2 * Copyright (C) International Business Machines Corp., 2000-2004
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "jfs_incore.h"
21 #include "jfs_superblock.h"
25 #include "jfs_metapage.h"
26 #include "jfs_debug.h"
29 * Debug code for double-checking block map
31 /* #define _JFS_DEBUG_DMAP 1 */
33 #ifdef _JFS_DEBUG_DMAP
34 #define DBINITMAP(size,ipbmap,results) \
35 DBinitmap(size,ipbmap,results)
36 #define DBALLOC(dbmap,mapsize,blkno,nblocks) \
37 DBAlloc(dbmap,mapsize,blkno,nblocks)
38 #define DBFREE(dbmap,mapsize,blkno,nblocks) \
39 DBFree(dbmap,mapsize,blkno,nblocks)
40 #define DBALLOCCK(dbmap,mapsize,blkno,nblocks) \
41 DBAllocCK(dbmap,mapsize,blkno,nblocks)
42 #define DBFREECK(dbmap,mapsize,blkno,nblocks) \
43 DBFreeCK(dbmap,mapsize,blkno,nblocks)
45 static void DBinitmap(s64, struct inode *, u32 **);
46 static void DBAlloc(uint *, s64, s64, s64);
47 static void DBFree(uint *, s64, s64, s64);
48 static void DBAllocCK(uint *, s64, s64, s64);
49 static void DBFreeCK(uint *, s64, s64, s64);
51 #define DBINITMAP(size,ipbmap,results)
52 #define DBALLOC(dbmap, mapsize, blkno, nblocks)
53 #define DBFREE(dbmap, mapsize, blkno, nblocks)
54 #define DBALLOCCK(dbmap, mapsize, blkno, nblocks)
55 #define DBFREECK(dbmap, mapsize, blkno, nblocks)
56 #endif /* _JFS_DEBUG_DMAP */
59 * SERIALIZATION of the Block Allocation Map.
61 * the working state of the block allocation map is accessed in
64 * 1) allocation and free requests that start at the dmap
65 * level and move up through the dmap control pages (i.e.
66 * the vast majority of requests).
68 * 2) allocation requests that start at dmap control page
69 * level and work down towards the dmaps.
71 * the serialization scheme used here is as follows.
73 * requests which start at the bottom are serialized against each
74 * other through buffers and each requests holds onto its buffers
75 * as it works it way up from a single dmap to the required level
76 * of dmap control page.
77 * requests that start at the top are serialized against each other
78 * and request that start from the bottom by the multiple read/single
79 * write inode lock of the bmap inode. requests starting at the top
80 * take this lock in write mode while request starting at the bottom
81 * take the lock in read mode. a single top-down request may proceed
82 * exclusively while multiple bottoms-up requests may proceed
83 * simultaneously (under the protection of busy buffers).
85 * in addition to information found in dmaps and dmap control pages,
86 * the working state of the block allocation map also includes read/
87 * write information maintained in the bmap descriptor (i.e. total
88 * free block count, allocation group level free block counts).
89 * a single exclusive lock (BMAP_LOCK) is used to guard this information
90 * in the face of multiple-bottoms up requests.
91 * (lock ordering: IREAD_LOCK, BMAP_LOCK);
93 * accesses to the persistent state of the block allocation map (limited
94 * to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
97 #define BMAP_LOCK_INIT(bmp) init_MUTEX(&bmp->db_bmaplock)
98 #define BMAP_LOCK(bmp) down(&bmp->db_bmaplock)
99 #define BMAP_UNLOCK(bmp) up(&bmp->db_bmaplock)
104 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
106 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
107 static void dbBackSplit(dmtree_t * tp, int leafno);
108 static void dbJoin(dmtree_t * tp, int leafno, int newval);
109 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
110 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
112 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
113 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
115 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
117 int l2nb, s64 * results);
118 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
120 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
123 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
125 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
127 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
128 static int dbFindBits(u32 word, int l2nb);
129 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
130 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
131 static void dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
133 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
135 static int dbMaxBud(u8 * cp);
136 s64 dbMapFileSizeToMapSize(struct inode *ipbmap);
137 static int blkstol2(s64 nb);
139 static int cntlz(u32 value);
140 static int cnttz(u32 word);
142 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
144 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
145 static int dbInitDmapTree(struct dmap * dp);
146 static int dbInitTree(struct dmaptree * dtp);
147 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
148 static int dbGetL2AGSize(s64 nblocks);
153 * table used for determining buddy sizes within characters of
154 * dmap bitmap words. the characters themselves serve as indexes
155 * into the table, with the table elements yielding the maximum
156 * binary buddy of free bits within the character.
158 static s8 budtab[256] = {
159 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
160 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
161 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
162 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
163 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
164 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
165 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
166 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
167 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
168 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
169 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
170 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
171 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
172 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
173 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
174 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
181 * FUNCTION: initializate the block allocation map.
183 * memory is allocated for the in-core bmap descriptor and
184 * the in-core descriptor is initialized from disk.
187 * ipbmap - pointer to in-core inode for the block map.
191 * -ENOMEM - insufficient memory
194 int dbMount(struct inode *ipbmap)
197 struct dbmap_disk *dbmp_le;
202 * allocate/initialize the in-memory bmap descriptor
204 /* allocate memory for the in-memory bmap descriptor */
205 bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
209 /* read the on-disk bmap descriptor. */
210 mp = read_metapage(ipbmap,
211 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
218 /* copy the on-disk bmap descriptor to its in-memory version. */
219 dbmp_le = (struct dbmap_disk *) mp->data;
220 bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
221 bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
222 bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
223 bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
224 bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
225 bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
226 bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
227 bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
228 bmp->db_agheigth = le32_to_cpu(dbmp_le->dn_agheigth);
229 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
230 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
231 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
232 for (i = 0; i < MAXAG; i++)
233 bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
234 bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
235 bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
237 /* release the buffer. */
238 release_metapage(mp);
240 /* bind the bmap inode and the bmap descriptor to each other. */
241 bmp->db_ipbmap = ipbmap;
242 JFS_SBI(ipbmap->i_sb)->bmap = bmp;
244 memset(bmp->db_active, 0, sizeof(bmp->db_active));
245 DBINITMAP(bmp->db_mapsize, ipbmap, &bmp->db_DBmap);
248 * allocate/initialize the bmap lock
259 * FUNCTION: terminate the block allocation map in preparation for
260 * file system unmount.
262 * the in-core bmap descriptor is written to disk and
263 * the memory for this descriptor is freed.
266 * ipbmap - pointer to in-core inode for the block map.
272 int dbUnmount(struct inode *ipbmap, int mounterror)
274 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
276 if (!(mounterror || isReadOnly(ipbmap)))
280 * Invalidate the page cache buffers
282 truncate_inode_pages(ipbmap->i_mapping, 0);
284 /* free the memory for the in-memory bmap. */
293 int dbSync(struct inode *ipbmap)
295 struct dbmap_disk *dbmp_le;
296 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
301 * write bmap global control page
303 /* get the buffer for the on-disk bmap descriptor. */
304 mp = read_metapage(ipbmap,
305 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
308 jfs_err("dbSync: read_metapage failed!");
311 /* copy the in-memory version of the bmap to the on-disk version */
312 dbmp_le = (struct dbmap_disk *) mp->data;
313 dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
314 dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
315 dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
316 dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
317 dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
318 dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
319 dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
320 dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
321 dbmp_le->dn_agheigth = cpu_to_le32(bmp->db_agheigth);
322 dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
323 dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
324 dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
325 for (i = 0; i < MAXAG; i++)
326 dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
327 dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
328 dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
330 /* write the buffer */
334 * write out dirty pages of bmap
336 filemap_fdatawrite(ipbmap->i_mapping);
337 filemap_fdatawait(ipbmap->i_mapping);
339 ipbmap->i_state |= I_DIRTY;
340 diWriteSpecial(ipbmap, 0);
349 * FUNCTION: free the specified block range from the working block
352 * the blocks will be free from the working map one dmap
356 * ip - pointer to in-core inode;
357 * blkno - starting block number to be freed.
358 * nblocks - number of blocks to be freed.
364 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
370 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
371 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
375 /* block to be freed better be within the mapsize. */
376 if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
377 IREAD_UNLOCK(ipbmap);
378 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
379 (unsigned long long) blkno,
380 (unsigned long long) nblocks);
382 "dbFree: block to be freed is outside the map");
387 * free the blocks a dmap at a time.
390 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
391 /* release previous dmap if any */
396 /* get the buffer for the current dmap. */
397 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
398 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
400 IREAD_UNLOCK(ipbmap);
403 dp = (struct dmap *) mp->data;
405 /* determine the number of blocks to be freed from
408 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
410 DBALLOCCK(bmp->db_DBmap, bmp->db_mapsize, blkno, nb);
412 /* free the blocks. */
413 if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
414 release_metapage(mp);
415 IREAD_UNLOCK(ipbmap);
419 DBFREE(bmp->db_DBmap, bmp->db_mapsize, blkno, nb);
422 /* write the last buffer. */
425 IREAD_UNLOCK(ipbmap);
432 * NAME: dbUpdatePMap()
434 * FUNCTION: update the allocation state (free or allocate) of the
435 * specified block range in the persistent block allocation map.
437 * the blocks will be updated in the persistent map one
441 * ipbmap - pointer to in-core inode for the block map.
442 * free - TRUE if block range is to be freed from the persistent
443 * map; FALSE if it is to be allocated.
444 * blkno - starting block number of the range.
445 * nblocks - number of contiguous blocks in the range.
446 * tblk - transaction block;
453 dbUpdatePMap(struct inode *ipbmap,
454 int free, s64 blkno, s64 nblocks, struct tblock * tblk)
456 int nblks, dbitno, wbitno, rbits;
457 int word, nbits, nwords;
458 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
459 s64 lblkno, rem, lastlblkno;
464 int lsn, difft, diffp;
467 /* the blocks better be within the mapsize. */
468 if (blkno + nblocks > bmp->db_mapsize) {
469 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
470 (unsigned long long) blkno,
471 (unsigned long long) nblocks);
472 jfs_error(ipbmap->i_sb,
473 "dbUpdatePMap: blocks are outside the map");
477 /* compute delta of transaction lsn from log syncpt */
479 log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
480 logdiff(difft, lsn, log);
483 * update the block state a dmap at a time.
487 for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
488 /* get the buffer for the current dmap. */
489 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
490 if (lblkno != lastlblkno) {
495 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
499 metapage_wait_for_io(mp);
501 dp = (struct dmap *) mp->data;
503 /* determine the bit number and word within the dmap of
504 * the starting block. also determine how many blocks
505 * are to be updated within this dmap.
507 dbitno = blkno & (BPERDMAP - 1);
508 word = dbitno >> L2DBWORD;
509 nblks = min(rem, (s64)BPERDMAP - dbitno);
511 /* update the bits of the dmap words. the first and last
512 * words may only have a subset of their bits updated. if
513 * this is the case, we'll work against that word (i.e.
514 * partial first and/or last) only in a single pass. a
515 * single pass will also be used to update all words that
516 * are to have all their bits updated.
518 for (rbits = nblks; rbits > 0;
519 rbits -= nbits, dbitno += nbits) {
520 /* determine the bit number within the word and
521 * the number of bits within the word.
523 wbitno = dbitno & (DBWORD - 1);
524 nbits = min(rbits, DBWORD - wbitno);
526 /* check if only part of the word is to be updated. */
527 if (nbits < DBWORD) {
528 /* update (free or allocate) the bits
532 (ONES << (DBWORD - nbits) >> wbitno);
542 /* one or more words are to have all
543 * their bits updated. determine how
544 * many words and how many bits.
546 nwords = rbits >> L2DBWORD;
547 nbits = nwords << L2DBWORD;
549 /* update (free or allocate) the bits
553 memset(&dp->pmap[word], 0,
556 memset(&dp->pmap[word], (int) ONES,
566 if (lblkno == lastlblkno)
572 /* inherit older/smaller lsn */
573 logdiff(diffp, mp->lsn, log);
574 LOGSYNC_LOCK(log, flags);
578 /* move bp after tblock in logsync list */
579 list_move(&mp->synclist, &tblk->synclist);
582 /* inherit younger/larger clsn */
583 logdiff(difft, tblk->clsn, log);
584 logdiff(diffp, mp->clsn, log);
586 mp->clsn = tblk->clsn;
587 LOGSYNC_UNLOCK(log, flags);
592 /* insert bp after tblock in logsync list */
593 LOGSYNC_LOCK(log, flags);
596 list_add(&mp->synclist, &tblk->synclist);
598 mp->clsn = tblk->clsn;
599 LOGSYNC_UNLOCK(log, flags);
603 /* write the last buffer. */
615 * FUNCTION: find the preferred allocation group for new allocations.
617 * Within the allocation groups, we maintain a preferred
618 * allocation group which consists of a group with at least
619 * average free space. It is the preferred group that we target
620 * new inode allocation towards. The tie-in between inode
621 * allocation and block allocation occurs as we allocate the
622 * first (data) block of an inode and specify the inode (block)
623 * as the allocation hint for this block.
625 * We try to avoid having more than one open file growing in
626 * an allocation group, as this will lead to fragmentation.
627 * This differs from the old OS/2 method of trying to keep
628 * empty ags around for large allocations.
631 * ipbmap - pointer to in-core inode for the block map.
634 * the preferred allocation group number.
636 int dbNextAG(struct inode *ipbmap)
643 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
647 /* determine the average number of free blocks within the ags. */
648 avgfree = (u32)bmp->db_nfree / bmp->db_numag;
651 * if the current preferred ag does not have an active allocator
652 * and has at least average freespace, return it
654 agpref = bmp->db_agpref;
655 if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
656 (bmp->db_agfree[agpref] >= avgfree))
659 /* From the last preferred ag, find the next one with at least
660 * average free space.
662 for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
663 if (agpref == bmp->db_numag)
666 if (atomic_read(&bmp->db_active[agpref]))
667 /* open file is currently growing in this ag */
669 if (bmp->db_agfree[agpref] >= avgfree) {
670 /* Return this one */
671 bmp->db_agpref = agpref;
673 } else if (bmp->db_agfree[agpref] > hwm) {
674 /* Less than avg. freespace, but best so far */
675 hwm = bmp->db_agfree[agpref];
681 * If no inactive ag was found with average freespace, use the
685 bmp->db_agpref = next_best;
686 /* else leave db_agpref unchanged */
690 /* return the preferred group.
692 return (bmp->db_agpref);
698 * FUNCTION: attempt to allocate a specified number of contiguous free
699 * blocks from the working allocation block map.
701 * the block allocation policy uses hints and a multi-step
704 * for allocation requests smaller than the number of blocks
705 * per dmap, we first try to allocate the new blocks
706 * immediately following the hint. if these blocks are not
707 * available, we try to allocate blocks near the hint. if
708 * no blocks near the hint are available, we next try to
709 * allocate within the same dmap as contains the hint.
711 * if no blocks are available in the dmap or the allocation
712 * request is larger than the dmap size, we try to allocate
713 * within the same allocation group as contains the hint. if
714 * this does not succeed, we finally try to allocate anywhere
715 * within the aggregate.
717 * we also try to allocate anywhere within the aggregate for
718 * for allocation requests larger than the allocation group
719 * size or requests that specify no hint value.
722 * ip - pointer to in-core inode;
723 * hint - allocation hint.
724 * nblocks - number of contiguous blocks in the range.
725 * results - on successful return, set to the starting block number
726 * of the newly allocated contiguous range.
730 * -ENOSPC - insufficient disk resources
733 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
736 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
745 /* assert that nblocks is valid */
748 #ifdef _STILL_TO_PORT
749 /* DASD limit check F226941 */
750 if (OVER_LIMIT(ip, nblocks))
752 #endif /* _STILL_TO_PORT */
754 /* get the log2 number of blocks to be allocated.
755 * if the number of blocks is not a log2 multiple,
756 * it will be rounded up to the next log2 multiple.
758 l2nb = BLKSTOL2(nblocks);
760 bmp = JFS_SBI(ip->i_sb)->bmap;
762 //retry: /* serialize w.r.t.extendfs() */
763 mapSize = bmp->db_mapsize;
765 /* the hint should be within the map */
766 if (hint >= mapSize) {
767 jfs_error(ip->i_sb, "dbAlloc: the hint is outside the map");
771 /* if the number of blocks to be allocated is greater than the
772 * allocation group size, try to allocate anywhere.
774 if (l2nb > bmp->db_agl2size) {
777 rc = dbAllocAny(bmp, nblocks, l2nb, results);
779 DBALLOC(bmp->db_DBmap, bmp->db_mapsize, *results,
787 * If no hint, let dbNextAG recommend an allocation group
792 /* we would like to allocate close to the hint. adjust the
793 * hint to the block following the hint since the allocators
794 * will start looking for free space starting at this point.
798 if (blkno >= bmp->db_mapsize)
801 agno = blkno >> bmp->db_agl2size;
803 /* check if blkno crosses over into a new allocation group.
804 * if so, check if we should allow allocations within this
807 if ((blkno & (bmp->db_agsize - 1)) == 0)
808 /* check if the AG is currenly being written to.
809 * if so, call dbNextAG() to find a non-busy
810 * AG with sufficient free space.
812 if (atomic_read(&bmp->db_active[agno]))
815 /* check if the allocation request size can be satisfied from a
816 * single dmap. if so, try to allocate from the dmap containing
817 * the hint using a tiered strategy.
819 if (nblocks <= BPERDMAP) {
822 /* get the buffer for the dmap containing the hint.
825 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
826 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
830 dp = (struct dmap *) mp->data;
832 /* first, try to satisfy the allocation request with the
833 * blocks beginning at the hint.
835 if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
839 DBALLOC(bmp->db_DBmap, bmp->db_mapsize,
841 mark_metapage_dirty(mp);
844 release_metapage(mp);
848 writers = atomic_read(&bmp->db_active[agno]);
850 ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
852 * Someone else is writing in this allocation
853 * group. To avoid fragmenting, try another ag
855 release_metapage(mp);
856 IREAD_UNLOCK(ipbmap);
860 /* next, try to satisfy the allocation request with blocks
864 dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
867 DBALLOC(bmp->db_DBmap, bmp->db_mapsize,
869 mark_metapage_dirty(mp);
872 release_metapage(mp);
876 /* try to satisfy the allocation request with blocks within
877 * the same dmap as the hint.
879 if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
882 DBALLOC(bmp->db_DBmap, bmp->db_mapsize,
884 mark_metapage_dirty(mp);
887 release_metapage(mp);
891 release_metapage(mp);
892 IREAD_UNLOCK(ipbmap);
895 /* try to satisfy the allocation request with blocks within
896 * the same allocation group as the hint.
899 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results))
902 DBALLOC(bmp->db_DBmap, bmp->db_mapsize,
906 IWRITE_UNLOCK(ipbmap);
911 * Let dbNextAG recommend a preferred allocation group
913 agno = dbNextAG(ipbmap);
916 /* Try to allocate within this allocation group. if that fails, try to
917 * allocate anywhere in the map.
919 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
920 rc = dbAllocAny(bmp, nblocks, l2nb, results);
922 DBALLOC(bmp->db_DBmap, bmp->db_mapsize, *results, nblocks);
926 IWRITE_UNLOCK(ipbmap);
931 IREAD_UNLOCK(ipbmap);
938 * NAME: dbAllocExact()
940 * FUNCTION: try to allocate the requested extent;
943 * ip - pointer to in-core inode;
944 * blkno - extent address;
945 * nblocks - extent length;
949 * -ENOSPC - insufficient disk resources
952 int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
955 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
956 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
964 * validate extent request:
966 * note: defragfs policy:
967 * max 64 blocks will be moved.
968 * allocation request size must be satisfied from a single dmap.
970 if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
971 IREAD_UNLOCK(ipbmap);
975 if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
976 /* the free space is no longer available */
977 IREAD_UNLOCK(ipbmap);
981 /* read in the dmap covering the extent */
982 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
983 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
985 IREAD_UNLOCK(ipbmap);
988 dp = (struct dmap *) mp->data;
990 /* try to allocate the requested extent */
991 rc = dbAllocNext(bmp, dp, blkno, nblocks);
993 IREAD_UNLOCK(ipbmap);
996 DBALLOC(bmp->db_DBmap, bmp->db_mapsize, blkno, nblocks);
997 mark_metapage_dirty(mp);
999 release_metapage(mp);
1003 #endif /* _NOTYET */
1008 * FUNCTION: attempt to extend a current allocation by a specified
1011 * this routine attempts to satisfy the allocation request
1012 * by first trying to extend the existing allocation in
1013 * place by allocating the additional blocks as the blocks
1014 * immediately following the current allocation. if these
1015 * blocks are not available, this routine will attempt to
1016 * allocate a new set of contiguous blocks large enough
1017 * to cover the existing allocation plus the additional
1018 * number of blocks required.
1021 * ip - pointer to in-core inode requiring allocation.
1022 * blkno - starting block of the current allocation.
1023 * nblocks - number of contiguous blocks within the current
1025 * addnblocks - number of blocks to add to the allocation.
1026 * results - on successful return, set to the starting block number
1027 * of the existing allocation if the existing allocation
1028 * was extended in place or to a newly allocated contiguous
1029 * range if the existing allocation could not be extended
1034 * -ENOSPC - insufficient disk resources
1038 dbReAlloc(struct inode *ip,
1039 s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
1043 /* try to extend the allocation in place.
1045 if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
1053 /* could not extend the allocation in place, so allocate a
1054 * new set of blocks for the entire request (i.e. try to get
1055 * a range of contiguous blocks large enough to cover the
1056 * existing allocation plus the additional blocks.)
1059 (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
1066 * FUNCTION: attempt to extend a current allocation by a specified
1069 * this routine attempts to satisfy the allocation request
1070 * by first trying to extend the existing allocation in
1071 * place by allocating the additional blocks as the blocks
1072 * immediately following the current allocation.
1075 * ip - pointer to in-core inode requiring allocation.
1076 * blkno - starting block of the current allocation.
1077 * nblocks - number of contiguous blocks within the current
1079 * addnblocks - number of blocks to add to the allocation.
1083 * -ENOSPC - insufficient disk resources
1086 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1088 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1089 s64 lblkno, lastblkno, extblkno;
1091 struct metapage *mp;
1094 struct inode *ipbmap = sbi->ipbmap;
1098 * We don't want a non-aligned extent to cross a page boundary
1100 if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1101 (rel_block + nblocks + addnblocks > sbi->nbperpage))
1104 /* get the last block of the current allocation */
1105 lastblkno = blkno + nblocks - 1;
1107 /* determine the block number of the block following
1108 * the existing allocation.
1110 extblkno = lastblkno + 1;
1114 /* better be within the file system */
1116 if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1117 IREAD_UNLOCK(ipbmap);
1119 "dbExtend: the block is outside the filesystem");
1123 /* we'll attempt to extend the current allocation in place by
1124 * allocating the additional blocks as the blocks immediately
1125 * following the current allocation. we only try to extend the
1126 * current allocation in place if the number of additional blocks
1127 * can fit into a dmap, the last block of the current allocation
1128 * is not the last block of the file system, and the start of the
1129 * inplace extension is not on an allocation group boundary.
1131 if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1132 (extblkno & (bmp->db_agsize - 1)) == 0) {
1133 IREAD_UNLOCK(ipbmap);
1137 /* get the buffer for the dmap containing the first block
1140 lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1141 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1143 IREAD_UNLOCK(ipbmap);
1147 DBALLOCCK(bmp->db_DBmap, bmp->db_mapsize, blkno, nblocks);
1148 dp = (struct dmap *) mp->data;
1150 /* try to allocate the blocks immediately following the
1151 * current allocation.
1153 rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1155 IREAD_UNLOCK(ipbmap);
1157 /* were we successful ? */
1159 DBALLOC(bmp->db_DBmap, bmp->db_mapsize, extblkno,
1163 /* we were not successful */
1164 release_metapage(mp);
1172 * NAME: dbAllocNext()
1174 * FUNCTION: attempt to allocate the blocks of the specified block
1175 * range within a dmap.
1178 * bmp - pointer to bmap descriptor
1179 * dp - pointer to dmap.
1180 * blkno - starting block number of the range.
1181 * nblocks - number of contiguous free blocks of the range.
1185 * -ENOSPC - insufficient disk resources
1188 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1190 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1193 int dbitno, word, rembits, nb, nwords, wbitno, nw;
1198 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1199 jfs_error(bmp->db_ipbmap->i_sb,
1200 "dbAllocNext: Corrupt dmap page");
1204 /* pick up a pointer to the leaves of the dmap tree.
1206 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1208 /* determine the bit number and word within the dmap of the
1211 dbitno = blkno & (BPERDMAP - 1);
1212 word = dbitno >> L2DBWORD;
1214 /* check if the specified block range is contained within
1217 if (dbitno + nblocks > BPERDMAP)
1220 /* check if the starting leaf indicates that anything
1223 if (leaf[word] == NOFREE)
1226 /* check the dmaps words corresponding to block range to see
1227 * if the block range is free. not all bits of the first and
1228 * last words may be contained within the block range. if this
1229 * is the case, we'll work against those words (i.e. partial first
1230 * and/or last) on an individual basis (a single pass) and examine
1231 * the actual bits to determine if they are free. a single pass
1232 * will be used for all dmap words fully contained within the
1233 * specified range. within this pass, the leaves of the dmap
1234 * tree will be examined to determine if the blocks are free. a
1235 * single leaf may describe the free space of multiple dmap
1236 * words, so we may visit only a subset of the actual leaves
1237 * corresponding to the dmap words of the block range.
1239 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1240 /* determine the bit number within the word and
1241 * the number of bits within the word.
1243 wbitno = dbitno & (DBWORD - 1);
1244 nb = min(rembits, DBWORD - wbitno);
1246 /* check if only part of the word is to be examined.
1249 /* check if the bits are free.
1251 mask = (ONES << (DBWORD - nb) >> wbitno);
1252 if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1257 /* one or more dmap words are fully contained
1258 * within the block range. determine how many
1259 * words and how many bits.
1261 nwords = rembits >> L2DBWORD;
1262 nb = nwords << L2DBWORD;
1264 /* now examine the appropriate leaves to determine
1265 * if the blocks are free.
1267 while (nwords > 0) {
1268 /* does the leaf describe any free space ?
1270 if (leaf[word] < BUDMIN)
1273 /* determine the l2 number of bits provided
1277 min((int)leaf[word], NLSTOL2BSZ(nwords));
1279 /* determine how many words were handled.
1281 nw = BUDSIZE(l2size, BUDMIN);
1289 /* allocate the blocks.
1291 return (dbAllocDmap(bmp, dp, blkno, nblocks));
1296 * NAME: dbAllocNear()
1298 * FUNCTION: attempt to allocate a number of contiguous free blocks near
1299 * a specified block (hint) within a dmap.
1301 * starting with the dmap leaf that covers the hint, we'll
1302 * check the next four contiguous leaves for sufficient free
1303 * space. if sufficient free space is found, we'll allocate
1304 * the desired free space.
1307 * bmp - pointer to bmap descriptor
1308 * dp - pointer to dmap.
1309 * blkno - block number to allocate near.
1310 * nblocks - actual number of contiguous free blocks desired.
1311 * l2nb - log2 number of contiguous free blocks desired.
1312 * results - on successful return, set to the starting block number
1313 * of the newly allocated range.
1317 * -ENOSPC - insufficient disk resources
1320 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1323 dbAllocNear(struct bmap * bmp,
1324 struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1326 int word, lword, rc;
1329 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1330 jfs_error(bmp->db_ipbmap->i_sb,
1331 "dbAllocNear: Corrupt dmap page");
1335 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1337 /* determine the word within the dmap that holds the hint
1338 * (i.e. blkno). also, determine the last word in the dmap
1339 * that we'll include in our examination.
1341 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1342 lword = min(word + 4, LPERDMAP);
1344 /* examine the leaves for sufficient free space.
1346 for (; word < lword; word++) {
1347 /* does the leaf describe sufficient free space ?
1349 if (leaf[word] < l2nb)
1352 /* determine the block number within the file system
1353 * of the first block described by this dmap word.
1355 blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1357 /* if not all bits of the dmap word are free, get the
1358 * starting bit number within the dmap word of the required
1359 * string of free bits and adjust the block number with the
1362 if (leaf[word] < BUDMIN)
1364 dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1366 /* allocate the blocks.
1368 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1381 * FUNCTION: attempt to allocate the specified number of contiguous
1382 * free blocks within the specified allocation group.
1384 * unless the allocation group size is equal to the number
1385 * of blocks per dmap, the dmap control pages will be used to
1386 * find the required free space, if available. we start the
1387 * search at the highest dmap control page level which
1388 * distinctly describes the allocation group's free space
1389 * (i.e. the highest level at which the allocation group's
1390 * free space is not mixed in with that of any other group).
1391 * in addition, we start the search within this level at a
1392 * height of the dmapctl dmtree at which the nodes distinctly
1393 * describe the allocation group's free space. at this height,
1394 * the allocation group's free space may be represented by 1
1395 * or two sub-trees, depending on the allocation group size.
1396 * we search the top nodes of these subtrees left to right for
1397 * sufficient free space. if sufficient free space is found,
1398 * the subtree is searched to find the leftmost leaf that
1399 * has free space. once we have made it to the leaf, we
1400 * move the search to the next lower level dmap control page
1401 * corresponding to this leaf. we continue down the dmap control
1402 * pages until we find the dmap that contains or starts the
1403 * sufficient free space and we allocate at this dmap.
1405 * if the allocation group size is equal to the dmap size,
1406 * we'll start at the dmap corresponding to the allocation
1407 * group and attempt the allocation at this level.
1409 * the dmap control page search is also not performed if the
1410 * allocation group is completely free and we go to the first
1411 * dmap of the allocation group to do the allocation. this is
1412 * done because the allocation group may be part (not the first
1413 * part) of a larger binary buddy system, causing the dmap
1414 * control pages to indicate no free space (NOFREE) within
1415 * the allocation group.
1418 * bmp - pointer to bmap descriptor
1419 * agno - allocation group number.
1420 * nblocks - actual number of contiguous free blocks desired.
1421 * l2nb - log2 number of contiguous free blocks desired.
1422 * results - on successful return, set to the starting block number
1423 * of the newly allocated range.
1427 * -ENOSPC - insufficient disk resources
1430 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1433 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1435 struct metapage *mp;
1436 struct dmapctl *dcp;
1437 int rc, ti, i, k, m, n, agperlev;
1441 /* allocation request should not be for more than the
1442 * allocation group size.
1444 if (l2nb > bmp->db_agl2size) {
1445 jfs_error(bmp->db_ipbmap->i_sb,
1446 "dbAllocAG: allocation request is larger than the "
1447 "allocation group size");
1451 /* determine the starting block number of the allocation
1454 blkno = (s64) agno << bmp->db_agl2size;
1456 /* check if the allocation group size is the minimum allocation
1457 * group size or if the allocation group is completely free. if
1458 * the allocation group size is the minimum size of BPERDMAP (i.e.
1459 * 1 dmap), there is no need to search the dmap control page (below)
1460 * that fully describes the allocation group since the allocation
1461 * group is already fully described by a dmap. in this case, we
1462 * just call dbAllocCtl() to search the dmap tree and allocate the
1463 * required space if available.
1465 * if the allocation group is completely free, dbAllocCtl() is
1466 * also called to allocate the required space. this is done for
1467 * two reasons. first, it makes no sense searching the dmap control
1468 * pages for free space when we know that free space exists. second,
1469 * the dmap control pages may indicate that the allocation group
1470 * has no free space if the allocation group is part (not the first
1471 * part) of a larger binary buddy system.
1473 if (bmp->db_agsize == BPERDMAP
1474 || bmp->db_agfree[agno] == bmp->db_agsize) {
1475 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1476 if ((rc == -ENOSPC) &&
1477 (bmp->db_agfree[agno] == bmp->db_agsize)) {
1478 printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1479 (unsigned long long) blkno,
1480 (unsigned long long) nblocks);
1481 jfs_error(bmp->db_ipbmap->i_sb,
1482 "dbAllocAG: dbAllocCtl failed in free AG");
1487 /* the buffer for the dmap control page that fully describes the
1490 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1491 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1494 dcp = (struct dmapctl *) mp->data;
1495 budmin = dcp->budmin;
1497 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1498 jfs_error(bmp->db_ipbmap->i_sb,
1499 "dbAllocAG: Corrupt dmapctl page");
1500 release_metapage(mp);
1504 /* search the subtree(s) of the dmap control page that describes
1505 * the allocation group, looking for sufficient free space. to begin,
1506 * determine how many allocation groups are represented in a dmap
1507 * control page at the control page level (i.e. L0, L1, L2) that
1508 * fully describes an allocation group. next, determine the starting
1509 * tree index of this allocation group within the control page.
1512 (1 << (L2LPERCTL - (bmp->db_agheigth << 1))) / bmp->db_agwidth;
1513 ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1515 /* dmap control page trees fan-out by 4 and a single allocation
1516 * group may be described by 1 or 2 subtrees within the ag level
1517 * dmap control page, depending upon the ag size. examine the ag's
1518 * subtrees for sufficient free space, starting with the leftmost
1521 for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1522 /* is there sufficient free space ?
1524 if (l2nb > dcp->stree[ti])
1527 /* sufficient free space found in a subtree. now search down
1528 * the subtree to find the leftmost leaf that describes this
1531 for (k = bmp->db_agheigth; k > 0; k--) {
1532 for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1533 if (l2nb <= dcp->stree[m + n]) {
1539 jfs_error(bmp->db_ipbmap->i_sb,
1540 "dbAllocAG: failed descending stree");
1541 release_metapage(mp);
1546 /* determine the block number within the file system
1547 * that corresponds to this leaf.
1549 if (bmp->db_aglevel == 2)
1551 else if (bmp->db_aglevel == 1)
1552 blkno &= ~(MAXL1SIZE - 1);
1553 else /* bmp->db_aglevel == 0 */
1554 blkno &= ~(MAXL0SIZE - 1);
1557 ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1559 /* release the buffer in preparation for going down
1560 * the next level of dmap control pages.
1562 release_metapage(mp);
1564 /* check if we need to continue to search down the lower
1565 * level dmap control pages. we need to if the number of
1566 * blocks required is less than maximum number of blocks
1567 * described at the next lower level.
1569 if (l2nb < budmin) {
1571 /* search the lower level dmap control pages to get
1572 * the starting block number of the the dmap that
1573 * contains or starts off the free space.
1576 dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1578 if (rc == -ENOSPC) {
1579 jfs_error(bmp->db_ipbmap->i_sb,
1580 "dbAllocAG: control page "
1588 /* allocate the blocks.
1590 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1591 if (rc == -ENOSPC) {
1592 jfs_error(bmp->db_ipbmap->i_sb,
1593 "dbAllocAG: unable to allocate blocks");
1599 /* no space in the allocation group. release the buffer and
1602 release_metapage(mp);
1609 * NAME: dbAllocAny()
1611 * FUNCTION: attempt to allocate the specified number of contiguous
1612 * free blocks anywhere in the file system.
1614 * dbAllocAny() attempts to find the sufficient free space by
1615 * searching down the dmap control pages, starting with the
1616 * highest level (i.e. L0, L1, L2) control page. if free space
1617 * large enough to satisfy the desired free space is found, the
1618 * desired free space is allocated.
1621 * bmp - pointer to bmap descriptor
1622 * nblocks - actual number of contiguous free blocks desired.
1623 * l2nb - log2 number of contiguous free blocks desired.
1624 * results - on successful return, set to the starting block number
1625 * of the newly allocated range.
1629 * -ENOSPC - insufficient disk resources
1632 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1634 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1639 /* starting with the top level dmap control page, search
1640 * down the dmap control levels for sufficient free space.
1641 * if free space is found, dbFindCtl() returns the starting
1642 * block number of the dmap that contains or starts off the
1643 * range of free space.
1645 if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1648 /* allocate the blocks.
1650 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1651 if (rc == -ENOSPC) {
1652 jfs_error(bmp->db_ipbmap->i_sb,
1653 "dbAllocAny: unable to allocate blocks");
1663 * FUNCTION: starting at a specified dmap control page level and block
1664 * number, search down the dmap control levels for a range of
1665 * contiguous free blocks large enough to satisfy an allocation
1666 * request for the specified number of free blocks.
1668 * if sufficient contiguous free blocks are found, this routine
1669 * returns the starting block number within a dmap page that
1670 * contains or starts a range of contiqious free blocks that
1671 * is sufficient in size.
1674 * bmp - pointer to bmap descriptor
1675 * level - starting dmap control page level.
1676 * l2nb - log2 number of contiguous free blocks desired.
1677 * *blkno - on entry, starting block number for conducting the search.
1678 * on successful return, the first block within a dmap page
1679 * that contains or starts a range of contiguous free blocks.
1683 * -ENOSPC - insufficient disk resources
1686 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1688 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1690 int rc, leafidx, lev;
1692 struct dmapctl *dcp;
1694 struct metapage *mp;
1696 /* starting at the specified dmap control page level and block
1697 * number, search down the dmap control levels for the starting
1698 * block number of a dmap page that contains or starts off
1699 * sufficient free blocks.
1701 for (lev = level, b = *blkno; lev >= 0; lev--) {
1702 /* get the buffer of the dmap control page for the block
1703 * number and level (i.e. L0, L1, L2).
1705 lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1706 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1709 dcp = (struct dmapctl *) mp->data;
1710 budmin = dcp->budmin;
1712 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1713 jfs_error(bmp->db_ipbmap->i_sb,
1714 "dbFindCtl: Corrupt dmapctl page");
1715 release_metapage(mp);
1719 /* search the tree within the dmap control page for
1720 * sufficent free space. if sufficient free space is found,
1721 * dbFindLeaf() returns the index of the leaf at which
1722 * free space was found.
1724 rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1726 /* release the buffer.
1728 release_metapage(mp);
1734 jfs_error(bmp->db_ipbmap->i_sb,
1735 "dbFindCtl: dmap inconsistent");
1741 /* adjust the block number to reflect the location within
1742 * the dmap control page (i.e. the leaf) at which free
1745 b += (((s64) leafidx) << budmin);
1747 /* we stop the search at this dmap control page level if
1748 * the number of blocks required is greater than or equal
1749 * to the maximum number of blocks described at the next
1762 * NAME: dbAllocCtl()
1764 * FUNCTION: attempt to allocate a specified number of contiguous
1765 * blocks starting within a specific dmap.
1767 * this routine is called by higher level routines that search
1768 * the dmap control pages above the actual dmaps for contiguous
1769 * free space. the result of successful searches by these
1770 * routines are the starting block numbers within dmaps, with
1771 * the dmaps themselves containing the desired contiguous free
1772 * space or starting a contiguous free space of desired size
1773 * that is made up of the blocks of one or more dmaps. these
1774 * calls should not fail due to insufficent resources.
1776 * this routine is called in some cases where it is not known
1777 * whether it will fail due to insufficient resources. more
1778 * specifically, this occurs when allocating from an allocation
1779 * group whose size is equal to the number of blocks per dmap.
1780 * in this case, the dmap control pages are not examined prior
1781 * to calling this routine (to save pathlength) and the call
1784 * for a request size that fits within a dmap, this routine relies
1785 * upon the dmap's dmtree to find the requested contiguous free
1786 * space. for request sizes that are larger than a dmap, the
1787 * requested free space will start at the first block of the
1788 * first dmap (i.e. blkno).
1791 * bmp - pointer to bmap descriptor
1792 * nblocks - actual number of contiguous free blocks to allocate.
1793 * l2nb - log2 number of contiguous free blocks to allocate.
1794 * blkno - starting block number of the dmap to start the allocation
1796 * results - on successful return, set to the starting block number
1797 * of the newly allocated range.
1801 * -ENOSPC - insufficient disk resources
1804 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1807 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1811 struct metapage *mp;
1814 /* check if the allocation request is confined to a single dmap.
1816 if (l2nb <= L2BPERDMAP) {
1817 /* get the buffer for the dmap.
1819 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1820 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1823 dp = (struct dmap *) mp->data;
1825 /* try to allocate the blocks.
1827 rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1829 mark_metapage_dirty(mp);
1831 release_metapage(mp);
1836 /* allocation request involving multiple dmaps. it must start on
1839 assert((blkno & (BPERDMAP - 1)) == 0);
1841 /* allocate the blocks dmap by dmap.
1843 for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1844 /* get the buffer for the dmap.
1846 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1847 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1852 dp = (struct dmap *) mp->data;
1854 /* the dmap better be all free.
1856 if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1857 release_metapage(mp);
1858 jfs_error(bmp->db_ipbmap->i_sb,
1859 "dbAllocCtl: the dmap is not all free");
1864 /* determine how many blocks to allocate from this dmap.
1866 nb = min(n, (s64)BPERDMAP);
1868 /* allocate the blocks from the dmap.
1870 if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1871 release_metapage(mp);
1875 /* write the buffer.
1880 /* set the results (starting block number) and return.
1885 /* something failed in handling an allocation request involving
1886 * multiple dmaps. we'll try to clean up by backing out any
1887 * allocation that has already happened for this request. if
1888 * we fail in backing out the allocation, we'll mark the file
1889 * system to indicate that blocks have been leaked.
1893 /* try to backout the allocations dmap by dmap.
1895 for (n = nblocks - n, b = blkno; n > 0;
1896 n -= BPERDMAP, b += BPERDMAP) {
1897 /* get the buffer for this dmap.
1899 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1900 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1902 /* could not back out. mark the file system
1903 * to indicate that we have leaked blocks.
1905 jfs_error(bmp->db_ipbmap->i_sb,
1906 "dbAllocCtl: I/O Error: Block Leakage.");
1909 dp = (struct dmap *) mp->data;
1911 /* free the blocks is this dmap.
1913 if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1914 /* could not back out. mark the file system
1915 * to indicate that we have leaked blocks.
1917 release_metapage(mp);
1918 jfs_error(bmp->db_ipbmap->i_sb,
1919 "dbAllocCtl: Block Leakage.");
1923 /* write the buffer.
1933 * NAME: dbAllocDmapLev()
1935 * FUNCTION: attempt to allocate a specified number of contiguous blocks
1936 * from a specified dmap.
1938 * this routine checks if the contiguous blocks are available.
1939 * if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1943 * mp - pointer to bmap descriptor
1944 * dp - pointer to dmap to attempt to allocate blocks from.
1945 * l2nb - log2 number of contiguous block desired.
1946 * nblocks - actual number of contiguous block desired.
1947 * results - on successful return, set to the starting block number
1948 * of the newly allocated range.
1952 * -ENOSPC - insufficient disk resources
1955 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1956 * IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1959 dbAllocDmapLev(struct bmap * bmp,
1960 struct dmap * dp, int nblocks, int l2nb, s64 * results)
1965 /* can't be more than a dmaps worth of blocks */
1966 assert(l2nb <= L2BPERDMAP);
1968 /* search the tree within the dmap page for sufficient
1969 * free space. if sufficient free space is found, dbFindLeaf()
1970 * returns the index of the leaf at which free space was found.
1972 if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
1975 /* determine the block number within the file system corresponding
1976 * to the leaf at which free space was found.
1978 blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1980 /* if not all bits of the dmap word are free, get the starting
1981 * bit number within the dmap word of the required string of free
1982 * bits and adjust the block number with this value.
1984 if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1985 blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1987 /* allocate the blocks */
1988 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1996 * NAME: dbAllocDmap()
1998 * FUNCTION: adjust the disk allocation map to reflect the allocation
1999 * of a specified block range within a dmap.
2001 * this routine allocates the specified blocks from the dmap
2002 * through a call to dbAllocBits(). if the allocation of the
2003 * block range causes the maximum string of free blocks within
2004 * the dmap to change (i.e. the value of the root of the dmap's
2005 * dmtree), this routine will cause this change to be reflected
2006 * up through the appropriate levels of the dmap control pages
2007 * by a call to dbAdjCtl() for the L0 dmap control page that
2011 * bmp - pointer to bmap descriptor
2012 * dp - pointer to dmap to allocate the block range from.
2013 * blkno - starting block number of the block to be allocated.
2014 * nblocks - number of blocks to be allocated.
2020 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2022 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2028 /* save the current value of the root (i.e. maximum free string)
2031 oldroot = dp->tree.stree[ROOT];
2033 /* allocate the specified (blocks) bits */
2034 dbAllocBits(bmp, dp, blkno, nblocks);
2036 /* if the root has not changed, done. */
2037 if (dp->tree.stree[ROOT] == oldroot)
2040 /* root changed. bubble the change up to the dmap control pages.
2041 * if the adjustment of the upper level control pages fails,
2042 * backout the bit allocation (thus making everything consistent).
2044 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2045 dbFreeBits(bmp, dp, blkno, nblocks);
2052 * NAME: dbFreeDmap()
2054 * FUNCTION: adjust the disk allocation map to reflect the allocation
2055 * of a specified block range within a dmap.
2057 * this routine frees the specified blocks from the dmap through
2058 * a call to dbFreeBits(). if the deallocation of the block range
2059 * causes the maximum string of free blocks within the dmap to
2060 * change (i.e. the value of the root of the dmap's dmtree), this
2061 * routine will cause this change to be reflected up through the
2062 * appropriate levels of the dmap control pages by a call to
2063 * dbAdjCtl() for the L0 dmap control page that covers this dmap.
2066 * bmp - pointer to bmap descriptor
2067 * dp - pointer to dmap to free the block range from.
2068 * blkno - starting block number of the block to be freed.
2069 * nblocks - number of blocks to be freed.
2075 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2077 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2083 /* save the current value of the root (i.e. maximum free string)
2086 oldroot = dp->tree.stree[ROOT];
2088 /* free the specified (blocks) bits */
2089 dbFreeBits(bmp, dp, blkno, nblocks);
2091 /* if the root has not changed, done. */
2092 if (dp->tree.stree[ROOT] == oldroot)
2095 /* root changed. bubble the change up to the dmap control pages.
2096 * if the adjustment of the upper level control pages fails,
2097 * backout the deallocation.
2099 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2100 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2102 /* as part of backing out the deallocation, we will have
2103 * to back split the dmap tree if the deallocation caused
2104 * the freed blocks to become part of a larger binary buddy
2107 if (dp->tree.stree[word] == NOFREE)
2108 dbBackSplit((dmtree_t *) & dp->tree, word);
2110 dbAllocBits(bmp, dp, blkno, nblocks);
2118 * NAME: dbAllocBits()
2120 * FUNCTION: allocate a specified block range from a dmap.
2122 * this routine updates the dmap to reflect the working
2123 * state allocation of the specified block range. it directly
2124 * updates the bits of the working map and causes the adjustment
2125 * of the binary buddy system described by the dmap's dmtree
2126 * leaves to reflect the bits allocated. it also causes the
2127 * dmap's dmtree, as a whole, to reflect the allocated range.
2130 * bmp - pointer to bmap descriptor
2131 * dp - pointer to dmap to allocate bits from.
2132 * blkno - starting block number of the bits to be allocated.
2133 * nblocks - number of bits to be allocated.
2135 * RETURN VALUES: none
2137 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2139 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2142 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2143 dmtree_t *tp = (dmtree_t *) & dp->tree;
2147 /* pick up a pointer to the leaves of the dmap tree */
2148 leaf = dp->tree.stree + LEAFIND;
2150 /* determine the bit number and word within the dmap of the
2153 dbitno = blkno & (BPERDMAP - 1);
2154 word = dbitno >> L2DBWORD;
2156 /* block range better be within the dmap */
2157 assert(dbitno + nblocks <= BPERDMAP);
2159 /* allocate the bits of the dmap's words corresponding to the block
2160 * range. not all bits of the first and last words may be contained
2161 * within the block range. if this is the case, we'll work against
2162 * those words (i.e. partial first and/or last) on an individual basis
2163 * (a single pass), allocating the bits of interest by hand and
2164 * updating the leaf corresponding to the dmap word. a single pass
2165 * will be used for all dmap words fully contained within the
2166 * specified range. within this pass, the bits of all fully contained
2167 * dmap words will be marked as free in a single shot and the leaves
2168 * will be updated. a single leaf may describe the free space of
2169 * multiple dmap words, so we may update only a subset of the actual
2170 * leaves corresponding to the dmap words of the block range.
2172 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2173 /* determine the bit number within the word and
2174 * the number of bits within the word.
2176 wbitno = dbitno & (DBWORD - 1);
2177 nb = min(rembits, DBWORD - wbitno);
2179 /* check if only part of a word is to be allocated.
2182 /* allocate (set to 1) the appropriate bits within
2185 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2188 /* update the leaf for this dmap word. in addition
2189 * to setting the leaf value to the binary buddy max
2190 * of the updated dmap word, dbSplit() will split
2191 * the binary system of the leaves if need be.
2193 dbSplit(tp, word, BUDMIN,
2194 dbMaxBud((u8 *) & dp->wmap[word]));
2198 /* one or more dmap words are fully contained
2199 * within the block range. determine how many
2200 * words and allocate (set to 1) the bits of these
2203 nwords = rembits >> L2DBWORD;
2204 memset(&dp->wmap[word], (int) ONES, nwords * 4);
2206 /* determine how many bits.
2208 nb = nwords << L2DBWORD;
2210 /* now update the appropriate leaves to reflect
2211 * the allocated words.
2213 for (; nwords > 0; nwords -= nw) {
2214 if (leaf[word] < BUDMIN) {
2215 jfs_error(bmp->db_ipbmap->i_sb,
2216 "dbAllocBits: leaf page "
2221 /* determine what the leaf value should be
2222 * updated to as the minimum of the l2 number
2223 * of bits being allocated and the l2 number
2224 * of bits currently described by this leaf.
2226 size = min((int)leaf[word], NLSTOL2BSZ(nwords));
2228 /* update the leaf to reflect the allocation.
2229 * in addition to setting the leaf value to
2230 * NOFREE, dbSplit() will split the binary
2231 * system of the leaves to reflect the current
2232 * allocation (size).
2234 dbSplit(tp, word, size, NOFREE);
2236 /* get the number of dmap words handled */
2237 nw = BUDSIZE(size, BUDMIN);
2243 /* update the free count for this dmap */
2244 dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) - nblocks);
2248 /* if this allocation group is completely free,
2249 * update the maximum allocation group number if this allocation
2250 * group is the new max.
2252 agno = blkno >> bmp->db_agl2size;
2253 if (agno > bmp->db_maxag)
2254 bmp->db_maxag = agno;
2256 /* update the free count for the allocation group and map */
2257 bmp->db_agfree[agno] -= nblocks;
2258 bmp->db_nfree -= nblocks;
2265 * NAME: dbFreeBits()
2267 * FUNCTION: free a specified block range from a dmap.
2269 * this routine updates the dmap to reflect the working
2270 * state allocation of the specified block range. it directly
2271 * updates the bits of the working map and causes the adjustment
2272 * of the binary buddy system described by the dmap's dmtree
2273 * leaves to reflect the bits freed. it also causes the dmap's
2274 * dmtree, as a whole, to reflect the deallocated range.
2277 * bmp - pointer to bmap descriptor
2278 * dp - pointer to dmap to free bits from.
2279 * blkno - starting block number of the bits to be freed.
2280 * nblocks - number of bits to be freed.
2282 * RETURN VALUES: none
2284 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2286 static void dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2289 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2290 dmtree_t *tp = (dmtree_t *) & dp->tree;
2293 /* determine the bit number and word within the dmap of the
2296 dbitno = blkno & (BPERDMAP - 1);
2297 word = dbitno >> L2DBWORD;
2299 /* block range better be within the dmap.
2301 assert(dbitno + nblocks <= BPERDMAP);
2303 /* free the bits of the dmaps words corresponding to the block range.
2304 * not all bits of the first and last words may be contained within
2305 * the block range. if this is the case, we'll work against those
2306 * words (i.e. partial first and/or last) on an individual basis
2307 * (a single pass), freeing the bits of interest by hand and updating
2308 * the leaf corresponding to the dmap word. a single pass will be used
2309 * for all dmap words fully contained within the specified range.
2310 * within this pass, the bits of all fully contained dmap words will
2311 * be marked as free in a single shot and the leaves will be updated. a
2312 * single leaf may describe the free space of multiple dmap words,
2313 * so we may update only a subset of the actual leaves corresponding
2314 * to the dmap words of the block range.
2316 * dbJoin() is used to update leaf values and will join the binary
2317 * buddy system of the leaves if the new leaf values indicate this
2320 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2321 /* determine the bit number within the word and
2322 * the number of bits within the word.
2324 wbitno = dbitno & (DBWORD - 1);
2325 nb = min(rembits, DBWORD - wbitno);
2327 /* check if only part of a word is to be freed.
2330 /* free (zero) the appropriate bits within this
2334 cpu_to_le32(~(ONES << (DBWORD - nb)
2337 /* update the leaf for this dmap word.
2340 dbMaxBud((u8 *) & dp->wmap[word]));
2344 /* one or more dmap words are fully contained
2345 * within the block range. determine how many
2346 * words and free (zero) the bits of these words.
2348 nwords = rembits >> L2DBWORD;
2349 memset(&dp->wmap[word], 0, nwords * 4);
2351 /* determine how many bits.
2353 nb = nwords << L2DBWORD;
2355 /* now update the appropriate leaves to reflect
2358 for (; nwords > 0; nwords -= nw) {
2359 /* determine what the leaf value should be
2360 * updated to as the minimum of the l2 number
2361 * of bits being freed and the l2 (max) number
2362 * of bits that can be described by this leaf.
2366 (word, L2LPERDMAP, BUDMIN),
2367 NLSTOL2BSZ(nwords));
2371 dbJoin(tp, word, size);
2373 /* get the number of dmap words handled.
2375 nw = BUDSIZE(size, BUDMIN);
2381 /* update the free count for this dmap.
2383 dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) + nblocks);
2387 /* update the free count for the allocation group and
2390 agno = blkno >> bmp->db_agl2size;
2391 bmp->db_nfree += nblocks;
2392 bmp->db_agfree[agno] += nblocks;
2394 /* check if this allocation group is not completely free and
2395 * if it is currently the maximum (rightmost) allocation group.
2396 * if so, establish the new maximum allocation group number by
2397 * searching left for the first allocation group with allocation.
2399 if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2400 (agno == bmp->db_numag - 1 &&
2401 bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2402 while (bmp->db_maxag > 0) {
2404 if (bmp->db_agfree[bmp->db_maxag] !=
2409 /* re-establish the allocation group preference if the
2410 * current preference is right of the maximum allocation
2413 if (bmp->db_agpref > bmp->db_maxag)
2414 bmp->db_agpref = bmp->db_maxag;
2424 * FUNCTION: adjust a dmap control page at a specified level to reflect
2425 * the change in a lower level dmap or dmap control page's
2426 * maximum string of free blocks (i.e. a change in the root
2427 * of the lower level object's dmtree) due to the allocation
2428 * or deallocation of a range of blocks with a single dmap.
2430 * on entry, this routine is provided with the new value of
2431 * the lower level dmap or dmap control page root and the
2432 * starting block number of the block range whose allocation
2433 * or deallocation resulted in the root change. this range
2434 * is respresented by a single leaf of the current dmapctl
2435 * and the leaf will be updated with this value, possibly
2436 * causing a binary buddy system within the leaves to be
2437 * split or joined. the update may also cause the dmapctl's
2438 * dmtree to be updated.
2440 * if the adjustment of the dmap control page, itself, causes its
2441 * root to change, this change will be bubbled up to the next dmap
2442 * control level by a recursive call to this routine, specifying
2443 * the new root value and the next dmap control page level to
2446 * bmp - pointer to bmap descriptor
2447 * blkno - the first block of a block range within a dmap. it is
2448 * the allocation or deallocation of this block range that
2449 * requires the dmap control page to be adjusted.
2450 * newval - the new value of the lower level dmap or dmap control
2452 * alloc - TRUE if adjustment is due to an allocation.
2453 * level - current level of dmap control page (i.e. L0, L1, L2) to
2460 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2463 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2465 struct metapage *mp;
2469 struct dmapctl *dcp;
2472 /* get the buffer for the dmap control page for the specified
2473 * block number and control page level.
2475 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2476 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2479 dcp = (struct dmapctl *) mp->data;
2481 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2482 jfs_error(bmp->db_ipbmap->i_sb,
2483 "dbAdjCtl: Corrupt dmapctl page");
2484 release_metapage(mp);
2488 /* determine the leaf number corresponding to the block and
2489 * the index within the dmap control tree.
2491 leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2492 ti = leafno + le32_to_cpu(dcp->leafidx);
2494 /* save the current leaf value and the current root level (i.e.
2495 * maximum l2 free string described by this dmapctl).
2497 oldval = dcp->stree[ti];
2498 oldroot = dcp->stree[ROOT];
2500 /* check if this is a control page update for an allocation.
2501 * if so, update the leaf to reflect the new leaf value using
2502 * dbSplit(); otherwise (deallocation), use dbJoin() to udpate
2503 * the leaf with the new value. in addition to updating the
2504 * leaf, dbSplit() will also split the binary buddy system of
2505 * the leaves, if required, and bubble new values within the
2506 * dmapctl tree, if required. similarly, dbJoin() will join
2507 * the binary buddy system of leaves and bubble new values up
2508 * the dmapctl tree as required by the new leaf value.
2511 /* check if we are in the middle of a binary buddy
2512 * system. this happens when we are performing the
2513 * first allocation out of an allocation group that
2514 * is part (not the first part) of a larger binary
2515 * buddy system. if we are in the middle, back split
2516 * the system prior to calling dbSplit() which assumes
2517 * that it is at the front of a binary buddy system.
2519 if (oldval == NOFREE) {
2520 dbBackSplit((dmtree_t *) dcp, leafno);
2521 oldval = dcp->stree[ti];
2523 dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2525 dbJoin((dmtree_t *) dcp, leafno, newval);
2528 /* check if the root of the current dmap control page changed due
2529 * to the update and if the current dmap control page is not at
2530 * the current top level (i.e. L0, L1, L2) of the map. if so (i.e.
2531 * root changed and this is not the top level), call this routine
2532 * again (recursion) for the next higher level of the mapping to
2533 * reflect the change in root for the current dmap control page.
2535 if (dcp->stree[ROOT] != oldroot) {
2536 /* are we below the top level of the map. if so,
2537 * bubble the root up to the next higher level.
2539 if (level < bmp->db_maxlevel) {
2540 /* bubble up the new root of this dmap control page to
2544 dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2546 /* something went wrong in bubbling up the new
2547 * root value, so backout the changes to the
2548 * current dmap control page.
2551 dbJoin((dmtree_t *) dcp, leafno,
2554 /* the dbJoin() above might have
2555 * caused a larger binary buddy system
2556 * to form and we may now be in the
2557 * middle of it. if this is the case,
2558 * back split the buddies.
2560 if (dcp->stree[ti] == NOFREE)
2561 dbBackSplit((dmtree_t *)
2563 dbSplit((dmtree_t *) dcp, leafno,
2564 dcp->budmin, oldval);
2567 /* release the buffer and return the error.
2569 release_metapage(mp);
2573 /* we're at the top level of the map. update
2574 * the bmap control page to reflect the size
2575 * of the maximum free buddy system.
2577 assert(level == bmp->db_maxlevel);
2578 if (bmp->db_maxfreebud != oldroot) {
2579 jfs_error(bmp->db_ipbmap->i_sb,
2580 "dbAdjCtl: the maximum free buddy is "
2581 "not the old root");
2583 bmp->db_maxfreebud = dcp->stree[ROOT];
2587 /* write the buffer.
2598 * FUNCTION: update the leaf of a dmtree with a new value, splitting
2599 * the leaf from the binary buddy system of the dmtree's
2600 * leaves, as required.
2603 * tp - pointer to the tree containing the leaf.
2604 * leafno - the number of the leaf to be updated.
2605 * splitsz - the size the binary buddy system starting at the leaf
2606 * must be split to, specified as the log2 number of blocks.
2607 * newval - the new value for the leaf.
2609 * RETURN VALUES: none
2611 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2613 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2617 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2619 /* check if the leaf needs to be split.
2621 if (leaf[leafno] > tp->dmt_budmin) {
2622 /* the split occurs by cutting the buddy system in half
2623 * at the specified leaf until we reach the specified
2624 * size. pick up the starting split size (current size
2625 * - 1 in l2) and the corresponding buddy size.
2627 cursz = leaf[leafno] - 1;
2628 budsz = BUDSIZE(cursz, tp->dmt_budmin);
2630 /* split until we reach the specified size.
2632 while (cursz >= splitsz) {
2633 /* update the buddy's leaf with its new value.
2635 dbAdjTree(tp, leafno ^ budsz, cursz);
2637 /* on to the next size and buddy.
2644 /* adjust the dmap tree to reflect the specified leaf's new
2647 dbAdjTree(tp, leafno, newval);
2652 * NAME: dbBackSplit()
2654 * FUNCTION: back split the binary buddy system of dmtree leaves
2655 * that hold a specified leaf until the specified leaf
2656 * starts its own binary buddy system.
2658 * the allocators typically perform allocations at the start
2659 * of binary buddy systems and dbSplit() is used to accomplish
2660 * any required splits. in some cases, however, allocation
2661 * may occur in the middle of a binary system and requires a
2662 * back split, with the split proceeding out from the middle of
2663 * the system (less efficient) rather than the start of the
2664 * system (more efficient). the cases in which a back split
2665 * is required are rare and are limited to the first allocation
2666 * within an allocation group which is a part (not first part)
2667 * of a larger binary buddy system and a few exception cases
2668 * in which a previous join operation must be backed out.
2671 * tp - pointer to the tree containing the leaf.
2672 * leafno - the number of the leaf to be updated.
2674 * RETURN VALUES: none
2676 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2678 static void dbBackSplit(dmtree_t * tp, int leafno)
2680 int budsz, bud, w, bsz, size;
2682 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2684 /* leaf should be part (not first part) of a binary
2687 assert(leaf[leafno] == NOFREE);
2689 /* the back split is accomplished by iteratively finding the leaf
2690 * that starts the buddy system that contains the specified leaf and
2691 * splitting that system in two. this iteration continues until
2692 * the specified leaf becomes the start of a buddy system.
2694 * determine maximum possible l2 size for the specified leaf.
2697 LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2700 /* determine the number of leaves covered by this size. this
2701 * is the buddy size that we will start with as we search for
2702 * the buddy system that contains the specified leaf.
2704 budsz = BUDSIZE(size, tp->dmt_budmin);
2708 while (leaf[leafno] == NOFREE) {
2709 /* find the leftmost buddy leaf.
2711 for (w = leafno, bsz = budsz;; bsz <<= 1,
2712 w = (w < bud) ? w : bud) {
2713 assert(bsz < le32_to_cpu(tp->dmt_nleafs));
2715 /* determine the buddy.
2719 /* check if this buddy is the start of the system.
2721 if (leaf[bud] != NOFREE) {
2722 /* split the leaf at the start of the
2725 cursz = leaf[bud] - 1;
2726 dbSplit(tp, bud, cursz, cursz);
2732 assert(leaf[leafno] == size);
2739 * FUNCTION: update the leaf of a dmtree with a new value, joining
2740 * the leaf with other leaves of the dmtree into a multi-leaf
2741 * binary buddy system, as required.
2744 * tp - pointer to the tree containing the leaf.
2745 * leafno - the number of the leaf to be updated.
2746 * newval - the new value for the leaf.
2748 * RETURN VALUES: none
2750 static void dbJoin(dmtree_t * tp, int leafno, int newval)
2755 /* can the new leaf value require a join with other leaves ?
2757 if (newval >= tp->dmt_budmin) {
2758 /* pickup a pointer to the leaves of the tree.
2760 leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2762 /* try to join the specified leaf into a large binary
2763 * buddy system. the join proceeds by attempting to join
2764 * the specified leafno with its buddy (leaf) at new value.
2765 * if the join occurs, we attempt to join the left leaf
2766 * of the joined buddies with its buddy at new value + 1.
2767 * we continue to join until we find a buddy that cannot be
2768 * joined (does not have a value equal to the size of the
2769 * last join) or until all leaves have been joined into a
2772 * get the buddy size (number of words covered) of
2775 budsz = BUDSIZE(newval, tp->dmt_budmin);
2779 while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2780 /* get the buddy leaf.
2782 buddy = leafno ^ budsz;
2784 /* if the leaf's new value is greater than its
2785 * buddy's value, we join no more.
2787 if (newval > leaf[buddy])
2790 assert(newval == leaf[buddy]);
2792 /* check which (leafno or buddy) is the left buddy.
2793 * the left buddy gets to claim the blocks resulting
2794 * from the join while the right gets to claim none.
2795 * the left buddy is also eligable to participate in
2796 * a join at the next higher level while the right
2800 if (leafno < buddy) {
2801 /* leafno is the left buddy.
2803 dbAdjTree(tp, buddy, NOFREE);
2805 /* buddy is the left buddy and becomes
2808 dbAdjTree(tp, leafno, NOFREE);
2812 /* on to try the next join.
2819 /* update the leaf value.
2821 dbAdjTree(tp, leafno, newval);
2828 * FUNCTION: update a leaf of a dmtree with a new value, adjusting
2829 * the dmtree, as required, to reflect the new leaf value.
2830 * the combination of any buddies must already be done before
2834 * tp - pointer to the tree to be adjusted.
2835 * leafno - the number of the leaf to be updated.
2836 * newval - the new value for the leaf.
2838 * RETURN VALUES: none
2840 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2845 /* pick up the index of the leaf for this leafno.
2847 lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2849 /* is the current value the same as the old value ? if so,
2850 * there is nothing to do.
2852 if (tp->dmt_stree[lp] == newval)
2855 /* set the new value.
2857 tp->dmt_stree[lp] = newval;
2859 /* bubble the new value up the tree as required.
2861 for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2862 /* get the index of the first leaf of the 4 leaf
2863 * group containing the specified leaf (leafno).
2865 lp = ((lp - 1) & ~0x03) + 1;
2867 /* get the index of the parent of this 4 leaf group.
2871 /* determine the maximum of the 4 leaves.
2873 max = TREEMAX(&tp->dmt_stree[lp]);
2875 /* if the maximum of the 4 is the same as the
2876 * parent's value, we're done.
2878 if (tp->dmt_stree[pp] == max)
2881 /* parent gets new value.
2883 tp->dmt_stree[pp] = max;
2885 /* parent becomes leaf for next go-round.
2893 * NAME: dbFindLeaf()
2895 * FUNCTION: search a dmtree_t for sufficient free blocks, returning
2896 * the index of a leaf describing the free blocks if
2897 * sufficient free blocks are found.
2899 * the search starts at the top of the dmtree_t tree and
2900 * proceeds down the tree to the leftmost leaf with sufficient
2904 * tp - pointer to the tree to be searched.
2905 * l2nb - log2 number of free blocks to search for.
2906 * leafidx - return pointer to be set to the index of the leaf
2907 * describing at least l2nb free blocks if sufficient
2908 * free blocks are found.
2912 * -ENOSPC - insufficient free blocks.
2914 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2916 int ti, n = 0, k, x = 0;
2918 /* first check the root of the tree to see if there is
2919 * sufficient free space.
2921 if (l2nb > tp->dmt_stree[ROOT])
2924 /* sufficient free space available. now search down the tree
2925 * starting at the next level for the leftmost leaf that
2926 * describes sufficient free space.
2928 for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2929 k > 0; k--, ti = ((ti + n) << 2) + 1) {
2930 /* search the four nodes at this level, starting from
2933 for (x = ti, n = 0; n < 4; n++) {
2934 /* sufficient free space found. move to the next
2935 * level (or quit if this is the last level).
2937 if (l2nb <= tp->dmt_stree[x + n])
2941 /* better have found something since the higher
2942 * levels of the tree said it was here.
2947 /* set the return to the leftmost leaf describing sufficient
2950 *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2957 * NAME: dbFindBits()
2959 * FUNCTION: find a specified number of binary buddy free bits within a
2960 * dmap bitmap word value.
2962 * this routine searches the bitmap value for (1 << l2nb) free
2963 * bits at (1 << l2nb) alignments within the value.
2966 * word - dmap bitmap word value.
2967 * l2nb - number of free bits specified as a log2 number.
2970 * starting bit number of free bits.
2972 static int dbFindBits(u32 word, int l2nb)
2977 /* get the number of bits.
2980 assert(nb <= DBWORD);
2982 /* complement the word so we can use a mask (i.e. 0s represent
2983 * free bits) and compute the mask.
2986 mask = ONES << (DBWORD - nb);
2988 /* scan the word for nb free bits at nb alignments.
2990 for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
2991 if ((mask & word) == mask)
2997 /* return the bit number.
3004 * NAME: dbMaxBud(u8 *cp)
3006 * FUNCTION: determine the largest binary buddy string of free
3007 * bits within 32-bits of the map.
3010 * cp - pointer to the 32-bit value.
3013 * largest binary buddy of free bits within a dmap word.
3015 static int dbMaxBud(u8 * cp)
3017 signed char tmp1, tmp2;
3019 /* check if the wmap word is all free. if so, the
3020 * free buddy size is BUDMIN.
3022 if (*((uint *) cp) == 0)
3025 /* check if the wmap word is half free. if so, the
3026 * free buddy size is BUDMIN-1.
3028 if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3029 return (BUDMIN - 1);
3031 /* not all free or half free. determine the free buddy
3032 * size thru table lookup using quarters of the wmap word.
3034 tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3035 tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3036 return (max(tmp1, tmp2));
3041 * NAME: cnttz(uint word)
3043 * FUNCTION: determine the number of trailing zeros within a 32-bit
3047 * value - 32-bit value to be examined.
3050 * count of trailing zeros
3052 static int cnttz(u32 word)
3056 for (n = 0; n < 32; n++, word >>= 1) {
3066 * NAME: cntlz(u32 value)
3068 * FUNCTION: determine the number of leading zeros within a 32-bit
3072 * value - 32-bit value to be examined.
3075 * count of leading zeros
3077 static int cntlz(u32 value)
3081 for (n = 0; n < 32; n++, value <<= 1) {
3082 if (value & HIGHORDER)
3090 * NAME: blkstol2(s64 nb)
3092 * FUNCTION: convert a block count to its log2 value. if the block
3093 * count is not a l2 multiple, it is rounded up to the next
3094 * larger l2 multiple.
3097 * nb - number of blocks
3100 * log2 number of blocks
3102 int blkstol2(s64 nb)
3105 s64 mask; /* meant to be signed */
3107 mask = (s64) 1 << (64 - 1);
3109 /* count the leading bits.
3111 for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3112 /* leading bit found.
3115 /* determine the l2 value.
3117 l2nb = (64 - 1) - l2nb;
3119 /* check if we need to round up.
3128 return 0; /* fix compiler warning */
3133 * NAME: dbAllocBottomUp()
3135 * FUNCTION: alloc the specified block range from the working block
3138 * the blocks will be alloc from the working map one dmap
3142 * ip - pointer to in-core inode;
3143 * blkno - starting block number to be freed.
3144 * nblocks - number of blocks to be freed.
3150 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3152 struct metapage *mp;
3156 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3157 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3161 /* block to be allocated better be within the mapsize. */
3162 ASSERT(nblocks <= bmp->db_mapsize - blkno);
3165 * allocate the blocks a dmap at a time.
3168 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3169 /* release previous dmap if any */
3174 /* get the buffer for the current dmap. */
3175 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3176 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3178 IREAD_UNLOCK(ipbmap);
3181 dp = (struct dmap *) mp->data;
3183 /* determine the number of blocks to be allocated from
3186 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3188 DBFREECK(bmp->db_DBmap, bmp->db_mapsize, blkno, nb);
3190 /* allocate the blocks. */
3191 if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3192 release_metapage(mp);
3193 IREAD_UNLOCK(ipbmap);
3197 DBALLOC(bmp->db_DBmap, bmp->db_mapsize, blkno, nb);
3200 /* write the last buffer. */
3203 IREAD_UNLOCK(ipbmap);
3209 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3213 int dbitno, word, rembits, nb, nwords, wbitno, agno;
3215 struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3217 /* save the current value of the root (i.e. maximum free string)
3220 oldroot = tp->stree[ROOT];
3222 /* pick up a pointer to the leaves of the dmap tree */
3223 leaf = tp->stree + LEAFIND;
3225 /* determine the bit number and word within the dmap of the
3228 dbitno = blkno & (BPERDMAP - 1);
3229 word = dbitno >> L2DBWORD;
3231 /* block range better be within the dmap */
3232 assert(dbitno + nblocks <= BPERDMAP);
3234 /* allocate the bits of the dmap's words corresponding to the block
3235 * range. not all bits of the first and last words may be contained
3236 * within the block range. if this is the case, we'll work against
3237 * those words (i.e. partial first and/or last) on an individual basis
3238 * (a single pass), allocating the bits of interest by hand and
3239 * updating the leaf corresponding to the dmap word. a single pass
3240 * will be used for all dmap words fully contained within the
3241 * specified range. within this pass, the bits of all fully contained
3242 * dmap words will be marked as free in a single shot and the leaves
3243 * will be updated. a single leaf may describe the free space of
3244 * multiple dmap words, so we may update only a subset of the actual
3245 * leaves corresponding to the dmap words of the block range.
3247 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3248 /* determine the bit number within the word and
3249 * the number of bits within the word.
3251 wbitno = dbitno & (DBWORD - 1);
3252 nb = min(rembits, DBWORD - wbitno);
3254 /* check if only part of a word is to be allocated.
3257 /* allocate (set to 1) the appropriate bits within
3260 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3265 /* one or more dmap words are fully contained
3266 * within the block range. determine how many
3267 * words and allocate (set to 1) the bits of these
3270 nwords = rembits >> L2DBWORD;
3271 memset(&dp->wmap[word], (int) ONES, nwords * 4);
3273 /* determine how many bits */
3274 nb = nwords << L2DBWORD;
3279 /* update the free count for this dmap */
3280 dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) - nblocks);
3282 /* reconstruct summary tree */
3287 /* if this allocation group is completely free,
3288 * update the highest active allocation group number
3289 * if this allocation group is the new max.
3291 agno = blkno >> bmp->db_agl2size;
3292 if (agno > bmp->db_maxag)
3293 bmp->db_maxag = agno;
3295 /* update the free count for the allocation group and map */
3296 bmp->db_agfree[agno] -= nblocks;
3297 bmp->db_nfree -= nblocks;
3301 /* if the root has not changed, done. */
3302 if (tp->stree[ROOT] == oldroot)
3305 /* root changed. bubble the change up to the dmap control pages.
3306 * if the adjustment of the upper level control pages fails,
3307 * backout the bit allocation (thus making everything consistent).
3309 if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3310 dbFreeBits(bmp, dp, blkno, nblocks);
3317 * NAME: dbExtendFS()
3319 * FUNCTION: extend bmap from blkno for nblocks;
3320 * dbExtendFS() updates bmap ready for dbAllocBottomUp();
3324 * L1---------------------------------L1
3326 * L0---------L0---------L0 L0---------L0---------L0
3328 * d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,.,dm;
3329 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3331 * <---old---><----------------------------extend----------------------->
3333 int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3335 struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3336 int nbperpage = sbi->nbperpage;
3337 int i, i0 = TRUE, j, j0 = TRUE, k, n;
3340 struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3341 struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3343 s8 *l0leaf, *l1leaf, *l2leaf;
3344 struct bmap *bmp = sbi->bmap;
3345 int agno, l2agsize, oldl2agsize;
3348 newsize = blkno + nblocks;
3350 jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3351 (long long) blkno, (long long) nblocks, (long long) newsize);
3354 * initialize bmap control page.
3356 * all the data in bmap control page should exclude
3357 * the mkfs hidden dmap page.
3360 /* update mapsize */
3361 bmp->db_mapsize = newsize;
3362 bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3364 /* compute new AG size */
3365 l2agsize = dbGetL2AGSize(newsize);
3366 oldl2agsize = bmp->db_agl2size;
3368 bmp->db_agl2size = l2agsize;
3369 bmp->db_agsize = 1 << l2agsize;
3371 /* compute new number of AG */
3372 agno = bmp->db_numag;
3373 bmp->db_numag = newsize >> l2agsize;
3374 bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3377 * reconfigure db_agfree[]
3378 * from old AG configuration to new AG configuration;
3380 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3381 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3382 * note: new AG size = old AG size * (2**x).
3384 if (l2agsize == oldl2agsize)
3386 k = 1 << (l2agsize - oldl2agsize);
3387 ag_rem = bmp->db_agfree[0]; /* save agfree[0] */
3388 for (i = 0, n = 0; i < agno; n++) {
3389 bmp->db_agfree[n] = 0; /* init collection point */
3391 /* coalesce cotiguous k AGs; */
3392 for (j = 0; j < k && i < agno; j++, i++) {
3393 /* merge AGi to AGn */
3394 bmp->db_agfree[n] += bmp->db_agfree[i];
3397 bmp->db_agfree[0] += ag_rem; /* restore agfree[0] */
3399 for (; n < MAXAG; n++)
3400 bmp->db_agfree[n] = 0;
3403 * update highest active ag number
3406 bmp->db_maxag = bmp->db_maxag / k;
3411 * update bit maps and corresponding level control pages;
3412 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3416 p = BMAPBLKNO + nbperpage; /* L2 page */
3417 l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3419 jfs_error(ipbmap->i_sb, "dbExtendFS: L2 page could not be read");
3422 l2dcp = (struct dmapctl *) l2mp->data;
3424 /* compute start L1 */
3425 k = blkno >> L2MAXL1SIZE;
3426 l2leaf = l2dcp->stree + CTLLEAFIND + k;
3427 p = BLKTOL1(blkno, sbi->l2nbperpage); /* L1 page */
3430 * extend each L1 in L2
3432 for (; k < LPERCTL; k++, p += nbperpage) {
3435 /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3436 l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3439 l1dcp = (struct dmapctl *) l1mp->data;
3441 /* compute start L0 */
3442 j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3443 l1leaf = l1dcp->stree + CTLLEAFIND + j;
3444 p = BLKTOL0(blkno, sbi->l2nbperpage);
3447 /* assign/init L1 page */
3448 l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3452 l1dcp = (struct dmapctl *) l1mp->data;
3454 /* compute start L0 */
3456 l1leaf = l1dcp->stree + CTLLEAFIND;
3457 p += nbperpage; /* 1st L0 of L1.k */
3461 * extend each L0 in L1
3463 for (; j < LPERCTL; j++) {
3466 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3468 l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3471 l0dcp = (struct dmapctl *) l0mp->data;
3473 /* compute start dmap */
3474 i = (blkno & (MAXL0SIZE - 1)) >>
3476 l0leaf = l0dcp->stree + CTLLEAFIND + i;
3477 p = BLKTODMAP(blkno,
3481 /* assign/init L0 page */
3482 l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3486 l0dcp = (struct dmapctl *) l0mp->data;
3488 /* compute start dmap */
3490 l0leaf = l0dcp->stree + CTLLEAFIND;
3491 p += nbperpage; /* 1st dmap of L0.j */
3495 * extend each dmap in L0
3497 for (; i < LPERCTL; i++) {
3499 * reconstruct the dmap page, and
3500 * initialize corresponding parent L0 leaf
3502 if ((n = blkno & (BPERDMAP - 1))) {
3503 /* read in dmap page: */
3504 mp = read_metapage(ipbmap, p,
3508 n = min(nblocks, (s64)BPERDMAP - n);
3510 /* assign/init dmap page */
3511 mp = read_metapage(ipbmap, p,
3516 n = min(nblocks, (s64)BPERDMAP);
3519 dp = (struct dmap *) mp->data;
3520 *l0leaf = dbInitDmap(dp, blkno, n);
3523 agno = le64_to_cpu(dp->start) >> l2agsize;
3524 bmp->db_agfree[agno] += n;
3535 } /* for each dmap in a L0 */
3538 * build current L0 page from its leaves, and
3539 * initialize corresponding parent L1 leaf
3541 *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3542 write_metapage(l0mp);
3546 l1leaf++; /* continue for next L0 */
3548 /* more than 1 L0 ? */
3550 break; /* build L1 page */
3552 /* summarize in global bmap page */
3553 bmp->db_maxfreebud = *l1leaf;
3554 release_metapage(l1mp);
3555 release_metapage(l2mp);
3559 } /* for each L0 in a L1 */
3562 * build current L1 page from its leaves, and
3563 * initialize corresponding parent L2 leaf
3565 *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3566 write_metapage(l1mp);
3570 l2leaf++; /* continue for next L1 */
3572 /* more than 1 L1 ? */
3574 break; /* build L2 page */
3576 /* summarize in global bmap page */
3577 bmp->db_maxfreebud = *l2leaf;
3578 release_metapage(l2mp);
3582 } /* for each L1 in a L2 */
3584 jfs_error(ipbmap->i_sb,
3585 "dbExtendFS: function has not returned as expected");
3588 release_metapage(l0mp);
3590 release_metapage(l1mp);
3591 release_metapage(l2mp);
3595 * finalize bmap control page
3606 void dbFinalizeBmap(struct inode *ipbmap)
3608 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3609 int actags, inactags, l2nl;
3610 s64 ag_rem, actfree, inactfree, avgfree;
3614 * finalize bmap control page
3618 * compute db_agpref: preferred ag to allocate from
3619 * (the leftmost ag with average free space in it);
3622 /* get the number of active ags and inacitve ags */
3623 actags = bmp->db_maxag + 1;
3624 inactags = bmp->db_numag - actags;
3625 ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1); /* ??? */
3627 /* determine how many blocks are in the inactive allocation
3628 * groups. in doing this, we must account for the fact that
3629 * the rightmost group might be a partial group (i.e. file
3630 * system size is not a multiple of the group size).
3632 inactfree = (inactags && ag_rem) ?
3633 ((inactags - 1) << bmp->db_agl2size) + ag_rem
3634 : inactags << bmp->db_agl2size;
3636 /* determine how many free blocks are in the active
3637 * allocation groups plus the average number of free blocks
3638 * within the active ags.
3640 actfree = bmp->db_nfree - inactfree;
3641 avgfree = (u32) actfree / (u32) actags;
3643 /* if the preferred allocation group has not average free space.
3644 * re-establish the preferred group as the leftmost
3645 * group with average free space.
3647 if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3648 for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3650 if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3653 if (bmp->db_agpref >= bmp->db_numag) {
3654 jfs_error(ipbmap->i_sb,
3655 "cannot find ag with average freespace");
3660 * compute db_aglevel, db_agheigth, db_width, db_agstart:
3661 * an ag is covered in aglevel dmapctl summary tree,
3662 * at agheight level height (from leaf) with agwidth number of nodes
3663 * each, which starts at agstart index node of the smmary tree node
3666 bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3668 bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3669 bmp->db_agheigth = l2nl >> 1;
3670 bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheigth << 1));
3671 for (i = 5 - bmp->db_agheigth, bmp->db_agstart = 0, n = 1; i > 0;
3673 bmp->db_agstart += n;
3681 * NAME: dbInitDmap()/ujfs_idmap_page()
3683 * FUNCTION: initialize working/persistent bitmap of the dmap page
3684 * for the specified number of blocks:
3686 * at entry, the bitmaps had been initialized as free (ZEROS);
3687 * The number of blocks will only account for the actually
3688 * existing blocks. Blocks which don't actually exist in
3689 * the aggregate will be marked as allocated (ONES);
3692 * dp - pointer to page of map
3693 * nblocks - number of blocks this page
3697 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3699 int blkno, w, b, r, nw, nb, i;
3701 /* starting block number within the dmap */
3702 blkno = Blkno & (BPERDMAP - 1);
3705 dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3706 dp->start = cpu_to_le64(Blkno);
3708 if (nblocks == BPERDMAP) {
3709 memset(&dp->wmap[0], 0, LPERDMAP * 4);
3710 memset(&dp->pmap[0], 0, LPERDMAP * 4);
3715 cpu_to_le32(le32_to_cpu(dp->nblocks) + nblocks);
3716 dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) + nblocks);
3719 /* word number containing start block number */
3720 w = blkno >> L2DBWORD;
3723 * free the bits corresponding to the block range (ZEROS):
3724 * note: not all bits of the first and last words may be contained
3725 * within the block range.
3727 for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3728 /* number of bits preceding range to be freed in the word */
3729 b = blkno & (DBWORD - 1);
3730 /* number of bits to free in the word */
3731 nb = min(r, DBWORD - b);
3733 /* is partial word to be freed ? */
3735 /* free (set to 0) from the bitmap word */
3736 dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3738 dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3741 /* skip the word freed */
3744 /* free (set to 0) contiguous bitmap words */
3746 memset(&dp->wmap[w], 0, nw * 4);
3747 memset(&dp->pmap[w], 0, nw * 4);
3749 /* skip the words freed */
3750 nb = nw << L2DBWORD;
3756 * mark bits following the range to be freed (non-existing
3757 * blocks) as allocated (ONES)
3760 if (blkno == BPERDMAP)
3763 /* the first word beyond the end of existing blocks */
3764 w = blkno >> L2DBWORD;
3766 /* does nblocks fall on a 32-bit boundary ? */
3767 b = blkno & (DBWORD - 1);
3769 /* mark a partial word allocated */
3770 dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3774 /* set the rest of the words in the page to allocated (ONES) */
3775 for (i = w; i < LPERDMAP; i++)
3776 dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3782 return (dbInitDmapTree(dp));
3787 * NAME: dbInitDmapTree()/ujfs_complete_dmap()
3789 * FUNCTION: initialize summary tree of the specified dmap:
3791 * at entry, bitmap of the dmap has been initialized;
3794 * dp - dmap to complete
3795 * blkno - starting block number for this dmap
3796 * treemax - will be filled in with max free for this dmap
3798 * RETURNS: max free string at the root of the tree
3800 static int dbInitDmapTree(struct dmap * dp)
3802 struct dmaptree *tp;
3806 /* init fixed info of tree */
3808 tp->nleafs = cpu_to_le32(LPERDMAP);
3809 tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3810 tp->leafidx = cpu_to_le32(LEAFIND);
3811 tp->height = cpu_to_le32(4);
3812 tp->budmin = BUDMIN;
3814 /* init each leaf from corresponding wmap word:
3815 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3816 * bitmap word are allocated.
3818 cp = tp->stree + le32_to_cpu(tp->leafidx);
3819 for (i = 0; i < LPERDMAP; i++)
3820 *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3822 /* build the dmap's binary buddy summary tree */
3823 return (dbInitTree(tp));
3828 * NAME: dbInitTree()/ujfs_adjtree()
3830 * FUNCTION: initialize binary buddy summary tree of a dmap or dmapctl.
3832 * at entry, the leaves of the tree has been initialized
3833 * from corresponding bitmap word or root of summary tree
3834 * of the child control page;
3835 * configure binary buddy system at the leaf level, then
3836 * bubble up the values of the leaf nodes up the tree.
3839 * cp - Pointer to the root of the tree
3840 * l2leaves- Number of leaf nodes as a power of 2
3841 * l2min - Number of blocks that can be covered by a leaf
3844 * RETURNS: max free string at the root of the tree
3846 static int dbInitTree(struct dmaptree * dtp)
3848 int l2max, l2free, bsize, nextb, i;
3849 int child, parent, nparent;
3854 /* Determine the maximum free string possible for the leaves */
3855 l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3858 * configure the leaf levevl into binary buddy system
3860 * Try to combine buddies starting with a buddy size of 1
3861 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3862 * can be combined if both buddies have a maximum free of l2min;
3863 * the combination will result in the left-most buddy leaf having
3864 * a maximum free of l2min+1.
3865 * After processing all buddies for a given size, process buddies
3866 * at the next higher buddy size (i.e. current size * 2) and
3867 * the next maximum free (current free + 1).
3868 * This continues until the maximum possible buddy combination
3869 * yields maximum free.
3871 for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3872 l2free++, bsize = nextb) {
3873 /* get next buddy size == current buddy pair size */
3876 /* scan each adjacent buddy pair at current buddy size */
3877 for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3878 i < le32_to_cpu(dtp->nleafs);
3879 i += nextb, cp += nextb) {
3880 /* coalesce if both adjacent buddies are max free */
3881 if (*cp == l2free && *(cp + bsize) == l2free) {
3882 *cp = l2free + 1; /* left take right */
3883 *(cp + bsize) = -1; /* right give left */
3889 * bubble summary information of leaves up the tree.
3891 * Starting at the leaf node level, the four nodes described by
3892 * the higher level parent node are compared for a maximum free and
3893 * this maximum becomes the value of the parent node.
3894 * when all lower level nodes are processed in this fashion then
3895 * move up to the next level (parent becomes a lower level node) and
3896 * continue the process for that level.
3898 for (child = le32_to_cpu(dtp->leafidx),
3899 nparent = le32_to_cpu(dtp->nleafs) >> 2;
3900 nparent > 0; nparent >>= 2, child = parent) {
3901 /* get index of 1st node of parent level */
3902 parent = (child - 1) >> 2;
3904 /* set the value of the parent node as the maximum
3905 * of the four nodes of the current level.
3907 for (i = 0, cp = tp + child, cp1 = tp + parent;
3908 i < nparent; i++, cp += 4, cp1++)
3919 * function: initialize dmapctl page
3921 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3922 { /* start leaf index not covered by range */
3925 dcp->nleafs = cpu_to_le32(LPERCTL);
3926 dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3927 dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3928 dcp->height = cpu_to_le32(5);
3929 dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3932 * initialize the leaves of current level that were not covered
3933 * by the specified input block range (i.e. the leaves have no
3934 * low level dmapctl or dmap).
3936 cp = &dcp->stree[CTLLEAFIND + i];
3937 for (; i < LPERCTL; i++)
3940 /* build the dmap's binary buddy summary tree */
3941 return (dbInitTree((struct dmaptree *) dcp));
3946 * NAME: dbGetL2AGSize()/ujfs_getagl2size()
3948 * FUNCTION: Determine log2(allocation group size) from aggregate size
3951 * nblocks - Number of blocks in aggregate
3953 * RETURNS: log2(allocation group size) in aggregate blocks
3955 static int dbGetL2AGSize(s64 nblocks)
3961 if (nblocks < BPERDMAP * MAXAG)
3962 return (L2BPERDMAP);
3964 /* round up aggregate size to power of 2 */
3965 m = ((u64) 1 << (64 - 1));
3966 for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3971 sz = (s64) 1 << l2sz;
3975 /* agsize = roundupSize/max_number_of_ag */
3976 return (l2sz - L2MAXAG);
3981 * NAME: dbMapFileSizeToMapSize()
3983 * FUNCTION: compute number of blocks the block allocation map file
3984 * can cover from the map file size;
3986 * RETURNS: Number of blocks which can be covered by this block map file;
3990 * maximum number of map pages at each level including control pages
3992 #define MAXL0PAGES (1 + LPERCTL)
3993 #define MAXL1PAGES (1 + LPERCTL * MAXL0PAGES)
3994 #define MAXL2PAGES (1 + LPERCTL * MAXL1PAGES)
3997 * convert number of map pages to the zero origin top dmapctl level
3999 #define BMAPPGTOLEV(npages) \
4000 (((npages) <= 3 + MAXL0PAGES) ? 0 \
4001 : ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4003 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4005 struct super_block *sb = ipbmap->i_sb;
4009 int complete, factor;
4011 nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4012 npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4013 level = BMAPPGTOLEV(npages);
4015 /* At each level, accumulate the number of dmap pages covered by
4016 * the number of full child levels below it;
4017 * repeat for the last incomplete child level.
4020 npages--; /* skip the first global control page */
4021 /* skip higher level control pages above top level covered by map */
4022 npages -= (2 - level);
4023 npages--; /* skip top level's control page */
4024 for (i = level; i >= 0; i--) {
4026 (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4027 complete = (u32) npages / factor;
4028 ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL
4029 : ((i == 1) ? LPERCTL : 1));
4031 /* pages in last/incomplete child */
4032 npages = (u32) npages % factor;
4033 /* skip incomplete child's level control page */
4037 /* convert the number of dmaps into the number of blocks
4038 * which can be covered by the dmaps;
4040 nblocks = ndmaps << L2BPERDMAP;
4046 #ifdef _JFS_DEBUG_DMAP
4050 static void DBinitmap(s64 size, struct inode *ipbmap, u32 ** results)
4055 s64 lblkno, cur_block;
4057 struct metapage *mp;
4059 npages = size / 32768;
4060 npages += (size % 32768) ? 1 : 0;
4062 dbmap = (u32 *) xmalloc(npages * 4096, L2PSIZE, kernel_heap);
4064 BUG(); /* Not robust since this is only unused debug code */
4066 for (n = 0, d = dbmap; n < npages; n++, d += 1024)
4069 /* Need to initialize from disk map pages
4071 for (d = dbmap, cur_block = 0; cur_block < size;
4072 cur_block += BPERDMAP, d += LPERDMAP) {
4073 lblkno = BLKTODMAP(cur_block,
4074 JFS_SBI(ipbmap->i_sb)->bmap->
4076 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
4078 jfs_error(ipbmap->i_sb,
4079 "DBinitmap: could not read disk map page");
4082 dp = (struct dmap *) mp->data;
4084 for (n = 0; n < LPERDMAP; n++)
4085 d[n] = le32_to_cpu(dp->wmap[n]);
4087 release_metapage(mp);
4097 void DBAlloc(uint * dbmap, s64 mapsize, s64 blkno, s64 nblocks)
4099 int word, nb, bitno;
4102 assert(blkno > 0 && blkno < mapsize);
4103 assert(nblocks > 0 && nblocks <= mapsize);
4105 assert(blkno + nblocks <= mapsize);
4107 dbmap += (blkno / 32);
4108 while (nblocks > 0) {
4109 bitno = blkno & (32 - 1);
4110 nb = min(nblocks, 32 - bitno);
4112 mask = (0xffffffff << (32 - nb) >> bitno);
4113 assert((mask & *dbmap) == 0);
4126 static void DBFree(uint * dbmap, s64 mapsize, s64 blkno, s64 nblocks)
4128 int word, nb, bitno;
4131 assert(blkno > 0 && blkno < mapsize);
4132 assert(nblocks > 0 && nblocks <= mapsize);
4134 assert(blkno + nblocks <= mapsize);
4136 dbmap += (blkno / 32);
4137 while (nblocks > 0) {
4138 bitno = blkno & (32 - 1);
4139 nb = min(nblocks, 32 - bitno);
4141 mask = (0xffffffff << (32 - nb) >> bitno);
4142 assert((mask & *dbmap) == mask);
4155 static void DBAllocCK(uint * dbmap, s64 mapsize, s64 blkno, s64 nblocks)
4157 int word, nb, bitno;
4160 assert(blkno > 0 && blkno < mapsize);
4161 assert(nblocks > 0 && nblocks <= mapsize);
4163 assert(blkno + nblocks <= mapsize);
4165 dbmap += (blkno / 32);
4166 while (nblocks > 0) {
4167 bitno = blkno & (32 - 1);
4168 nb = min(nblocks, 32 - bitno);
4170 mask = (0xffffffff << (32 - nb) >> bitno);
4171 assert((mask & *dbmap) == mask);
4183 static void DBFreeCK(uint * dbmap, s64 mapsize, s64 blkno, s64 nblocks)
4185 int word, nb, bitno;
4188 assert(blkno > 0 && blkno < mapsize);
4189 assert(nblocks > 0 && nblocks <= mapsize);
4191 assert(blkno + nblocks <= mapsize);
4193 dbmap += (blkno / 32);
4194 while (nblocks > 0) {
4195 bitno = blkno & (32 - 1);
4196 nb = min(nblocks, 32 - bitno);
4198 mask = (0xffffffff << (32 - nb) >> bitno);
4199 assert((mask & *dbmap) == 0);
4211 static void dbPrtMap(struct bmap * bmp)
4213 printk(" mapsize: %d%d\n", bmp->db_mapsize);
4214 printk(" nfree: %d%d\n", bmp->db_nfree);
4215 printk(" numag: %d\n", bmp->db_numag);
4216 printk(" agsize: %d%d\n", bmp->db_agsize);
4217 printk(" agl2size: %d\n", bmp->db_agl2size);
4218 printk(" agwidth: %d\n", bmp->db_agwidth);
4219 printk(" agstart: %d\n", bmp->db_agstart);
4220 printk(" agheigth: %d\n", bmp->db_agheigth);
4221 printk(" aglevel: %d\n", bmp->db_aglevel);
4222 printk(" maxlevel: %d\n", bmp->db_maxlevel);
4223 printk(" maxag: %d\n", bmp->db_maxag);
4224 printk(" agpref: %d\n", bmp->db_agpref);
4225 printk(" l2nbppg: %d\n", bmp->db_l2nbperpage);
4232 static void dbPrtCtl(struct dmapctl * dcp)
4236 printk(" height: %08x\n", le32_to_cpu(dcp->height));
4237 printk(" leafidx: %08x\n", le32_to_cpu(dcp->leafidx));
4238 printk(" budmin: %08x\n", dcp->budmin);
4239 printk(" nleafs: %08x\n", le32_to_cpu(dcp->nleafs));
4240 printk(" l2nleafs: %08x\n", le32_to_cpu(dcp->l2nleafs));
4242 printk("\n Tree:\n");
4243 for (i = 0; i < CTLLEAFIND; i += 8) {
4244 n = min(8, CTLLEAFIND - i);
4246 for (j = 0; j < n; j++)
4247 printf(" [%03x]: %02x", i + j,
4248 (char) dcp->stree[i + j]);
4252 printk("\n Tree Leaves:\n");
4253 for (i = 0; i < LPERCTL; i += 8) {
4254 n = min(8, LPERCTL - i);
4256 for (j = 0; j < n; j++)
4257 printf(" [%03x]: %02x",
4259 (char) dcp->stree[i + j + CTLLEAFIND]);
4263 #endif /* _JFS_DEBUG_DMAP */