Merge git://git.linux-nfs.org/pub/linux/nfs-2.6
[linux-2.6] / arch / x86 / kernel / kprobes_64.c
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *              Probes initial implementation ( includes contributions from
22  *              Rusty Russell).
23  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *              interface to access function arguments.
25  * 2004-Oct     Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
26  *              <prasanna@in.ibm.com> adapted for x86_64
27  * 2005-Mar     Roland McGrath <roland@redhat.com>
28  *              Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May     Rusty Lynch <rusty.lynch@intel.com>
30  *              Added function return probes functionality
31  */
32
33 #include <linux/kprobes.h>
34 #include <linux/ptrace.h>
35 #include <linux/string.h>
36 #include <linux/slab.h>
37 #include <linux/preempt.h>
38 #include <linux/module.h>
39 #include <linux/kdebug.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/alternative.h>
44
45 void jprobe_return_end(void);
46 static void __kprobes arch_copy_kprobe(struct kprobe *p);
47
48 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
49 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
50
51 /*
52  * returns non-zero if opcode modifies the interrupt flag.
53  */
54 static __always_inline int is_IF_modifier(kprobe_opcode_t *insn)
55 {
56         switch (*insn) {
57         case 0xfa:              /* cli */
58         case 0xfb:              /* sti */
59         case 0xcf:              /* iret/iretd */
60         case 0x9d:              /* popf/popfd */
61                 return 1;
62         }
63
64         if (*insn  >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
65                 return 1;
66         return 0;
67 }
68
69 int __kprobes arch_prepare_kprobe(struct kprobe *p)
70 {
71         /* insn: must be on special executable page on x86_64. */
72         p->ainsn.insn = get_insn_slot();
73         if (!p->ainsn.insn) {
74                 return -ENOMEM;
75         }
76         arch_copy_kprobe(p);
77         return 0;
78 }
79
80 /*
81  * Determine if the instruction uses the %rip-relative addressing mode.
82  * If it does, return the address of the 32-bit displacement word.
83  * If not, return null.
84  */
85 static s32 __kprobes *is_riprel(u8 *insn)
86 {
87 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf)                \
88         (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
89           (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
90           (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
91           (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
92          << (row % 64))
93         static const u64 onebyte_has_modrm[256 / 64] = {
94                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
95                 /*      -------------------------------         */
96                 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
97                 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
98                 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
99                 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
100                 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
101                 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
102                 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
103                 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
104                 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
105                 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
106                 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
107                 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
108                 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
109                 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
110                 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
111                 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1)  /* f0 */
112                 /*      -------------------------------         */
113                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
114         };
115         static const u64 twobyte_has_modrm[256 / 64] = {
116                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
117                 /*      -------------------------------         */
118                 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
119                 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
120                 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
121                 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
122                 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
123                 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
124                 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
125                 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
126                 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
127                 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
128                 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
129                 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
130                 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
131                 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
132                 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
133                 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0)  /* ff */
134                 /*      -------------------------------         */
135                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
136         };
137 #undef  W
138         int need_modrm;
139
140         /* Skip legacy instruction prefixes.  */
141         while (1) {
142                 switch (*insn) {
143                 case 0x66:
144                 case 0x67:
145                 case 0x2e:
146                 case 0x3e:
147                 case 0x26:
148                 case 0x64:
149                 case 0x65:
150                 case 0x36:
151                 case 0xf0:
152                 case 0xf3:
153                 case 0xf2:
154                         ++insn;
155                         continue;
156                 }
157                 break;
158         }
159
160         /* Skip REX instruction prefix.  */
161         if ((*insn & 0xf0) == 0x40)
162                 ++insn;
163
164         if (*insn == 0x0f) {    /* Two-byte opcode.  */
165                 ++insn;
166                 need_modrm = test_bit(*insn, twobyte_has_modrm);
167         } else {                /* One-byte opcode.  */
168                 need_modrm = test_bit(*insn, onebyte_has_modrm);
169         }
170
171         if (need_modrm) {
172                 u8 modrm = *++insn;
173                 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
174                         /* Displacement follows ModRM byte.  */
175                         return (s32 *) ++insn;
176                 }
177         }
178
179         /* No %rip-relative addressing mode here.  */
180         return NULL;
181 }
182
183 static void __kprobes arch_copy_kprobe(struct kprobe *p)
184 {
185         s32 *ripdisp;
186         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
187         ripdisp = is_riprel(p->ainsn.insn);
188         if (ripdisp) {
189                 /*
190                  * The copied instruction uses the %rip-relative
191                  * addressing mode.  Adjust the displacement for the
192                  * difference between the original location of this
193                  * instruction and the location of the copy that will
194                  * actually be run.  The tricky bit here is making sure
195                  * that the sign extension happens correctly in this
196                  * calculation, since we need a signed 32-bit result to
197                  * be sign-extended to 64 bits when it's added to the
198                  * %rip value and yield the same 64-bit result that the
199                  * sign-extension of the original signed 32-bit
200                  * displacement would have given.
201                  */
202                 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
203                 BUG_ON((s64) (s32) disp != disp); /* Sanity check.  */
204                 *ripdisp = disp;
205         }
206         p->opcode = *p->addr;
207 }
208
209 void __kprobes arch_arm_kprobe(struct kprobe *p)
210 {
211         text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
212 }
213
214 void __kprobes arch_disarm_kprobe(struct kprobe *p)
215 {
216         text_poke(p->addr, &p->opcode, 1);
217 }
218
219 void __kprobes arch_remove_kprobe(struct kprobe *p)
220 {
221         mutex_lock(&kprobe_mutex);
222         free_insn_slot(p->ainsn.insn, 0);
223         mutex_unlock(&kprobe_mutex);
224 }
225
226 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
227 {
228         kcb->prev_kprobe.kp = kprobe_running();
229         kcb->prev_kprobe.status = kcb->kprobe_status;
230         kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
231         kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
232 }
233
234 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
235 {
236         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
237         kcb->kprobe_status = kcb->prev_kprobe.status;
238         kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
239         kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
240 }
241
242 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
243                                 struct kprobe_ctlblk *kcb)
244 {
245         __get_cpu_var(current_kprobe) = p;
246         kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
247                 = (regs->eflags & (TF_MASK | IF_MASK));
248         if (is_IF_modifier(p->ainsn.insn))
249                 kcb->kprobe_saved_rflags &= ~IF_MASK;
250 }
251
252 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
253 {
254         regs->eflags |= TF_MASK;
255         regs->eflags &= ~IF_MASK;
256         /*single step inline if the instruction is an int3*/
257         if (p->opcode == BREAKPOINT_INSTRUCTION)
258                 regs->rip = (unsigned long)p->addr;
259         else
260                 regs->rip = (unsigned long)p->ainsn.insn;
261 }
262
263 /* Called with kretprobe_lock held */
264 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
265                                       struct pt_regs *regs)
266 {
267         unsigned long *sara = (unsigned long *)regs->rsp;
268
269         ri->ret_addr = (kprobe_opcode_t *) *sara;
270         /* Replace the return addr with trampoline addr */
271         *sara = (unsigned long) &kretprobe_trampoline;
272 }
273
274 int __kprobes kprobe_handler(struct pt_regs *regs)
275 {
276         struct kprobe *p;
277         int ret = 0;
278         kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
279         struct kprobe_ctlblk *kcb;
280
281         /*
282          * We don't want to be preempted for the entire
283          * duration of kprobe processing
284          */
285         preempt_disable();
286         kcb = get_kprobe_ctlblk();
287
288         /* Check we're not actually recursing */
289         if (kprobe_running()) {
290                 p = get_kprobe(addr);
291                 if (p) {
292                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
293                                 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
294                                 regs->eflags &= ~TF_MASK;
295                                 regs->eflags |= kcb->kprobe_saved_rflags;
296                                 goto no_kprobe;
297                         } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
298                                 /* TODO: Provide re-entrancy from
299                                  * post_kprobes_handler() and avoid exception
300                                  * stack corruption while single-stepping on
301                                  * the instruction of the new probe.
302                                  */
303                                 arch_disarm_kprobe(p);
304                                 regs->rip = (unsigned long)p->addr;
305                                 reset_current_kprobe();
306                                 ret = 1;
307                         } else {
308                                 /* We have reentered the kprobe_handler(), since
309                                  * another probe was hit while within the
310                                  * handler. We here save the original kprobe
311                                  * variables and just single step on instruction
312                                  * of the new probe without calling any user
313                                  * handlers.
314                                  */
315                                 save_previous_kprobe(kcb);
316                                 set_current_kprobe(p, regs, kcb);
317                                 kprobes_inc_nmissed_count(p);
318                                 prepare_singlestep(p, regs);
319                                 kcb->kprobe_status = KPROBE_REENTER;
320                                 return 1;
321                         }
322                 } else {
323                         if (*addr != BREAKPOINT_INSTRUCTION) {
324                         /* The breakpoint instruction was removed by
325                          * another cpu right after we hit, no further
326                          * handling of this interrupt is appropriate
327                          */
328                                 regs->rip = (unsigned long)addr;
329                                 ret = 1;
330                                 goto no_kprobe;
331                         }
332                         p = __get_cpu_var(current_kprobe);
333                         if (p->break_handler && p->break_handler(p, regs)) {
334                                 goto ss_probe;
335                         }
336                 }
337                 goto no_kprobe;
338         }
339
340         p = get_kprobe(addr);
341         if (!p) {
342                 if (*addr != BREAKPOINT_INSTRUCTION) {
343                         /*
344                          * The breakpoint instruction was removed right
345                          * after we hit it.  Another cpu has removed
346                          * either a probepoint or a debugger breakpoint
347                          * at this address.  In either case, no further
348                          * handling of this interrupt is appropriate.
349                          * Back up over the (now missing) int3 and run
350                          * the original instruction.
351                          */
352                         regs->rip = (unsigned long)addr;
353                         ret = 1;
354                 }
355                 /* Not one of ours: let kernel handle it */
356                 goto no_kprobe;
357         }
358
359         set_current_kprobe(p, regs, kcb);
360         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
361
362         if (p->pre_handler && p->pre_handler(p, regs))
363                 /* handler has already set things up, so skip ss setup */
364                 return 1;
365
366 ss_probe:
367         prepare_singlestep(p, regs);
368         kcb->kprobe_status = KPROBE_HIT_SS;
369         return 1;
370
371 no_kprobe:
372         preempt_enable_no_resched();
373         return ret;
374 }
375
376 /*
377  * For function-return probes, init_kprobes() establishes a probepoint
378  * here. When a retprobed function returns, this probe is hit and
379  * trampoline_probe_handler() runs, calling the kretprobe's handler.
380  */
381  void kretprobe_trampoline_holder(void)
382  {
383         asm volatile (  ".global kretprobe_trampoline\n"
384                         "kretprobe_trampoline: \n"
385                         "nop\n");
386  }
387
388 /*
389  * Called when we hit the probe point at kretprobe_trampoline
390  */
391 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
392 {
393         struct kretprobe_instance *ri = NULL;
394         struct hlist_head *head, empty_rp;
395         struct hlist_node *node, *tmp;
396         unsigned long flags, orig_ret_address = 0;
397         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
398
399         INIT_HLIST_HEAD(&empty_rp);
400         spin_lock_irqsave(&kretprobe_lock, flags);
401         head = kretprobe_inst_table_head(current);
402
403         /*
404          * It is possible to have multiple instances associated with a given
405          * task either because an multiple functions in the call path
406          * have a return probe installed on them, and/or more then one return
407          * return probe was registered for a target function.
408          *
409          * We can handle this because:
410          *     - instances are always inserted at the head of the list
411          *     - when multiple return probes are registered for the same
412          *       function, the first instance's ret_addr will point to the
413          *       real return address, and all the rest will point to
414          *       kretprobe_trampoline
415          */
416         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
417                 if (ri->task != current)
418                         /* another task is sharing our hash bucket */
419                         continue;
420
421                 if (ri->rp && ri->rp->handler)
422                         ri->rp->handler(ri, regs);
423
424                 orig_ret_address = (unsigned long)ri->ret_addr;
425                 recycle_rp_inst(ri, &empty_rp);
426
427                 if (orig_ret_address != trampoline_address)
428                         /*
429                          * This is the real return address. Any other
430                          * instances associated with this task are for
431                          * other calls deeper on the call stack
432                          */
433                         break;
434         }
435
436         kretprobe_assert(ri, orig_ret_address, trampoline_address);
437         regs->rip = orig_ret_address;
438
439         reset_current_kprobe();
440         spin_unlock_irqrestore(&kretprobe_lock, flags);
441         preempt_enable_no_resched();
442
443         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
444                 hlist_del(&ri->hlist);
445                 kfree(ri);
446         }
447         /*
448          * By returning a non-zero value, we are telling
449          * kprobe_handler() that we don't want the post_handler
450          * to run (and have re-enabled preemption)
451          */
452         return 1;
453 }
454
455 /*
456  * Called after single-stepping.  p->addr is the address of the
457  * instruction whose first byte has been replaced by the "int 3"
458  * instruction.  To avoid the SMP problems that can occur when we
459  * temporarily put back the original opcode to single-step, we
460  * single-stepped a copy of the instruction.  The address of this
461  * copy is p->ainsn.insn.
462  *
463  * This function prepares to return from the post-single-step
464  * interrupt.  We have to fix up the stack as follows:
465  *
466  * 0) Except in the case of absolute or indirect jump or call instructions,
467  * the new rip is relative to the copied instruction.  We need to make
468  * it relative to the original instruction.
469  *
470  * 1) If the single-stepped instruction was pushfl, then the TF and IF
471  * flags are set in the just-pushed eflags, and may need to be cleared.
472  *
473  * 2) If the single-stepped instruction was a call, the return address
474  * that is atop the stack is the address following the copied instruction.
475  * We need to make it the address following the original instruction.
476  */
477 static void __kprobes resume_execution(struct kprobe *p,
478                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
479 {
480         unsigned long *tos = (unsigned long *)regs->rsp;
481         unsigned long next_rip = 0;
482         unsigned long copy_rip = (unsigned long)p->ainsn.insn;
483         unsigned long orig_rip = (unsigned long)p->addr;
484         kprobe_opcode_t *insn = p->ainsn.insn;
485
486         /*skip the REX prefix*/
487         if (*insn >= 0x40 && *insn <= 0x4f)
488                 insn++;
489
490         switch (*insn) {
491         case 0x9c:              /* pushfl */
492                 *tos &= ~(TF_MASK | IF_MASK);
493                 *tos |= kcb->kprobe_old_rflags;
494                 break;
495         case 0xc3:              /* ret/lret */
496         case 0xcb:
497         case 0xc2:
498         case 0xca:
499                 regs->eflags &= ~TF_MASK;
500                 /* rip is already adjusted, no more changes required*/
501                 return;
502         case 0xe8:              /* call relative - Fix return addr */
503                 *tos = orig_rip + (*tos - copy_rip);
504                 break;
505         case 0xff:
506                 if ((insn[1] & 0x30) == 0x10) {
507                         /* call absolute, indirect */
508                         /* Fix return addr; rip is correct. */
509                         next_rip = regs->rip;
510                         *tos = orig_rip + (*tos - copy_rip);
511                 } else if (((insn[1] & 0x31) == 0x20) ||        /* jmp near, absolute indirect */
512                            ((insn[1] & 0x31) == 0x21)) {        /* jmp far, absolute indirect */
513                         /* rip is correct. */
514                         next_rip = regs->rip;
515                 }
516                 break;
517         case 0xea:              /* jmp absolute -- rip is correct */
518                 next_rip = regs->rip;
519                 break;
520         default:
521                 break;
522         }
523
524         regs->eflags &= ~TF_MASK;
525         if (next_rip) {
526                 regs->rip = next_rip;
527         } else {
528                 regs->rip = orig_rip + (regs->rip - copy_rip);
529         }
530 }
531
532 int __kprobes post_kprobe_handler(struct pt_regs *regs)
533 {
534         struct kprobe *cur = kprobe_running();
535         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536
537         if (!cur)
538                 return 0;
539
540         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
541                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
542                 cur->post_handler(cur, regs, 0);
543         }
544
545         resume_execution(cur, regs, kcb);
546         regs->eflags |= kcb->kprobe_saved_rflags;
547 #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT
548         if (raw_irqs_disabled_flags(regs->eflags))
549                 trace_hardirqs_off();
550         else
551                 trace_hardirqs_on();
552 #endif
553
554         /* Restore the original saved kprobes variables and continue. */
555         if (kcb->kprobe_status == KPROBE_REENTER) {
556                 restore_previous_kprobe(kcb);
557                 goto out;
558         }
559         reset_current_kprobe();
560 out:
561         preempt_enable_no_resched();
562
563         /*
564          * if somebody else is singlestepping across a probe point, eflags
565          * will have TF set, in which case, continue the remaining processing
566          * of do_debug, as if this is not a probe hit.
567          */
568         if (regs->eflags & TF_MASK)
569                 return 0;
570
571         return 1;
572 }
573
574 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
575 {
576         struct kprobe *cur = kprobe_running();
577         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
578         const struct exception_table_entry *fixup;
579
580         switch(kcb->kprobe_status) {
581         case KPROBE_HIT_SS:
582         case KPROBE_REENTER:
583                 /*
584                  * We are here because the instruction being single
585                  * stepped caused a page fault. We reset the current
586                  * kprobe and the rip points back to the probe address
587                  * and allow the page fault handler to continue as a
588                  * normal page fault.
589                  */
590                 regs->rip = (unsigned long)cur->addr;
591                 regs->eflags |= kcb->kprobe_old_rflags;
592                 if (kcb->kprobe_status == KPROBE_REENTER)
593                         restore_previous_kprobe(kcb);
594                 else
595                         reset_current_kprobe();
596                 preempt_enable_no_resched();
597                 break;
598         case KPROBE_HIT_ACTIVE:
599         case KPROBE_HIT_SSDONE:
600                 /*
601                  * We increment the nmissed count for accounting,
602                  * we can also use npre/npostfault count for accouting
603                  * these specific fault cases.
604                  */
605                 kprobes_inc_nmissed_count(cur);
606
607                 /*
608                  * We come here because instructions in the pre/post
609                  * handler caused the page_fault, this could happen
610                  * if handler tries to access user space by
611                  * copy_from_user(), get_user() etc. Let the
612                  * user-specified handler try to fix it first.
613                  */
614                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
615                         return 1;
616
617                 /*
618                  * In case the user-specified fault handler returned
619                  * zero, try to fix up.
620                  */
621                 fixup = search_exception_tables(regs->rip);
622                 if (fixup) {
623                         regs->rip = fixup->fixup;
624                         return 1;
625                 }
626
627                 /*
628                  * fixup() could not handle it,
629                  * Let do_page_fault() fix it.
630                  */
631                 break;
632         default:
633                 break;
634         }
635         return 0;
636 }
637
638 /*
639  * Wrapper routine for handling exceptions.
640  */
641 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
642                                        unsigned long val, void *data)
643 {
644         struct die_args *args = (struct die_args *)data;
645         int ret = NOTIFY_DONE;
646
647         if (args->regs && user_mode(args->regs))
648                 return ret;
649
650         switch (val) {
651         case DIE_INT3:
652                 if (kprobe_handler(args->regs))
653                         ret = NOTIFY_STOP;
654                 break;
655         case DIE_DEBUG:
656                 if (post_kprobe_handler(args->regs))
657                         ret = NOTIFY_STOP;
658                 break;
659         case DIE_GPF:
660         case DIE_PAGE_FAULT:
661                 /* kprobe_running() needs smp_processor_id() */
662                 preempt_disable();
663                 if (kprobe_running() &&
664                     kprobe_fault_handler(args->regs, args->trapnr))
665                         ret = NOTIFY_STOP;
666                 preempt_enable();
667                 break;
668         default:
669                 break;
670         }
671         return ret;
672 }
673
674 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
675 {
676         struct jprobe *jp = container_of(p, struct jprobe, kp);
677         unsigned long addr;
678         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
679
680         kcb->jprobe_saved_regs = *regs;
681         kcb->jprobe_saved_rsp = (long *) regs->rsp;
682         addr = (unsigned long)(kcb->jprobe_saved_rsp);
683         /*
684          * As Linus pointed out, gcc assumes that the callee
685          * owns the argument space and could overwrite it, e.g.
686          * tailcall optimization. So, to be absolutely safe
687          * we also save and restore enough stack bytes to cover
688          * the argument area.
689          */
690         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
691                         MIN_STACK_SIZE(addr));
692         regs->eflags &= ~IF_MASK;
693         trace_hardirqs_off();
694         regs->rip = (unsigned long)(jp->entry);
695         return 1;
696 }
697
698 void __kprobes jprobe_return(void)
699 {
700         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
701
702         asm volatile ("       xchg   %%rbx,%%rsp     \n"
703                       "       int3                      \n"
704                       "       .globl jprobe_return_end  \n"
705                       "       jprobe_return_end:        \n"
706                       "       nop                       \n"::"b"
707                       (kcb->jprobe_saved_rsp):"memory");
708 }
709
710 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
711 {
712         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
713         u8 *addr = (u8 *) (regs->rip - 1);
714         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
715         struct jprobe *jp = container_of(p, struct jprobe, kp);
716
717         if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
718                 if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
719                         struct pt_regs *saved_regs =
720                             container_of(kcb->jprobe_saved_rsp,
721                                             struct pt_regs, rsp);
722                         printk("current rsp %p does not match saved rsp %p\n",
723                                (long *)regs->rsp, kcb->jprobe_saved_rsp);
724                         printk("Saved registers for jprobe %p\n", jp);
725                         show_registers(saved_regs);
726                         printk("Current registers\n");
727                         show_registers(regs);
728                         BUG();
729                 }
730                 *regs = kcb->jprobe_saved_regs;
731                 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
732                        MIN_STACK_SIZE(stack_addr));
733                 preempt_enable_no_resched();
734                 return 1;
735         }
736         return 0;
737 }
738
739 static struct kprobe trampoline_p = {
740         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
741         .pre_handler = trampoline_probe_handler
742 };
743
744 int __init arch_init_kprobes(void)
745 {
746         return register_kprobe(&trampoline_p);
747 }
748
749 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
750 {
751         if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
752                 return 1;
753
754         return 0;
755 }