2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004,2005,2006 by Thiemo Seufer
9 * Copyright (C) 2005 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
12 * ... and the days got worse and worse and now you see
13 * I've gone completly out of my mind.
15 * They're coming to take me a away haha
16 * they're coming to take me a away hoho hihi haha
17 * to the funny farm where code is beautiful all the time ...
19 * (Condolences to Napoleon XIV)
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
30 #include <asm/pgtable.h>
31 #include <asm/cacheflush.h>
32 #include <asm/mmu_context.h>
38 static inline int r45k_bvahwbug(void)
40 /* XXX: We should probe for the presence of this bug, but we don't. */
44 static inline int r4k_250MHZhwbug(void)
46 /* XXX: We should probe for the presence of this bug, but we don't. */
50 static inline int __maybe_unused bcm1250_m3_war(void)
52 return BCM1250_M3_WAR;
55 static inline int __maybe_unused r10000_llsc_war(void)
57 return R10000_LLSC_WAR;
61 * Found by experiment: At least some revisions of the 4kc throw under
62 * some circumstances a machine check exception, triggered by invalid
63 * values in the index register. Delaying the tlbp instruction until
64 * after the next branch, plus adding an additional nop in front of
65 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
66 * why; it's not an issue caused by the core RTL.
69 static __init int __attribute__((unused)) m4kc_tlbp_war(void)
71 return (current_cpu_data.processor_id & 0xffff00) ==
72 (PRID_COMP_MIPS | PRID_IMP_4KC);
76 * A little micro-assembler, intended for TLB refill handler
77 * synthesizing. It is intentionally kept simple, does only support
78 * a subset of instructions, and does not try to hide pipeline effects
79 * like branch delay slots.
106 #define IMM_MASK 0xffff
108 #define JIMM_MASK 0x3ffffff
110 #define FUNC_MASK 0x3f
117 insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
118 insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
119 insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
120 insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32,
121 insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
122 insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
123 insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
124 insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
125 insn_tlbwr, insn_xor, insn_xori
134 /* This macro sets the non-variable bits of an instruction. */
135 #define M(a, b, c, d, e, f) \
143 static __initdata struct insn insn_table[] = {
144 { insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
145 { insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
146 { insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
147 { insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
148 { insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
149 { insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
150 { insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
151 { insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
152 { insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
153 { insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
154 { insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
155 { insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
156 { insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
157 { insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
158 { insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
159 { insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
160 { insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
161 { insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
162 { insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
163 { insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
164 { insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
165 { insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 },
166 { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
167 { insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM },
168 { insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS },
169 { insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
170 { insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
171 { insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
172 { insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM },
173 { insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
174 { insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
175 { insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
176 { insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
177 { insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 },
178 { insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
179 { insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
180 { insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
181 { insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE },
182 { insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE },
183 { insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE },
184 { insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD },
185 { insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
186 { insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 },
187 { insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 },
188 { insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 },
189 { insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD },
190 { insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
191 { insn_invalid, 0, 0 }
196 static __init u32 build_rs(u32 arg)
199 printk(KERN_WARNING "TLB synthesizer field overflow\n");
201 return (arg & RS_MASK) << RS_SH;
204 static __init u32 build_rt(u32 arg)
207 printk(KERN_WARNING "TLB synthesizer field overflow\n");
209 return (arg & RT_MASK) << RT_SH;
212 static __init u32 build_rd(u32 arg)
215 printk(KERN_WARNING "TLB synthesizer field overflow\n");
217 return (arg & RD_MASK) << RD_SH;
220 static __init u32 build_re(u32 arg)
223 printk(KERN_WARNING "TLB synthesizer field overflow\n");
225 return (arg & RE_MASK) << RE_SH;
228 static __init u32 build_simm(s32 arg)
230 if (arg > 0x7fff || arg < -0x8000)
231 printk(KERN_WARNING "TLB synthesizer field overflow\n");
236 static __init u32 build_uimm(u32 arg)
239 printk(KERN_WARNING "TLB synthesizer field overflow\n");
241 return arg & IMM_MASK;
244 static __init u32 build_bimm(s32 arg)
246 if (arg > 0x1ffff || arg < -0x20000)
247 printk(KERN_WARNING "TLB synthesizer field overflow\n");
250 printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
252 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
255 static __init u32 build_jimm(u32 arg)
257 if (arg & ~((JIMM_MASK) << 2))
258 printk(KERN_WARNING "TLB synthesizer field overflow\n");
260 return (arg >> 2) & JIMM_MASK;
263 static __init u32 build_func(u32 arg)
265 if (arg & ~FUNC_MASK)
266 printk(KERN_WARNING "TLB synthesizer field overflow\n");
268 return arg & FUNC_MASK;
271 static __init u32 build_set(u32 arg)
274 printk(KERN_WARNING "TLB synthesizer field overflow\n");
276 return arg & SET_MASK;
280 * The order of opcode arguments is implicitly left to right,
281 * starting with RS and ending with FUNC or IMM.
283 static void __init build_insn(u32 **buf, enum opcode opc, ...)
285 struct insn *ip = NULL;
290 for (i = 0; insn_table[i].opcode != insn_invalid; i++)
291 if (insn_table[i].opcode == opc) {
297 panic("Unsupported TLB synthesizer instruction %d", opc);
301 if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
302 if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
303 if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
304 if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
305 if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
306 if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
307 if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
308 if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
309 if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
310 if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
317 #define I_u1u2u3(op) \
318 static inline void __init i##op(u32 **buf, unsigned int a, \
319 unsigned int b, unsigned int c) \
321 build_insn(buf, insn##op, a, b, c); \
324 #define I_u2u1u3(op) \
325 static inline void __init i##op(u32 **buf, unsigned int a, \
326 unsigned int b, unsigned int c) \
328 build_insn(buf, insn##op, b, a, c); \
331 #define I_u3u1u2(op) \
332 static inline void __init i##op(u32 **buf, unsigned int a, \
333 unsigned int b, unsigned int c) \
335 build_insn(buf, insn##op, b, c, a); \
338 #define I_u1u2s3(op) \
339 static inline void __init i##op(u32 **buf, unsigned int a, \
340 unsigned int b, signed int c) \
342 build_insn(buf, insn##op, a, b, c); \
345 #define I_u2s3u1(op) \
346 static inline void __init i##op(u32 **buf, unsigned int a, \
347 signed int b, unsigned int c) \
349 build_insn(buf, insn##op, c, a, b); \
352 #define I_u2u1s3(op) \
353 static inline void __init i##op(u32 **buf, unsigned int a, \
354 unsigned int b, signed int c) \
356 build_insn(buf, insn##op, b, a, c); \
360 static inline void __init i##op(u32 **buf, unsigned int a, \
363 build_insn(buf, insn##op, a, b); \
367 static inline void __init i##op(u32 **buf, unsigned int a, \
370 build_insn(buf, insn##op, a, b); \
374 static inline void __init i##op(u32 **buf, unsigned int a) \
376 build_insn(buf, insn##op, a); \
380 static inline void __init i##op(u32 **buf) \
382 build_insn(buf, insn##op); \
451 label_smp_pgtable_change,
452 label_r3000_write_probe_fail,
460 static __init void build_label(struct label **lab, u32 *addr,
469 static inline void l##lb(struct label **lab, u32 *addr) \
471 build_label(lab, addr, label##lb); \
486 L_LA(_smp_pgtable_change)
487 L_LA(_r3000_write_probe_fail)
489 /* convenience macros for instructions */
491 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
492 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
493 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
494 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
495 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
496 # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
497 # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
498 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
499 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
500 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
501 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
502 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
504 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
505 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
506 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
507 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
508 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
509 # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
510 # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
511 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
512 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
513 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
514 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
515 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
518 #define i_b(buf, off) i_beq(buf, 0, 0, off)
519 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
520 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
521 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
522 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
523 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
524 #define i_nop(buf) i_sll(buf, 0, 0, 0)
525 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
526 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
529 static __init int __maybe_unused in_compat_space_p(long addr)
531 /* Is this address in 32bit compat space? */
532 return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
535 static __init int __maybe_unused rel_highest(long val)
537 return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
540 static __init int __maybe_unused rel_higher(long val)
542 return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
546 static __init int rel_hi(long val)
548 return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
551 static __init int rel_lo(long val)
553 return ((val & 0xffff) ^ 0x8000) - 0x8000;
556 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
559 if (!in_compat_space_p(addr)) {
560 i_lui(buf, rs, rel_highest(addr));
561 if (rel_higher(addr))
562 i_daddiu(buf, rs, rs, rel_higher(addr));
564 i_dsll(buf, rs, rs, 16);
565 i_daddiu(buf, rs, rs, rel_hi(addr));
566 i_dsll(buf, rs, rs, 16);
568 i_dsll32(buf, rs, rs, 0);
571 i_lui(buf, rs, rel_hi(addr));
574 static __init void __maybe_unused i_LA(u32 **buf, unsigned int rs,
577 i_LA_mostly(buf, rs, addr);
579 i_ADDIU(buf, rs, rs, rel_lo(addr));
592 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
596 (*rel)->type = R_MIPS_PC16;
601 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
603 long laddr = (long)lab->addr;
604 long raddr = (long)rel->addr;
608 *rel->addr |= build_bimm(laddr - (raddr + 4));
612 panic("Unsupported TLB synthesizer relocation %d",
617 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
621 for (; rel->lab != label_invalid; rel++)
622 for (l = lab; l->lab != label_invalid; l++)
623 if (rel->lab == l->lab)
624 __resolve_relocs(rel, l);
627 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
630 for (; rel->lab != label_invalid; rel++)
631 if (rel->addr >= first && rel->addr < end)
635 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
638 for (; lab->lab != label_invalid; lab++)
639 if (lab->addr >= first && lab->addr < end)
643 static __init void copy_handler(struct reloc *rel, struct label *lab,
644 u32 *first, u32 *end, u32 *target)
646 long off = (long)(target - first);
648 memcpy(target, first, (end - first) * sizeof(u32));
650 move_relocs(rel, first, end, off);
651 move_labels(lab, first, end, off);
654 static __init int __maybe_unused insn_has_bdelay(struct reloc *rel,
657 for (; rel->lab != label_invalid; rel++) {
658 if (rel->addr == addr
659 && (rel->type == R_MIPS_PC16
660 || rel->type == R_MIPS_26))
667 /* convenience functions for labeled branches */
668 static void __init __maybe_unused
669 il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
671 r_mips_pc16(r, *p, l);
675 static void __init __maybe_unused il_b(u32 **p, struct reloc **r,
678 r_mips_pc16(r, *p, l);
682 static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
685 r_mips_pc16(r, *p, l);
689 static void __init __maybe_unused
690 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
692 r_mips_pc16(r, *p, l);
696 static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
699 r_mips_pc16(r, *p, l);
703 static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
706 r_mips_pc16(r, *p, l);
710 static void __init __maybe_unused
711 il_bgez(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
713 r_mips_pc16(r, *p, l);
717 /* The only general purpose registers allowed in TLB handlers. */
721 /* Some CP0 registers */
722 #define C0_INDEX 0, 0
723 #define C0_ENTRYLO0 2, 0
724 #define C0_TCBIND 2, 2
725 #define C0_ENTRYLO1 3, 0
726 #define C0_CONTEXT 4, 0
727 #define C0_BADVADDR 8, 0
728 #define C0_ENTRYHI 10, 0
730 #define C0_XCONTEXT 20, 0
733 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
735 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
738 /* The worst case length of the handler is around 18 instructions for
739 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
740 * Maximum space available is 32 instructions for R3000 and 64
741 * instructions for R4000.
743 * We deliberately chose a buffer size of 128, so we won't scribble
744 * over anything important on overflow before we panic.
746 static __initdata u32 tlb_handler[128];
748 /* simply assume worst case size for labels and relocs */
749 static __initdata struct label labels[128];
750 static __initdata struct reloc relocs[128];
753 * The R3000 TLB handler is simple.
755 static void __init build_r3000_tlb_refill_handler(void)
757 long pgdc = (long)pgd_current;
761 memset(tlb_handler, 0, sizeof(tlb_handler));
764 i_mfc0(&p, K0, C0_BADVADDR);
765 i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
766 i_lw(&p, K1, rel_lo(pgdc), K1);
767 i_srl(&p, K0, K0, 22); /* load delay */
768 i_sll(&p, K0, K0, 2);
769 i_addu(&p, K1, K1, K0);
770 i_mfc0(&p, K0, C0_CONTEXT);
771 i_lw(&p, K1, 0, K1); /* cp0 delay */
772 i_andi(&p, K0, K0, 0xffc); /* load delay */
773 i_addu(&p, K1, K1, K0);
775 i_nop(&p); /* load delay */
776 i_mtc0(&p, K0, C0_ENTRYLO0);
777 i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
778 i_tlbwr(&p); /* cp0 delay */
780 i_rfe(&p); /* branch delay */
782 if (p > tlb_handler + 32)
783 panic("TLB refill handler space exceeded");
785 pr_info("Synthesized TLB refill handler (%u instructions).\n",
786 (unsigned int)(p - tlb_handler));
788 pr_debug("\t.set push\n");
789 pr_debug("\t.set noreorder\n");
790 for (i = 0; i < (p - tlb_handler); i++)
791 pr_debug("\t.word 0x%08x\n", tlb_handler[i]);
792 pr_debug("\t.set pop\n");
794 memcpy((void *)ebase, tlb_handler, 0x80);
798 * The R4000 TLB handler is much more complicated. We have two
799 * consecutive handler areas with 32 instructions space each.
800 * Since they aren't used at the same time, we can overflow in the
801 * other one.To keep things simple, we first assume linear space,
802 * then we relocate it to the final handler layout as needed.
804 static __initdata u32 final_handler[64];
809 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
810 * 2. A timing hazard exists for the TLBP instruction.
812 * stalling_instruction
815 * The JTLB is being read for the TLBP throughout the stall generated by the
816 * previous instruction. This is not really correct as the stalling instruction
817 * can modify the address used to access the JTLB. The failure symptom is that
818 * the TLBP instruction will use an address created for the stalling instruction
819 * and not the address held in C0_ENHI and thus report the wrong results.
821 * The software work-around is to not allow the instruction preceding the TLBP
822 * to stall - make it an NOP or some other instruction guaranteed not to stall.
824 * Errata 2 will not be fixed. This errata is also on the R5000.
826 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
828 static __init void __maybe_unused build_tlb_probe_entry(u32 **p)
830 switch (current_cpu_type()) {
831 /* Found by experiment: R4600 v2.0 needs this, too. */
847 * Write random or indexed TLB entry, and care about the hazards from
848 * the preceeding mtc0 and for the following eret.
850 enum tlb_write_entry { tlb_random, tlb_indexed };
852 static __init void build_tlb_write_entry(u32 **p, struct label **l,
854 enum tlb_write_entry wmode)
856 void(*tlbw)(u32 **) = NULL;
859 case tlb_random: tlbw = i_tlbwr; break;
860 case tlb_indexed: tlbw = i_tlbwi; break;
863 switch (current_cpu_type()) {
871 * This branch uses up a mtc0 hazard nop slot and saves
872 * two nops after the tlbw instruction.
874 il_bgezl(p, r, 0, label_tlbw_hazard);
876 l_tlbw_hazard(l, *p);
920 i_nop(p); /* QED specifies 2 nops hazard */
922 * This branch uses up a mtc0 hazard nop slot and saves
923 * a nop after the tlbw instruction.
925 il_bgezl(p, r, 0, label_tlbw_hazard);
927 l_tlbw_hazard(l, *p);
948 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
949 * use of the JTLB for instructions should not occur for 4
950 * cpu cycles and use for data translations should not occur
985 panic("No TLB refill handler yet (CPU type: %d)",
986 current_cpu_data.cputype);
993 * TMP and PTR are scratch.
994 * TMP will be clobbered, PTR will hold the pmd entry.
997 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
998 unsigned int tmp, unsigned int ptr)
1000 long pgdc = (long)pgd_current;
1003 * The vmalloc handling is not in the hotpath.
1005 i_dmfc0(p, tmp, C0_BADVADDR);
1007 il_bltz(p, r, tmp, label_module_alloc);
1009 il_bltz(p, r, tmp, label_vmalloc);
1011 /* No i_nop needed here, since the next insn doesn't touch TMP. */
1014 # ifdef CONFIG_MIPS_MT_SMTC
1016 * SMTC uses TCBind value as "CPU" index
1018 i_mfc0(p, ptr, C0_TCBIND);
1019 i_dsrl(p, ptr, ptr, 19);
1022 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
1023 * stored in CONTEXT.
1025 i_dmfc0(p, ptr, C0_CONTEXT);
1026 i_dsrl(p, ptr, ptr, 23);
1028 i_LA_mostly(p, tmp, pgdc);
1029 i_daddu(p, ptr, ptr, tmp);
1030 i_dmfc0(p, tmp, C0_BADVADDR);
1031 i_ld(p, ptr, rel_lo(pgdc), ptr);
1033 i_LA_mostly(p, ptr, pgdc);
1034 i_ld(p, ptr, rel_lo(pgdc), ptr);
1037 l_vmalloc_done(l, *p);
1039 if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */
1040 i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3);
1042 i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32);
1044 i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
1045 i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
1046 i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1047 i_ld(p, ptr, 0, ptr); /* get pmd pointer */
1048 i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
1049 i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
1050 i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
1054 * BVADDR is the faulting address, PTR is scratch.
1055 * PTR will hold the pgd for vmalloc.
1058 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
1059 unsigned int bvaddr, unsigned int ptr)
1061 long swpd = (long)swapper_pg_dir;
1064 long modd = (long)module_pg_dir;
1066 l_module_alloc(l, *p);
1069 * VMALLOC_START >= 0xc000000000000000UL
1070 * MODULE_START >= 0xe000000000000000UL
1072 i_SLL(p, ptr, bvaddr, 2);
1073 il_bgez(p, r, ptr, label_vmalloc);
1075 if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START)) {
1076 i_lui(p, ptr, rel_hi(MODULE_START)); /* delay slot */
1078 /* unlikely configuration */
1079 i_nop(p); /* delay slot */
1080 i_LA(p, ptr, MODULE_START);
1082 i_dsubu(p, bvaddr, bvaddr, ptr);
1084 if (in_compat_space_p(modd) && !rel_lo(modd)) {
1085 il_b(p, r, label_vmalloc_done);
1086 i_lui(p, ptr, rel_hi(modd));
1088 i_LA_mostly(p, ptr, modd);
1089 il_b(p, r, label_vmalloc_done);
1090 i_daddiu(p, ptr, ptr, rel_lo(modd));
1094 if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START) &&
1095 MODULE_START << 32 == VMALLOC_START)
1096 i_dsll32(p, ptr, ptr, 0); /* typical case */
1098 i_LA(p, ptr, VMALLOC_START);
1101 i_LA(p, ptr, VMALLOC_START);
1103 i_dsubu(p, bvaddr, bvaddr, ptr);
1105 if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1106 il_b(p, r, label_vmalloc_done);
1107 i_lui(p, ptr, rel_hi(swpd));
1109 i_LA_mostly(p, ptr, swpd);
1110 il_b(p, r, label_vmalloc_done);
1111 i_daddiu(p, ptr, ptr, rel_lo(swpd));
1115 #else /* !CONFIG_64BIT */
1118 * TMP and PTR are scratch.
1119 * TMP will be clobbered, PTR will hold the pgd entry.
1121 static __init void __maybe_unused
1122 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1124 long pgdc = (long)pgd_current;
1126 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1128 #ifdef CONFIG_MIPS_MT_SMTC
1130 * SMTC uses TCBind value as "CPU" index
1132 i_mfc0(p, ptr, C0_TCBIND);
1133 i_LA_mostly(p, tmp, pgdc);
1134 i_srl(p, ptr, ptr, 19);
1137 * smp_processor_id() << 3 is stored in CONTEXT.
1139 i_mfc0(p, ptr, C0_CONTEXT);
1140 i_LA_mostly(p, tmp, pgdc);
1141 i_srl(p, ptr, ptr, 23);
1143 i_addu(p, ptr, tmp, ptr);
1145 i_LA_mostly(p, ptr, pgdc);
1147 i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1148 i_lw(p, ptr, rel_lo(pgdc), ptr);
1149 i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1150 i_sll(p, tmp, tmp, PGD_T_LOG2);
1151 i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1154 #endif /* !CONFIG_64BIT */
1156 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1158 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
1159 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1161 switch (current_cpu_type()) {
1178 i_SRL(p, ctx, ctx, shift);
1179 i_andi(p, ctx, ctx, mask);
1182 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1185 * Bug workaround for the Nevada. It seems as if under certain
1186 * circumstances the move from cp0_context might produce a
1187 * bogus result when the mfc0 instruction and its consumer are
1188 * in a different cacheline or a load instruction, probably any
1189 * memory reference, is between them.
1191 switch (current_cpu_type()) {
1193 i_LW(p, ptr, 0, ptr);
1194 GET_CONTEXT(p, tmp); /* get context reg */
1198 GET_CONTEXT(p, tmp); /* get context reg */
1199 i_LW(p, ptr, 0, ptr);
1203 build_adjust_context(p, tmp);
1204 i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1207 static __init void build_update_entries(u32 **p, unsigned int tmp,
1211 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1212 * Kernel is a special case. Only a few CPUs use it.
1214 #ifdef CONFIG_64BIT_PHYS_ADDR
1215 if (cpu_has_64bits) {
1216 i_ld(p, tmp, 0, ptep); /* get even pte */
1217 i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1218 i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1219 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1220 i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1221 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1223 int pte_off_even = sizeof(pte_t) / 2;
1224 int pte_off_odd = pte_off_even + sizeof(pte_t);
1226 /* The pte entries are pre-shifted */
1227 i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1228 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1229 i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1230 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1233 i_LW(p, tmp, 0, ptep); /* get even pte */
1234 i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1235 if (r45k_bvahwbug())
1236 build_tlb_probe_entry(p);
1237 i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1238 if (r4k_250MHZhwbug())
1239 i_mtc0(p, 0, C0_ENTRYLO0);
1240 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1241 i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1242 if (r45k_bvahwbug())
1243 i_mfc0(p, tmp, C0_INDEX);
1244 if (r4k_250MHZhwbug())
1245 i_mtc0(p, 0, C0_ENTRYLO1);
1246 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1250 static void __init build_r4000_tlb_refill_handler(void)
1252 u32 *p = tlb_handler;
1253 struct label *l = labels;
1254 struct reloc *r = relocs;
1256 unsigned int final_len;
1259 memset(tlb_handler, 0, sizeof(tlb_handler));
1260 memset(labels, 0, sizeof(labels));
1261 memset(relocs, 0, sizeof(relocs));
1262 memset(final_handler, 0, sizeof(final_handler));
1265 * create the plain linear handler
1267 if (bcm1250_m3_war()) {
1268 i_MFC0(&p, K0, C0_BADVADDR);
1269 i_MFC0(&p, K1, C0_ENTRYHI);
1270 i_xor(&p, K0, K0, K1);
1271 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1272 il_bnez(&p, &r, K0, label_leave);
1273 /* No need for i_nop */
1277 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1279 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1282 build_get_ptep(&p, K0, K1);
1283 build_update_entries(&p, K0, K1);
1284 build_tlb_write_entry(&p, &l, &r, tlb_random);
1286 i_eret(&p); /* return from trap */
1289 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1293 * Overflow check: For the 64bit handler, we need at least one
1294 * free instruction slot for the wrap-around branch. In worst
1295 * case, if the intended insertion point is a delay slot, we
1296 * need three, with the second nop'ed and the third being
1299 /* Loongson2 ebase is different than r4k, we have more space */
1300 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1301 if ((p - tlb_handler) > 64)
1302 panic("TLB refill handler space exceeded");
1304 if (((p - tlb_handler) > 63)
1305 || (((p - tlb_handler) > 61)
1306 && insn_has_bdelay(relocs, tlb_handler + 29)))
1307 panic("TLB refill handler space exceeded");
1311 * Now fold the handler in the TLB refill handler space.
1313 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1315 /* Simplest case, just copy the handler. */
1316 copy_handler(relocs, labels, tlb_handler, p, f);
1317 final_len = p - tlb_handler;
1318 #else /* CONFIG_64BIT */
1319 f = final_handler + 32;
1320 if ((p - tlb_handler) <= 32) {
1321 /* Just copy the handler. */
1322 copy_handler(relocs, labels, tlb_handler, p, f);
1323 final_len = p - tlb_handler;
1325 u32 *split = tlb_handler + 30;
1328 * Find the split point.
1330 if (insn_has_bdelay(relocs, split - 1))
1333 /* Copy first part of the handler. */
1334 copy_handler(relocs, labels, tlb_handler, split, f);
1335 f += split - tlb_handler;
1337 /* Insert branch. */
1338 l_split(&l, final_handler);
1339 il_b(&f, &r, label_split);
1340 if (insn_has_bdelay(relocs, split))
1343 copy_handler(relocs, labels, split, split + 1, f);
1344 move_labels(labels, f, f + 1, -1);
1349 /* Copy the rest of the handler. */
1350 copy_handler(relocs, labels, split, p, final_handler);
1351 final_len = (f - (final_handler + 32)) + (p - split);
1353 #endif /* CONFIG_64BIT */
1355 resolve_relocs(relocs, labels);
1356 pr_info("Synthesized TLB refill handler (%u instructions).\n",
1360 #if defined(CONFIG_64BIT) && !defined(CONFIG_CPU_LOONGSON2)
1364 f = final_handler + 32;
1365 #endif /* CONFIG_64BIT */
1366 pr_debug("\t.set push\n");
1367 pr_debug("\t.set noreorder\n");
1368 for (i = 0; i < final_len; i++)
1369 pr_debug("\t.word 0x%08x\n", f[i]);
1370 pr_debug("\t.set pop\n");
1372 memcpy((void *)ebase, final_handler, 0x100);
1376 * TLB load/store/modify handlers.
1378 * Only the fastpath gets synthesized at runtime, the slowpath for
1379 * do_page_fault remains normal asm.
1381 extern void tlb_do_page_fault_0(void);
1382 extern void tlb_do_page_fault_1(void);
1384 #define __tlb_handler_align \
1385 __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1388 * 128 instructions for the fastpath handler is generous and should
1389 * never be exceeded.
1391 #define FASTPATH_SIZE 128
1393 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1394 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1395 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1398 iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
1401 # ifdef CONFIG_64BIT_PHYS_ADDR
1403 i_lld(p, pte, 0, ptr);
1406 i_LL(p, pte, 0, ptr);
1408 # ifdef CONFIG_64BIT_PHYS_ADDR
1410 i_ld(p, pte, 0, ptr);
1413 i_LW(p, pte, 0, ptr);
1418 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
1421 #ifdef CONFIG_64BIT_PHYS_ADDR
1422 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1425 i_ori(p, pte, pte, mode);
1427 # ifdef CONFIG_64BIT_PHYS_ADDR
1429 i_scd(p, pte, 0, ptr);
1432 i_SC(p, pte, 0, ptr);
1434 if (r10000_llsc_war())
1435 il_beqzl(p, r, pte, label_smp_pgtable_change);
1437 il_beqz(p, r, pte, label_smp_pgtable_change);
1439 # ifdef CONFIG_64BIT_PHYS_ADDR
1440 if (!cpu_has_64bits) {
1441 /* no i_nop needed */
1442 i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1443 i_ori(p, pte, pte, hwmode);
1444 i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1445 il_beqz(p, r, pte, label_smp_pgtable_change);
1446 /* no i_nop needed */
1447 i_lw(p, pte, 0, ptr);
1454 # ifdef CONFIG_64BIT_PHYS_ADDR
1456 i_sd(p, pte, 0, ptr);
1459 i_SW(p, pte, 0, ptr);
1461 # ifdef CONFIG_64BIT_PHYS_ADDR
1462 if (!cpu_has_64bits) {
1463 i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1464 i_ori(p, pte, pte, hwmode);
1465 i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1466 i_lw(p, pte, 0, ptr);
1473 * Check if PTE is present, if not then jump to LABEL. PTR points to
1474 * the page table where this PTE is located, PTE will be re-loaded
1475 * with it's original value.
1478 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1479 unsigned int pte, unsigned int ptr, enum label_id lid)
1481 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1482 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1483 il_bnez(p, r, pte, lid);
1484 iPTE_LW(p, l, pte, ptr);
1487 /* Make PTE valid, store result in PTR. */
1489 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1492 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1494 iPTE_SW(p, r, pte, ptr, mode);
1498 * Check if PTE can be written to, if not branch to LABEL. Regardless
1499 * restore PTE with value from PTR when done.
1502 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1503 unsigned int pte, unsigned int ptr, enum label_id lid)
1505 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1506 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1507 il_bnez(p, r, pte, lid);
1508 iPTE_LW(p, l, pte, ptr);
1511 /* Make PTE writable, update software status bits as well, then store
1515 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1518 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1521 iPTE_SW(p, r, pte, ptr, mode);
1525 * Check if PTE can be modified, if not branch to LABEL. Regardless
1526 * restore PTE with value from PTR when done.
1529 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1530 unsigned int pte, unsigned int ptr, enum label_id lid)
1532 i_andi(p, pte, pte, _PAGE_WRITE);
1533 il_beqz(p, r, pte, lid);
1534 iPTE_LW(p, l, pte, ptr);
1538 * R3000 style TLB load/store/modify handlers.
1542 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1546 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1548 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1549 i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1552 i_rfe(p); /* branch delay */
1556 * This places the pte into ENTRYLO0 and writes it with tlbwi
1557 * or tlbwr as appropriate. This is because the index register
1558 * may have the probe fail bit set as a result of a trap on a
1559 * kseg2 access, i.e. without refill. Then it returns.
1562 build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
1563 unsigned int pte, unsigned int tmp)
1565 i_mfc0(p, tmp, C0_INDEX);
1566 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1567 il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1568 i_mfc0(p, tmp, C0_EPC); /* branch delay */
1569 i_tlbwi(p); /* cp0 delay */
1571 i_rfe(p); /* branch delay */
1572 l_r3000_write_probe_fail(l, *p);
1573 i_tlbwr(p); /* cp0 delay */
1575 i_rfe(p); /* branch delay */
1579 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1582 long pgdc = (long)pgd_current;
1584 i_mfc0(p, pte, C0_BADVADDR);
1585 i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1586 i_lw(p, ptr, rel_lo(pgdc), ptr);
1587 i_srl(p, pte, pte, 22); /* load delay */
1588 i_sll(p, pte, pte, 2);
1589 i_addu(p, ptr, ptr, pte);
1590 i_mfc0(p, pte, C0_CONTEXT);
1591 i_lw(p, ptr, 0, ptr); /* cp0 delay */
1592 i_andi(p, pte, pte, 0xffc); /* load delay */
1593 i_addu(p, ptr, ptr, pte);
1594 i_lw(p, pte, 0, ptr);
1595 i_tlbp(p); /* load delay */
1598 static void __init build_r3000_tlb_load_handler(void)
1600 u32 *p = handle_tlbl;
1601 struct label *l = labels;
1602 struct reloc *r = relocs;
1605 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1606 memset(labels, 0, sizeof(labels));
1607 memset(relocs, 0, sizeof(relocs));
1609 build_r3000_tlbchange_handler_head(&p, K0, K1);
1610 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1611 i_nop(&p); /* load delay */
1612 build_make_valid(&p, &r, K0, K1);
1613 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1615 l_nopage_tlbl(&l, p);
1616 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1619 if ((p - handle_tlbl) > FASTPATH_SIZE)
1620 panic("TLB load handler fastpath space exceeded");
1622 resolve_relocs(relocs, labels);
1623 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1624 (unsigned int)(p - handle_tlbl));
1626 pr_debug("\t.set push\n");
1627 pr_debug("\t.set noreorder\n");
1628 for (i = 0; i < (p - handle_tlbl); i++)
1629 pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1630 pr_debug("\t.set pop\n");
1633 static void __init build_r3000_tlb_store_handler(void)
1635 u32 *p = handle_tlbs;
1636 struct label *l = labels;
1637 struct reloc *r = relocs;
1640 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1641 memset(labels, 0, sizeof(labels));
1642 memset(relocs, 0, sizeof(relocs));
1644 build_r3000_tlbchange_handler_head(&p, K0, K1);
1645 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1646 i_nop(&p); /* load delay */
1647 build_make_write(&p, &r, K0, K1);
1648 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1650 l_nopage_tlbs(&l, p);
1651 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1654 if ((p - handle_tlbs) > FASTPATH_SIZE)
1655 panic("TLB store handler fastpath space exceeded");
1657 resolve_relocs(relocs, labels);
1658 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1659 (unsigned int)(p - handle_tlbs));
1661 pr_debug("\t.set push\n");
1662 pr_debug("\t.set noreorder\n");
1663 for (i = 0; i < (p - handle_tlbs); i++)
1664 pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1665 pr_debug("\t.set pop\n");
1668 static void __init build_r3000_tlb_modify_handler(void)
1670 u32 *p = handle_tlbm;
1671 struct label *l = labels;
1672 struct reloc *r = relocs;
1675 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1676 memset(labels, 0, sizeof(labels));
1677 memset(relocs, 0, sizeof(relocs));
1679 build_r3000_tlbchange_handler_head(&p, K0, K1);
1680 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1681 i_nop(&p); /* load delay */
1682 build_make_write(&p, &r, K0, K1);
1683 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1685 l_nopage_tlbm(&l, p);
1686 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1689 if ((p - handle_tlbm) > FASTPATH_SIZE)
1690 panic("TLB modify handler fastpath space exceeded");
1692 resolve_relocs(relocs, labels);
1693 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1694 (unsigned int)(p - handle_tlbm));
1696 pr_debug("\t.set push\n");
1697 pr_debug("\t.set noreorder\n");
1698 for (i = 0; i < (p - handle_tlbm); i++)
1699 pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1700 pr_debug("\t.set pop\n");
1704 * R4000 style TLB load/store/modify handlers.
1707 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1708 struct reloc **r, unsigned int pte,
1712 build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1714 build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1717 i_MFC0(p, pte, C0_BADVADDR);
1718 i_LW(p, ptr, 0, ptr);
1719 i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1720 i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1721 i_ADDU(p, ptr, ptr, pte);
1724 l_smp_pgtable_change(l, *p);
1726 iPTE_LW(p, l, pte, ptr); /* get even pte */
1727 if (!m4kc_tlbp_war())
1728 build_tlb_probe_entry(p);
1732 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1733 struct reloc **r, unsigned int tmp,
1736 i_ori(p, ptr, ptr, sizeof(pte_t));
1737 i_xori(p, ptr, ptr, sizeof(pte_t));
1738 build_update_entries(p, tmp, ptr);
1739 build_tlb_write_entry(p, l, r, tlb_indexed);
1741 i_eret(p); /* return from trap */
1744 build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1748 static void __init build_r4000_tlb_load_handler(void)
1750 u32 *p = handle_tlbl;
1751 struct label *l = labels;
1752 struct reloc *r = relocs;
1755 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1756 memset(labels, 0, sizeof(labels));
1757 memset(relocs, 0, sizeof(relocs));
1759 if (bcm1250_m3_war()) {
1760 i_MFC0(&p, K0, C0_BADVADDR);
1761 i_MFC0(&p, K1, C0_ENTRYHI);
1762 i_xor(&p, K0, K0, K1);
1763 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1764 il_bnez(&p, &r, K0, label_leave);
1765 /* No need for i_nop */
1768 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1769 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1770 if (m4kc_tlbp_war())
1771 build_tlb_probe_entry(&p);
1772 build_make_valid(&p, &r, K0, K1);
1773 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1775 l_nopage_tlbl(&l, p);
1776 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1779 if ((p - handle_tlbl) > FASTPATH_SIZE)
1780 panic("TLB load handler fastpath space exceeded");
1782 resolve_relocs(relocs, labels);
1783 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1784 (unsigned int)(p - handle_tlbl));
1786 pr_debug("\t.set push\n");
1787 pr_debug("\t.set noreorder\n");
1788 for (i = 0; i < (p - handle_tlbl); i++)
1789 pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1790 pr_debug("\t.set pop\n");
1793 static void __init build_r4000_tlb_store_handler(void)
1795 u32 *p = handle_tlbs;
1796 struct label *l = labels;
1797 struct reloc *r = relocs;
1800 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1801 memset(labels, 0, sizeof(labels));
1802 memset(relocs, 0, sizeof(relocs));
1804 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1805 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1806 if (m4kc_tlbp_war())
1807 build_tlb_probe_entry(&p);
1808 build_make_write(&p, &r, K0, K1);
1809 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1811 l_nopage_tlbs(&l, p);
1812 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1815 if ((p - handle_tlbs) > FASTPATH_SIZE)
1816 panic("TLB store handler fastpath space exceeded");
1818 resolve_relocs(relocs, labels);
1819 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1820 (unsigned int)(p - handle_tlbs));
1822 pr_debug("\t.set push\n");
1823 pr_debug("\t.set noreorder\n");
1824 for (i = 0; i < (p - handle_tlbs); i++)
1825 pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1826 pr_debug("\t.set pop\n");
1829 static void __init build_r4000_tlb_modify_handler(void)
1831 u32 *p = handle_tlbm;
1832 struct label *l = labels;
1833 struct reloc *r = relocs;
1836 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1837 memset(labels, 0, sizeof(labels));
1838 memset(relocs, 0, sizeof(relocs));
1840 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1841 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1842 if (m4kc_tlbp_war())
1843 build_tlb_probe_entry(&p);
1844 /* Present and writable bits set, set accessed and dirty bits. */
1845 build_make_write(&p, &r, K0, K1);
1846 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1848 l_nopage_tlbm(&l, p);
1849 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1852 if ((p - handle_tlbm) > FASTPATH_SIZE)
1853 panic("TLB modify handler fastpath space exceeded");
1855 resolve_relocs(relocs, labels);
1856 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1857 (unsigned int)(p - handle_tlbm));
1859 pr_debug("\t.set push\n");
1860 pr_debug("\t.set noreorder\n");
1861 for (i = 0; i < (p - handle_tlbm); i++)
1862 pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1863 pr_debug("\t.set pop\n");
1866 void __init build_tlb_refill_handler(void)
1869 * The refill handler is generated per-CPU, multi-node systems
1870 * may have local storage for it. The other handlers are only
1873 static int run_once = 0;
1875 switch (current_cpu_type()) {
1883 build_r3000_tlb_refill_handler();
1885 build_r3000_tlb_load_handler();
1886 build_r3000_tlb_store_handler();
1887 build_r3000_tlb_modify_handler();
1894 panic("No R6000 TLB refill handler yet");
1898 panic("No R8000 TLB refill handler yet");
1902 build_r4000_tlb_refill_handler();
1904 build_r4000_tlb_load_handler();
1905 build_r4000_tlb_store_handler();
1906 build_r4000_tlb_modify_handler();
1912 void __init flush_tlb_handlers(void)
1914 flush_icache_range((unsigned long)handle_tlbl,
1915 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1916 flush_icache_range((unsigned long)handle_tlbs,
1917 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1918 flush_icache_range((unsigned long)handle_tlbm,
1919 (unsigned long)handle_tlbm + sizeof(handle_tlbm));