return cleaned;
697 }
698
699 /**
700  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
701  * @adapter: board private structure
702  *
703  * the return value indicates whether actual cleaning was done, there
704  * is no guarantee that everything was cleaned
705  **/
706 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
707                                   int *work_done, int work_to_do)
708 {
709         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
710         struct net_device *netdev = adapter->netdev;
711         struct pci_dev *pdev = adapter->pdev;
712         struct e1000_ring *rx_ring = adapter->rx_ring;
713         struct e1000_buffer *buffer_info, *next_buffer;
714         struct e1000_ps_page *ps_page;
715         struct sk_buff *skb;
716         unsigned int i, j;
717         u32 length, staterr;
718         int cleaned_count = 0;
719         bool cleaned = 0;
720         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
721
722         i = rx_ring->next_to_clean;
723         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
724         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
725         buffer_info = &rx_ring->buffer_info[i];
726
727         while (staterr & E1000_RXD_STAT_DD) {
728                 if (*work_done >= work_to_do)
729                         break;
730                 (*work_done)++;
731                 skb = buffer_info->skb;
732
733                 /* in the packet split case this is header only */
734                 prefetch(skb->data - NET_IP_ALIGN);
735
736                 i++;
737                 if (i == rx_ring->count)
738                         i = 0;
739                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
740                 prefetch(next_rxd);
741
742                 next_buffer = &rx_ring->buffer_info[i];
743
744                 cleaned = 1;
745                 cleaned_count++;
746                 pci_unmap_single(pdev, buffer_info->dma,
747                                  adapter->rx_ps_bsize0,
748                                  PCI_DMA_FROMDEVICE);
749                 buffer_info->dma = 0;
750
751                 if (!(staterr & E1000_RXD_STAT_EOP)) {
752                         e_dbg("%s: Packet Split buffers didn't pick up the "
753                               "full packet\n", netdev->name);
754                         dev_kfree_skb_irq(skb);
755                         goto next_desc;
756                 }
757
758                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
759                         dev_kfree_skb_irq(skb);
760                         goto next_desc;
761                 }
762
763                 length = le16_to_cpu(rx_desc->wb.middle.length0);
764
765                 if (!length) {
766                         e_dbg("%s: Last part of the packet spanning multiple "
767                               "descriptors\n", netdev->name);
768                         dev_kfree_skb_irq(skb);
769                         goto next_desc;
770                 }
771
772                 /* Good Receive */
773                 skb_put(skb, length);
774
775                 {
776                 /*
777                  * this looks ugly, but it seems compiler issues make it
778                  * more efficient than reusing j
779                  */
780                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
781
782                 /*
783                  * page alloc/put takes too long and effects small packet
784                  * throughput, so unsplit small packets and save the alloc/put
785                  * only valid in softirq (napi) context to call kmap_*
786                  */
787                 if (l1 && (l1 <= copybreak) &&
788                     ((length + l1) <= adapter->rx_ps_bsize0)) {
789                         u8 *vaddr;
790
791                         ps_page = &buffer_info->ps_pages[0];
792
793                         /*
794                          * there is no documentation about how to call
795                          * kmap_atomic, so we can't hold the mapping
796                          * very long
797                          */
798                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
799                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
800                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
801                         memcpy(skb_tail_pointer(skb), vaddr, l1);
802                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
803                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
804                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
805
806                         skb_put(skb, l1);
807                         goto copydone;
808                 } /* if */
809                 }
810
811                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
812                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
813                         if (!length)
814                                 break;
815
816                         ps_page = &buffer_info->ps_pages[j];
817                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
818                                        PCI_DMA_FROMDEVICE);
819                         ps_page->dma = 0;
820                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
821                         ps_page->page = NULL;
822                         skb->len += length;
823                         skb->data_len += length;
824                         skb->truesize += length;
825                 }
826
827 copydone:
828                 total_rx_bytes += skb->len;
829                 total_rx_packets++;
830
831                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
832                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
833
834                 if (rx_desc->wb.upper.header_status &
835                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
836                         adapter->rx_hdr_split++;
837
838                 e1000_receive_skb(adapter, netdev, skb,
839                                   staterr, rx_desc->wb.middle.vlan);
840
841 next_desc:
842                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
843                 buffer_info->skb = NULL;
844
845                 /* return some buffers to hardware, one at a time is too slow */
846                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
847                         adapter->alloc_rx_buf(adapter, cleaned_count);
848                         cleaned_count = 0;
849                 }
850
851                 /* use prefetched values */
852                 rx_desc = next_rxd;
853                 buffer_info = next_buffer;
854
855                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
856         }
857         rx_ring->next_to_clean = i;
858
859         cleaned_count = e1000_desc_unused(rx_ring);
860         if (cleaned_count)
861                 adapter->alloc_rx_buf(adapter, cleaned_count);
862
863         adapter->total_rx_bytes += total_rx_bytes;
864         adapter->total_rx_packets += total_rx_packets;
865         adapter->net_stats.rx_bytes += total_rx_bytes;
866         adapter->net_stats.rx_packets += total_rx_packets;
867         return cleaned;
868 }
869
870 /**
871  * e1000_consume_page - helper function
872  **/
873 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
874                                u16 length)
875 {
876         bi->page = NULL;
877         skb->len += length;
878         skb->data_len += length;
879         skb->truesize += length;
880 }
881
882 /**
883  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
884  * @adapter: board private structure
885  *
886  * the return value indicates whether actual cleaning was done, there
887  * is no guarantee that everything was cleaned
888  **/
889
890 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
891                                      int *work_done, int work_to_do)
892 {
893         struct net_device *netdev = adapter->netdev;
894         struct pci_dev *pdev = adapter->pdev;
895         struct e1000_ring *rx_ring = adapter->rx_ring;
896         struct e1000_rx_desc *rx_desc, *next_rxd;
897         struct e1000_buffer *buffer_info, *next_buffer;
898         u32 length;
899         unsigned int i;
900         int cleaned_count = 0;
901         bool cleaned = false;
902         unsigned int total_rx_bytes=0, total_rx_packets=0;
903
904         i = rx_ring->next_to_clean;
905         rx_desc = E1000_RX_DESC(*rx_ring, i);
906         buffer_info = &rx_ring->buffer_info[i];
907
908         while (rx_desc->status & E1000_RXD_STAT_DD) {
909                 struct sk_buff *skb;
910                 u8 status;
911
912                 if (*work_done >= work_to_do)
913                         break;
914                 (*work_done)++;
915
916                 status = rx_desc->status;
917                 skb = buffer_info->skb;
918                 buffer_info->skb = NULL;
919
920                 ++i;
921                 if (i == rx_ring->count)
922                         i = 0;
923                 next_rxd = E1000_RX_DESC(*rx_ring, i);
924                 prefetch(next_rxd);
925
926                 next_buffer = &rx_ring->buffer_info[i];
927
928                 cleaned = true;
929                 cleaned_count++;
930                 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
931                                PCI_DMA_FROMDEVICE);
932                 buffer_info->dma = 0;
933
934                 length = le16_to_cpu(rx_desc->length);
935
936                 /* errors is only valid for DD + EOP descriptors */
937                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
938                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
939                                 /* recycle both page and skb */
940                                 buffer_info->skb = skb;
941                                 /* an error means any chain goes out the window
942                                  * too */
943                                 if (rx_ring->rx_skb_top)
944                                         dev_kfree_skb(rx_ring->rx_skb_top);
945                                 rx_ring->rx_skb_top = NULL;
946                                 goto next_desc;
947                 }
948
949 #define rxtop rx_ring->rx_skb_top
950                 if (!(status & E1000_RXD_STAT_EOP)) {
951                         /* this descriptor is only the beginning (or middle) */
952                         if (!rxtop) {
953                                 /* this is the beginning of a chain */
954                                 rxtop = skb;
955                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
956                                                    0, length);
957                         } else {
958                                 /* this is the middle of a chain */
959                                 skb_fill_page_desc(rxtop,
960                                     skb_shinfo(rxtop)->nr_frags,
961                                     buffer_info->page, 0, length);
962                                 /* re-use the skb, only consumed the page */
963                                 buffer_info->skb = skb;
964                         }
965                         e1000_consume_page(buffer_info, rxtop, length);
966                         goto next_desc;
967                 } else {
968                         if (rxtop) {
969                                 /* end of the chain */
970                                 skb_fill_page_desc(rxtop,
971                                     skb_shinfo(rxtop)->nr_frags,
972                                     buffer_info->page, 0, length);
973                                 /* re-use the current skb, we only consumed the
974                                  * page */
975                                 buffer_info->skb = skb;
976                                 skb = rxtop;
977                                 rxtop = NULL;
978                                 e1000_consume_page(buffer_info, skb, length);
979                         } else {
980                                 /* no chain, got EOP, this buf is the packet
981                                  * copybreak to save the put_page/alloc_page */
982                                 if (length <= copybreak &&
983                                     skb_tailroom(skb) >= length) {
984                                         u8 *vaddr;
985                                         vaddr = kmap_atomic(buffer_info->page,
986                                                            KM_SKB_DATA_SOFTIRQ);
987                                         memcpy(skb_tail_pointer(skb), vaddr,
988                                                length);
989                                         kunmap_atomic(vaddr,
990                                                       KM_SKB_DATA_SOFTIRQ);
991                                         /* re-use the page, so don't erase
992                                          * buffer_info->page */
993                                         skb_put(skb, length);
994                                 } else {
995                                         skb_fill_page_desc(skb, 0,
996                                                            buffer_info->page, 0,
997                                                            length);
998                                         e1000_consume_page(buffer_info, skb,
999                                                            length);
1000                                 }
1001                         }
1002                 }
1003
1004                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1005                 e1000_rx_checksum(adapter,
1006                                   (u32)(status) |
1007                                   ((u32)(rx_desc->errors) << 24),
1008                                   le16_to_cpu(rx_desc->csum), skb);
1009
1010                 /* probably a little skewed due to removing CRC */
1011                 total_rx_bytes += skb->len;
1012                 total_rx_packets++;
1013
1014                 /* eth type trans needs skb->data to point to something */
1015                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1016                         e_err("pskb_may_pull failed.\n");
1017                         dev_kfree_skb(skb);
1018                         goto next_desc;
1019                 }
1020
1021                 e1000_receive_skb(adapter, netdev, skb, status,
1022                                   rx_desc->special);
1023
1024 next_desc:
1025                 rx_desc->status = 0;
1026
1027                 /* return some buffers to hardware, one at a time is too slow */
1028                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1029                         adapter->alloc_rx_buf(adapter, cleaned_count);
1030                         cleaned_count = 0;
1031                 }
1032
1033                 /* use prefetched values */
1034                 rx_desc = next_rxd;
1035                 buffer_info = next_buffer;
1036         }
1037         rx_ring->next_to_clean = i;
1038
1039         cleaned_count = e1000_desc_unused(rx_ring);
1040         if (cleaned_count)
1041                 adapter->alloc_rx_buf(adapter, cleaned_count);
1042
1043         adapter->total_rx_bytes += total_rx_bytes;
1044         adapter->total_rx_packets += total_rx_packets;
1045         adapter->net_stats.rx_bytes += total_rx_bytes;
1046         adapter->net_stats.rx_packets += total_rx_packets;
1047         return cleaned;
1048 }
1049
1050 /**
1051  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1052  * @adapter: board private structure
1053  **/
1054 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1055 {
1056         struct e1000_ring *rx_ring = adapter->rx_ring;
1057         struct e1000_buffer *buffer_info;
1058         struct e1000_ps_page *ps_page;
1059         struct pci_dev *pdev = adapter->pdev;
1060         unsigned int i, j;
1061
1062         /* Free all the Rx ring sk_buffs */
1063         for (i = 0; i < rx_ring->count; i++) {
1064                 buffer_info = &rx_ring->buffer_info[i];
1065                 if (buffer_info->dma) {
1066                         if (adapter->clean_rx == e1000_clean_rx_irq)
1067                                 pci_unmap_single(pdev, buffer_info->dma,
1068                                                  adapter->rx_buffer_len,
1069                                                  PCI_DMA_FROMDEVICE);
1070                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1071                                 pci_unmap_page(pdev, buffer_info->dma,
1072                                                PAGE_SIZE,
1073                                                PCI_DMA_FROMDEVICE);
1074                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1075                                 pci_unmap_single(pdev, buffer_info->dma,
1076                                                  adapter->rx_ps_bsize0,
1077                                                  PCI_DMA_FROMDEVICE);
1078                         buffer_info->dma = 0;
1079                 }
1080
1081                 if (buffer_info->page) {
1082                         put_page(buffer_info->page);
1083                         buffer_info->page = NULL;
1084                 }
1085
1086                 if (buffer_info->skb) {
1087                         dev_kfree_skb(buffer_info->skb);
1088                         buffer_info->skb = NULL;
1089                 }
1090
1091                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1092                         ps_page = &buffer_info->ps_pages[j];
1093                         if (!ps_page->page)
1094                                 break;
1095                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1096                                        PCI_DMA_FROMDEVICE);
1097                         ps_page->dma = 0;
1098                         put_page(ps_page->page);
1099                         ps_page->page = NULL;
1100                 }
1101         }
1102
1103         /* there also may be some cached data from a chained receive */
1104         if (rx_ring->rx_skb_top) {
1105                 dev_kfree_skb(rx_ring->rx_skb_top);
1106                 rx_ring->rx_skb_top = NULL;
1107         }
1108
1109         /* Zero out the descriptor ring */
1110         memset(rx_ring->desc, 0, rx_ring->size);
1111
1112         rx_ring->next_to_clean = 0;
1113         rx_ring->next_to_use = 0;
1114
1115         writel(0, adapter->hw.hw_addr + rx_ring->head);
1116         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1117 }
1118
1119 /**
1120  * e1000_intr_msi - Interrupt Handler
1121  * @irq: interrupt number
1122  * @data: pointer to a network interface device structure
1123  **/
1124 static irqreturn_t e1000_intr_msi(int irq, void *data)
1125 {
1126         struct net_device *netdev = data;
1127         struct e1000_adapter *adapter = netdev_priv(netdev);
1128         struct e1000_hw *hw = &adapter->hw;
1129         u32 icr = er32(ICR);
1130
1131         /*
1132          * read ICR disables interrupts using IAM
1133          */
1134
1135         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1136                 hw->mac.get_link_status = 1;
1137                 /*
1138                  * ICH8 workaround-- Call gig speed drop workaround on cable
1139                  * disconnect (LSC) before accessing any PHY registers
1140                  */
1141                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1142                     (!(er32(STATUS) & E1000_STATUS_LU)))
1143                         e1000e_gig_downshift_workaround_ich8lan(hw);
1144
1145                 /*
1146                  * 80003ES2LAN workaround-- For packet buffer work-around on
1147                  * link down event; disable receives here in the ISR and reset
1148                  * adapter in watchdog
1149                  */
1150                 if (netif_carrier_ok(netdev) &&
1151                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1152                         /* disable receives */
1153                         u32 rctl = er32(RCTL);
1154                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1155                         adapter->flags |= FLAG_RX_RESTART_NOW;
1156                 }
1157                 /* guard against interrupt when we're going down */
1158                 if (!test_bit(__E1000_DOWN, &adapter->state))
1159                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1160         }
1161
1162         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1163                 adapter->total_tx_bytes = 0;
1164                 adapter->total_tx_packets = 0;
1165                 adapter->total_rx_bytes = 0;
1166                 adapter->total_rx_packets = 0;
1167                 __netif_rx_schedule(netdev, &adapter->napi);
1168         }
1169
1170         return IRQ_HANDLED;
1171 }
1172
1173 /**
1174  * e1000_intr - Interrupt Handler
1175  * @irq: interrupt number
1176  * @data: pointer to a network interface device structure
1177  **/
1178 static irqreturn_t e1000_intr(int irq, void *data)
1179 {
1180         struct net_device *netdev = data;
1181         struct e1000_adapter *adapter = netdev_priv(netdev);
1182         struct e1000_hw *hw = &adapter->hw;
1183
1184         u32 rctl, icr = er32(ICR);
1185         if (!icr)
1186                 return IRQ_NONE;  /* Not our interrupt */
1187
1188         /*
1189          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1190          * not set, then the adapter didn't send an interrupt
1191          */
1192         if (!(icr & E1000_ICR_INT_ASSERTED))
1193                 return IRQ_NONE;
1194
1195         /*
1196          * Interrupt Auto-Mask...upon reading ICR,
1197          * interrupts are masked.  No need for the
1198          * IMC write
1199          */
1200
1201         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1202                 hw->mac.get_link_status = 1;
1203                 /*
1204                  * ICH8 workaround-- Call gig speed drop workaround on cable
1205                  * disconnect (LSC) before accessing any PHY registers
1206                  */
1207                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1208                     (!(er32(STATUS) & E1000_STATUS_LU)))
1209                         e1000e_gig_downshift_workaround_ich8lan(hw);
1210
1211                 /*
1212                  * 80003ES2LAN workaround--
1213                  * For packet buffer work-around on link down event;
1214                  * disable receives here in the ISR and
1215                  * reset adapter in watchdog
1216                  */
1217                 if (netif_carrier_ok(netdev) &&
1218                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1219                         /* disable receives */
1220                         rctl = er32(RCTL);
1221                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1222                         adapter->flags |= FLAG_RX_RESTART_NOW;
1223                 }
1224                 /* guard against interrupt when we're going down */
1225                 if (!test_bit(__E1000_DOWN, &adapter->state))
1226                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1227         }
1228
1229         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1230                 adapter->total_tx_bytes = 0;
1231                 adapter->total_tx_packets = 0;
1232                 adapter->total_rx_bytes = 0;
1233                 adapter->total_rx_packets = 0;
1234                 __netif_rx_schedule(netdev, &adapter->napi);
1235         }
1236
1237         return IRQ_HANDLED;
1238 }
1239
1240 /**
1241  * e1000_request_irq - initialize interrupts
1242  *
1243  * Attempts to configure interrupts using the best available
1244  * capabilities of the hardware and kernel.
1245  **/
1246 static int e1000_request_irq(struct e1000_adapter *adapter)
1247 {
1248         struct net_device *netdev = adapter->netdev;
1249         int irq_flags = IRQF_SHARED;
1250         int err;
1251
1252         if (!(adapter->flags & FLAG_MSI_TEST_FAILED)) {
1253                 err = pci_enable_msi(adapter->pdev);
1254                 if (!err) {
1255                         adapter->flags |= FLAG_MSI_ENABLED;
1256                         irq_flags = 0;
1257                 }
1258         }
1259
1260         err = request_irq(adapter->pdev->irq,
1261                           ((adapter->flags & FLAG_MSI_ENABLED) ?
1262                                 &e1000_intr_msi : &e1000_intr),
1263                           irq_flags, netdev->name, netdev);
1264         if (err) {
1265                 if (adapter->flags & FLAG_MSI_ENABLED) {
1266                         pci_disable_msi(adapter->pdev);
1267                         adapter->flags &= ~FLAG_MSI_ENABLED;
1268                 }
1269                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1270         }
1271
1272         return err;
1273 }
1274
1275 static void e1000_free_irq(struct e1000_adapter *adapter)
1276 {
1277         struct net_device *netdev = adapter->netdev;
1278
1279         free_irq(adapter->pdev->irq, netdev);
1280         if (adapter->flags & FLAG_MSI_ENABLED) {
1281                 pci_disable_msi(adapter->pdev);
1282                 adapter->flags &= ~FLAG_MSI_ENABLED;
1283         }
1284 }
1285
1286 /**
1287  * e1000_irq_disable - Mask off interrupt generation on the NIC
1288  **/
1289 static void e1000_irq_disable(struct e1000_adapter *adapter)
1290 {
1291         struct e1000_hw *hw = &adapter->hw;
1292
1293         ew32(IMC, ~0);
1294         e1e_flush();
1295         synchronize_irq(adapter->pdev->irq);
1296 }
1297
1298 /**
1299  * e1000_irq_enable - Enable default interrupt generation settings
1300  **/
1301 static void e1000_irq_enable(struct e1000_adapter *adapter)
1302 {
1303         struct e1000_hw *hw = &adapter->hw;
1304
1305         ew32(IMS, IMS_ENABLE_MASK);
1306         e1e_flush();
1307 }
1308
1309 /**
1310  * e1000_get_hw_control - get control of the h/w from f/w
1311  * @adapter: address of board private structure
1312  *
1313  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1314  * For ASF and Pass Through versions of f/w this means that
1315  * the driver is loaded. For AMT version (only with 82573)
1316  * of the f/w this means that the network i/f is open.
1317  **/
1318 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1319 {
1320         struct e1000_hw *hw = &adapter->hw;
1321         u32 ctrl_ext;
1322         u32 swsm;
1323
1324         /* Let firmware know the driver has taken over */
1325         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1326                 swsm = er32(SWSM);
1327                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1328         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1329                 ctrl_ext = er32(CTRL_EXT);
1330                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1331         }
1332 }
1333
1334 /**
1335  * e1000_release_hw_control - release control of the h/w to f/w
1336  * @adapter: address of board private structure
1337  *
1338  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1339  * For ASF and Pass Through versions of f/w this means that the
1340  * driver is no longer loaded. For AMT version (only with 82573) i
1341  * of the f/w this means that the network i/f is closed.
1342  *
1343  **/
1344 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1345 {
1346         struct e1000_hw *hw = &adapter->hw;
1347         u32 ctrl_ext;
1348         u32 swsm;
1349
1350         /* Let firmware taken over control of h/w */
1351         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1352                 swsm = er32(SWSM);
1353                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1354         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1355                 ctrl_ext = er32(CTRL_EXT);
1356                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1357         }
1358 }
1359
1360 /**
1361  * @e1000_alloc_ring - allocate memory for a ring structure
1362  **/
1363 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1364                                 struct e1000_ring *ring)
1365 {
1366         struct pci_dev *pdev = adapter->pdev;
1367
1368         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1369                                         GFP_KERNEL);
1370         if (!ring->desc)
1371                 return -ENOMEM;
1372
1373         return 0;
1374 }
1375
1376 /**
1377  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1378  * @adapter: board private structure
1379  *
1380  * Return 0 on success, negative on failure
1381  **/
1382 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1383 {
1384         struct e1000_ring *tx_ring = adapter->tx_ring;
1385         int err = -ENOMEM, size;
1386
1387         size = sizeof(struct e1000_buffer) * tx_ring->count;
1388         tx_ring->buffer_info = vmalloc(size);
1389         if (!tx_ring->buffer_info)
1390                 goto err;
1391         memset(tx_ring->buffer_info, 0, size);
1392
1393         /* round up to nearest 4K */
1394         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1395         tx_ring->size = ALIGN(tx_ring->size, 4096);
1396
1397         err = e1000_alloc_ring_dma(adapter, tx_ring);
1398         if (err)
1399                 goto err;
1400
1401         tx_ring->next_to_use = 0;
1402         tx_ring->next_to_clean = 0;
1403         spin_lock_init(&adapter->tx_queue_lock);
1404
1405         return 0;
1406 err:
1407         vfree(tx_ring->buffer_info);
1408         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1409         return err;
1410 }
1411
1412 /**
1413  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1414  * @adapter: board private structure
1415  *
1416  * Returns 0 on success, negative on failure
1417  **/
1418 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1419 {
1420         struct e1000_ring *rx_ring = adapter->rx_ring;
1421         struct e1000_buffer *buffer_info;
1422         int i, size, desc_len, err = -ENOMEM;
1423
1424         size = sizeof(struct e1000_buffer) * rx_ring->count;
1425         rx_ring->buffer_info = vmalloc(size);
1426         if (!rx_ring->buffer_info)
1427                 goto err;
1428         memset(rx_ring->buffer_info, 0, size);
1429
1430         for (i = 0; i < rx_ring->count; i++) {
1431                 buffer_info = &rx_ring->buffer_info[i];
1432                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1433                                                 sizeof(struct e1000_ps_page),
1434                                                 GFP_KERNEL);
1435                 if (!buffer_info->ps_pages)
1436                         goto err_pages;
1437         }
1438
1439         desc_len = sizeof(union e1000_rx_desc_packet_split);
1440
1441         /* Round up to nearest 4K */
1442         rx_ring->size = rx_ring->count * desc_len;
1443         rx_ring->size = ALIGN(rx_ring->size, 4096);
1444
1445         err = e1000_alloc_ring_dma(adapter, rx_ring);
1446         if (err)
1447                 goto err_pages;
1448
1449         rx_ring->next_to_clean = 0;
1450         rx_ring->next_to_use = 0;
1451         rx_ring->rx_skb_top = NULL;
1452
1453         return 0;
1454
1455 err_pages:
1456         for (i = 0; i < rx_ring->count; i++) {
1457                 buffer_info = &rx_ring->buffer_info[i];
1458                 kfree(buffer_info->ps_pages);
1459         }
1460 err:
1461         vfree(rx_ring->buffer_info);
1462         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1463         return err;
1464 }
1465
1466 /**
1467  * e1000_clean_tx_ring - Free Tx Buffers
1468  * @adapter: board private structure
1469  **/
1470 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1471 {
1472         struct e1000_ring *tx_ring = adapter->tx_ring;
1473         struct e1000_buffer *buffer_info;
1474         unsigned long size;
1475         unsigned int i;
1476
1477         for (i = 0; i < tx_ring->count; i++) {
1478                 buffer_info = &tx_ring->buffer_info[i];
1479                 e1000_put_txbuf(adapter, buffer_info);
1480         }
1481
1482         size = sizeof(struct e1000_buffer) * tx_ring->count;
1483         memset(tx_ring->buffer_info, 0, size);
1484
1485         memset(tx_ring->desc, 0, tx_ring->size);
1486
1487         tx_ring->next_to_use = 0;
1488         tx_ring->next_to_clean = 0;
1489
1490         writel(0, adapter->hw.hw_addr + tx_ring->head);
1491         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1492 }
1493
1494 /**
1495  * e1000e_free_tx_resources - Free Tx Resources per Queue
1496  * @adapter: board private structure
1497  *
1498  * Free all transmit software resources
1499  **/
1500 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1501 {
1502         struct pci_dev *pdev = adapter->pdev;
1503         struct e1000_ring *tx_ring = adapter->tx_ring;
1504
1505         e1000_clean_tx_ring(adapter);
1506
1507         vfree(tx_ring->buffer_info);
1508         tx_ring->buffer_info = NULL;
1509
1510         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1511                           tx_ring->dma);
1512         tx_ring->desc = NULL;
1513 }
1514
1515 /**
1516  * e1000e_free_rx_resources - Free Rx Resources
1517  * @adapter: board private structure
1518  *
1519  * Free all receive software resources
1520  **/
1521
1522 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1523 {
1524         struct pci_dev *pdev = adapter->pdev;
1525         struct e1000_ring *rx_ring = adapter->rx_ring;
1526         int i;
1527
1528         e1000_clean_rx_ring(adapter);
1529
1530         for (i = 0; i < rx_ring->count; i++) {
1531                 kfree(rx_ring->buffer_info[i].ps_pages);
1532         }
1533
1534         vfree(rx_ring->buffer_info);
1535         rx_ring->buffer_info = NULL;
1536
1537         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1538                           rx_ring->dma);
1539         rx_ring->desc = NULL;
1540 }
1541
1542 /**
1543  * e1000_update_itr - update the dynamic ITR value based on statistics
1544  * @adapter: pointer to adapter
1545  * @itr_setting: current adapter->itr
1546  * @packets: the number of packets during this measurement interval
1547  * @bytes: the number of bytes during this measurement interval
1548  *
1549  *      Stores a new ITR value based on packets and byte
1550  *      counts during the last interrupt.  The advantage of per interrupt
1551  *      computation is faster updates and more accurate ITR for the current
1552  *      traffic pattern.  Constants in this function were computed
1553  *      based on theoretical maximum wire speed and thresholds were set based
1554  *      on testing data as well as attempting to minimize response time
1555  *      while increasing bulk throughput.
1556  *      this functionality is controlled by the InterruptThrottleRate module
1557  *      parameter (see e1000_param.c)
1558  **/
1559 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1560                                      u16 itr_setting, int packets,
1561                                      int bytes)
1562 {
1563         unsigned int retval = itr_setting;
1564
1565         if (packets == 0)
1566                 goto update_itr_done;
1567
1568         switch (itr_setting) {
1569         case lowest_latency:
1570                 /* handle TSO and jumbo frames */
1571                 if (bytes/packets > 8000)
1572                         retval = bulk_latency;
1573                 else if ((packets < 5) && (bytes > 512)) {
1574                         retval = low_latency;
1575                 }
1576                 break;
1577         case low_latency:  /* 50 usec aka 20000 ints/s */
1578                 if (bytes > 10000) {
1579                         /* this if handles the TSO accounting */
1580                         if (bytes/packets > 8000) {
1581                                 retval = bulk_latency;
1582                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1583                                 retval = bulk_latency;
1584                         } else if ((packets > 35)) {
1585                                 retval = lowest_latency;
1586                         }
1587                 } else if (bytes/packets > 2000) {
1588                         retval = bulk_latency;
1589                 } else if (packets <= 2 && bytes < 512) {
1590                         retval = lowest_latency;
1591                 }
1592                 break;
1593         case bulk_latency: /* 250 usec aka 4000 ints/s */
1594                 if (bytes > 25000) {
1595                         if (packets > 35) {
1596                                 retval = low_latency;
1597                         }
1598                 } else if (bytes < 6000) {
1599                         retval = low_latency;
1600                 }
1601                 break;
1602         }
1603
1604 update_itr_done:
1605         return retval;
1606 }
1607
1608 static void e1000_set_itr(struct e1000_adapter *adapter)
1609 {
1610         struct e1000_hw *hw = &adapter->hw;
1611         u16 current_itr;
1612         u32 new_itr = adapter->itr;
1613
1614         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1615         if (adapter->link_speed != SPEED_1000) {
1616                 current_itr = 0;
1617                 new_itr = 4000;
1618                 goto set_itr_now;
1619         }
1620
1621         adapter->tx_itr = e1000_update_itr(adapter,
1622                                     adapter->tx_itr,
1623                                     adapter->total_tx_packets,
1624                                     adapter->total_tx_bytes);
1625         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1626         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1627                 adapter->tx_itr = low_latency;
1628
1629         adapter->rx_itr = e1000_update_itr(adapter,
1630                                     adapter->rx_itr,
1631                                     adapter->total_rx_packets,
1632                                     adapter->total_rx_bytes);
1633         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1634         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1635                 adapter->rx_itr = low_latency;
1636
1637         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1638
1639         switch (current_itr) {
1640         /* counts and packets in update_itr are dependent on these numbers */
1641         case lowest_latency:
1642                 new_itr = 70000;
1643                 break;
1644         case low_latency:
1645                 new_itr = 20000; /* aka hwitr = ~200 */
1646                 break;
1647         case bulk_latency:
1648                 new_itr = 4000;
1649                 break;
1650         default:
1651                 break;
1652         }
1653
1654 set_itr_now:
1655         if (new_itr != adapter->itr) {
1656                 /*
1657                  * this attempts to bias the interrupt rate towards Bulk
1658                  * by adding intermediate steps when interrupt rate is
1659                  * increasing
1660                  */
1661                 new_itr = new_itr > adapter->itr ?
1662                              min(adapter->itr + (new_itr >> 2), new_itr) :
1663                              new_itr;
1664                 adapter->itr = new_itr;
1665                 ew32(ITR, 1000000000 / (new_itr * 256));
1666         }
1667 }
1668
1669 /**
1670  * e1000_clean - NAPI Rx polling callback
1671  * @napi: struct associated with this polling callback
1672  * @budget: amount of packets driver is allowed to process this poll
1673  **/
1674 static int e1000_clean(struct napi_struct *napi, int budget)
1675 {
1676         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1677         struct net_device *poll_dev = adapter->netdev;
1678         int tx_cleaned = 0, work_done = 0;
1679
1680         /* Must NOT use netdev_priv macro here. */
1681         adapter = poll_dev->priv;
1682
1683         /*
1684          * e1000_clean is called per-cpu.  This lock protects
1685          * tx_ring from being cleaned by multiple cpus
1686          * simultaneously.  A failure obtaining the lock means
1687          * tx_ring is currently being cleaned anyway.
1688          */
1689         if (spin_trylock(&adapter->tx_queue_lock)) {
1690                 tx_cleaned = e1000_clean_tx_irq(adapter);
1691                 spin_unlock(&adapter->tx_queue_lock);
1692         }
1693
1694         adapter->clean_rx(adapter, &work_done, budget);
1695
1696         if (tx_cleaned)
1697                 work_done = budget;
1698
1699         /* If budget not fully consumed, exit the polling mode */
1700         if (work_done < budget) {
1701                 if (adapter->itr_setting & 3)
1702                         e1000_set_itr(adapter);
1703                 netif_rx_complete(poll_dev, napi);
1704                 e1000_irq_enable(adapter);
1705         }
1706
1707         return work_done;
1708 }
1709
1710 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1711 {
1712         struct e1000_adapter *adapter = netdev_priv(netdev);
1713         struct e1000_hw *hw = &adapter->hw;
1714         u32 vfta, index;
1715
1716         /* don't update vlan cookie if already programmed */
1717         if ((adapter->hw.mng_cookie.status &
1718              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1719             (vid == adapter->mng_vlan_id))
1720                 return;
1721         /* add VID to filter table */
1722         index = (vid >> 5) & 0x7F;
1723         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1724         vfta |= (1 << (vid & 0x1F));
1725         e1000e_write_vfta(hw, index, vfta);
1726 }
1727
1728 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1729 {
1730         struct e1000_adapter *adapter = netdev_priv(netdev);
1731         struct e1000_hw *hw = &adapter->hw;
1732         u32 vfta, index;
1733
1734         if (!test_bit(__E1000_DOWN, &adapter->state))
1735                 e1000_irq_disable(adapter);
1736         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1737
1738         if (!test_bit(__E1000_DOWN, &adapter->state))
1739                 e1000_irq_enable(adapter);
1740
1741         if ((adapter->hw.mng_cookie.status &
1742              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1743             (vid == adapter->mng_vlan_id)) {
1744                 /* release control to f/w */
1745                 e1000_release_hw_control(adapter);
1746                 return;
1747         }
1748
1749         /* remove VID from filter table */
1750         index = (vid >> 5) & 0x7F;
1751         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1752         vfta &= ~(1 << (vid & 0x1F));
1753         e1000e_write_vfta(hw, index, vfta);
1754 }
1755
1756 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1757 {
1758         struct net_device *netdev = adapter->netdev;
1759         u16 vid = adapter->hw.mng_cookie.vlan_id;
1760         u16 old_vid = adapter->mng_vlan_id;
1761
1762         if (!adapter->vlgrp)
1763                 return;
1764
1765         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1766                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1767                 if (adapter->hw.mng_cookie.status &
1768                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1769                         e1000_vlan_rx_add_vid(netdev, vid);
1770                         adapter->mng_vlan_id = vid;
1771                 }
1772
1773                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1774                                 (vid != old_vid) &&
1775                     !vlan_group_get_device(adapter->vlgrp, old_vid))
1776                         e1000_vlan_rx_kill_vid(netdev, old_vid);
1777         } else {
1778                 adapter->mng_vlan_id = vid;
1779         }
1780 }
1781
1782
1783 static void e1000_vlan_rx_register(struct net_device *netdev,
1784                                    struct vlan_group *grp)
1785 {
1786         struct e1000_adapter *adapter = netdev_priv(netdev);
1787         struct e1000_hw *hw = &adapter->hw;
1788         u32 ctrl, rctl;
1789
1790         if (!test_bit(__E1000_DOWN, &adapter->state))
1791                 e1000_irq_disable(adapter);
1792         adapter->vlgrp = grp;
1793
1794         if (grp) {
1795                 /* enable VLAN tag insert/strip */
1796                 ctrl = er32(CTRL);
1797                 ctrl |= E1000_CTRL_VME;
1798                 ew32(CTRL, ctrl);
1799
1800                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1801                         /* enable VLAN receive filtering */
1802                         rctl = er32(RCTL);
1803                         rctl &= ~E1000_RCTL_CFIEN;
1804                         ew32(RCTL, rctl);
1805                         e1000_update_mng_vlan(adapter);
1806                 }
1807         } else {
1808                 /* disable VLAN tag insert/strip */
1809                 ctrl = er32(CTRL);
1810                 ctrl &= ~E1000_CTRL_VME;
1811                 ew32(CTRL, ctrl);
1812
1813                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1814                         if (adapter->mng_vlan_id !=
1815                             (u16)E1000_MNG_VLAN_NONE) {
1816                                 e1000_vlan_rx_kill_vid(netdev,
1817                                                        adapter->mng_vlan_id);
1818                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1819                         }
1820                 }
1821         }
1822
1823         if (!test_bit(__E1000_DOWN, &adapter->state))
1824                 e1000_irq_enable(adapter);
1825 }
1826
1827 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1828 {
1829         u16 vid;
1830
1831         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1832
1833         if (!adapter->vlgrp)
1834                 return;
1835
1836         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1837                 if (!vlan_group_get_device(adapter->vlgrp, vid))
1838                         continue;
1839                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1840         }
1841 }
1842
1843 static void e1000_init_manageability(struct e1000_adapter *adapter)
1844 {
1845         struct e1000_hw *hw = &adapter->hw;
1846         u32 manc, manc2h;
1847
1848         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1849                 return;
1850
1851         manc = er32(MANC);
1852
1853         /*
1854          * enable receiving management packets to the host. this will probably
1855          * generate destination unreachable messages from the host OS, but
1856          * the packets will be handled on SMBUS
1857          */
1858         manc |= E1000_MANC_EN_MNG2HOST;
1859         manc2h = er32(MANC2H);
1860 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1861 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1862         manc2h |= E1000_MNG2HOST_PORT_623;
1863         manc2h |= E1000_MNG2HOST_PORT_664;
1864         ew32(MANC2H, manc2h);
1865         ew32(MANC, manc);
1866 }
1867
1868 /**
1869  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1870  * @adapter: board private structure
1871  *
1872  * Configure the Tx unit of the MAC after a reset.
1873  **/
1874 static void e1000_configure_tx(struct e1000_adapter *adapter)
1875 {
1876         struct e1000_hw *hw = &adapter->hw;
1877         struct e1000_ring *tx_ring = adapter->tx_ring;
1878         u64 tdba;
1879         u32 tdlen, tctl, tipg, tarc;
1880         u32 ipgr1, ipgr2;
1881
1882         /* Setup the HW Tx Head and Tail descriptor pointers */
1883         tdba = tx_ring->dma;
1884         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1885         ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1886         ew32(TDBAH, (tdba >> 32));
1887         ew32(TDLEN, tdlen);
1888         ew32(TDH, 0);
1889         ew32(TDT, 0);
1890         tx_ring->head = E1000_TDH;
1891         tx_ring->tail = E1000_TDT;
1892
1893         /* Set the default values for the Tx Inter Packet Gap timer */
1894         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
1895         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
1896         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
1897
1898         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1899                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
1900
1901         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1902         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1903         ew32(TIPG, tipg);
1904
1905         /* Set the Tx Interrupt Delay register */
1906         ew32(TIDV, adapter->tx_int_delay);
1907         /* Tx irq moderation */
1908         ew32(TADV, adapter->tx_abs_int_delay);
1909
1910         /* Program the Transmit Control Register */
1911         tctl = er32(TCTL);
1912         tctl &= ~E1000_TCTL_CT;
1913         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1914                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1915
1916         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1917                 tarc = er32(TARC(0));
1918                 /*
1919                  * set the speed mode bit, we'll clear it if we're not at
1920                  * gigabit link later
1921                  */
1922 #define SPEED_MODE_BIT (1 << 21)
1923                 tarc |= SPEED_MODE_BIT;
1924                 ew32(TARC(0), tarc);
1925         }
1926
1927         /* errata: program both queues to unweighted RR */
1928         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1929                 tarc = er32(TARC(0));
1930                 tarc |= 1;
1931                 ew32(TARC(0), tarc);
1932                 tarc = er32(TARC(1));
1933                 tarc |= 1;
1934                 ew32(TARC(1), tarc);
1935         }
1936
1937         e1000e_config_collision_dist(hw);
1938
1939         /* Setup Transmit Descriptor Settings for eop descriptor */
1940         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1941
1942         /* only set IDE if we are delaying interrupts using the timers */
1943         if (adapter->tx_int_delay)
1944                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1945
1946         /* enable Report Status bit */
1947         adapter->txd_cmd |= E1000_TXD_CMD_RS;
1948
1949         ew32(TCTL, tctl);
1950
1951         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1952 }
1953
1954 /**
1955  * e1000_setup_rctl - configure the receive control registers
1956  * @adapter: Board private structure
1957  **/
1958 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1959                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1960 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1961 {
1962         struct e1000_hw *hw = &adapter->hw;
1963         u32 rctl, rfctl;
1964         u32 psrctl = 0;
1965         u32 pages = 0;
1966
1967         /* Program MC offset vector base */
1968         rctl = er32(RCTL);
1969         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1970         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1971                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1972                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1973
1974         /* Do not Store bad packets */
1975         rctl &= ~E1000_RCTL_SBP;
1976
1977         /* Enable Long Packet receive */
1978         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1979                 rctl &= ~E1000_RCTL_LPE;
1980         else
1981                 rctl |= E1000_RCTL_LPE;
1982
1983         /* Enable hardware CRC frame stripping */
1984         rctl |= E1000_RCTL_SECRC;
1985
1986         /* Setup buffer sizes */
1987         rctl &= ~E1000_RCTL_SZ_4096;
1988         rctl |= E1000_RCTL_BSEX;
1989         switch (adapter->rx_buffer_len) {
1990         case 256:
1991                 rctl |= E1000_RCTL_SZ_256;
1992                 rctl &= ~E1000_RCTL_BSEX;
1993                 break;
1994         case 512:
1995                 rctl |= E1000_RCTL_SZ_512;
1996                 rctl &= ~E1000_RCTL_BSEX;
1997                 break;
1998         case 1024:
1999                 rctl |= E1000_RCTL_SZ_1024;
2000                 rctl &= ~E1000_RCTL_BSEX;
2001                 break;
2002         case 2048:
2003         default:
2004                 rctl |= E1000_RCTL_SZ_2048;
2005                 rctl &= ~E1000_RCTL_BSEX;
2006                 break;
2007         case 4096:
2008                 rctl |= E1000_RCTL_SZ_4096;
2009                 break;
2010         case 8192:
2011                 rctl |= E1000_RCTL_SZ_8192;
2012                 break;
2013         case 16384:
2014                 rctl |= E1000_RCTL_SZ_16384;
2015                 break;
2016         }
2017
2018         /*
2019          * 82571 and greater support packet-split where the protocol
2020          * header is placed in skb->data and the packet data is
2021          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2022          * In the case of a non-split, skb->data is linearly filled,
2023          * followed by the page buffers.  Therefore, skb->data is
2024          * sized to hold the largest protocol header.
2025          *
2026          * allocations using alloc_page take too long for regular MTU
2027          * so only enable packet split for jumbo frames
2028          *
2029          * Using pages when the page size is greater than 16k wastes
2030          * a lot of memory, since we allocate 3 pages at all times
2031          * per packet.
2032          */
2033         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2034         if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2035             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2036                 adapter->rx_ps_pages = pages;
2037         else
2038                 adapter->rx_ps_pages = 0;
2039
2040         if (adapter->rx_ps_pages) {
2041                 /* Configure extra packet-split registers */
2042                 rfctl = er32(RFCTL);
2043                 rfctl |= E1000_RFCTL_EXTEN;
2044                 /*
2045                  * disable packet split support for IPv6 extension headers,
2046                  * because some malformed IPv6 headers can hang the Rx
2047                  */
2048                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2049                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2050
2051                 ew32(RFCTL, rfctl);
2052
2053                 /* Enable Packet split descriptors */
2054                 rctl |= E1000_RCTL_DTYP_PS;
2055
2056                 psrctl |= adapter->rx_ps_bsize0 >>
2057                         E1000_PSRCTL_BSIZE0_SHIFT;
2058
2059                 switch (adapter->rx_ps_pages) {
2060                 case 3:
2061                         psrctl |= PAGE_SIZE <<
2062                                 E1000_PSRCTL_BSIZE3_SHIFT;
2063                 case 2:
2064                         psrctl |= PAGE_SIZE <<
2065                                 E1000_PSRCTL_BSIZE2_SHIFT;
2066                 case 1:
2067                         psrctl |= PAGE_SIZE >>
2068                                 E1000_PSRCTL_BSIZE1_SHIFT;
2069                         break;
2070                 }
2071
2072                 ew32(PSRCTL, psrctl);
2073         }
2074
2075         ew32(RCTL, rctl);
2076         /* just started the receive unit, no need to restart */
2077         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2078 }
2079
2080 /**
2081  * e1000_configure_rx - Configure Receive Unit after Reset
2082  * @adapter: board private structure
2083  *
2084  * Configure the Rx unit of the MAC after a reset.
2085  **/
2086 static void e1000_configure_rx(struct e1000_adapter *adapter)
2087 {
2088         struct e1000_hw *hw = &adapter->hw;
2089         struct e1000_ring *rx_ring = adapter->rx_ring;
2090         u64 rdba;
2091         u32 rdlen, rctl, rxcsum, ctrl_ext;
2092
2093         if (adapter->rx_ps_pages) {
2094                 /* this is a 32 byte descriptor */
2095                 rdlen = rx_ring->count *
2096                         sizeof(union e1000_rx_desc_packet_split);
2097                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2098                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2099         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2100                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2101                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2102                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2103         } else {
2104                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2105                 adapter->clean_rx = e1000_clean_rx_irq;
2106                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2107         }
2108
2109         /* disable receives while setting up the descriptors */
2110         rctl = er32(RCTL);
2111         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2112         e1e_flush();
2113         msleep(10);
2114
2115         /* set the Receive Delay Timer Register */
2116         ew32(RDTR, adapter->rx_int_delay);
2117
2118         /* irq moderation */
2119         ew32(RADV, adapter->rx_abs_int_delay);
2120         if (adapter->itr_setting != 0)
2121                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2122
2123         ctrl_ext = er32(CTRL_EXT);
2124         /* Reset delay timers after every interrupt */
2125         ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2126         /* Auto-Mask interrupts upon ICR access */
2127         ctrl_ext |= E1000_CTRL_EXT_IAME;
2128         ew32(IAM, 0xffffffff);
2129         ew32(CTRL_EXT, ctrl_ext);
2130         e1e_flush();
2131
2132         /*
2133          * Setup the HW Rx Head and Tail Descriptor Pointers and
2134          * the Base and Length of the Rx Descriptor Ring
2135          */
2136         rdba = rx_ring->dma;
2137         ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2138         ew32(RDBAH, (rdba >> 32));
2139         ew32(RDLEN, rdlen);
2140         ew32(RDH, 0);
2141         ew32(RDT, 0);
2142         rx_ring->head = E1000_RDH;
2143         rx_ring->tail = E1000_RDT;
2144
2145         /* Enable Receive Checksum Offload for TCP and UDP */
2146         rxcsum = er32(RXCSUM);
2147         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2148                 rxcsum |= E1000_RXCSUM_TUOFL;
2149
2150                 /*
2151                  * IPv4 payload checksum for UDP fragments must be
2152                  * used in conjunction with packet-split.
2153                  */
2154                 if (adapter->rx_ps_pages)
2155                         rxcsum |= E1000_RXCSUM_IPPCSE;
2156         } else {
2157                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2158                 /* no need to clear IPPCSE as it defaults to 0 */
2159         }
2160         ew32(RXCSUM, rxcsum);
2161
2162         /*
2163          * Enable early receives on supported devices, only takes effect when
2164          * packet size is equal or larger than the specified value (in 8 byte
2165          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2166          */
2167         if ((adapter->flags & FLAG_HAS_ERT) &&
2168             (adapter->netdev->mtu > ETH_DATA_LEN)) {
2169                 u32 rxdctl = er32(RXDCTL(0));
2170                 ew32(RXDCTL(0), rxdctl | 0x3);
2171                 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2172                 /*
2173                  * With jumbo frames and early-receive enabled, excessive
2174                  * C4->C2 latencies result in dropped transactions.
2175                  */
2176                 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2177                                           e1000e_driver_name, 55);
2178         } else {
2179                 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2180                                           e1000e_driver_name,
2181                                           PM_QOS_DEFAULT_VALUE);
2182         }
2183
2184         /* Enable Receives */
2185         ew32(RCTL, rctl);
2186 }
2187
2188 /**
2189  *  e1000_update_mc_addr_list - Update Multicast addresses
2190  *  @hw: pointer to the HW structure
2191  *  @mc_addr_list: array of multicast addresses to program
2192  *  @mc_addr_count: number of multicast addresses to program
2193  *  @rar_used_count: the first RAR register free to program
2194  *  @rar_count: total number of supported Receive Address Registers
2195  *
2196  *  Updates the Receive Address Registers and Multicast Table Array.
2197  *  The caller must have a packed mc_addr_list of multicast addresses.
2198  *  The parameter rar_count will usually be hw->mac.rar_entry_count
2199  *  unless there are workarounds that change this.  Currently no func pointer
2200  *  exists and all implementations are handled in the generic version of this
2201  *  function.
2202  **/
2203 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2204                                       u32 mc_addr_count, u32 rar_used_count,
2205                                       u32 rar_count)
2206 {
2207         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2208                                         rar_used_count, rar_count);
2209 }
2210
2211 /**
2212  * e1000_set_multi - Multicast and Promiscuous mode set
2213  * @netdev: network interface device structure
2214  *
2215  * The set_multi entry point is called whenever the multicast address
2216  * list or the network interface flags are updated.  This routine is
2217  * responsible for configuring the hardware for proper multicast,
2218  * promiscuous mode, and all-multi behavior.
2219  **/
2220 static void e1000_set_multi(struct net_device *netdev)
2221 {
2222         struct e1000_adapter *adapter = netdev_priv(netdev);
2223         struct e1000_hw *hw = &adapter->hw;
2224         struct e1000_mac_info *mac = &hw->mac;
2225         struct dev_mc_list *mc_ptr;
2226         u8  *mta_list;
2227         u32 rctl;
2228         int i;
2229
2230         /* Check for Promiscuous and All Multicast modes */
2231
2232         rctl = er32(RCTL);
2233
2234         if (netdev->flags & IFF_PROMISC) {
2235                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2236                 rctl &= ~E1000_RCTL_VFE;
2237         } else {
2238                 if (netdev->flags & IFF_ALLMULTI) {
2239                         rctl |= E1000_RCTL_MPE;
2240                         rctl &= ~E1000_RCTL_UPE;
2241                 } else {
2242                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2243                 }
2244                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2245                         rctl |= E1000_RCTL_VFE;
2246         }
2247
2248         ew32(RCTL, rctl);
2249
2250         if (netdev->mc_count) {
2251                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2252                 if (!mta_list)
2253                         return;
2254
2255                 /* prepare a packed array of only addresses. */
2256                 mc_ptr = netdev->mc_list;
2257
2258                 for (i = 0; i < netdev->mc_count; i++) {
2259                         if (!mc_ptr)
2260                                 break;
2261                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2262                                ETH_ALEN);
2263                         mc_ptr = mc_ptr->next;
2264                 }
2265
2266                 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2267                                           mac->rar_entry_count);
2268                 kfree(mta_list);
2269         } else {
2270                 /*
2271                  * if we're called from probe, we might not have
2272                  * anything to do here, so clear out the list
2273                  */
2274                 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2275         }
2276 }
2277
2278 /**
2279  * e1000_configure - configure the hardware for Rx and Tx
2280  * @adapter: private board structure
2281  **/
2282 static void e1000_configure(struct e1000_adapter *adapter)
2283 {
2284         e1000_set_multi(adapter->netdev);
2285
2286         e1000_restore_vlan(adapter);
2287         e1000_init_manageability(adapter);
2288
2289         e1000_configure_tx(adapter);
2290         e1000_setup_rctl(adapter);
2291         e1000_configure_rx(adapter);
2292         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2293 }
2294
2295 /**
2296  * e1000e_power_up_phy - restore link in case the phy was powered down
2297  * @adapter: address of board private structure
2298  *
2299  * The phy may be powered down to save power and turn off link when the
2300  * driver is unloaded and wake on lan is not enabled (among others)
2301  * *** this routine MUST be followed by a call to e1000e_reset ***
2302  **/
2303 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2304 {
2305         u16 mii_reg = 0;
2306
2307         /* Just clear the power down bit to wake the phy back up */
2308         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2309                 /*
2310                  * According to the manual, the phy will retain its
2311                  * settings across a power-down/up cycle
2312                  */
2313                 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2314                 mii_reg &= ~MII_CR_POWER_DOWN;
2315                 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2316         }
2317
2318         adapter->hw.mac.ops.setup_link(&adapter->hw);
2319 }
2320
2321 /**
2322  * e1000_power_down_phy - Power down the PHY
2323  *
2324  * Power down the PHY so no link is implied when interface is down
2325  * The PHY cannot be powered down is management or WoL is active
2326  */
2327 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2328 {
2329         struct e1000_hw *hw = &adapter->hw;
2330         u16 mii_reg;
2331
2332         /* WoL is enabled */
2333         if (adapter->wol)
2334                 return;
2335
2336         /* non-copper PHY? */
2337         if (adapter->hw.phy.media_type != e1000_media_type_copper)
2338                 return;
2339
2340         /* reset is blocked because of a SoL/IDER session */
2341         if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2342                 return;
2343
2344         /* manageability (AMT) is enabled */
2345         if (er32(MANC) & E1000_MANC_SMBUS_EN)
2346                 return;
2347
2348         /* power down the PHY */
2349         e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2350         mii_reg |= MII_CR_POWER_DOWN;
2351         e1e_wphy(hw, PHY_CONTROL, mii_reg);
2352         mdelay(1);
2353 }
2354
2355 /**
2356  * e1000e_reset - bring the hardware into a known good state
2357  *
2358  * This function boots the hardware and enables some settings that
2359  * require a configuration cycle of the hardware - those cannot be
2360  * set/changed during runtime. After reset the device needs to be
2361  * properly configured for Rx, Tx etc.
2362  */
2363 void e1000e_reset(struct e1000_adapter *adapter)
2364 {
2365         struct e1000_mac_info *mac = &adapter->hw.mac;
2366         struct e1000_fc_info *fc = &adapter->hw.fc;
2367         struct e1000_hw *hw = &adapter->hw;
2368         u32 tx_space, min_tx_space, min_rx_space;
2369         u32 pba = adapter->pba;
2370         u16 hwm;
2371
2372         /* reset Packet Buffer Allocation to default */
2373         ew32(PBA, pba);
2374
2375         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2376                 /*
2377                  * To maintain wire speed transmits, the Tx FIFO should be
2378                  * large enough to accommodate two full transmit packets,
2379                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2380                  * the Rx FIFO should be large enough to accommodate at least
2381                  * one full receive packet and is similarly rounded up and
2382                  * expressed in KB.
2383                  */
2384                 pba = er32(PBA);
2385                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2386                 tx_space = pba >> 16;
2387                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2388                 pba &= 0xffff;
2389                 /*
2390                  * the Tx fifo also stores 16 bytes of information about the tx
2391                  * but don't include ethernet FCS because hardware appends it
2392                  */
2393                 min_tx_space = (adapter->max_frame_size +
2394                                 sizeof(struct e1000_tx_desc) -
2395                                 ETH_FCS_LEN) * 2;
2396                 min_tx_space = ALIGN(min_tx_space, 1024);
2397                 min_tx_space >>= 10;
2398                 /* software strips receive CRC, so leave room for it */
2399                 min_rx_space = adapter->max_frame_size;
2400                 min_rx_space = ALIGN(min_rx_space, 1024);
2401                 min_rx_space >>= 10;
2402
2403                 /*
2404                  * If current Tx allocation is less than the min Tx FIFO size,
2405                  * and the min Tx FIFO size is less than the current Rx FIFO
2406                  * allocation, take space away from current Rx allocation
2407                  */
2408                 if ((tx_space < min_tx_space) &&
2409                     ((min_tx_space - tx_space) < pba)) {
2410                         pba -= min_tx_space - tx_space;
2411
2412                         /*
2413                          * if short on Rx space, Rx wins and must trump tx
2414                          * adjustment or use Early Receive if available
2415                          */
2416                         if ((pba < min_rx_space) &&
2417                             (!(adapter->flags & FLAG_HAS_ERT)))
2418                                 /* ERT enabled in e1000_configure_rx */
2419                                 pba = min_rx_space;
2420                 }
2421
2422                 ew32(PBA, pba);
2423         }
2424
2425
2426         /*
2427          * flow control settings
2428          *
2429          * The high water mark must be low enough to fit one full frame
2430          * (or the size used for early receive) above it in the Rx FIFO.
2431          * Set it to the lower of:
2432          * - 90% of the Rx FIFO size, and
2433          * - the full Rx FIFO size minus the early receive size (for parts
2434          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2435          * - the full Rx FIFO size minus one full frame
2436          */
2437         if (adapter->flags & FLAG_HAS_ERT)
2438                 hwm = min(((pba << 10) * 9 / 10),
2439                           ((pba << 10) - (E1000_ERT_2048 << 3)));
2440         else
2441                 hwm = min(((pba << 10) * 9 / 10),
2442                           ((pba << 10) - adapter->max_frame_size));
2443
2444         fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2445         fc->low_water = fc->high_water - 8;
2446
2447         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2448                 fc->pause_time = 0xFFFF;
2449         else
2450                 fc->pause_time = E1000_FC_PAUSE_TIME;
2451         fc->send_xon = 1;
2452         fc->type = fc->original_type;
2453
2454         /* Allow time for pending master requests to run */
2455         mac->ops.reset_hw(hw);
2456
2457         /*
2458          * For parts with AMT enabled, let the firmware know
2459          * that the network interface is in control
2460          */
2461         if (adapter->flags & FLAG_HAS_AMT)
2462                 e1000_get_hw_control(adapter);
2463
2464         ew32(WUC, 0);
2465
2466         if (mac->ops.init_hw(hw))
2467                 e_err("Hardware Error\n");
2468
2469         e1000_update_mng_vlan(adapter);
2470
2471         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2472         ew32(VET, ETH_P_8021Q);
2473
2474         e1000e_reset_adaptive(hw);
2475         e1000_get_phy_info(hw);
2476
2477         if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2478                 u16 phy_data = 0;
2479                 /*
2480                  * speed up time to link by disabling smart power down, ignore
2481                  * the return value of this function because there is nothing
2482                  * different we would do if it failed
2483                  */
2484                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2485                 phy_data &= ~IGP02E1000_PM_SPD;
2486                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2487         }
2488 }
2489
2490 int e1000e_up(struct e1000_adapter *adapter)
2491 {
2492         struct e1000_hw *hw = &adapter->hw;
2493
2494         /* hardware has been reset, we need to reload some things */
2495         e1000_configure(adapter);
2496
2497         clear_bit(__E1000_DOWN, &adapter->state);
2498
2499         napi_enable(&adapter->napi);
2500         e1000_irq_enable(adapter);
2501
2502         /* fire a link change interrupt to start the watchdog */
2503         ew32(ICS, E1000_ICS_LSC);
2504         return 0;
2505 }
2506
2507 void e1000e_down(struct e1000_adapter *adapter)
2508 {
2509         struct net_device *netdev = adapter->netdev;
2510         struct e1000_hw *hw = &adapter->hw;
2511         u32 tctl, rctl;
2512
2513         /*
2514          * signal that we're down so the interrupt handler does not
2515          * reschedule our watchdog timer
2516          */
2517         set_bit(__E1000_DOWN, &adapter->state);
2518
2519         /* disable receives in the hardware */
2520         rctl = er32(RCTL);
2521         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2522         /* flush and sleep below */
2523
2524         netif_tx_stop_all_queues(netdev);
2525
2526         /* disable transmits in the hardware */
2527         tctl = er32(TCTL);
2528         tctl &= ~E1000_TCTL_EN;
2529         ew32(TCTL, tctl);
2530         /* flush both disables and wait for them to finish */
2531         e1e_flush();
2532         msleep(10);
2533
2534         napi_disable(&adapter->napi);
2535         e1000_irq_disable(adapter);
2536
2537         del_timer_sync(&adapter->watchdog_timer);
2538         del_timer_sync(&adapter->phy_info_timer);
2539
2540         netdev->tx_queue_len = adapter->tx_queue_len;
2541         netif_carrier_off(netdev);
2542         adapter->link_speed = 0;
2543         adapter->link_duplex = 0;
2544
2545         if (!pci_channel_offline(adapter->pdev))
2546                 e1000e_reset(adapter);
2547         e1000_clean_tx_ring(adapter);
2548         e1000_clean_rx_ring(adapter);
2549
2550         /*
2551          * TODO: for power management, we could drop the link and
2552          * pci_disable_device here.
2553          */
2554 }
2555
2556 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2557 {
2558         might_sleep();
2559         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2560                 msleep(1);
2561         e1000e_down(adapter);
2562         e1000e_up(adapter);
2563         clear_bit(__E1000_RESETTING, &adapter->state);
2564 }
2565
2566 /**
2567  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2568  * @adapter: board private structure to initialize
2569  *
2570  * e1000_sw_init initializes the Adapter private data structure.
2571  * Fields are initialized based on PCI device information and
2572  * OS network device settings (MTU size).
2573  **/
2574 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2575 {
2576         struct net_device *netdev = adapter->netdev;
2577
2578         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2579         adapter->rx_ps_bsize0 = 128;
2580         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2581         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2582
2583         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2584         if (!adapter->tx_ring)
2585                 goto err;
2586
2587         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2588         if (!adapter->rx_ring)
2589                 goto err;
2590
2591         spin_lock_init(&adapter->tx_queue_lock);
2592
2593         /* Explicitly disable IRQ since the NIC can be in any state. */
2594         e1000_irq_disable(adapter);
2595
2596         spin_lock_init(&adapter->stats_lock);
2597
2598         set_bit(__E1000_DOWN, &adapter->state);
2599         return 0;
2600
2601 err:
2602         e_err("Unable to allocate memory for queues\n");
2603         kfree(adapter->rx_ring);
2604         kfree(adapter->tx_ring);
2605         return -ENOMEM;
2606 }
2607
2608 /**
2609  * e1000_intr_msi_test - Interrupt Handler
2610  * @irq: interrupt number
2611  * @data: pointer to a network interface device structure
2612  **/
2613 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2614 {
2615         struct net_device *netdev = data;
2616         struct e1000_adapter *adapter = netdev_priv(netdev);
2617         struct e1000_hw *hw = &adapter->hw;
2618         u32 icr = er32(ICR);
2619
2620         e_dbg("%s: icr is %08X\n", netdev->name, icr);
2621         if (icr & E1000_ICR_RXSEQ) {
2622                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2623                 wmb();
2624         }
2625
2626         return IRQ_HANDLED;
2627 }
2628
2629 /**
2630  * e1000_test_msi_interrupt - Returns 0 for successful test
2631  * @adapter: board private struct
2632  *
2633  * code flow taken from tg3.c
2634  **/
2635 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2636 {
2637         struct net_device *netdev = adapter->netdev;
2638         struct e1000_hw *hw = &adapter->hw;
2639         int err;
2640
2641         /* poll_enable hasn't been called yet, so don't need disable */
2642         /* clear any pending events */
2643         er32(ICR);
2644
2645         /* free the real vector and request a test handler */
2646         e1000_free_irq(adapter);
2647
2648         /* Assume that the test fails, if it succeeds then the test
2649          * MSI irq handler will unset this flag */
2650         adapter->flags |= FLAG_MSI_TEST_FAILED;
2651
2652         err = pci_enable_msi(adapter->pdev);
2653         if (err)
2654                 goto msi_test_failed;
2655
2656         err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2657                           netdev->name, netdev);
2658         if (err) {
2659                 pci_disable_msi(adapter->pdev);
2660                 goto msi_test_failed;
2661         }
2662
2663         wmb();
2664
2665         e1000_irq_enable(adapter);
2666
2667         /* fire an unusual interrupt on the test handler */
2668         ew32(ICS, E1000_ICS_RXSEQ);
2669         e1e_flush();
2670         msleep(50);
2671
2672         e1000_irq_disable(adapter);
2673
2674         rmb();
2675
2676         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
2677                 err = -EIO;
2678                 e_info("MSI interrupt test failed!\n");
2679         }
2680
2681         free_irq(adapter->pdev->irq, netdev);
2682         pci_disable_msi(adapter->pdev);
2683
2684         if (err == -EIO)
2685                 goto msi_test_failed;
2686
2687         /* okay so the test worked, restore settings */
2688         e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
2689 msi_test_failed:
2690         /* restore the original vector, even if it failed */
2691         e1000_request_irq(adapter);
2692         return err;
2693 }
2694
2695 /**
2696  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
2697  * @adapter: board private struct
2698  *
2699  * code flow taken from tg3.c, called with e1000 interrupts disabled.
2700  **/
2701 static int e1000_test_msi(struct e1000_adapter *adapter)
2702 {
2703         int err;
2704         u16 pci_cmd;
2705
2706         if (!(adapter->flags & FLAG_MSI_ENABLED))
2707                 return 0;
2708
2709         /* disable SERR in case the MSI write causes a master abort */
2710         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
2711         pci_write_config_word(adapter->pdev, PCI_COMMAND,
2712                               pci_cmd & ~PCI_COMMAND_SERR);
2713
2714         err = e1000_test_msi_interrupt(adapter);
2715
2716         /* restore previous setting of command word */
2717         pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
2718
2719         /* success ! */
2720         if (!err)
2721                 return 0;
2722
2723         /* EIO means MSI test failed */
2724         if (err != -EIO)
2725                 return err;
2726
2727         /* back to INTx mode */
2728         e_warn("MSI interrupt test failed, using legacy interrupt.\n");
2729
2730         e1000_free_irq(adapter);
2731
2732         err = e1000_request_irq(adapter);
2733
2734         return err;
2735 }
2736
2737 /**
2738  * e1000_open - Called when a network interface is made active
2739  * @netdev: network interface device structure
2740  *
2741  * Returns 0 on success, negative value on failure
2742  *
2743  * The open entry point is called when a network interface is made
2744  * active by the system (IFF_UP).  At this point all resources needed
2745  * for transmit and receive operations are allocated, the interrupt
2746  * handler is registered with the OS, the watchdog timer is started,
2747  * and the stack is notified that the interface is ready.
2748  **/
2749 static int e1000_open(struct net_device *netdev)
2750 {
2751         struct e1000_adapter *adapter = netdev_priv(netdev);
2752         struct e1000_hw *hw = &adapter->hw;
2753         int err;
2754
2755         /* disallow open during test */
2756         if (test_bit(__E1000_TESTING, &adapter->state))
2757                 return -EBUSY;
2758
2759         /* allocate transmit descriptors */
2760         err = e1000e_setup_tx_resources(adapter);
2761         if (err)
2762                 goto err_setup_tx;
2763
2764         /* allocate receive descriptors */
2765         err = e1000e_setup_rx_resources(adapter);
2766         if (err)
2767                 goto err_setup_rx;
2768
2769         e1000e_power_up_phy(adapter);
2770
2771         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2772         if ((adapter->hw.mng_cookie.status &
2773              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2774                 e1000_update_mng_vlan(adapter);
2775
2776         /*
2777          * If AMT is enabled, let the firmware know that the network
2778          * interface is now open
2779          */
2780         if (adapter->flags & FLAG_HAS_AMT)
2781                 e1000_get_hw_control(adapter);
2782
2783         /*
2784          * before we allocate an interrupt, we must be ready to handle it.
2785          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2786          * as soon as we call pci_request_irq, so we have to setup our
2787          * clean_rx handler before we do so.
2788          */
2789         e1000_configure(adapter);
2790
2791         err = e1000_request_irq(adapter);
2792         if (err)
2793                 goto err_req_irq;
2794
2795         /*
2796          * Work around PCIe errata with MSI interrupts causing some chipsets to
2797          * ignore e1000e MSI messages, which means we need to test our MSI
2798          * interrupt now
2799          */
2800         {
2801                 err = e1000_test_msi(adapter);
2802                 if (err) {
2803                         e_err("Interrupt allocation failed\n");
2804                         goto err_req_irq;
2805                 }
2806         }
2807
2808         /* From here on the code is the same as e1000e_up() */
2809         clear_bit(__E1000_DOWN, &adapter->state);
2810
2811         napi_enable(&adapter->napi);
2812
2813         e1000_irq_enable(adapter);
2814
2815         netif_tx_start_all_queues(netdev);
2816
2817         /* fire a link status change interrupt to start the watchdog */
2818         ew32(ICS, E1000_ICS_LSC);
2819
2820         return 0;
2821
2822 err_req_irq:
2823         e1000_release_hw_control(adapter);
2824         e1000_power_down_phy(adapter);
2825         e1000e_free_rx_resources(adapter);
2826 err_setup_rx:
2827         e1000e_free_tx_resources(adapter);
2828 err_setup_tx:
2829         e1000e_reset(adapter);
2830
2831         return err;
2832 }
2833
2834 /**
2835  * e1000_close - Disables a network interface
2836  * @netdev: network interface device structure
2837  *
2838  * Returns 0, this is not allowed to fail
2839  *
2840  * The close entry point is called when an interface is de-activated
2841  * by the OS.  The hardware is still under the drivers control, but
2842  * needs to be disabled.  A global MAC reset is issued to stop the
2843  * hardware, and all transmit and receive resources are freed.
2844  **/
2845 static int e1000_close(struct net_device *netdev)
2846 {
2847         struct e1000_adapter *adapter = netdev_priv(netdev);
2848
2849         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2850         e1000e_down(adapter);
2851         e1000_power_down_phy(adapter);
2852         e1000_free_irq(adapter);
2853
2854         e1000e_free_tx_resources(adapter);
2855         e1000e_free_rx_resources(adapter);
2856
2857         /*
2858          * kill manageability vlan ID if supported, but not if a vlan with
2859          * the same ID is registered on the host OS (let 8021q kill it)
2860          */
2861         if ((adapter->hw.mng_cookie.status &
2862                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2863              !(adapter->vlgrp &&
2864                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2865                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2866
2867         /*
2868          * If AMT is enabled, let the firmware know that the network
2869          * interface is now closed
2870          */
2871         if (adapter->flags & FLAG_HAS_AMT)
2872                 e1000_release_hw_control(adapter);
2873
2874         return 0;
2875 }
2876 /**
2877  * e1000_set_mac - Change the Ethernet Address of the NIC
2878  * @netdev: network interface device structure
2879  * @p: pointer to an address structure
2880  *
2881  * Returns 0 on success, negative on failure
2882  **/
2883 static int e1000_set_mac(struct net_device *netdev, void *p)
2884 {
2885         struct e1000_adapter *adapter = netdev_priv(netdev);
2886         struct sockaddr *addr = p;
2887
2888         if (!is_valid_ether_addr(addr->sa_data))
2889                 return -EADDRNOTAVAIL;
2890
2891         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2892         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2893
2894         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2895
2896         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2897                 /* activate the work around */
2898                 e1000e_set_laa_state_82571(&adapter->hw, 1);
2899
2900                 /*
2901                  * Hold a copy of the LAA in RAR[14] This is done so that
2902                  * between the time RAR[0] gets clobbered  and the time it
2903                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2904                  * of the RARs and no incoming packets directed to this port
2905                  * are dropped. Eventually the LAA will be in RAR[0] and
2906                  * RAR[14]
2907                  */
2908                 e1000e_rar_set(&adapter->hw,
2909                               adapter->hw.mac.addr,
2910                               adapter->hw.mac.rar_entry_count - 1);
2911         }
2912
2913         return 0;
2914 }
2915
2916 /*
2917  * Need to wait a few seconds after link up to get diagnostic information from
2918  * the phy
2919  */
2920 static void e1000_update_phy_info(unsigned long data)
2921 {
2922         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2923         e1000_get_phy_info(&adapter->hw);
2924 }
2925
2926 /**
2927  * e1000e_update_stats - Update the board statistics counters
2928  * @adapter: board private structure
2929  **/
2930 void e1000e_update_stats(struct e1000_adapter *adapter)
2931 {
2932         struct e1000_hw *hw = &adapter->hw;
2933         struct pci_dev *pdev = adapter->pdev;
2934         unsigned long irq_flags;
2935         u16 phy_tmp;
2936
2937 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2938
2939         /*
2940          * Prevent stats update while adapter is being reset, or if the pci
2941          * connection is down.
2942          */
2943         if (adapter->link_speed == 0)
2944                 return;
2945         if (pci_channel_offline(pdev))
2946                 return;
2947
2948         spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2949
2950         /*
2951          * these counters are modified from e1000_adjust_tbi_stats,
2952          * called from the interrupt context, so they must only
2953          * be written while holding adapter->stats_lock
2954          */
2955
2956         adapter->stats.crcerrs += er32(CRCERRS);
2957         adapter->stats.gprc += er32(GPRC);
2958         adapter->stats.gorc += er32(GORCL);
2959         er32(GORCH); /* Clear gorc */
2960         adapter->stats.bprc += er32(BPRC);
2961         adapter->stats.mprc += er32(MPRC);
2962         adapter->stats.roc += er32(ROC);
2963
2964         adapter->stats.mpc += er32(MPC);
2965         adapter->stats.scc += er32(SCC);
2966         adapter->stats.ecol += er32(ECOL);
2967         adapter->stats.mcc += er32(MCC);
2968         adapter->stats.latecol += er32(LATECOL);
2969         adapter->stats.dc += er32(DC);
2970         adapter->stats.xonrxc += er32(XONRXC);
2971         adapter->stats.xontxc += er32(XONTXC);
2972         adapter->stats.xoffrxc += er32(XOFFRXC);
2973         adapter->stats.xofftxc += er32(XOFFTXC);
2974         adapter->stats.gptc += er32(GPTC);
2975         adapter->stats.gotc += er32(GOTCL);
2976         er32(GOTCH); /* Clear gotc */
2977         adapter->stats.rnbc += er32(RNBC);
2978         adapter->stats.ruc += er32(RUC);
2979
2980         adapter->stats.mptc += er32(MPTC);
2981         adapter->stats.bptc += er32(BPTC);
2982
2983         /* used for adaptive IFS */
2984
2985         hw->mac.tx_packet_delta = er32(TPT);
2986         adapter->stats.tpt += hw->mac.tx_packet_delta;
2987         hw->mac.collision_delta = er32(COLC);
2988         adapter->stats.colc += hw->mac.collision_delta;
2989
2990         adapter->stats.algnerrc += er32(ALGNERRC);
2991         adapter->stats.rxerrc += er32(RXERRC);
2992         adapter->stats.tncrs += er32(TNCRS);
2993         adapter->stats.cexterr += er32(CEXTERR);
2994         adapter->stats.tsctc += er32(TSCTC);
2995         adapter->stats.tsctfc += er32(TSCTFC);
2996
2997         /* Fill out the OS statistics structure */
2998         adapter->net_stats.multicast = adapter->stats.mprc;
2999         adapter->net_stats.collisions = adapter->stats.colc;
3000
3001         /* Rx Errors */
3002
3003         /*
3004          * RLEC on some newer hardware can be incorrect so build
3005          * our own version based on RUC and ROC
3006          */
3007         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3008                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3009                 adapter->stats.ruc + adapter->stats.roc +
3010                 adapter->stats.cexterr;
3011         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3012                                               adapter->stats.roc;
3013         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3014         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3015         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3016
3017         /* Tx Errors */
3018         adapter->net_stats.tx_errors = adapter->stats.ecol +
3019                                        adapter->stats.latecol;
3020         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3021         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3022         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3023
3024         /* Tx Dropped needs to be maintained elsewhere */
3025
3026         /* Phy Stats */
3027         if (hw->phy.media_type == e1000_media_type_copper) {
3028                 if ((adapter->link_speed == SPEED_1000) &&
3029                    (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
3030                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3031                         adapter->phy_stats.idle_errors += phy_tmp;
3032                 }
3033         }
3034
3035         /* Management Stats */
3036         adapter->stats.mgptc += er32(MGTPTC);
3037         adapter->stats.mgprc += er32(MGTPRC);
3038         adapter->stats.mgpdc += er32(MGTPDC);
3039
3040         spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3041 }
3042
3043 /**
3044  * e1000_phy_read_status - Update the PHY register status snapshot
3045  * @adapter: board private structure
3046  **/
3047 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3048 {
3049         struct e1000_hw *hw = &adapter->hw;
3050         struct e1000_phy_regs *phy = &adapter->phy_regs;
3051         int ret_val;
3052         unsigned long irq_flags;
3053
3054
3055         spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3056
3057         if ((er32(STATUS) & E1000_STATUS_LU) &&
3058             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3059                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3060                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3061                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3062                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3063                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3064                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3065                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3066                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3067                 if (ret_val)
3068                         e_warn("Error reading PHY register\n");
3069         } else {
3070                 /*
3071                  * Do not read PHY registers if link is not up
3072                  * Set values to typical power-on defaults
3073                  */
3074                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3075                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3076                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3077                              BMSR_ERCAP);
3078                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3079                                   ADVERTISE_ALL | ADVERTISE_CSMA);
3080                 phy->lpa = 0;
3081                 phy->expansion = EXPANSION_ENABLENPAGE;
3082                 phy->ctrl1000 = ADVERTISE_1000FULL;
3083                 phy->stat1000 = 0;
3084                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3085         }
3086
3087         spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3088 }
3089
3090 static void e1000_print_link_info(struct e1000_adapter *adapter)
3091 {
3092         struct e1000_hw *hw = &adapter->hw;
3093         u32 ctrl = er32(CTRL);
3094
3095         e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
3096                adapter->link_speed,
3097                (adapter->link_duplex == FULL_DUPLEX) ?
3098                                 "Full Duplex" : "Half Duplex",
3099                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3100                                 "RX/TX" :
3101                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3102                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3103 }
3104
3105 static bool e1000_has_link(struct e1000_adapter *adapter)
3106 {
3107         struct e1000_hw *hw = &adapter->hw;
3108         bool link_active = 0;
3109         s32 ret_val = 0;
3110
3111         /*
3112          * get_link_status is set on LSC (link status) interrupt or
3113          * Rx sequence error interrupt.  get_link_status will stay
3114          * false until the check_for_link establishes link
3115          * for copper adapters ONLY
3116          */
3117         switch (hw->phy.media_type) {
3118         case e1000_media_type_copper:
3119                 if (hw->mac.get_link_status) {
3120                         ret_val = hw->mac.ops.check_for_link(hw);
3121                         link_active = !hw->mac.get_link_status;
3122                 } else {
3123                         link_active = 1;
3124                 }
3125                 break;
3126         case e1000_media_type_fiber:
3127                 ret_val = hw->mac.ops.check_for_link(hw);
3128                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3129                 break;
3130         case e1000_media_type_internal_serdes:
3131                 ret_val = hw->mac.ops.check_for_link(hw);
3132                 link_active = adapter->hw.mac.serdes_has_link;
3133                 break;
3134         default:
3135         case e1000_media_type_unknown:
3136                 break;
3137         }
3138
3139         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3140             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3141                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3142                 e_info("Gigabit has been disabled, downgrading speed\n");
3143         }
3144
3145         return link_active;
3146 }
3147
3148 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3149 {
3150         /* make sure the receive unit is started */
3151         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3152             (adapter->flags & FLAG_RX_RESTART_NOW)) {
3153                 struct e1000_hw *hw = &adapter->hw;
3154                 u32 rctl = er32(RCTL);
3155                 ew32(RCTL, rctl | E1000_RCTL_EN);
3156                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3157         }
3158 }
3159
3160 /**
3161  * e1000_watchdog - Timer Call-back
3162  * @data: pointer to adapter cast into an unsigned long
3163  **/
3164 static void e1000_watchdog(unsigned long data)
3165 {
3166         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3167
3168         /* Do the rest outside of interrupt context */
3169         schedule_work(&adapter->watchdog_task);
3170
3171         /* TODO: make this use queue_delayed_work() */
3172 }
3173
3174 static void e1000_watchdog_task(struct work_struct *work)
3175 {
3176         struct e1000_adapter *adapter = container_of(work,
3177                                         struct e1000_adapter, watchdog_task);
3178         struct net_device *netdev = adapter->netdev;
3179         struct e1000_mac_info *mac = &adapter->hw.mac;
3180         struct e1000_ring *tx_ring = adapter->tx_ring;
3181         struct e1000_hw *hw = &adapter->hw;
3182         u32 link, tctl;
3183         int tx_pending = 0;
3184
3185         link = e1000_has_link(adapter);
3186         if ((netif_carrier_ok(netdev)) && link) {
3187                 e1000e_enable_receives(adapter);
3188                 goto link_up;
3189         }
3190
3191         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3192             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3193                 e1000_update_mng_vlan(adapter);
3194
3195         if (link) {
3196                 if (!netif_carrier_ok(netdev)) {
3197                         bool txb2b = 1;
3198                         /* update snapshot of PHY registers on LSC */
3199                         e1000_phy_read_status(adapter);
3200                         mac->ops.get_link_up_info(&adapter->hw,
3201                                                    &adapter->link_speed,
3202                                                    &adapter->link_duplex);
3203                         e1000_print_link_info(adapter);
3204                         /*
3205                          * On supported PHYs, check for duplex mismatch only
3206                          * if link has autonegotiated at 10/100 half
3207                          */
3208                         if ((hw->phy.type == e1000_phy_igp_3 ||
3209                              hw->phy.type == e1000_phy_bm) &&
3210                             (hw->mac.autoneg == true) &&
3211                             (adapter->link_speed == SPEED_10 ||
3212                              adapter->link_speed == SPEED_100) &&
3213                             (adapter->link_duplex == HALF_DUPLEX)) {
3214                                 u16 autoneg_exp;
3215
3216                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3217
3218                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3219                                         e_info("Autonegotiated half duplex but"
3220                                                " link partner cannot autoneg. "
3221                                                " Try forcing full duplex if "
3222                                                "link gets many collisions.\n");
3223                         }
3224
3225                         /*
3226                          * tweak tx_queue_len according to speed/duplex
3227                          * and adjust the timeout factor
3228                          */
3229                         netdev->tx_queue_len = adapter->tx_queue_len;
3230                         adapter->tx_timeout_factor = 1;
3231                         switch (adapter->link_speed) {
3232                         case SPEED_10:
3233                                 txb2b = 0;
3234                                 netdev->tx_queue_len = 10;
3235                                 adapter->tx_timeout_factor = 16;
3236                                 break;
3237                         case SPEED_100:
3238                                 txb2b = 0;
3239                                 netdev->tx_queue_len = 100;
3240                                 /* maybe add some timeout factor ? */
3241                                 break;
3242                         }
3243
3244                         /*
3245                          * workaround: re-program speed mode bit after
3246                          * link-up event
3247                          */
3248                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3249                             !txb2b) {
3250                                 u32 tarc0;
3251                                 tarc0 = er32(TARC(0));
3252                                 tarc0 &= ~SPEED_MODE_BIT;
3253                                 ew32(TARC(0), tarc0);
3254                         }
3255
3256                         /*
3257                          * disable TSO for pcie and 10/100 speeds, to avoid
3258                          * some hardware issues
3259                          */
3260                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
3261                                 switch (adapter->link_speed) {
3262                                 case SPEED_10:
3263                                 case SPEED_100:
3264                                         e_info("10/100 speed: disabling TSO\n");
3265                                         netdev->features &= ~NETIF_F_TSO;
3266                                         netdev->features &= ~NETIF_F_TSO6;
3267                                         break;
3268                                 case SPEED_1000:
3269                                         netdev->features |= NETIF_F_TSO;
3270                                         netdev->features |= NETIF_F_TSO6;
3271                                         break;
3272                                 default:
3273                                         /* oops */
3274                                         break;
3275                                 }
3276                         }
3277
3278                         /*
3279                          * enable transmits in the hardware, need to do this
3280                          * after setting TARC(0)
3281                          */
3282                         tctl = er32(TCTL);
3283                         tctl |= E1000_TCTL_EN;
3284                         ew32(TCTL, tctl);
3285
3286                         netif_carrier_on(netdev);
3287                         netif_tx_wake_all_queues(netdev);
3288
3289                         if (!test_bit(__E1000_DOWN, &adapter->state))
3290                                 mod_timer(&adapter->phy_info_timer,
3291                                           round_jiffies(jiffies + 2 * HZ));
3292                 }
3293         } else {
3294                 if (netif_carrier_ok(netdev)) {
3295                         adapter->link_speed = 0;
3296                         adapter->link_duplex = 0;
3297                         e_info("Link is Down\n");
3298                         netif_carrier_off(netdev);
3299                         netif_tx_stop_all_queues(netdev);
3300                         if (!test_bit(__E1000_DOWN, &adapter->state))
3301                                 mod_timer(&adapter->phy_info_timer,
3302                                           round_jiffies(jiffies + 2 * HZ));
3303
3304                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3305                                 schedule_work(&adapter->reset_task);
3306                 }
3307         }
3308
3309 link_up:
3310         e1000e_update_stats(adapter);
3311
3312         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3313         adapter->tpt_old = adapter->stats.tpt;
3314         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3315         adapter->colc_old = adapter->stats.colc;
3316
3317         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3318         adapter->gorc_old = adapter->stats.gorc;
3319         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3320         adapter->gotc_old = adapter->stats.gotc;
3321
3322         e1000e_update_adaptive(&adapter->hw);
3323
3324         if (!netif_carrier_ok(netdev)) {
3325                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3326                                tx_ring->count);
3327                 if (tx_pending) {
3328                         /*
3329                          * We've lost link, so the controller stops DMA,
3330                          * but we've got queued Tx work that's never going
3331                          * to get done, so reset controller to flush Tx.
3332                          * (Do the reset outside of interrupt context).
3333                          */
3334                         adapter->tx_timeout_count++;
3335                         schedule_work(&adapter->reset_task);
3336                 }
3337         }
3338
3339         /* Cause software interrupt to ensure Rx ring is cleaned */
3340         ew32(ICS, E1000_ICS_RXDMT0);
3341
3342         /* Force detection of hung controller every watchdog period */
3343         adapter->detect_tx_hung = 1;
3344
3345         /*
3346          * With 82571 controllers, LAA may be overwritten due to controller
3347          * reset from the other port. Set the appropriate LAA in RAR[0]
3348          */
3349         if (e1000e_get_laa_state_82571(hw))
3350                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3351
3352         /* Reset the timer */
3353         if (!test_bit(__E1000_DOWN, &adapter->state))
3354                 mod_timer(&adapter->watchdog_timer,
3355                           round_jiffies(jiffies + 2 * HZ));
3356 }
3357
3358 #define E1000_TX_FLAGS_CSUM             0x00000001
3359 #define E1000_TX_FLAGS_VLAN             0x00000002
3360 #define E1000_TX_FLAGS_TSO              0x00000004
3361 #define E1000_TX_FLAGS_IPV4             0x00000008
3362 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
3363 #define E1000_TX_FLAGS_VLAN_SHIFT       16
3364
3365 static int e1000_tso(struct e1000_adapter *adapter,
3366                      struct sk_buff *skb)
3367 {
3368         struct e1000_ring *tx_ring = adapter->tx_ring;
3369         struct e1000_context_desc *context_desc;
3370         struct e1000_buffer *buffer_info;
3371         unsigned int i;
3372         u32 cmd_length = 0;
3373         u16 ipcse = 0, tucse, mss;
3374         u8 ipcss, ipcso, tucss, tucso, hdr_len;
3375         int err;
3376
3377         if (skb_is_gso(skb)) {
3378                 if (skb_header_cloned(skb)) {
3379                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3380                         if (err)
3381                                 return err;
3382                 }
3383
3384                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3385                 mss = skb_shinfo(skb)->gso_size;
3386                 if (skb->protocol == htons(ETH_P_IP)) {
3387                         struct iphdr *iph = ip_hdr(skb);
3388                         iph->tot_len = 0;
3389                         iph->check = 0;
3390                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3391                                                                  iph->daddr, 0,
3392                                                                  IPPROTO_TCP,
3393                                                                  0);
3394                         cmd_length = E1000_TXD_CMD_IP;
3395                         ipcse = skb_transport_offset(skb) - 1;
3396                 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3397                         ipv6_hdr(skb)->payload_len = 0;
3398                         tcp_hdr(skb)->check =
3399                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3400                                                  &ipv6_hdr(skb)->daddr,
3401                                                  0, IPPROTO_TCP, 0);
3402                         ipcse = 0;
3403                 }
3404                 ipcss = skb_network_offset(skb);
3405                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3406                 tucss = skb_transport_offset(skb);
3407                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3408                 tucse = 0;
3409
3410                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3411                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3412
3413                 i = tx_ring->next_to_use;
3414                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3415                 buffer_info = &tx_ring->buffer_info[i];
3416
3417                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
3418                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
3419                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
3420                 context_desc->upper_setup.tcp_fields.tucss = tucss;
3421                 context_desc->upper_setup.tcp_fields.tucso = tucso;
3422                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3423                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
3424                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3425                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3426
3427                 buffer_info->time_stamp = jiffies;
3428                 buffer_info->next_to_watch = i;
3429
3430                 i++;
3431                 if (i == tx_ring->count)
3432                         i = 0;
3433                 tx_ring->next_to_use = i;
3434
3435                 return 1;
3436         }
3437
3438         return 0;
3439 }
3440
3441 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3442 {
3443         struct e1000_ring *tx_ring = adapter->tx_ring;
3444         struct e1000_context_desc *context_desc;
3445         struct e1000_buffer *buffer_info;
3446         unsigned int i;
3447         u8 css;
3448
3449         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3450                 css = skb_transport_offset(skb);
3451
3452                 i = tx_ring->next_to_use;
3453                 buffer_info = &tx_ring->buffer_info[i];
3454                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3455
3456                 context_desc->lower_setup.ip_config = 0;
3457                 context_desc->upper_setup.tcp_fields.tucss = css;
3458                 context_desc->upper_setup.tcp_fields.tucso =
3459                                         css + skb->csum_offset;
3460                 context_desc->upper_setup.tcp_fields.tucse = 0;
3461                 context_desc->tcp_seg_setup.data = 0;
3462                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3463
3464                 buffer_info->time_stamp = jiffies;
3465                 buffer_info->next_to_watch = i;
3466
3467                 i++;
3468                 if (i == tx_ring->count)
3469                         i = 0;
3470                 tx_ring->next_to_use = i;
3471
3472                 return 1;
3473         }
3474
3475         return 0;
3476 }
3477
3478 #define E1000_MAX_PER_TXD       8192
3479 #define E1000_MAX_TXD_PWR       12
3480
3481 static int e1000_tx_map(struct e1000_adapter *adapter,
3482                         struct sk_buff *skb, unsigned int first,
3483                         unsigned int max_per_txd, unsigned int nr_frags,
3484                         unsigned int mss)
3485 {
3486         struct e1000_ring *tx_ring = adapter->tx_ring;
3487         struct e1000_buffer *buffer_info;
3488         unsigned int len = skb->len - skb->data_len;
3489         unsigned int offset = 0, size, count = 0, i;
3490         unsigned int f;
3491
3492         i = tx_ring->next_to_use;
3493
3494         while (len) {
3495                 buffer_info = &tx_ring->buffer_info[i];
3496                 size = min(len, max_per_txd);
3497
3498                 /* Workaround for premature desc write-backs
3499                  * in TSO mode.  Append 4-byte sentinel desc */
3500                 if (mss && !nr_frags && size == len && size > 8)
3501                         size -= 4;
3502
3503                 buffer_info->length = size;
3504                 /* set time_stamp *before* dma to help avoid a possible race */
3505                 buffer_info->time_stamp = jiffies;
3506                 buffer_info->dma =
3507                         pci_map_single(adapter->pdev,
3508                                 skb->data + offset,
3509                                 size,
3510                                 PCI_DMA_TODEVICE);
3511                 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
3512                         dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3513                         adapter->tx_dma_failed++;
3514                         return -1;
3515                 }
3516                 buffer_info->next_to_watch = i;
3517
3518                 len -= size;
3519                 offset += size;
3520                 count++;
3521                 i++;
3522                 if (i == tx_ring->count)
3523                         i = 0;
3524         }
3525
3526         for (f = 0; f < nr_frags; f++) {
3527                 struct skb_frag_struct *frag;
3528
3529                 frag = &skb_shinfo(skb)->frags[f];
3530                 len = frag->size;
3531                 offset = frag->page_offset;
3532
3533                 while (len) {
3534                         buffer_info = &tx_ring->buffer_info[i];
3535                         size = min(len, max_per_txd);
3536                         /* Workaround for premature desc write-backs
3537                          * in TSO mode.  Append 4-byte sentinel desc */
3538                         if (mss && f == (nr_frags-1) && size == len && size > 8)
3539                                 size -= 4;
3540
3541                         buffer_info->length = size;
3542                         buffer_info->time_stamp = jiffies;
3543                         buffer_info->dma =
3544                                 pci_map_page(adapter->pdev,
3545                                         frag->page,
3546                                         offset,
3547                                         size,
3548                                         PCI_DMA_TODEVICE);
3549                         if (pci_dma_mapping_error(adapter->pdev,
3550                                                   buffer_info->dma)) {
3551                                 dev_err(&adapter->pdev->dev,
3552                                         "TX DMA page map failed\n");
3553                                 adapter->tx_dma_failed++;
3554                                 return -1;
3555                         }
3556
3557                         buffer_info->next_to_watch = i;
3558
3559                         len -= size;
3560                         offset += size;
3561                         count++;
3562
3563                         i++;
3564                         if (i == tx_ring->count)
3565                                 i = 0;
3566                 }
3567         }
3568
3569         if (i == 0)
3570                 i = tx_ring->count - 1;
3571         else
3572                 i--;
3573
3574         tx_ring->buffer_info[i].skb = skb;
3575         tx_ring->buffer_info[first].next_to_watch = i;
3576
3577         return count;
3578 }
3579
3580 static void e1000_tx_queue(struct e1000_adapter *adapter,
3581                            int tx_flags, int count)
3582 {
3583         struct e1000_ring *tx_ring = adapter->tx_ring;
3584         struct e1000_tx_desc *tx_desc = NULL;
3585         struct e1000_buffer *buffer_info;
3586         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3587         unsigned int i;
3588
3589         if (tx_flags & E1000_TX_FLAGS_TSO) {
3590                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3591                              E1000_TXD_CMD_TSE;
3592                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3593
3594                 if (tx_flags & E1000_TX_FLAGS_IPV4)
3595                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3596         }
3597
3598         if (tx_flags & E1000_TX_FLAGS_CSUM) {
3599                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3600                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3601         }
3602
3603         if (tx_flags & E1000_TX_FLAGS_VLAN) {
3604                 txd_lower |= E1000_TXD_CMD_VLE;
3605                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3606         }
3607
3608         i = tx_ring->next_to_use;
3609
3610         while (count--) {
3611                 buffer_info = &tx_ring->buffer_info[i];
3612                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3613                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3614                 tx_desc->lower.data =
3615                         cpu_to_le32(txd_lower | buffer_info->length);
3616                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3617
3618                 i++;
3619                 if (i == tx_ring->count)
3620                         i = 0;
3621         }
3622
3623         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3624
3625         /*
3626          * Force memory writes to complete before letting h/w
3627          * know there are new descriptors to fetch.  (Only
3628          * applicable for weak-ordered memory model archs,
3629          * such as IA-64).
3630          */
3631         wmb();
3632
3633         tx_ring->next_to_use = i;
3634         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3635         /*
3636          * we need this if more than one processor can write to our tail
3637          * at a time, it synchronizes IO on IA64/Altix systems
3638          */
3639         mmiowb();
3640 }
3641
3642 #define MINIMUM_DHCP_PACKET_SIZE 282
3643 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3644                                     struct sk_buff *skb)
3645 {
3646         struct e1000_hw *hw =  &adapter->hw;
3647         u16 length, offset;
3648
3649         if (vlan_tx_tag_present(skb)) {
3650                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3651                     && (adapter->hw.mng_cookie.status &
3652                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3653                         return 0;
3654         }
3655
3656         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3657                 return 0;
3658
3659         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3660                 return 0;
3661
3662         {
3663                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3664                 struct udphdr *udp;
3665
3666                 if (ip->protocol != IPPROTO_UDP)
3667                         return 0;
3668
3669                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3670                 if (ntohs(udp->dest) != 67)
3671                         return 0;
3672
3673                 offset = (u8 *)udp + 8 - skb->data;
3674                 length = skb->len - offset;
3675                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3676         }
3677
3678         return 0;
3679 }
3680
3681 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3682 {
3683         struct e1000_adapter *adapter = netdev_priv(netdev);
3684
3685         netif_stop_queue(netdev);
3686         /*
3687          * Herbert's original patch had:
3688          *  smp_mb__after_netif_stop_queue();
3689          * but since that doesn't exist yet, just open code it.
3690          */
3691         smp_mb();
3692
3693         /*
3694          * We need to check again in a case another CPU has just
3695          * made room available.
3696          */
3697         if (e1000_desc_unused(adapter->tx_ring) < size)
3698                 return -EBUSY;
3699
3700         /* A reprieve! */
3701         netif_start_queue(netdev);
3702         ++adapter->restart_queue;
3703         return 0;
3704 }
3705
3706 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3707 {
3708         struct e1000_adapter *adapter = netdev_priv(netdev);
3709
3710         if (e1000_desc_unused(adapter->tx_ring) >= size)
3711                 return 0;
3712         return __e1000_maybe_stop_tx(netdev, size);
3713 }
3714
3715 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3716 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3717 {
3718         struct e1000_adapter *adapter = netdev_priv(netdev);
3719         struct e1000_ring *tx_ring = adapter->tx_ring;
3720         unsigned int first;
3721         unsigned int max_per_txd = E1000_MAX_PER_TXD;
3722         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3723         unsigned int tx_flags = 0;
3724         unsigned int len = skb->len - skb->data_len;
3725         unsigned long irq_flags;
3726         unsigned int nr_frags;
3727         unsigned int mss;
3728         int count = 0;
3729         int tso;
3730         unsigned int f;
3731
3732         if (test_bit(__E1000_DOWN, &adapter->state)) {
3733                 dev_kfree_skb_any(skb);
3734                 return NETDEV_TX_OK;
3735         }
3736
3737         if (skb->len <= 0) {
3738                 dev_kfree_skb_any(skb);
3739                 return NETDEV_TX_OK;
3740         }
3741
3742         mss = skb_shinfo(skb)->gso_size;
3743         /*
3744          * The controller does a simple calculation to
3745          * make sure there is enough room in the FIFO before
3746          * initiating the DMA for each buffer.  The calc is:
3747          * 4 = ceil(buffer len/mss).  To make sure we don't
3748          * overrun the FIFO, adjust the max buffer len if mss
3749          * drops.
3750          */
3751         if (mss) {
3752                 u8 hdr_len;
3753                 max_per_txd = min(mss << 2, max_per_txd);
3754                 max_txd_pwr = fls(max_per_txd) - 1;
3755
3756                 /*
3757                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3758                  * points to just header, pull a few bytes of payload from
3759                  * frags into skb->data
3760                  */
3761                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3762                 /*
3763                  * we do this workaround for ES2LAN, but it is un-necessary,
3764                  * avoiding it could save a lot of cycles
3765                  */
3766                 if (skb->data_len && (hdr_len == len)) {
3767                         unsigned int pull_size;
3768
3769                         pull_size = min((unsigned int)4, skb->data_len);
3770                         if (!__pskb_pull_tail(skb, pull_size)) {
3771                                 e_err("__pskb_pull_tail failed.\n");
3772                                 dev_kfree_skb_any(skb);
3773                                 return NETDEV_TX_OK;
3774                         }
3775                         len = skb->len - skb->data_len;
3776                 }
3777         }
3778
3779         /* reserve a descriptor for the offload context */
3780         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3781                 count++;
3782         count++;
3783
3784         count += TXD_USE_COUNT(len, max_txd_pwr);
3785
3786         nr_frags = skb_shinfo(skb)->nr_frags;
3787         for (f = 0; f < nr_frags; f++)
3788                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3789                                        max_txd_pwr);
3790
3791         if (adapter->hw.mac.tx_pkt_filtering)
3792                 e1000_transfer_dhcp_info(adapter, skb);
3793
3794         if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3795                 /* Collision - tell upper layer to requeue */
3796                 return NETDEV_TX_LOCKED;
3797
3798         /*
3799          * need: count + 2 desc gap to keep tail from touching
3800          * head, otherwise try next time
3801          */
3802         if (e1000_maybe_stop_tx(netdev, count + 2)) {
3803                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3804                 return NETDEV_TX_BUSY;
3805         }
3806
3807         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3808                 tx_flags |= E1000_TX_FLAGS_VLAN;
3809                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3810         }
3811
3812         first = tx_ring->next_to_use;
3813
3814         tso = e1000_tso(adapter, skb);
3815         if (tso < 0) {
3816                 dev_kfree_skb_any(skb);
3817                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3818                 return NETDEV_TX_OK;
3819         }
3820
3821         if (tso)
3822                 tx_flags |= E1000_TX_FLAGS_TSO;
3823         else if (e1000_tx_csum(adapter, skb))
3824                 tx_flags |= E1000_TX_FLAGS_CSUM;
3825
3826         /*
3827          * Old method was to assume IPv4 packet by default if TSO was enabled.
3828          * 82571 hardware supports TSO capabilities for IPv6 as well...
3829          * no longer assume, we must.
3830          */
3831         if (skb->protocol == htons(ETH_P_IP))
3832                 tx_flags |= E1000_TX_FLAGS_IPV4;
3833
3834         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3835         if (count < 0) {
3836                 /* handle pci_map_single() error in e1000_tx_map */
3837                 dev_kfree_skb_any(skb);
3838                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3839                 return NETDEV_TX_OK;
3840         }
3841
3842         e1000_tx_queue(adapter, tx_flags, count);
3843
3844         netdev->trans_start = jiffies;
3845
3846         /* Make sure there is space in the ring for the next send. */
3847         e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3848
3849         spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3850         return NETDEV_TX_OK;
3851 }
3852
3853 /**
3854  * e1000_tx_timeout - Respond to a Tx Hang
3855  * @netdev: network interface device structure
3856  **/
3857 static void e1000_tx_timeout(struct net_device *netdev)
3858 {
3859         struct e1000_adapter *adapter = netdev_priv(netdev);
3860
3861         /* Do the reset outside of interrupt context */
3862         adapter->tx_timeout_count++;
3863         schedule_work(&adapter->reset_task);
3864 }
3865
3866 static void e1000_reset_task(struct work_struct *work)
3867 {
3868         struct e1000_adapter *adapter;
3869         adapter = container_of(work, struct e1000_adapter, reset_task);
3870
3871         e1000e_reinit_locked(adapter);
3872 }
3873
3874 /**
3875  * e1000_get_stats - Get System Network Statistics
3876  * @netdev: network interface device structure
3877  *
3878  * Returns the address of the device statistics structure.
3879  * The statistics are actually updated from the timer callback.
3880  **/
3881 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3882 {
3883         struct e1000_adapter *adapter = netdev_priv(netdev);
3884
3885         /* only return the current stats */
3886         return &adapter->net_stats;
3887 }
3888
3889 /**
3890  * e1000_change_mtu - Change the Maximum Transfer Unit
3891  * @netdev: network interface device structure
3892  * @new_mtu: new value for maximum frame size
3893  *
3894  * Returns 0 on success, negative on failure
3895  **/
3896 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3897 {
3898         struct e1000_adapter *adapter = netdev_priv(netdev);
3899         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3900
3901         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
3902             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3903                 e_err("Invalid MTU setting\n");
3904                 return -EINVAL;
3905         }
3906
3907         /* Jumbo frame size limits */
3908         if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3909                 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3910                         e_err("Jumbo Frames not supported.\n");
3911                         return -EINVAL;
3912                 }
3913                 if (adapter->hw.phy.type == e1000_phy_ife) {
3914                         e_err("Jumbo Frames not supported.\n");
3915                         return -EINVAL;
3916                 }
3917         }
3918
3919 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3920         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3921                 e_err("MTU > 9216 not supported.\n");
3922                 return -EINVAL;
3923         }
3924
3925         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3926                 msleep(1);
3927         /* e1000e_down has a dependency on max_frame_size */
3928         adapter->max_frame_size = max_frame;
3929         if (netif_running(netdev))
3930                 e1000e_down(adapter);
3931
3932         /*
3933          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3934          * means we reserve 2 more, this pushes us to allocate from the next
3935          * larger slab size.
3936          * i.e. RXBUFFER_2048 --> size-4096 slab
3937          * However with the new *_jumbo_rx* routines, jumbo receives will use
3938          * fragmented skbs
3939          */
3940
3941         if (max_frame <= 256)
3942                 adapter->rx_buffer_len = 256;
3943         else if (max_frame <= 512)
3944                 adapter->rx_buffer_len = 512;
3945         else if (max_frame <= 1024)
3946                 adapter->rx_buffer_len = 1024;
3947         else if (max_frame <= 2048)
3948                 adapter->rx_buffer_len = 2048;
3949         else
3950                 adapter->rx_buffer_len = 4096;
3951
3952         /* adjust allocation if LPE protects us, and we aren't using SBP */
3953         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3954              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3955                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3956                                          + ETH_FCS_LEN;
3957
3958         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3959         netdev->mtu = new_mtu;
3960
3961         if (netif_running(netdev))
3962                 e1000e_up(adapter);
3963         else
3964                 e1000e_reset(adapter);
3965
3966         clear_bit(__E1000_RESETTING, &adapter->state);
3967
3968         return 0;
3969 }
3970
3971 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3972                            int cmd)
3973 {
3974         struct e1000_adapter *adapter = netdev_priv(netdev);
3975         struct mii_ioctl_data *data = if_mii(ifr);
3976
3977         if (adapter->hw.phy.media_type != e1000_media_type_copper)
3978                 return -EOPNOTSUPP;
3979
3980         switch (cmd) {
3981         case SIOCGMIIPHY:
3982                 data->phy_id = adapter->hw.phy.addr;
3983                 break;
3984         case SIOCGMIIREG:
3985                 if (!capable(CAP_NET_ADMIN))
3986                         return -EPERM;
3987                 switch (data->reg_num & 0x1F) {
3988                 case MII_BMCR:
3989                         data->val_out = adapter->phy_regs.bmcr;
3990                         break;
3991                 case MII_BMSR:
3992                         data->val_out = adapter->phy_regs.bmsr;
3993                         break;
3994                 case MII_PHYSID1:
3995                         data->val_out = (adapter->hw.phy.id >> 16);
3996                         break;
3997                 case MII_PHYSID2:
3998                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
3999                         break;
4000                 case MII_ADVERTISE:
4001                         data->val_out = adapter->phy_regs.advertise;
4002                         break;
4003                 case MII_LPA:
4004                         data->val_out = adapter->phy_regs.lpa;
4005                         break;
4006                 case MII_EXPANSION:
4007                         data->val_out = adapter->phy_regs.expansion;
4008                         break;
4009                 case MII_CTRL1000:
4010                         data->val_out = adapter->phy_regs.ctrl1000;
4011                         break;
4012                 case MII_STAT1000:
4013                         data->val_out = adapter->phy_regs.stat1000;
4014                         break;
4015                 case MII_ESTATUS:
4016                         data->val_out = adapter->phy_regs.estatus;
4017                         break;
4018                 default:
4019                         return -EIO;
4020                 }
4021                 break;
4022         case SIOCSMIIREG:
4023         default:
4024                 return -EOPNOTSUPP;
4025         }
4026         return 0;
4027 }
4028
4029 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4030 {
4031         switch (cmd) {
4032         case SIOCGMIIPHY:
4033         case SIOCGMIIREG:
4034         case SIOCSMIIREG:
4035                 return e1000_mii_ioctl(netdev, ifr, cmd);
4036         default:
4037                 return -EOPNOTSUPP;
4038         }
4039 }
4040
4041 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4042 {
4043         struct net_device *netdev = pci_get_drvdata(pdev);
4044         struct e1000_adapter *adapter = netdev_priv(netdev);
4045         struct e1000_hw *hw = &adapter->hw;
4046         u32 ctrl, ctrl_ext, rctl, status;
4047         u32 wufc = adapter->wol;
4048         int retval = 0;
4049
4050         netif_device_detach(netdev);
4051
4052         if (netif_running(netdev)) {
4053                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4054                 e1000e_down(adapter);
4055                 e1000_free_irq(adapter);
4056         }
4057
4058         retval = pci_save_state(pdev);
4059         if (retval)
4060                 return retval;
4061
4062         status = er32(STATUS);
4063         if (status & E1000_STATUS_LU)
4064                 wufc &= ~E1000_WUFC_LNKC;
4065
4066         if (wufc) {
4067                 e1000_setup_rctl(adapter);
4068                 e1000_set_multi(netdev);
4069
4070                 /* turn on all-multi mode if wake on multicast is enabled */
4071                 if (wufc & E1000_WUFC_MC) {
4072                         rctl = er32(RCTL);
4073                         rctl |= E1000_RCTL_MPE;
4074                         ew32(RCTL, rctl);
4075                 }
4076
4077                 ctrl = er32(CTRL);
4078                 /* advertise wake from D3Cold */
4079                 #define E1000_CTRL_ADVD3WUC 0x00100000
4080                 /* phy power management enable */
4081                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4082                 ctrl |= E1000_CTRL_ADVD3WUC |
4083                         E1000_CTRL_EN_PHY_PWR_MGMT;
4084                 ew32(CTRL, ctrl);
4085
4086                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4087                     adapter->hw.phy.media_type ==
4088                     e1000_media_type_internal_serdes) {
4089                         /* keep the laser running in D3 */
4090                         ctrl_ext = er32(CTRL_EXT);
4091                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4092                         ew32(CTRL_EXT, ctrl_ext);
4093                 }
4094
4095                 if (adapter->flags & FLAG_IS_ICH)
4096                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4097
4098                 /* Allow time for pending master requests to run */
4099                 e1000e_disable_pcie_master(&adapter->hw);
4100
4101                 ew32(WUC, E1000_WUC_PME_EN);
4102                 ew32(WUFC, wufc);
4103                 pci_enable_wake(pdev, PCI_D3hot, 1);
4104                 pci_enable_wake(pdev, PCI_D3cold, 1);
4105         } else {
4106                 ew32(WUC, 0);
4107                 ew32(WUFC, 0);
4108                 pci_enable_wake(pdev, PCI_D3hot, 0);
4109                 pci_enable_wake(pdev, PCI_D3cold, 0);
4110         }
4111
4112         /* make sure adapter isn't asleep if manageability is enabled */
4113         if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4114                 pci_enable_wake(pdev, PCI_D3hot, 1);
4115                 pci_enable_wake(pdev, PCI_D3cold, 1);
4116         }
4117
4118         if (adapter->hw.phy.type == e1000_phy_igp_3)
4119                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4120
4121         /*
4122          * Release control of h/w to f/w.  If f/w is AMT enabled, this
4123          * would have already happened in close and is redundant.
4124          */
4125         e1000_release_hw_control(adapter);
4126
4127         pci_disable_device(pdev);
4128
4129         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4130
4131         return 0;
4132 }
4133
4134 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4135 {
4136         int pos;
4137         u16 val;
4138
4139         /*
4140          * 82573 workaround - disable L1 ASPM on mobile chipsets
4141          *
4142          * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4143          * resulting in lost data or garbage information on the pci-e link
4144          * level. This could result in (false) bad EEPROM checksum errors,
4145          * long ping times (up to 2s) or even a system freeze/hang.
4146          *
4147          * Unfortunately this feature saves about 1W power consumption when
4148          * active.
4149          */
4150         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4151         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4152         if (val & 0x2) {
4153                 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4154                 val &= ~0x2;
4155                 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4156         }
4157 }
4158
4159 #ifdef CONFIG_PM
4160 static int e1000_resume(struct pci_dev *pdev)
4161 {
4162         struct net_device *netdev = pci_get_drvdata(pdev);
4163         struct e1000_adapter *adapter = netdev_priv(netdev);
4164         struct e1000_hw *hw = &adapter->hw;
4165         u32 err;
4166
4167         pci_set_power_state(pdev, PCI_D0);
4168         pci_restore_state(pdev);
4169         e1000e_disable_l1aspm(pdev);
4170
4171         err = pci_enable_device_mem(pdev);
4172         if (err) {
4173                 dev_err(&pdev->dev,
4174                         "Cannot enable PCI device from suspend\n");
4175                 return err;
4176         }
4177
4178         pci_set_master(pdev);
4179
4180         pci_enable_wake(pdev, PCI_D3hot, 0);
4181         pci_enable_wake(pdev, PCI_D3cold, 0);
4182
4183         if (netif_running(netdev)) {
4184                 err = e1000_request_irq(adapter);
4185                 if (err)
4186                         return err;
4187         }
4188
4189         e1000e_power_up_phy(adapter);
4190         e1000e_reset(adapter);
4191         ew32(WUS, ~0);
4192
4193         e1000_init_manageability(adapter);
4194
4195         if (netif_running(netdev))
4196                 e1000e_up(adapter);
4197
4198         netif_device_attach(netdev);
4199
4200         /*
4201          * If the controller has AMT, do not set DRV_LOAD until the interface
4202          * is up.  For all other cases, let the f/w know that the h/w is now
4203          * under the control of the driver.
4204          */
4205         if (!(adapter->flags & FLAG_HAS_AMT))
4206                 e1000_get_hw_control(adapter);
4207
4208         return 0;
4209 }
4210 #endif
4211
4212 static void e1000_shutdown(struct pci_dev *pdev)
4213 {
4214         e1000_suspend(pdev, PMSG_SUSPEND);
4215 }
4216
4217 #ifdef CONFIG_NET_POLL_CONTROLLER
4218 /*
4219  * Polling 'interrupt' - used by things like netconsole to send skbs
4220  * without having to re-enable interrupts. It's not called while
4221  * the interrupt routine is executing.
4222  */
4223 static void e1000_netpoll(struct net_device *netdev)
4224 {
4225         struct e1000_adapter *adapter = netdev_priv(netdev);
4226
4227         disable_irq(adapter->pdev->irq);
4228         e1000_intr(adapter->pdev->irq, netdev);
4229
4230         enable_irq(adapter->pdev->irq);
4231 }
4232 #endif
4233
4234 /**
4235  * e1000_io_error_detected - called when PCI error is detected
4236  * @pdev: Pointer to PCI device
4237  * @state: The current pci connection state
4238  *
4239  * This function is called after a PCI bus error affecting
4240  * this device has been detected.
4241  */
4242 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4243                                                 pci_channel_state_t state)
4244 {
4245         struct net_device *netdev = pci_get_drvdata(pdev);
4246         struct e1000_adapter *adapter = netdev_priv(netdev);
4247
4248         netif_device_detach(netdev);
4249
4250         if (netif_running(netdev))
4251                 e1000e_down(adapter);
4252         pci_disable_device(pdev);
4253
4254         /* Request a slot slot reset. */
4255         return PCI_ERS_RESULT_NEED_RESET;
4256 }
4257
4258 /**
4259  * e1000_io_slot_reset - called after the pci bus has been reset.
4260  * @pdev: Pointer to PCI device
4261  *
4262  * Restart the card from scratch, as if from a cold-boot. Implementation
4263  * resembles the first-half of the e1000_resume routine.
4264  */
4265 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4266 {
4267         struct net_device *netdev = pci_get_drvdata(pdev);
4268         struct e1000_adapter *adapter = netdev_priv(netdev);
4269         struct e1000_hw *hw = &adapter->hw;
4270         int err;
4271
4272         e1000e_disable_l1aspm(pdev);
4273         err = pci_enable_device_mem(pdev);
4274         if (err) {
4275                 dev_err(&pdev->dev,
4276                         "Cannot re-enable PCI device after reset.\n");
4277                 return PCI_ERS_RESULT_DISCONNECT;
4278         }
4279         pci_set_master(pdev);
4280         pci_restore_state(pdev);
4281
4282         pci_enable_wake(pdev, PCI_D3hot, 0);
4283         pci_enable_wake(pdev, PCI_D3cold, 0);
4284
4285         e1000e_reset(adapter);
4286         ew32(WUS, ~0);
4287
4288         return PCI_ERS_RESULT_RECOVERED;
4289 }
4290
4291 /**
4292  * e1000_io_resume - called when traffic can start flowing again.
4293  * @pdev: Pointer to PCI device
4294  *
4295  * This callback is called when the error recovery driver tells us that
4296  * its OK to resume normal operation. Implementation resembles the
4297  * second-half of the e1000_resume routine.
4298  */
4299 static void e1000_io_resume(struct pci_dev *pdev)
4300 {
4301         struct net_device *netdev = pci_get_drvdata(pdev);
4302         struct e1000_adapter *adapter = netdev_priv(netdev);
4303
4304         e1000_init_manageability(adapter);
4305
4306         if (netif_running(netdev)) {
4307                 if (e1000e_up(adapter)) {
4308                         dev_err(&pdev->dev,
4309                                 "can't bring device back up after reset\n");
4310                         return;
4311                 }
4312         }
4313
4314         netif_device_attach(netdev);
4315
4316         /*
4317          * If the controller has AMT, do not set DRV_LOAD until the interface
4318          * is up.  For all other cases, let the f/w know that the h/w is now
4319          * under the control of the driver.
4320          */
4321         if (!(adapter->flags & FLAG_HAS_AMT))
4322                 e1000_get_hw_control(adapter);
4323
4324 }
4325
4326 static void e1000_print_device_info(struct e1000_adapter *adapter)
4327 {
4328         struct e1000_hw *hw = &adapter->hw;
4329         struct net_device *netdev = adapter->netdev;
4330         u32 pba_num;
4331
4332         /* print bus type/speed/width info */
4333         e_info("(PCI Express:2.5GB/s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
4334                /* bus width */
4335                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4336                 "Width x1"),
4337                /* MAC address */
4338                netdev->dev_addr[0], netdev->dev_addr[1],
4339                netdev->dev_addr[2], netdev->dev_addr[3],
4340                netdev->dev_addr[4], netdev->dev_addr[5]);
4341         e_info("Intel(R) PRO/%s Network Connection\n",
4342                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4343         e1000e_read_pba_num(hw, &pba_num);
4344         e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4345                hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4346 }
4347
4348 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4349 {
4350         struct e1000_hw *hw = &adapter->hw;
4351         int ret_val;
4352         u16 buf = 0;
4353
4354         if (hw->mac.type != e1000_82573)
4355                 return;
4356
4357         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4358         if (!(le16_to_cpu(buf) & (1 << 0))) {
4359                 /* Deep Smart Power Down (DSPD) */
4360                 e_warn("Warning: detected DSPD enabled in EEPROM\n");
4361         }
4362
4363         ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4364         if (le16_to_cpu(buf) & (3 << 2)) {
4365                 /* ASPM enable */
4366                 e_warn("Warning: detected ASPM enabled in EEPROM\n");
4367         }
4368 }
4369
4370 /**
4371  * e1000_probe - Device Initialization Routine
4372  * @pdev: PCI device information struct
4373  * @ent: entry in e1000_pci_tbl
4374  *
4375  * Returns 0 on success, negative on failure
4376  *
4377  * e1000_probe initializes an adapter identified by a pci_dev structure.
4378  * The OS initialization, configuring of the adapter private structure,
4379  * and a hardware reset occur.
4380  **/
4381 static int __devinit e1000_probe(struct pci_dev *pdev,
4382                                  const struct pci_device_id *ent)
4383 {
4384         struct net_device *netdev;
4385         struct e1000_adapter *adapter;
4386         struct e1000_hw *hw;
4387         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4388         resource_size_t mmio_start, mmio_len;
4389         resource_size_t flash_start, flash_len;
4390
4391         static int cards_found;
4392         int i, err, pci_using_dac;
4393         u16 eeprom_data = 0;
4394         u16 eeprom_apme_mask = E1000_EEPROM_APME;
4395
4396         e1000e_disable_l1aspm(pdev);
4397
4398         err = pci_enable_device_mem(pdev);
4399         if (err)
4400                 return err;
4401
4402         pci_using_dac = 0;
4403         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4404         if (!err) {
4405                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4406                 if (!err)
4407                         pci_using_dac = 1;
4408         } else {
4409                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4410                 if (err) {
4411                         err = pci_set_consistent_dma_mask(pdev,
4412                                                           DMA_32BIT_MASK);
4413                         if (err) {
4414                                 dev_err(&pdev->dev, "No usable DMA "
4415                                         "configuration, aborting\n");
4416                                 goto err_dma;
4417                         }
4418                 }
4419         }
4420
4421         err = pci_request_selected_regions(pdev,
4422                                           pci_select_bars(pdev, IORESOURCE_MEM),
4423                                           e1000e_driver_name);
4424         if (err)
4425                 goto err_pci_reg;
4426
4427         pci_set_master(pdev);
4428         pci_save_state(pdev);
4429
4430         err = -ENOMEM;
4431         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4432         if (!netdev)
4433                 goto err_alloc_etherdev;
4434
4435         SET_NETDEV_DEV(netdev, &pdev->dev);
4436
4437         pci_set_drvdata(pdev, netdev);
4438         adapter = netdev_priv(netdev);
4439         hw = &adapter->hw;
4440         adapter->netdev = netdev;
4441         adapter->pdev = pdev;
4442         adapter->ei = ei;
4443         adapter->pba = ei->pba;
4444         adapter->flags = ei->flags;
4445         adapter->hw.adapter = adapter;
4446         adapter->hw.mac.type = ei->mac;
4447         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4448
4449         mmio_start = pci_resource_start(pdev, 0);
4450         mmio_len = pci_resource_len(pdev, 0);
4451
4452         err = -EIO;
4453         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4454         if (!adapter->hw.hw_addr)
4455                 goto err_ioremap;
4456
4457         if ((adapter->flags & FLAG_HAS_FLASH) &&
4458             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4459                 flash_start = pci_resource_start(pdev, 1);
4460                 flash_len = pci_resource_len(pdev, 1);
4461                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4462                 if (!adapter->hw.flash_address)
4463                         goto err_flashmap;
4464         }
4465
4466         /* construct the net_device struct */
4467         netdev->open                    = &e1000_open;
4468         netdev->stop                    = &e1000_close;
4469         netdev->hard_start_xmit         = &e1000_xmit_frame;
4470         netdev->get_stats               = &e1000_get_stats;
4471         netdev->set_multicast_list      = &e1000_set_multi;
4472         netdev->set_mac_address         = &e1000_set_mac;
4473         netdev->change_mtu              = &e1000_change_mtu;
4474         netdev->do_ioctl                = &e1000_ioctl;
4475         e1000e_set_ethtool_ops(netdev);
4476         netdev->tx_timeout              = &e1000_tx_timeout;
4477         netdev->watchdog_timeo          = 5 * HZ;
4478         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4479         netdev->vlan_rx_register        = e1000_vlan_rx_register;
4480         netdev->vlan_rx_add_vid         = e1000_vlan_rx_add_vid;
4481         netdev->vlan_rx_kill_vid        = e1000_vlan_rx_kill_vid;
4482 #ifdef CONFIG_NET_POLL_CONTROLLER
4483         netdev->poll_controller         = e1000_netpoll;
4484 #endif
4485         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4486
4487         netdev->mem_start = mmio_start;
4488         netdev->mem_end = mmio_start + mmio_len;
4489
4490         adapter->bd_number = cards_found++;
4491
4492         /* setup adapter struct */
4493         err = e1000_sw_init(adapter);
4494         if (err)
4495                 goto err_sw_init;
4496
4497         err = -EIO;
4498
4499         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4500         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4501         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4502
4503         err = ei->get_variants(adapter);
4504         if (err)
4505                 goto err_hw_init;
4506
4507         hw->mac.ops.get_bus_info(&adapter->hw);
4508
4509         adapter->hw.phy.autoneg_wait_to_complete = 0;
4510
4511         /* Copper options */
4512         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4513                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4514                 adapter->hw.phy.disable_polarity_correction = 0;
4515                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4516         }
4517
4518         if (e1000_check_reset_block(&adapter->hw))
4519                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4520
4521         netdev->features = NETIF_F_SG |
4522                            NETIF_F_HW_CSUM |
4523                            NETIF_F_HW_VLAN_TX |
4524                            NETIF_F_HW_VLAN_RX;
4525
4526         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4527                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4528
4529         netdev->features |= NETIF_F_TSO;
4530         netdev->features |= NETIF_F_TSO6;
4531
4532         netdev->vlan_features |= NETIF_F_TSO;
4533         netdev->vlan_features |= NETIF_F_TSO6;
4534         netdev->vlan_features |= NETIF_F_HW_CSUM;
4535         netdev->vlan_features |= NETIF_F_SG;
4536
4537         if (pci_using_dac)
4538                 netdev->features |= NETIF_F_HIGHDMA;
4539
4540         /*
4541          * We should not be using LLTX anymore, but we are still Tx faster with
4542          * it.
4543          */
4544         netdev->features |= NETIF_F_LLTX;
4545
4546         if (e1000e_enable_mng_pass_thru(&adapter->hw))
4547                 adapter->flags |= FLAG_MNG_PT_ENABLED;
4548
4549         /*
4550          * before reading the NVM, reset the controller to
4551          * put the device in a known good starting state
4552          */
4553         adapter->hw.mac.ops.reset_hw(&adapter->hw);
4554
4555         /*
4556          * systems with ASPM and others may see the checksum fail on the first
4557          * attempt. Let's give it a few tries
4558          */
4559         for (i = 0;; i++) {
4560                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4561                         break;
4562                 if (i == 2) {
4563                         e_err("The NVM Checksum Is Not Valid\n");
4564                         err = -EIO;
4565                         goto err_eeprom;
4566                 }
4567         }
4568
4569         e1000_eeprom_checks(adapter);
4570
4571         /* copy the MAC address out of the NVM */
4572         if (e1000e_read_mac_addr(&adapter->hw))
4573                 e_err("NVM Read Error while reading MAC address\n");
4574
4575         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4576         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4577
4578         if (!is_valid_ether_addr(netdev->perm_addr)) {
4579                 e_err("Invalid MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
4580                       netdev->perm_addr[0], netdev->perm_addr[1],
4581                       netdev->perm_addr[2], netdev->perm_addr[3],
4582                       netdev->perm_addr[4], netdev->perm_addr[5]);
4583                 err = -EIO;
4584                 goto err_eeprom;
4585         }
4586
4587         init_timer(&adapter->watchdog_timer);
4588         adapter->watchdog_timer.function = &e1000_watchdog;
4589         adapter->watchdog_timer.data = (unsigned long) adapter;
4590
4591         init_timer(&adapter->phy_info_timer);
4592         adapter->phy_info_timer.function = &e1000_update_phy_info;
4593         adapter->phy_info_timer.data = (unsigned long) adapter;
4594
4595         INIT_WORK(&adapter->reset_task, e1000_reset_task);
4596         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4597
4598         e1000e_check_options(adapter);
4599
4600         /* Initialize link parameters. User can change them with ethtool */
4601         adapter->hw.mac.autoneg = 1;
4602         adapter->fc_autoneg = 1;
4603         adapter->hw.fc.original_type = e1000_fc_default;
4604         adapter->hw.fc.type = e1000_fc_default;
4605         adapter->hw.phy.autoneg_advertised = 0x2f;
4606
4607         /* ring size defaults */
4608         adapter->rx_ring->count = 256;
4609         adapter->tx_ring->count = 256;
4610
4611         /*
4612          * Initial Wake on LAN setting - If APM wake is enabled in
4613          * the EEPROM, enable the ACPI Magic Packet filter
4614          */
4615         if (adapter->flags & FLAG_APME_IN_WUC) {
4616                 /* APME bit in EEPROM is mapped to WUC.APME */
4617                 eeprom_data = er32(WUC);
4618                 eeprom_apme_mask = E1000_WUC_APME;
4619         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4620                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4621                     (adapter->hw.bus.func == 1))
4622                         e1000_read_nvm(&adapter->hw,
4623                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4624                 else
4625                         e1000_read_nvm(&adapter->hw,
4626                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4627         }
4628
4629         /* fetch WoL from EEPROM */
4630         if (eeprom_data & eeprom_apme_mask)
4631                 adapter->eeprom_wol |= E1000_WUFC_MAG;
4632
4633         /*
4634          * now that we have the eeprom settings, apply the special cases
4635          * where the eeprom may be wrong or the board simply won't support
4636          * wake on lan on a particular port
4637          */
4638         if (!(adapter->flags & FLAG_HAS_WOL))
4639                 adapter->eeprom_wol = 0;
4640
4641         /* initialize the wol settings based on the eeprom settings */
4642         adapter->wol = adapter->eeprom_wol;
4643
4644         /* reset the hardware with the new settings */
4645         e1000e_reset(adapter);
4646
4647         /*
4648          * If the controller has AMT, do not set DRV_LOAD until the interface
4649          * is up.  For all other cases, let the f/w know that the h/w is now
4650          * under the control of the driver.
4651          */
4652         if (!(adapter->flags & FLAG_HAS_AMT))
4653                 e1000_get_hw_control(adapter);
4654
4655         /* tell the stack to leave us alone until e1000_open() is called */
4656         netif_carrier_off(netdev);
4657         netif_tx_stop_all_queues(netdev);
4658
4659         strcpy(netdev->name, "eth%d");
4660         err = register_netdev(netdev);
4661         if (err)
4662                 goto err_register;
4663
4664         e1000_print_device_info(adapter);
4665
4666         return 0;
4667
4668 err_register:
4669         if (!(adapter->flags & FLAG_HAS_AMT))
4670                 e1000_release_hw_control(adapter);
4671 err_eeprom:
4672         if (!e1000_check_reset_block(&adapter->hw))
4673                 e1000_phy_hw_reset(&adapter->hw);
4674 err_hw_init:
4675
4676         kfree(adapter->tx_ring);
4677         kfree(adapter->rx_ring);
4678 err_sw_init:
4679         if (adapter->hw.flash_address)
4680                 iounmap(adapter->hw.flash_address);
4681 err_flashmap:
4682         iounmap(adapter->hw.hw_addr);
4683 err_ioremap:
4684         free_netdev(netdev);
4685 err_alloc_etherdev:
4686         pci_release_selected_regions(pdev,
4687                                      pci_select_bars(pdev, IORESOURCE_MEM));
4688 err_pci_reg:
4689 err_dma:
4690         pci_disable_device(pdev);
4691         return err;
4692 }
4693
4694 /**
4695  * e1000_remove - Device Removal Routine
4696  * @pdev: PCI device information struct
4697  *
4698  * e1000_remove is called by the PCI subsystem to alert the driver
4699  * that it should release a PCI device.  The could be caused by a
4700  * Hot-Plug event, or because the driver is going to be removed from
4701  * memory.
4702  **/
4703 static void __devexit e1000_remove(struct pci_dev *pdev)
4704 {
4705         struct net_device *netdev = pci_get_drvdata(pdev);
4706         struct e1000_adapter *adapter = netdev_priv(netdev);
4707
4708         /*
4709          * flush_scheduled work may reschedule our watchdog task, so
4710          * explicitly disable watchdog tasks from being rescheduled
4711          */
4712         set_bit(__E1000_DOWN, &adapter->state);
4713         del_timer_sync(&adapter->watchdog_timer);
4714         del_timer_sync(&adapter->phy_info_timer);
4715
4716         flush_scheduled_work();
4717
4718         /*
4719          * Release control of h/w to f/w.  If f/w is AMT enabled, this
4720          * would have already happened in close and is redundant.
4721          */
4722         e1000_release_hw_control(adapter);
4723
4724         unregister_netdev(netdev);
4725
4726         if (!e1000_check_reset_block(&adapter->hw))
4727                 e1000_phy_hw_reset(&adapter->hw);
4728
4729         kfree(adapter->tx_ring);
4730         kfree(adapter->rx_ring);
4731
4732         iounmap(adapter->hw.hw_addr);
4733         if (adapter->hw.flash_address)
4734                 iounmap(adapter->hw.flash_address);
4735         pci_release_selected_regions(pdev,
4736                                      pci_select_bars(pdev, IORESOURCE_MEM));
4737
4738         free_netdev(netdev);
4739
4740         pci_disable_device(pdev);
4741 }
4742
4743 /* PCI Error Recovery (ERS) */
4744 static struct pci_error_handlers e1000_err_handler = {
4745         .error_detected = e1000_io_error_detected,
4746         .slot_reset = e1000_io_slot_reset,
4747         .resume = e1000_io_resume,
4748 };
4749
4750 static struct pci_device_id e1000_pci_tbl[] = {
4751         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4752         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4753         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4754         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4755         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4756         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4757         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4758         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4759         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
4760
4761         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4762         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4763         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4764         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4765
4766         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4767         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4768         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4769
4770         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4771           board_80003es2lan },
4772         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4773           board_80003es2lan },
4774         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4775           board_80003es2lan },
4776         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4777           board_80003es2lan },
4778
4779         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4780         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4781         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4782         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4783         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4784         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4785         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4786
4787         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4788         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4789         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4790         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4791         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4792         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
4793         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
4794         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
4795         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
4796
4797         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
4798         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
4799         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
4800
4801         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
4802         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
4803
4804         { }     /* terminate list */
4805 };
4806 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4807
4808 /* PCI Device API Driver */
4809 static struct pci_driver e1000_driver = {
4810         .name     = e1000e_driver_name,
4811         .id_table = e1000_pci_tbl,
4812         .probe    = e1000_probe,
4813         .remove   = __devexit_p(e1000_remove),
4814 #ifdef CONFIG_PM
4815         /* Power Management Hooks */
4816         .suspend  = e1000_suspend,
4817         .resume   = e1000_resume,
4818 #endif
4819         .shutdown = e1000_shutdown,
4820         .err_handler = &e1000_err_handler
4821 };
4822
4823 /**
4824  * e1000_init_module - Driver Registration Routine
4825  *
4826  * e1000_init_module is the first routine called when the driver is
4827  * loaded. All it does is register with the PCI subsystem.
4828  **/
4829 static int __init e1000_init_module(void)
4830 {
4831         int ret;
4832         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4833                e1000e_driver_name, e1000e_driver_version);
4834         printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
4835                e1000e_driver_name);
4836         ret = pci_register_driver(&e1000_driver);
4837         pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
4838                                PM_QOS_DEFAULT_VALUE);
4839                                 
4840         return ret;
4841 }
4842 module_init(e1000_init_module);
4843
4844 /**
4845  * e1000_exit_module - Driver Exit Cleanup Routine
4846  *
4847  * e1000_exit_module is called just before the driver is removed
4848  * from memory.
4849  **/
4850 static void __exit e1000_exit_module(void)
4851 {
4852         pci_unregister_driver(&e1000_driver);
4853         pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
4854 }
4855 module_exit(e1000_exit_module);
4856
4857
4858 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4859 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4860 MODULE_LICENSE("GPL");
4861 MODULE_VERSION(DRV_VERSION);
4862
4863 /* e1000_main.c */