2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
22 #define ATH_PCI_VERSION "0.1"
24 static char *dev_info = "ath9k";
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
31 /* We use the hw_value as an index into our private channel structure */
33 #define CHAN2G(_freq, _idx) { \
34 .center_freq = (_freq), \
39 #define CHAN5G(_freq, _idx) { \
40 .band = IEEE80211_BAND_5GHZ, \
41 .center_freq = (_freq), \
46 /* Some 2 GHz radios are actually tunable on 2312-2732
47 * on 5 MHz steps, we support the channels which we know
48 * we have calibration data for all cards though to make
50 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
51 CHAN2G(2412, 0), /* Channel 1 */
52 CHAN2G(2417, 1), /* Channel 2 */
53 CHAN2G(2422, 2), /* Channel 3 */
54 CHAN2G(2427, 3), /* Channel 4 */
55 CHAN2G(2432, 4), /* Channel 5 */
56 CHAN2G(2437, 5), /* Channel 6 */
57 CHAN2G(2442, 6), /* Channel 7 */
58 CHAN2G(2447, 7), /* Channel 8 */
59 CHAN2G(2452, 8), /* Channel 9 */
60 CHAN2G(2457, 9), /* Channel 10 */
61 CHAN2G(2462, 10), /* Channel 11 */
62 CHAN2G(2467, 11), /* Channel 12 */
63 CHAN2G(2472, 12), /* Channel 13 */
64 CHAN2G(2484, 13), /* Channel 14 */
67 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
68 * on 5 MHz steps, we support the channels which we know
69 * we have calibration data for all cards though to make
71 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
72 /* _We_ call this UNII 1 */
73 CHAN5G(5180, 14), /* Channel 36 */
74 CHAN5G(5200, 15), /* Channel 40 */
75 CHAN5G(5220, 16), /* Channel 44 */
76 CHAN5G(5240, 17), /* Channel 48 */
77 /* _We_ call this UNII 2 */
78 CHAN5G(5260, 18), /* Channel 52 */
79 CHAN5G(5280, 19), /* Channel 56 */
80 CHAN5G(5300, 20), /* Channel 60 */
81 CHAN5G(5320, 21), /* Channel 64 */
82 /* _We_ call this "Middle band" */
83 CHAN5G(5500, 22), /* Channel 100 */
84 CHAN5G(5520, 23), /* Channel 104 */
85 CHAN5G(5540, 24), /* Channel 108 */
86 CHAN5G(5560, 25), /* Channel 112 */
87 CHAN5G(5580, 26), /* Channel 116 */
88 CHAN5G(5600, 27), /* Channel 120 */
89 CHAN5G(5620, 28), /* Channel 124 */
90 CHAN5G(5640, 29), /* Channel 128 */
91 CHAN5G(5660, 30), /* Channel 132 */
92 CHAN5G(5680, 31), /* Channel 136 */
93 CHAN5G(5700, 32), /* Channel 140 */
94 /* _We_ call this UNII 3 */
95 CHAN5G(5745, 33), /* Channel 149 */
96 CHAN5G(5765, 34), /* Channel 153 */
97 CHAN5G(5785, 35), /* Channel 157 */
98 CHAN5G(5805, 36), /* Channel 161 */
99 CHAN5G(5825, 37), /* Channel 165 */
102 static void ath_cache_conf_rate(struct ath_softc *sc,
103 struct ieee80211_conf *conf)
105 switch (conf->channel->band) {
106 case IEEE80211_BAND_2GHZ:
107 if (conf_is_ht20(conf))
109 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
110 else if (conf_is_ht40_minus(conf))
112 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
113 else if (conf_is_ht40_plus(conf))
115 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118 sc->hw_rate_table[ATH9K_MODE_11G];
120 case IEEE80211_BAND_5GHZ:
121 if (conf_is_ht20(conf))
123 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
124 else if (conf_is_ht40_minus(conf))
126 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
127 else if (conf_is_ht40_plus(conf))
129 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132 sc->hw_rate_table[ATH9K_MODE_11A];
140 static void ath_update_txpow(struct ath_softc *sc)
142 struct ath_hal *ah = sc->sc_ah;
145 if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
146 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
147 /* read back in case value is clamped */
148 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
149 sc->sc_curtxpow = txpow;
153 static u8 parse_mpdudensity(u8 mpdudensity)
156 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
157 * 0 for no restriction
166 switch (mpdudensity) {
172 /* Our lower layer calculations limit our precision to
188 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
190 struct ath_rate_table *rate_table = NULL;
191 struct ieee80211_supported_band *sband;
192 struct ieee80211_rate *rate;
196 case IEEE80211_BAND_2GHZ:
197 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
199 case IEEE80211_BAND_5GHZ:
200 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
206 if (rate_table == NULL)
209 sband = &sc->sbands[band];
210 rate = sc->rates[band];
212 if (rate_table->rate_cnt > ATH_RATE_MAX)
213 maxrates = ATH_RATE_MAX;
215 maxrates = rate_table->rate_cnt;
217 for (i = 0; i < maxrates; i++) {
218 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
219 rate[i].hw_value = rate_table->info[i].ratecode;
220 if (rate_table->info[i].short_preamble) {
221 rate[i].hw_value_short = rate_table->info[i].ratecode |
222 rate_table->info[i].short_preamble;
223 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
227 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
228 rate[i].bitrate / 10, rate[i].hw_value);
233 * Set/change channels. If the channel is really being changed, it's done
234 * by reseting the chip. To accomplish this we must first cleanup any pending
235 * DMA, then restart stuff.
237 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
239 struct ath_hal *ah = sc->sc_ah;
240 bool fastcc = true, stopped;
241 struct ieee80211_hw *hw = sc->hw;
242 struct ieee80211_channel *channel = hw->conf.channel;
245 if (sc->sc_flags & SC_OP_INVALID)
251 * This is only performed if the channel settings have
254 * To switch channels clear any pending DMA operations;
255 * wait long enough for the RX fifo to drain, reset the
256 * hardware at the new frequency, and then re-enable
257 * the relevant bits of the h/w.
259 ath9k_hw_set_interrupts(ah, 0);
260 ath_drain_all_txq(sc, false);
261 stopped = ath_stoprecv(sc);
263 /* XXX: do not flush receive queue here. We don't want
264 * to flush data frames already in queue because of
265 * changing channel. */
267 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
270 DPRINTF(sc, ATH_DBG_CONFIG,
271 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
272 sc->sc_ah->ah_curchan->channel,
273 channel->center_freq, sc->tx_chan_width);
275 spin_lock_bh(&sc->sc_resetlock);
277 r = ath9k_hw_reset(ah, hchan, fastcc);
279 DPRINTF(sc, ATH_DBG_FATAL,
280 "Unable to reset channel (%u Mhz) "
282 channel->center_freq, r);
283 spin_unlock_bh(&sc->sc_resetlock);
286 spin_unlock_bh(&sc->sc_resetlock);
288 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
289 sc->sc_flags &= ~SC_OP_FULL_RESET;
291 if (ath_startrecv(sc) != 0) {
292 DPRINTF(sc, ATH_DBG_FATAL,
293 "Unable to restart recv logic\n");
297 ath_cache_conf_rate(sc, &hw->conf);
298 ath_update_txpow(sc);
299 ath9k_hw_set_interrupts(ah, sc->sc_imask);
300 ath9k_ps_restore(sc);
305 * This routine performs the periodic noise floor calibration function
306 * that is used to adjust and optimize the chip performance. This
307 * takes environmental changes (location, temperature) into account.
308 * When the task is complete, it reschedules itself depending on the
309 * appropriate interval that was calculated.
311 static void ath_ani_calibrate(unsigned long data)
313 struct ath_softc *sc;
315 bool longcal = false;
316 bool shortcal = false;
317 bool aniflag = false;
318 unsigned int timestamp = jiffies_to_msecs(jiffies);
321 sc = (struct ath_softc *)data;
325 * don't calibrate when we're scanning.
326 * we are most likely not on our home channel.
328 if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
331 /* Long calibration runs independently of short calibration. */
332 if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
334 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
335 sc->sc_ani.sc_longcal_timer = timestamp;
338 /* Short calibration applies only while sc_caldone is false */
339 if (!sc->sc_ani.sc_caldone) {
340 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
341 ATH_SHORT_CALINTERVAL) {
343 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
344 sc->sc_ani.sc_shortcal_timer = timestamp;
345 sc->sc_ani.sc_resetcal_timer = timestamp;
348 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
349 ATH_RESTART_CALINTERVAL) {
350 sc->sc_ani.sc_caldone = ath9k_hw_reset_calvalid(ah);
351 if (sc->sc_ani.sc_caldone)
352 sc->sc_ani.sc_resetcal_timer = timestamp;
356 /* Verify whether we must check ANI */
357 if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
358 ATH_ANI_POLLINTERVAL) {
360 sc->sc_ani.sc_checkani_timer = timestamp;
363 /* Skip all processing if there's nothing to do. */
364 if (longcal || shortcal || aniflag) {
365 /* Call ANI routine if necessary */
367 ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
370 /* Perform calibration if necessary */
371 if (longcal || shortcal) {
372 bool iscaldone = false;
374 if (ath9k_hw_calibrate(ah, ah->ah_curchan,
375 sc->sc_rx_chainmask, longcal,
378 sc->sc_ani.sc_noise_floor =
379 ath9k_hw_getchan_noise(ah,
382 DPRINTF(sc, ATH_DBG_ANI,
383 "calibrate chan %u/%x nf: %d\n",
384 ah->ah_curchan->channel,
385 ah->ah_curchan->channelFlags,
386 sc->sc_ani.sc_noise_floor);
388 DPRINTF(sc, ATH_DBG_ANY,
389 "calibrate chan %u/%x failed\n",
390 ah->ah_curchan->channel,
391 ah->ah_curchan->channelFlags);
393 sc->sc_ani.sc_caldone = iscaldone;
398 * Set timer interval based on previous results.
399 * The interval must be the shortest necessary to satisfy ANI,
400 * short calibration and long calibration.
402 cal_interval = ATH_LONG_CALINTERVAL;
403 if (sc->sc_ah->ah_config.enable_ani)
404 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
405 if (!sc->sc_ani.sc_caldone)
406 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
408 mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
412 * Update tx/rx chainmask. For legacy association,
413 * hard code chainmask to 1x1, for 11n association, use
414 * the chainmask configuration, for bt coexistence, use
415 * the chainmask configuration even in legacy mode.
417 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
419 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
421 (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
422 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
423 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
425 sc->sc_tx_chainmask = 1;
426 sc->sc_rx_chainmask = 1;
429 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
430 sc->sc_tx_chainmask, sc->sc_rx_chainmask);
433 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
437 an = (struct ath_node *)sta->drv_priv;
439 if (sc->sc_flags & SC_OP_TXAGGR)
440 ath_tx_node_init(sc, an);
442 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
443 sta->ht_cap.ampdu_factor);
444 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
447 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
449 struct ath_node *an = (struct ath_node *)sta->drv_priv;
451 if (sc->sc_flags & SC_OP_TXAGGR)
452 ath_tx_node_cleanup(sc, an);
455 static void ath9k_tasklet(unsigned long data)
457 struct ath_softc *sc = (struct ath_softc *)data;
458 u32 status = sc->sc_intrstatus;
460 if (status & ATH9K_INT_FATAL) {
461 /* need a chip reset */
462 ath_reset(sc, false);
467 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
468 spin_lock_bh(&sc->rx.rxflushlock);
469 ath_rx_tasklet(sc, 0);
470 spin_unlock_bh(&sc->rx.rxflushlock);
472 /* XXX: optimize this */
473 if (status & ATH9K_INT_TX)
477 /* re-enable hardware interrupt */
478 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
481 irqreturn_t ath_isr(int irq, void *dev)
483 struct ath_softc *sc = dev;
484 struct ath_hal *ah = sc->sc_ah;
485 enum ath9k_int status;
489 if (sc->sc_flags & SC_OP_INVALID) {
491 * The hardware is not ready/present, don't
492 * touch anything. Note this can happen early
493 * on if the IRQ is shared.
497 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
502 * Figure out the reason(s) for the interrupt. Note
503 * that the hal returns a pseudo-ISR that may include
504 * bits we haven't explicitly enabled so we mask the
505 * value to insure we only process bits we requested.
507 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
509 status &= sc->sc_imask; /* discard unasked-for bits */
512 * If there are no status bits set, then this interrupt was not
513 * for me (should have been caught above).
518 sc->sc_intrstatus = status;
520 if (status & ATH9K_INT_FATAL) {
521 /* need a chip reset */
523 } else if (status & ATH9K_INT_RXORN) {
524 /* need a chip reset */
527 if (status & ATH9K_INT_SWBA) {
528 /* schedule a tasklet for beacon handling */
529 tasklet_schedule(&sc->bcon_tasklet);
531 if (status & ATH9K_INT_RXEOL) {
533 * NB: the hardware should re-read the link when
534 * RXE bit is written, but it doesn't work
535 * at least on older hardware revs.
540 if (status & ATH9K_INT_TXURN)
541 /* bump tx trigger level */
542 ath9k_hw_updatetxtriglevel(ah, true);
543 /* XXX: optimize this */
544 if (status & ATH9K_INT_RX)
546 if (status & ATH9K_INT_TX)
548 if (status & ATH9K_INT_BMISS)
550 /* carrier sense timeout */
551 if (status & ATH9K_INT_CST)
553 if (status & ATH9K_INT_MIB) {
555 * Disable interrupts until we service the MIB
556 * interrupt; otherwise it will continue to
559 ath9k_hw_set_interrupts(ah, 0);
561 * Let the hal handle the event. We assume
562 * it will clear whatever condition caused
565 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
566 ath9k_hw_set_interrupts(ah, sc->sc_imask);
568 if (status & ATH9K_INT_TIM_TIMER) {
569 if (!(ah->ah_caps.hw_caps &
570 ATH9K_HW_CAP_AUTOSLEEP)) {
571 /* Clear RxAbort bit so that we can
573 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
574 ath9k_hw_setrxabort(ah, 0);
576 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
582 ath_debug_stat_interrupt(sc, status);
585 /* turn off every interrupt except SWBA */
586 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
587 tasklet_schedule(&sc->intr_tq);
593 static u32 ath_get_extchanmode(struct ath_softc *sc,
594 struct ieee80211_channel *chan,
595 enum nl80211_channel_type channel_type)
599 switch (chan->band) {
600 case IEEE80211_BAND_2GHZ:
601 switch(channel_type) {
602 case NL80211_CHAN_NO_HT:
603 case NL80211_CHAN_HT20:
604 chanmode = CHANNEL_G_HT20;
606 case NL80211_CHAN_HT40PLUS:
607 chanmode = CHANNEL_G_HT40PLUS;
609 case NL80211_CHAN_HT40MINUS:
610 chanmode = CHANNEL_G_HT40MINUS;
614 case IEEE80211_BAND_5GHZ:
615 switch(channel_type) {
616 case NL80211_CHAN_NO_HT:
617 case NL80211_CHAN_HT20:
618 chanmode = CHANNEL_A_HT20;
620 case NL80211_CHAN_HT40PLUS:
621 chanmode = CHANNEL_A_HT40PLUS;
623 case NL80211_CHAN_HT40MINUS:
624 chanmode = CHANNEL_A_HT40MINUS;
635 static int ath_keyset(struct ath_softc *sc, u16 keyix,
636 struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
640 status = ath9k_hw_set_keycache_entry(sc->sc_ah,
641 keyix, hk, mac, false);
643 return status != false;
646 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
647 struct ath9k_keyval *hk,
653 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
654 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
657 /* Group key installation */
658 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
659 return ath_keyset(sc, keyix, hk, addr);
661 if (!sc->sc_splitmic) {
663 * data key goes at first index,
664 * the hal handles the MIC keys at index+64.
666 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
667 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
668 return ath_keyset(sc, keyix, hk, addr);
671 * TX key goes at first index, RX key at +32.
672 * The hal handles the MIC keys at index+64.
674 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
675 if (!ath_keyset(sc, keyix, hk, NULL)) {
676 /* Txmic entry failed. No need to proceed further */
677 DPRINTF(sc, ATH_DBG_KEYCACHE,
678 "Setting TX MIC Key Failed\n");
682 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
683 /* XXX delete tx key on failure? */
684 return ath_keyset(sc, keyix + 32, hk, addr);
687 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
691 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
692 if (test_bit(i, sc->sc_keymap) ||
693 test_bit(i + 64, sc->sc_keymap))
694 continue; /* At least one part of TKIP key allocated */
695 if (sc->sc_splitmic &&
696 (test_bit(i + 32, sc->sc_keymap) ||
697 test_bit(i + 64 + 32, sc->sc_keymap)))
698 continue; /* At least one part of TKIP key allocated */
700 /* Found a free slot for a TKIP key */
706 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
710 /* First, try to find slots that would not be available for TKIP. */
711 if (sc->sc_splitmic) {
712 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) {
713 if (!test_bit(i, sc->sc_keymap) &&
714 (test_bit(i + 32, sc->sc_keymap) ||
715 test_bit(i + 64, sc->sc_keymap) ||
716 test_bit(i + 64 + 32, sc->sc_keymap)))
718 if (!test_bit(i + 32, sc->sc_keymap) &&
719 (test_bit(i, sc->sc_keymap) ||
720 test_bit(i + 64, sc->sc_keymap) ||
721 test_bit(i + 64 + 32, sc->sc_keymap)))
723 if (!test_bit(i + 64, sc->sc_keymap) &&
724 (test_bit(i , sc->sc_keymap) ||
725 test_bit(i + 32, sc->sc_keymap) ||
726 test_bit(i + 64 + 32, sc->sc_keymap)))
728 if (!test_bit(i + 64 + 32, sc->sc_keymap) &&
729 (test_bit(i, sc->sc_keymap) ||
730 test_bit(i + 32, sc->sc_keymap) ||
731 test_bit(i + 64, sc->sc_keymap)))
735 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
736 if (!test_bit(i, sc->sc_keymap) &&
737 test_bit(i + 64, sc->sc_keymap))
739 if (test_bit(i, sc->sc_keymap) &&
740 !test_bit(i + 64, sc->sc_keymap))
745 /* No partially used TKIP slots, pick any available slot */
746 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) {
747 /* Do not allow slots that could be needed for TKIP group keys
748 * to be used. This limitation could be removed if we know that
749 * TKIP will not be used. */
750 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
752 if (sc->sc_splitmic) {
753 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
755 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
759 if (!test_bit(i, sc->sc_keymap))
760 return i; /* Found a free slot for a key */
763 /* No free slot found */
767 static int ath_key_config(struct ath_softc *sc,
768 struct ieee80211_sta *sta,
769 struct ieee80211_key_conf *key)
771 struct ath9k_keyval hk;
772 const u8 *mac = NULL;
776 memset(&hk, 0, sizeof(hk));
780 hk.kv_type = ATH9K_CIPHER_WEP;
783 hk.kv_type = ATH9K_CIPHER_TKIP;
786 hk.kv_type = ATH9K_CIPHER_AES_CCM;
792 hk.kv_len = key->keylen;
793 memcpy(hk.kv_val, key->key, key->keylen);
795 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
796 /* For now, use the default keys for broadcast keys. This may
797 * need to change with virtual interfaces. */
799 } else if (key->keyidx) {
800 struct ieee80211_vif *vif;
806 vif = sc->sc_vaps[0];
807 if (vif->type != NL80211_IFTYPE_AP) {
808 /* Only keyidx 0 should be used with unicast key, but
809 * allow this for client mode for now. */
818 if (key->alg == ALG_TKIP)
819 idx = ath_reserve_key_cache_slot_tkip(sc);
821 idx = ath_reserve_key_cache_slot(sc);
823 return -ENOSPC; /* no free key cache entries */
826 if (key->alg == ALG_TKIP)
827 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
829 ret = ath_keyset(sc, idx, &hk, mac);
834 set_bit(idx, sc->sc_keymap);
835 if (key->alg == ALG_TKIP) {
836 set_bit(idx + 64, sc->sc_keymap);
837 if (sc->sc_splitmic) {
838 set_bit(idx + 32, sc->sc_keymap);
839 set_bit(idx + 64 + 32, sc->sc_keymap);
846 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
848 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
849 if (key->hw_key_idx < IEEE80211_WEP_NKID)
852 clear_bit(key->hw_key_idx, sc->sc_keymap);
853 if (key->alg != ALG_TKIP)
856 clear_bit(key->hw_key_idx + 64, sc->sc_keymap);
857 if (sc->sc_splitmic) {
858 clear_bit(key->hw_key_idx + 32, sc->sc_keymap);
859 clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap);
863 static void setup_ht_cap(struct ath_softc *sc,
864 struct ieee80211_sta_ht_cap *ht_info)
866 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
867 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
869 ht_info->ht_supported = true;
870 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
871 IEEE80211_HT_CAP_SM_PS |
872 IEEE80211_HT_CAP_SGI_40 |
873 IEEE80211_HT_CAP_DSSSCCK40;
875 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
876 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
878 /* set up supported mcs set */
879 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
881 switch(sc->sc_rx_chainmask) {
883 ht_info->mcs.rx_mask[0] = 0xff;
889 ht_info->mcs.rx_mask[0] = 0xff;
890 ht_info->mcs.rx_mask[1] = 0xff;
894 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
897 static void ath9k_bss_assoc_info(struct ath_softc *sc,
898 struct ieee80211_vif *vif,
899 struct ieee80211_bss_conf *bss_conf)
901 struct ath_vap *avp = (void *)vif->drv_priv;
903 if (bss_conf->assoc) {
904 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
905 bss_conf->aid, sc->sc_curbssid);
907 /* New association, store aid */
908 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
909 sc->sc_curaid = bss_conf->aid;
910 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
914 /* Configure the beacon */
915 ath_beacon_config(sc, 0);
916 sc->sc_flags |= SC_OP_BEACONS;
918 /* Reset rssi stats */
919 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
920 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
921 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
922 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
925 mod_timer(&sc->sc_ani.timer,
926 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
929 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
934 /********************************/
936 /********************************/
938 static void ath_led_brightness(struct led_classdev *led_cdev,
939 enum led_brightness brightness)
941 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
942 struct ath_softc *sc = led->sc;
944 switch (brightness) {
946 if (led->led_type == ATH_LED_ASSOC ||
947 led->led_type == ATH_LED_RADIO)
948 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
949 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
950 (led->led_type == ATH_LED_RADIO) ? 1 :
951 !!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
954 if (led->led_type == ATH_LED_ASSOC)
955 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
956 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
963 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
969 led->led_cdev.name = led->name;
970 led->led_cdev.default_trigger = trigger;
971 led->led_cdev.brightness_set = ath_led_brightness;
973 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
975 DPRINTF(sc, ATH_DBG_FATAL,
976 "Failed to register led:%s", led->name);
982 static void ath_unregister_led(struct ath_led *led)
984 if (led->registered) {
985 led_classdev_unregister(&led->led_cdev);
990 static void ath_deinit_leds(struct ath_softc *sc)
992 ath_unregister_led(&sc->assoc_led);
993 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
994 ath_unregister_led(&sc->tx_led);
995 ath_unregister_led(&sc->rx_led);
996 ath_unregister_led(&sc->radio_led);
997 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1000 static void ath_init_leds(struct ath_softc *sc)
1005 /* Configure gpio 1 for output */
1006 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1007 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1008 /* LED off, active low */
1009 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1011 trigger = ieee80211_get_radio_led_name(sc->hw);
1012 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1013 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1014 ret = ath_register_led(sc, &sc->radio_led, trigger);
1015 sc->radio_led.led_type = ATH_LED_RADIO;
1019 trigger = ieee80211_get_assoc_led_name(sc->hw);
1020 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1021 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1022 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1023 sc->assoc_led.led_type = ATH_LED_ASSOC;
1027 trigger = ieee80211_get_tx_led_name(sc->hw);
1028 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1029 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1030 ret = ath_register_led(sc, &sc->tx_led, trigger);
1031 sc->tx_led.led_type = ATH_LED_TX;
1035 trigger = ieee80211_get_rx_led_name(sc->hw);
1036 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1037 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1038 ret = ath_register_led(sc, &sc->rx_led, trigger);
1039 sc->rx_led.led_type = ATH_LED_RX;
1046 ath_deinit_leds(sc);
1049 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1051 /*******************/
1053 /*******************/
1055 static void ath_radio_enable(struct ath_softc *sc)
1057 struct ath_hal *ah = sc->sc_ah;
1058 struct ieee80211_channel *channel = sc->hw->conf.channel;
1061 ath9k_ps_wakeup(sc);
1062 spin_lock_bh(&sc->sc_resetlock);
1064 r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1067 DPRINTF(sc, ATH_DBG_FATAL,
1068 "Unable to reset channel %u (%uMhz) ",
1069 "reset status %u\n",
1070 channel->center_freq, r);
1072 spin_unlock_bh(&sc->sc_resetlock);
1074 ath_update_txpow(sc);
1075 if (ath_startrecv(sc) != 0) {
1076 DPRINTF(sc, ATH_DBG_FATAL,
1077 "Unable to restart recv logic\n");
1081 if (sc->sc_flags & SC_OP_BEACONS)
1082 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1084 /* Re-Enable interrupts */
1085 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1088 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1089 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1090 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1092 ieee80211_wake_queues(sc->hw);
1093 ath9k_ps_restore(sc);
1096 static void ath_radio_disable(struct ath_softc *sc)
1098 struct ath_hal *ah = sc->sc_ah;
1099 struct ieee80211_channel *channel = sc->hw->conf.channel;
1102 ath9k_ps_wakeup(sc);
1103 ieee80211_stop_queues(sc->hw);
1106 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1107 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1109 /* Disable interrupts */
1110 ath9k_hw_set_interrupts(ah, 0);
1112 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1113 ath_stoprecv(sc); /* turn off frame recv */
1114 ath_flushrecv(sc); /* flush recv queue */
1116 spin_lock_bh(&sc->sc_resetlock);
1117 r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1119 DPRINTF(sc, ATH_DBG_FATAL,
1120 "Unable to reset channel %u (%uMhz) "
1121 "reset status %u\n",
1122 channel->center_freq, r);
1124 spin_unlock_bh(&sc->sc_resetlock);
1126 ath9k_hw_phy_disable(ah);
1127 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1128 ath9k_ps_restore(sc);
1131 static bool ath_is_rfkill_set(struct ath_softc *sc)
1133 struct ath_hal *ah = sc->sc_ah;
1135 return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1136 ah->ah_rfkill_polarity;
1139 /* h/w rfkill poll function */
1140 static void ath_rfkill_poll(struct work_struct *work)
1142 struct ath_softc *sc = container_of(work, struct ath_softc,
1143 rf_kill.rfkill_poll.work);
1146 if (sc->sc_flags & SC_OP_INVALID)
1149 radio_on = !ath_is_rfkill_set(sc);
1152 * enable/disable radio only when there is a
1153 * state change in RF switch
1155 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1156 enum rfkill_state state;
1158 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1159 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1160 : RFKILL_STATE_HARD_BLOCKED;
1161 } else if (radio_on) {
1162 ath_radio_enable(sc);
1163 state = RFKILL_STATE_UNBLOCKED;
1165 ath_radio_disable(sc);
1166 state = RFKILL_STATE_HARD_BLOCKED;
1169 if (state == RFKILL_STATE_HARD_BLOCKED)
1170 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1172 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1174 rfkill_force_state(sc->rf_kill.rfkill, state);
1177 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1178 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1181 /* s/w rfkill handler */
1182 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1184 struct ath_softc *sc = data;
1187 case RFKILL_STATE_SOFT_BLOCKED:
1188 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1189 SC_OP_RFKILL_SW_BLOCKED)))
1190 ath_radio_disable(sc);
1191 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1193 case RFKILL_STATE_UNBLOCKED:
1194 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1195 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1196 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1197 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1198 "radio as it is disabled by h/w\n");
1201 ath_radio_enable(sc);
1209 /* Init s/w rfkill */
1210 static int ath_init_sw_rfkill(struct ath_softc *sc)
1212 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1214 if (!sc->rf_kill.rfkill) {
1215 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1219 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1220 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1221 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1222 sc->rf_kill.rfkill->data = sc;
1223 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1224 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1225 sc->rf_kill.rfkill->user_claim_unsupported = 1;
1230 /* Deinitialize rfkill */
1231 static void ath_deinit_rfkill(struct ath_softc *sc)
1233 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1234 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1236 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1237 rfkill_unregister(sc->rf_kill.rfkill);
1238 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1239 sc->rf_kill.rfkill = NULL;
1243 static int ath_start_rfkill_poll(struct ath_softc *sc)
1245 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1246 queue_delayed_work(sc->hw->workqueue,
1247 &sc->rf_kill.rfkill_poll, 0);
1249 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1250 if (rfkill_register(sc->rf_kill.rfkill)) {
1251 DPRINTF(sc, ATH_DBG_FATAL,
1252 "Unable to register rfkill\n");
1253 rfkill_free(sc->rf_kill.rfkill);
1255 /* Deinitialize the device */
1259 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1265 #endif /* CONFIG_RFKILL */
1267 void ath_cleanup(struct ath_softc *sc)
1270 free_irq(sc->irq, sc);
1271 ath_bus_cleanup(sc);
1272 ieee80211_free_hw(sc->hw);
1275 void ath_detach(struct ath_softc *sc)
1277 struct ieee80211_hw *hw = sc->hw;
1280 ath9k_ps_wakeup(sc);
1282 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1284 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1285 ath_deinit_rfkill(sc);
1287 ath_deinit_leds(sc);
1289 ieee80211_unregister_hw(hw);
1293 tasklet_kill(&sc->intr_tq);
1294 tasklet_kill(&sc->bcon_tasklet);
1296 if (!(sc->sc_flags & SC_OP_INVALID))
1297 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1299 /* cleanup tx queues */
1300 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1301 if (ATH_TXQ_SETUP(sc, i))
1302 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1304 ath9k_hw_detach(sc->sc_ah);
1305 ath9k_exit_debug(sc);
1306 ath9k_ps_restore(sc);
1309 static int ath_init(u16 devid, struct ath_softc *sc)
1311 struct ath_hal *ah = NULL;
1316 /* XXX: hardware will not be ready until ath_open() being called */
1317 sc->sc_flags |= SC_OP_INVALID;
1319 if (ath9k_init_debug(sc) < 0)
1320 printk(KERN_ERR "Unable to create debugfs files\n");
1322 spin_lock_init(&sc->sc_resetlock);
1323 mutex_init(&sc->mutex);
1324 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1325 tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1329 * Cache line size is used to size and align various
1330 * structures used to communicate with the hardware.
1332 ath_read_cachesize(sc, &csz);
1333 /* XXX assert csz is non-zero */
1334 sc->sc_cachelsz = csz << 2; /* convert to bytes */
1336 ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1338 DPRINTF(sc, ATH_DBG_FATAL,
1339 "Unable to attach hardware; HAL status %d\n", status);
1345 /* Get the hardware key cache size. */
1346 sc->sc_keymax = ah->ah_caps.keycache_size;
1347 if (sc->sc_keymax > ATH_KEYMAX) {
1348 DPRINTF(sc, ATH_DBG_KEYCACHE,
1349 "Warning, using only %u entries in %u key cache\n",
1350 ATH_KEYMAX, sc->sc_keymax);
1351 sc->sc_keymax = ATH_KEYMAX;
1355 * Reset the key cache since some parts do not
1356 * reset the contents on initial power up.
1358 for (i = 0; i < sc->sc_keymax; i++)
1359 ath9k_hw_keyreset(ah, (u16) i);
1361 if (ath9k_regd_init(sc->sc_ah))
1364 /* default to MONITOR mode */
1365 sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1367 /* Setup rate tables */
1369 ath_rate_attach(sc);
1370 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1371 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1374 * Allocate hardware transmit queues: one queue for
1375 * beacon frames and one data queue for each QoS
1376 * priority. Note that the hal handles reseting
1377 * these queues at the needed time.
1379 sc->beacon.beaconq = ath_beaconq_setup(ah);
1380 if (sc->beacon.beaconq == -1) {
1381 DPRINTF(sc, ATH_DBG_FATAL,
1382 "Unable to setup a beacon xmit queue\n");
1386 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1387 if (sc->beacon.cabq == NULL) {
1388 DPRINTF(sc, ATH_DBG_FATAL,
1389 "Unable to setup CAB xmit queue\n");
1394 sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1395 ath_cabq_update(sc);
1397 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1398 sc->tx.hwq_map[i] = -1;
1400 /* Setup data queues */
1401 /* NB: ensure BK queue is the lowest priority h/w queue */
1402 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1403 DPRINTF(sc, ATH_DBG_FATAL,
1404 "Unable to setup xmit queue for BK traffic\n");
1409 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1410 DPRINTF(sc, ATH_DBG_FATAL,
1411 "Unable to setup xmit queue for BE traffic\n");
1415 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1416 DPRINTF(sc, ATH_DBG_FATAL,
1417 "Unable to setup xmit queue for VI traffic\n");
1421 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1422 DPRINTF(sc, ATH_DBG_FATAL,
1423 "Unable to setup xmit queue for VO traffic\n");
1428 /* Initializes the noise floor to a reasonable default value.
1429 * Later on this will be updated during ANI processing. */
1431 sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1432 setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1434 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1435 ATH9K_CIPHER_TKIP, NULL)) {
1437 * Whether we should enable h/w TKIP MIC.
1438 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1439 * report WMM capable, so it's always safe to turn on
1440 * TKIP MIC in this case.
1442 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1447 * Check whether the separate key cache entries
1448 * are required to handle both tx+rx MIC keys.
1449 * With split mic keys the number of stations is limited
1450 * to 27 otherwise 59.
1452 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1453 ATH9K_CIPHER_TKIP, NULL)
1454 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1455 ATH9K_CIPHER_MIC, NULL)
1456 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1458 sc->sc_splitmic = 1;
1460 /* turn on mcast key search if possible */
1461 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1462 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1465 sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1466 sc->sc_config.txpowlimit_override = 0;
1468 /* 11n Capabilities */
1469 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1470 sc->sc_flags |= SC_OP_TXAGGR;
1471 sc->sc_flags |= SC_OP_RXAGGR;
1474 sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1475 sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1477 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1478 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1480 ath9k_hw_getmac(ah, sc->sc_myaddr);
1481 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1482 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1483 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1484 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1487 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1489 /* initialize beacon slots */
1490 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1491 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1493 /* save MISC configurations */
1494 sc->sc_config.swBeaconProcess = 1;
1496 /* setup channels and rates */
1498 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1499 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1500 sc->rates[IEEE80211_BAND_2GHZ];
1501 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1502 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1503 ARRAY_SIZE(ath9k_2ghz_chantable);
1505 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1506 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1507 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1508 sc->rates[IEEE80211_BAND_5GHZ];
1509 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1510 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1511 ARRAY_SIZE(ath9k_5ghz_chantable);
1514 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1515 ath9k_hw_btcoex_enable(sc->sc_ah);
1519 /* cleanup tx queues */
1520 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1521 if (ATH_TXQ_SETUP(sc, i))
1522 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1525 ath9k_hw_detach(ah);
1530 int ath_attach(u16 devid, struct ath_softc *sc)
1532 struct ieee80211_hw *hw = sc->hw;
1535 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1537 error = ath_init(devid, sc);
1541 /* get mac address from hardware and set in mac80211 */
1543 SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1545 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1546 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1547 IEEE80211_HW_SIGNAL_DBM |
1548 IEEE80211_HW_AMPDU_AGGREGATION |
1549 IEEE80211_HW_SUPPORTS_PS |
1550 IEEE80211_HW_PS_NULLFUNC_STACK;
1552 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah))
1553 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1555 hw->wiphy->interface_modes =
1556 BIT(NL80211_IFTYPE_AP) |
1557 BIT(NL80211_IFTYPE_STATION) |
1558 BIT(NL80211_IFTYPE_ADHOC);
1560 hw->wiphy->reg_notifier = ath9k_reg_notifier;
1561 hw->wiphy->strict_regulatory = true;
1565 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1566 hw->sta_data_size = sizeof(struct ath_node);
1567 hw->vif_data_size = sizeof(struct ath_vap);
1569 hw->rate_control_algorithm = "ath9k_rate_control";
1571 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1572 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1573 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1574 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1577 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1578 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1579 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1580 &sc->sbands[IEEE80211_BAND_5GHZ];
1582 /* initialize tx/rx engine */
1583 error = ath_tx_init(sc, ATH_TXBUF);
1587 error = ath_rx_init(sc, ATH_RXBUF);
1591 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1592 /* Initialze h/w Rfkill */
1593 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1594 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1596 /* Initialize s/w rfkill */
1597 if (ath_init_sw_rfkill(sc))
1601 if (ath9k_is_world_regd(sc->sc_ah)) {
1602 /* Anything applied here (prior to wiphy registratoin) gets
1603 * saved on the wiphy orig_* parameters */
1604 const struct ieee80211_regdomain *regd =
1605 ath9k_world_regdomain(sc->sc_ah);
1606 hw->wiphy->custom_regulatory = true;
1607 hw->wiphy->strict_regulatory = false;
1608 wiphy_apply_custom_regulatory(sc->hw->wiphy, regd);
1609 ath9k_reg_apply_radar_flags(hw->wiphy);
1610 ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT);
1612 /* This gets applied in the case of the absense of CRDA,
1613 * its our own custom world regulatory domain, similar to
1614 * cfg80211's but we enable passive scanning */
1615 const struct ieee80211_regdomain *regd =
1616 ath9k_default_world_regdomain();
1617 wiphy_apply_custom_regulatory(sc->hw->wiphy, regd);
1618 ath9k_reg_apply_radar_flags(hw->wiphy);
1619 ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT);
1622 error = ieee80211_register_hw(hw);
1624 if (!ath9k_is_world_regd(sc->sc_ah))
1625 regulatory_hint(hw->wiphy, sc->sc_ah->alpha2);
1627 /* Initialize LED control */
1637 int ath_reset(struct ath_softc *sc, bool retry_tx)
1639 struct ath_hal *ah = sc->sc_ah;
1640 struct ieee80211_hw *hw = sc->hw;
1643 ath9k_hw_set_interrupts(ah, 0);
1644 ath_drain_all_txq(sc, retry_tx);
1648 spin_lock_bh(&sc->sc_resetlock);
1649 r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, false);
1651 DPRINTF(sc, ATH_DBG_FATAL,
1652 "Unable to reset hardware; reset status %u\n", r);
1653 spin_unlock_bh(&sc->sc_resetlock);
1655 if (ath_startrecv(sc) != 0)
1656 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1659 * We may be doing a reset in response to a request
1660 * that changes the channel so update any state that
1661 * might change as a result.
1663 ath_cache_conf_rate(sc, &hw->conf);
1665 ath_update_txpow(sc);
1667 if (sc->sc_flags & SC_OP_BEACONS)
1668 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1670 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1674 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1675 if (ATH_TXQ_SETUP(sc, i)) {
1676 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1677 ath_txq_schedule(sc, &sc->tx.txq[i]);
1678 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1687 * This function will allocate both the DMA descriptor structure, and the
1688 * buffers it contains. These are used to contain the descriptors used
1691 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1692 struct list_head *head, const char *name,
1693 int nbuf, int ndesc)
1695 #define DS2PHYS(_dd, _ds) \
1696 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1697 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1698 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1700 struct ath_desc *ds;
1702 int i, bsize, error;
1704 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1707 /* ath_desc must be a multiple of DWORDs */
1708 if ((sizeof(struct ath_desc) % 4) != 0) {
1709 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1710 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1716 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1719 * Need additional DMA memory because we can't use
1720 * descriptors that cross the 4K page boundary. Assume
1721 * one skipped descriptor per 4K page.
1723 if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1725 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1728 while (ndesc_skipped) {
1729 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1730 dd->dd_desc_len += dma_len;
1732 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1736 /* allocate descriptors */
1737 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1738 &dd->dd_desc_paddr, GFP_ATOMIC);
1739 if (dd->dd_desc == NULL) {
1744 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1745 dd->dd_name, ds, (u32) dd->dd_desc_len,
1746 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1748 /* allocate buffers */
1749 bsize = sizeof(struct ath_buf) * nbuf;
1750 bf = kmalloc(bsize, GFP_KERNEL);
1755 memset(bf, 0, bsize);
1758 INIT_LIST_HEAD(head);
1759 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1761 bf->bf_daddr = DS2PHYS(dd, ds);
1763 if (!(sc->sc_ah->ah_caps.hw_caps &
1764 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1766 * Skip descriptor addresses which can cause 4KB
1767 * boundary crossing (addr + length) with a 32 dword
1770 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1771 ASSERT((caddr_t) bf->bf_desc <
1772 ((caddr_t) dd->dd_desc +
1777 bf->bf_daddr = DS2PHYS(dd, ds);
1780 list_add_tail(&bf->list, head);
1784 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1787 memset(dd, 0, sizeof(*dd));
1789 #undef ATH_DESC_4KB_BOUND_CHECK
1790 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1794 void ath_descdma_cleanup(struct ath_softc *sc,
1795 struct ath_descdma *dd,
1796 struct list_head *head)
1798 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1801 INIT_LIST_HEAD(head);
1802 kfree(dd->dd_bufptr);
1803 memset(dd, 0, sizeof(*dd));
1806 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1812 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1815 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1818 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1821 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1824 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1831 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1836 case ATH9K_WME_AC_VO:
1839 case ATH9K_WME_AC_VI:
1842 case ATH9K_WME_AC_BE:
1845 case ATH9K_WME_AC_BK:
1856 /* XXX: Remove me once we don't depend on ath9k_channel for all
1857 * this redundant data */
1858 static void ath9k_update_ichannel(struct ath_softc *sc,
1859 struct ath9k_channel *ichan)
1861 struct ieee80211_hw *hw = sc->hw;
1862 struct ieee80211_channel *chan = hw->conf.channel;
1863 struct ieee80211_conf *conf = &hw->conf;
1865 ichan->channel = chan->center_freq;
1868 if (chan->band == IEEE80211_BAND_2GHZ) {
1869 ichan->chanmode = CHANNEL_G;
1870 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1872 ichan->chanmode = CHANNEL_A;
1873 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1876 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1878 if (conf_is_ht(conf)) {
1879 if (conf_is_ht40(conf))
1880 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1882 ichan->chanmode = ath_get_extchanmode(sc, chan,
1883 conf->channel_type);
1887 /**********************/
1888 /* mac80211 callbacks */
1889 /**********************/
1891 static int ath9k_start(struct ieee80211_hw *hw)
1893 struct ath_softc *sc = hw->priv;
1894 struct ieee80211_channel *curchan = hw->conf.channel;
1895 struct ath9k_channel *init_channel;
1898 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1899 "initial channel: %d MHz\n", curchan->center_freq);
1901 /* setup initial channel */
1903 pos = curchan->hw_value;
1905 init_channel = &sc->sc_ah->ah_channels[pos];
1906 ath9k_update_ichannel(sc, init_channel);
1908 /* Reset SERDES registers */
1909 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1912 * The basic interface to setting the hardware in a good
1913 * state is ``reset''. On return the hardware is known to
1914 * be powered up and with interrupts disabled. This must
1915 * be followed by initialization of the appropriate bits
1916 * and then setup of the interrupt mask.
1918 spin_lock_bh(&sc->sc_resetlock);
1919 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1921 DPRINTF(sc, ATH_DBG_FATAL,
1922 "Unable to reset hardware; reset status %u "
1923 "(freq %u MHz)\n", r,
1924 curchan->center_freq);
1925 spin_unlock_bh(&sc->sc_resetlock);
1928 spin_unlock_bh(&sc->sc_resetlock);
1931 * This is needed only to setup initial state
1932 * but it's best done after a reset.
1934 ath_update_txpow(sc);
1937 * Setup the hardware after reset:
1938 * The receive engine is set going.
1939 * Frame transmit is handled entirely
1940 * in the frame output path; there's nothing to do
1941 * here except setup the interrupt mask.
1943 if (ath_startrecv(sc) != 0) {
1944 DPRINTF(sc, ATH_DBG_FATAL,
1945 "Unable to start recv logic\n");
1949 /* Setup our intr mask. */
1950 sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1951 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1952 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1954 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1955 sc->sc_imask |= ATH9K_INT_GTT;
1957 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1958 sc->sc_imask |= ATH9K_INT_CST;
1961 * Enable MIB interrupts when there are hardware phy counters.
1962 * Note we only do this (at the moment) for station mode.
1964 if (ath9k_hw_phycounters(sc->sc_ah) &&
1965 ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1966 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
1967 sc->sc_imask |= ATH9K_INT_MIB;
1969 * Some hardware processes the TIM IE and fires an
1970 * interrupt when the TIM bit is set. For hardware
1971 * that does, if not overridden by configuration,
1972 * enable the TIM interrupt when operating as station.
1974 if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1975 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
1976 !sc->sc_config.swBeaconProcess)
1977 sc->sc_imask |= ATH9K_INT_TIM;
1979 ath_cache_conf_rate(sc, &hw->conf);
1981 sc->sc_flags &= ~SC_OP_INVALID;
1983 /* Disable BMISS interrupt when we're not associated */
1984 sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1985 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1987 ieee80211_wake_queues(sc->hw);
1989 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1990 r = ath_start_rfkill_poll(sc);
1995 static int ath9k_tx(struct ieee80211_hw *hw,
1996 struct sk_buff *skb)
1998 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1999 struct ath_softc *sc = hw->priv;
2000 struct ath_tx_control txctl;
2001 int hdrlen, padsize;
2003 memset(&txctl, 0, sizeof(struct ath_tx_control));
2006 * As a temporary workaround, assign seq# here; this will likely need
2007 * to be cleaned up to work better with Beacon transmission and virtual
2010 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2011 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2012 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2013 sc->tx.seq_no += 0x10;
2014 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2015 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2018 /* Add the padding after the header if this is not already done */
2019 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2021 padsize = hdrlen % 4;
2022 if (skb_headroom(skb) < padsize)
2024 skb_push(skb, padsize);
2025 memmove(skb->data, skb->data + padsize, hdrlen);
2028 /* Check if a tx queue is available */
2030 txctl.txq = ath_test_get_txq(sc, skb);
2034 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2036 if (ath_tx_start(sc, skb, &txctl) != 0) {
2037 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2043 dev_kfree_skb_any(skb);
2047 static void ath9k_stop(struct ieee80211_hw *hw)
2049 struct ath_softc *sc = hw->priv;
2051 if (sc->sc_flags & SC_OP_INVALID) {
2052 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2056 DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
2058 ieee80211_stop_queues(sc->hw);
2060 /* make sure h/w will not generate any interrupt
2061 * before setting the invalid flag. */
2062 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2064 if (!(sc->sc_flags & SC_OP_INVALID)) {
2065 ath_drain_all_txq(sc, false);
2067 ath9k_hw_phy_disable(sc->sc_ah);
2069 sc->rx.rxlink = NULL;
2071 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2072 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2073 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2075 /* disable HAL and put h/w to sleep */
2076 ath9k_hw_disable(sc->sc_ah);
2077 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2079 sc->sc_flags |= SC_OP_INVALID;
2081 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2084 static int ath9k_add_interface(struct ieee80211_hw *hw,
2085 struct ieee80211_if_init_conf *conf)
2087 struct ath_softc *sc = hw->priv;
2088 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2089 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2091 /* Support only vap for now */
2096 switch (conf->type) {
2097 case NL80211_IFTYPE_STATION:
2098 ic_opmode = NL80211_IFTYPE_STATION;
2100 case NL80211_IFTYPE_ADHOC:
2101 ic_opmode = NL80211_IFTYPE_ADHOC;
2103 case NL80211_IFTYPE_AP:
2104 ic_opmode = NL80211_IFTYPE_AP;
2107 DPRINTF(sc, ATH_DBG_FATAL,
2108 "Interface type %d not yet supported\n", conf->type);
2112 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2114 /* Set the VAP opmode */
2115 avp->av_opmode = ic_opmode;
2118 if (ic_opmode == NL80211_IFTYPE_AP)
2119 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2121 sc->sc_vaps[0] = conf->vif;
2124 /* Set the device opmode */
2125 sc->sc_ah->ah_opmode = ic_opmode;
2127 if (conf->type == NL80211_IFTYPE_AP) {
2128 /* TODO: is this a suitable place to start ANI for AP mode? */
2130 mod_timer(&sc->sc_ani.timer,
2131 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2137 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2138 struct ieee80211_if_init_conf *conf)
2140 struct ath_softc *sc = hw->priv;
2141 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2143 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2146 del_timer_sync(&sc->sc_ani.timer);
2148 /* Reclaim beacon resources */
2149 if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2150 sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2151 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2152 ath_beacon_return(sc, avp);
2155 sc->sc_flags &= ~SC_OP_BEACONS;
2157 sc->sc_vaps[0] = NULL;
2161 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2163 struct ath_softc *sc = hw->priv;
2164 struct ieee80211_conf *conf = &hw->conf;
2166 mutex_lock(&sc->mutex);
2167 if (changed & IEEE80211_CONF_CHANGE_PS) {
2168 if (conf->flags & IEEE80211_CONF_PS) {
2169 if ((sc->sc_imask & ATH9K_INT_TIM_TIMER) == 0) {
2170 sc->sc_imask |= ATH9K_INT_TIM_TIMER;
2171 ath9k_hw_set_interrupts(sc->sc_ah,
2174 ath9k_hw_setrxabort(sc->sc_ah, 1);
2175 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2177 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2178 ath9k_hw_setrxabort(sc->sc_ah, 0);
2179 sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
2180 if (sc->sc_imask & ATH9K_INT_TIM_TIMER) {
2181 sc->sc_imask &= ~ATH9K_INT_TIM_TIMER;
2182 ath9k_hw_set_interrupts(sc->sc_ah,
2188 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2189 struct ieee80211_channel *curchan = hw->conf.channel;
2190 int pos = curchan->hw_value;
2192 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2193 curchan->center_freq);
2195 /* XXX: remove me eventualy */
2196 ath9k_update_ichannel(sc, &sc->sc_ah->ah_channels[pos]);
2198 ath_update_chainmask(sc, conf_is_ht(conf));
2200 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2201 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2202 mutex_unlock(&sc->mutex);
2207 if (changed & IEEE80211_CONF_CHANGE_POWER)
2208 sc->sc_config.txpowlimit = 2 * conf->power_level;
2210 mutex_unlock(&sc->mutex);
2214 static int ath9k_config_interface(struct ieee80211_hw *hw,
2215 struct ieee80211_vif *vif,
2216 struct ieee80211_if_conf *conf)
2218 struct ath_softc *sc = hw->priv;
2219 struct ath_hal *ah = sc->sc_ah;
2220 struct ath_vap *avp = (void *)vif->drv_priv;
2224 /* TODO: Need to decide which hw opmode to use for multi-interface
2226 if (vif->type == NL80211_IFTYPE_AP &&
2227 ah->ah_opmode != NL80211_IFTYPE_AP) {
2228 ah->ah_opmode = NL80211_IFTYPE_STATION;
2229 ath9k_hw_setopmode(ah);
2230 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2231 /* Request full reset to get hw opmode changed properly */
2232 sc->sc_flags |= SC_OP_FULL_RESET;
2235 if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2236 !is_zero_ether_addr(conf->bssid)) {
2237 switch (vif->type) {
2238 case NL80211_IFTYPE_STATION:
2239 case NL80211_IFTYPE_ADHOC:
2241 memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2243 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2246 /* Set aggregation protection mode parameters */
2247 sc->sc_config.ath_aggr_prot = 0;
2249 DPRINTF(sc, ATH_DBG_CONFIG,
2250 "RX filter 0x%x bssid %pM aid 0x%x\n",
2251 rfilt, sc->sc_curbssid, sc->sc_curaid);
2253 /* need to reconfigure the beacon */
2254 sc->sc_flags &= ~SC_OP_BEACONS ;
2262 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2263 (vif->type == NL80211_IFTYPE_AP)) {
2264 if ((conf->changed & IEEE80211_IFCC_BEACON) ||
2265 (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
2266 conf->enable_beacon)) {
2268 * Allocate and setup the beacon frame.
2270 * Stop any previous beacon DMA. This may be
2271 * necessary, for example, when an ibss merge
2272 * causes reconfiguration; we may be called
2273 * with beacon transmission active.
2275 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2277 error = ath_beacon_alloc(sc, 0);
2281 ath_beacon_sync(sc, 0);
2285 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2286 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2287 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2288 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2289 ath9k_hw_keysetmac(sc->sc_ah,
2294 /* Only legacy IBSS for now */
2295 if (vif->type == NL80211_IFTYPE_ADHOC)
2296 ath_update_chainmask(sc, 0);
2301 #define SUPPORTED_FILTERS \
2302 (FIF_PROMISC_IN_BSS | \
2306 FIF_BCN_PRBRESP_PROMISC | \
2309 /* FIXME: sc->sc_full_reset ? */
2310 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2311 unsigned int changed_flags,
2312 unsigned int *total_flags,
2314 struct dev_mc_list *mclist)
2316 struct ath_softc *sc = hw->priv;
2319 changed_flags &= SUPPORTED_FILTERS;
2320 *total_flags &= SUPPORTED_FILTERS;
2322 sc->rx.rxfilter = *total_flags;
2323 rfilt = ath_calcrxfilter(sc);
2324 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2326 if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2327 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2328 ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2331 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2334 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2335 struct ieee80211_vif *vif,
2336 enum sta_notify_cmd cmd,
2337 struct ieee80211_sta *sta)
2339 struct ath_softc *sc = hw->priv;
2342 case STA_NOTIFY_ADD:
2343 ath_node_attach(sc, sta);
2345 case STA_NOTIFY_REMOVE:
2346 ath_node_detach(sc, sta);
2353 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2355 const struct ieee80211_tx_queue_params *params)
2357 struct ath_softc *sc = hw->priv;
2358 struct ath9k_tx_queue_info qi;
2361 if (queue >= WME_NUM_AC)
2364 qi.tqi_aifs = params->aifs;
2365 qi.tqi_cwmin = params->cw_min;
2366 qi.tqi_cwmax = params->cw_max;
2367 qi.tqi_burstTime = params->txop;
2368 qnum = ath_get_hal_qnum(queue, sc);
2370 DPRINTF(sc, ATH_DBG_CONFIG,
2371 "Configure tx [queue/halq] [%d/%d], "
2372 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2373 queue, qnum, params->aifs, params->cw_min,
2374 params->cw_max, params->txop);
2376 ret = ath_txq_update(sc, qnum, &qi);
2378 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2383 static int ath9k_set_key(struct ieee80211_hw *hw,
2384 enum set_key_cmd cmd,
2385 struct ieee80211_vif *vif,
2386 struct ieee80211_sta *sta,
2387 struct ieee80211_key_conf *key)
2389 struct ath_softc *sc = hw->priv;
2392 ath9k_ps_wakeup(sc);
2393 DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2397 ret = ath_key_config(sc, sta, key);
2399 key->hw_key_idx = ret;
2400 /* push IV and Michael MIC generation to stack */
2401 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2402 if (key->alg == ALG_TKIP)
2403 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2404 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2405 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2410 ath_key_delete(sc, key);
2416 ath9k_ps_restore(sc);
2420 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2421 struct ieee80211_vif *vif,
2422 struct ieee80211_bss_conf *bss_conf,
2425 struct ath_softc *sc = hw->priv;
2427 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2428 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2429 bss_conf->use_short_preamble);
2430 if (bss_conf->use_short_preamble)
2431 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2433 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2436 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2437 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2438 bss_conf->use_cts_prot);
2439 if (bss_conf->use_cts_prot &&
2440 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2441 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2443 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2446 if (changed & BSS_CHANGED_ASSOC) {
2447 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2449 ath9k_bss_assoc_info(sc, vif, bss_conf);
2453 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2456 struct ath_softc *sc = hw->priv;
2457 struct ath_hal *ah = sc->sc_ah;
2459 tsf = ath9k_hw_gettsf64(ah);
2464 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2466 struct ath_softc *sc = hw->priv;
2467 struct ath_hal *ah = sc->sc_ah;
2469 ath9k_hw_settsf64(ah, tsf);
2472 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2474 struct ath_softc *sc = hw->priv;
2475 struct ath_hal *ah = sc->sc_ah;
2477 ath9k_hw_reset_tsf(ah);
2480 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2481 enum ieee80211_ampdu_mlme_action action,
2482 struct ieee80211_sta *sta,
2485 struct ath_softc *sc = hw->priv;
2489 case IEEE80211_AMPDU_RX_START:
2490 if (!(sc->sc_flags & SC_OP_RXAGGR))
2493 case IEEE80211_AMPDU_RX_STOP:
2495 case IEEE80211_AMPDU_TX_START:
2496 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2498 DPRINTF(sc, ATH_DBG_FATAL,
2499 "Unable to start TX aggregation\n");
2501 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2503 case IEEE80211_AMPDU_TX_STOP:
2504 ret = ath_tx_aggr_stop(sc, sta, tid);
2506 DPRINTF(sc, ATH_DBG_FATAL,
2507 "Unable to stop TX aggregation\n");
2509 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2511 case IEEE80211_AMPDU_TX_RESUME:
2512 ath_tx_aggr_resume(sc, sta, tid);
2515 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2521 struct ieee80211_ops ath9k_ops = {
2523 .start = ath9k_start,
2525 .add_interface = ath9k_add_interface,
2526 .remove_interface = ath9k_remove_interface,
2527 .config = ath9k_config,
2528 .config_interface = ath9k_config_interface,
2529 .configure_filter = ath9k_configure_filter,
2530 .sta_notify = ath9k_sta_notify,
2531 .conf_tx = ath9k_conf_tx,
2532 .bss_info_changed = ath9k_bss_info_changed,
2533 .set_key = ath9k_set_key,
2534 .get_tsf = ath9k_get_tsf,
2535 .set_tsf = ath9k_set_tsf,
2536 .reset_tsf = ath9k_reset_tsf,
2537 .ampdu_action = ath9k_ampdu_action,
2543 } ath_mac_bb_names[] = {
2544 { AR_SREV_VERSION_5416_PCI, "5416" },
2545 { AR_SREV_VERSION_5416_PCIE, "5418" },
2546 { AR_SREV_VERSION_9100, "9100" },
2547 { AR_SREV_VERSION_9160, "9160" },
2548 { AR_SREV_VERSION_9280, "9280" },
2549 { AR_SREV_VERSION_9285, "9285" }
2555 } ath_rf_names[] = {
2557 { AR_RAD5133_SREV_MAJOR, "5133" },
2558 { AR_RAD5122_SREV_MAJOR, "5122" },
2559 { AR_RAD2133_SREV_MAJOR, "2133" },
2560 { AR_RAD2122_SREV_MAJOR, "2122" }
2564 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2567 ath_mac_bb_name(u32 mac_bb_version)
2571 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2572 if (ath_mac_bb_names[i].version == mac_bb_version) {
2573 return ath_mac_bb_names[i].name;
2581 * Return the RF name. "????" is returned if the RF is unknown.
2584 ath_rf_name(u16 rf_version)
2588 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2589 if (ath_rf_names[i].version == rf_version) {
2590 return ath_rf_names[i].name;
2597 static int __init ath9k_init(void)
2601 /* Register rate control algorithm */
2602 error = ath_rate_control_register();
2605 "ath9k: Unable to register rate control "
2611 error = ath_pci_init();
2614 "ath9k: No PCI devices found, driver not installed.\n");
2616 goto err_rate_unregister;
2619 error = ath_ahb_init();
2630 err_rate_unregister:
2631 ath_rate_control_unregister();
2635 module_init(ath9k_init);
2637 static void __exit ath9k_exit(void)
2641 ath_rate_control_unregister();
2642 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2644 module_exit(ath9k_exit);