2 * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 * This driver intends to support RFC 2734, which describes a method for
27 * transporting IPv4 datagrams over IEEE-1394 serial busses.
31 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33 * Non-RFC 2734 related:
34 * - Handle fragmented skb's coming from the networking layer.
35 * - Move generic GASP reception to core 1394 code
36 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37 * - Stability improvements
38 * - Performance enhancements
39 * - Consider garbage collecting old partial datagrams after X amount of time
42 #include <linux/module.h>
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
67 #include "config_roms.h"
70 #include "highlevel.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80 printk(level "%s: " fmt, driver_name, ## args)
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
85 struct fragment_info {
86 struct list_head list;
91 struct partial_datagram {
92 struct list_head list;
98 struct list_head frag_info;
102 struct list_head list; /* partial datagram list per node */
103 unsigned int sz; /* partial datagram list size per node */
104 spinlock_t lock; /* partial datagram lock */
107 struct eth1394_host_info {
108 struct hpsb_host *host;
109 struct net_device *dev;
112 struct eth1394_node_ref {
113 struct unit_directory *ud;
114 struct list_head list;
117 struct eth1394_node_info {
118 u16 maxpayload; /* max payload */
119 u8 sspd; /* max speed */
120 u64 fifo; /* FIFO address */
121 struct pdg_list pdg; /* partial RX datagram lists */
122 int dgl; /* outgoing datagram label */
125 static const char driver_name[] = "eth1394";
127 static struct kmem_cache *packet_task_cache;
129 static struct hpsb_highlevel eth1394_highlevel;
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133 sizeof(struct eth1394_uf_hdr),
134 sizeof(struct eth1394_ff_hdr),
135 sizeof(struct eth1394_sf_hdr),
136 sizeof(struct eth1394_sf_hdr)
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /* S100, S200, S400, S800, S1600, S3200 */
141 512, 1024, 2048, 4096, 4096, 4096
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
149 * The max_partial_datagrams parameter is the maximum number of fragmented
150 * datagrams per node that eth1394 will keep in memory. Providing an upper
151 * bound allows us to limit the amount of memory that partial datagrams
152 * consume in the event that some partial datagrams are never completed.
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157 "Maximum number of partially received fragmented datagrams "
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162 unsigned short type, const void *daddr,
163 const void *saddr, unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(const struct sk_buff *skb,
166 unsigned char *haddr);
167 static int ether1394_header_cache(const struct neighbour *neigh,
168 struct hh_cache *hh);
169 static void ether1394_header_cache_update(struct hh_cache *hh,
170 const struct net_device *dev,
171 const unsigned char *haddr);
172 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
173 static void ether1394_iso(struct hpsb_iso *iso);
175 static struct ethtool_ops ethtool_ops;
177 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
178 quadlet_t *data, u64 addr, size_t len, u16 flags);
179 static void ether1394_add_host(struct hpsb_host *host);
180 static void ether1394_remove_host(struct hpsb_host *host);
181 static void ether1394_host_reset(struct hpsb_host *host);
183 /* Function for incoming 1394 packets */
184 static struct hpsb_address_ops addr_ops = {
185 .write = ether1394_write,
188 /* Ieee1394 highlevel driver functions */
189 static struct hpsb_highlevel eth1394_highlevel = {
191 .add_host = ether1394_add_host,
192 .remove_host = ether1394_remove_host,
193 .host_reset = ether1394_host_reset,
196 static int ether1394_recv_init(struct eth1394_priv *priv)
198 unsigned int iso_buf_size;
200 /* FIXME: rawiso limits us to PAGE_SIZE */
201 iso_buf_size = min((unsigned int)PAGE_SIZE,
202 2 * (1U << (priv->host->csr.max_rec + 1)));
204 priv->iso = hpsb_iso_recv_init(priv->host,
205 ETHER1394_GASP_BUFFERS * iso_buf_size,
206 ETHER1394_GASP_BUFFERS,
207 priv->broadcast_channel,
208 HPSB_ISO_DMA_PACKET_PER_BUFFER,
210 if (priv->iso == NULL) {
211 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
212 priv->bc_state = ETHER1394_BC_ERROR;
216 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
217 priv->bc_state = ETHER1394_BC_STOPPED;
219 priv->bc_state = ETHER1394_BC_RUNNING;
223 /* This is called after an "ifup" */
224 static int ether1394_open(struct net_device *dev)
226 struct eth1394_priv *priv = netdev_priv(dev);
229 if (priv->bc_state == ETHER1394_BC_ERROR) {
230 ret = ether1394_recv_init(priv);
234 netif_start_queue(dev);
238 /* This is called after an "ifdown" */
239 static int ether1394_stop(struct net_device *dev)
241 /* flush priv->wake */
242 flush_scheduled_work();
244 netif_stop_queue(dev);
248 /* Return statistics to the caller */
249 static struct net_device_stats *ether1394_stats(struct net_device *dev)
251 return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
254 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
255 * so that's what we do. Should we increment the stat counters too? */
256 static void ether1394_tx_timeout(struct net_device *dev)
258 struct hpsb_host *host =
259 ((struct eth1394_priv *)netdev_priv(dev))->host;
261 ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
262 ether1394_host_reset(host);
265 static inline int ether1394_max_mtu(struct hpsb_host* host)
267 return (1 << (host->csr.max_rec + 1))
268 - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
271 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
278 max_mtu = ether1394_max_mtu(
279 ((struct eth1394_priv *)netdev_priv(dev))->host);
280 if (new_mtu > max_mtu) {
281 ETH1394_PRINT(KERN_INFO, dev->name,
282 "Local node constrains MTU to %d\n", max_mtu);
290 static void purge_partial_datagram(struct list_head *old)
292 struct partial_datagram *pd;
293 struct list_head *lh, *n;
294 struct fragment_info *fi;
296 pd = list_entry(old, struct partial_datagram, list);
298 list_for_each_safe(lh, n, &pd->frag_info) {
299 fi = list_entry(lh, struct fragment_info, list);
308 /******************************************
309 * 1394 bus activity functions
310 ******************************************/
312 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
313 struct unit_directory *ud)
315 struct eth1394_node_ref *node;
317 list_for_each_entry(node, inl, list)
324 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
327 struct eth1394_node_ref *node;
329 list_for_each_entry(node, inl, list)
330 if (node->ud->ne->guid == guid)
336 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
339 struct eth1394_node_ref *node;
341 list_for_each_entry(node, inl, list)
342 if (node->ud->ne->nodeid == nodeid)
348 static int eth1394_new_node(struct eth1394_host_info *hi,
349 struct unit_directory *ud)
351 struct eth1394_priv *priv;
352 struct eth1394_node_ref *new_node;
353 struct eth1394_node_info *node_info;
355 new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
359 node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
365 spin_lock_init(&node_info->pdg.lock);
366 INIT_LIST_HEAD(&node_info->pdg.list);
367 node_info->pdg.sz = 0;
368 node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
370 ud->device.driver_data = node_info;
373 priv = netdev_priv(hi->dev);
374 list_add_tail(&new_node->list, &priv->ip_node_list);
378 static int eth1394_probe(struct device *dev)
380 struct unit_directory *ud;
381 struct eth1394_host_info *hi;
383 ud = container_of(dev, struct unit_directory, device);
384 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
388 return eth1394_new_node(hi, ud);
391 static int eth1394_remove(struct device *dev)
393 struct unit_directory *ud;
394 struct eth1394_host_info *hi;
395 struct eth1394_priv *priv;
396 struct eth1394_node_ref *old_node;
397 struct eth1394_node_info *node_info;
398 struct list_head *lh, *n;
401 ud = container_of(dev, struct unit_directory, device);
402 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
406 priv = netdev_priv(hi->dev);
408 old_node = eth1394_find_node(&priv->ip_node_list, ud);
412 list_del(&old_node->list);
415 node_info = (struct eth1394_node_info*)ud->device.driver_data;
417 spin_lock_irqsave(&node_info->pdg.lock, flags);
418 /* The partial datagram list should be empty, but we'll just
419 * make sure anyway... */
420 list_for_each_safe(lh, n, &node_info->pdg.list)
421 purge_partial_datagram(lh);
422 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
425 ud->device.driver_data = NULL;
429 static int eth1394_update(struct unit_directory *ud)
431 struct eth1394_host_info *hi;
432 struct eth1394_priv *priv;
433 struct eth1394_node_ref *node;
435 hi = hpsb_get_hostinfo(ð1394_highlevel, ud->ne->host);
439 priv = netdev_priv(hi->dev);
440 node = eth1394_find_node(&priv->ip_node_list, ud);
444 return eth1394_new_node(hi, ud);
447 static struct ieee1394_device_id eth1394_id_table[] = {
449 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
450 IEEE1394_MATCH_VERSION),
451 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
452 .version = ETHER1394_GASP_VERSION,
457 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
459 static struct hpsb_protocol_driver eth1394_proto_driver = {
461 .id_table = eth1394_id_table,
462 .update = eth1394_update,
464 .probe = eth1394_probe,
465 .remove = eth1394_remove,
469 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
473 struct eth1394_priv *priv = netdev_priv(dev);
474 struct hpsb_host *host = priv->host;
475 u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
476 int max_speed = IEEE1394_SPEED_MAX;
478 spin_lock_irqsave(&priv->lock, flags);
480 memset(priv->ud_list, 0, sizeof(priv->ud_list));
481 priv->bc_maxpayload = 512;
483 /* Determine speed limit */
484 /* FIXME: This is broken for nodes with link speed < PHY speed,
485 * and it is suboptimal for S200B...S800B hardware.
486 * The result of nodemgr's speed probe should be used somehow. */
487 for (i = 0; i < host->node_count; i++) {
488 /* take care of S100B...S400B PHY ports */
489 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
490 max_speed = IEEE1394_SPEED_100;
493 if (max_speed > host->speed[i])
494 max_speed = host->speed[i];
496 priv->bc_sspd = max_speed;
499 /* Use the RFC 2734 default 1500 octets or the maximum payload
501 dev->mtu = min(1500, ether1394_max_mtu(host));
503 /* Set our hardware address while we're at it */
504 memcpy(dev->dev_addr, &guid, sizeof(u64));
505 memset(dev->broadcast, 0xff, sizeof(u64));
508 spin_unlock_irqrestore(&priv->lock, flags);
511 static const struct header_ops ether1394_header_ops = {
512 .create = ether1394_header,
513 .rebuild = ether1394_rebuild_header,
514 .cache = ether1394_header_cache,
515 .cache_update = ether1394_header_cache_update,
516 .parse = ether1394_header_parse,
519 static void ether1394_init_dev(struct net_device *dev)
521 dev->open = ether1394_open;
522 dev->stop = ether1394_stop;
523 dev->hard_start_xmit = ether1394_tx;
524 dev->get_stats = ether1394_stats;
525 dev->tx_timeout = ether1394_tx_timeout;
526 dev->change_mtu = ether1394_change_mtu;
528 dev->header_ops = ðer1394_header_ops;
530 SET_ETHTOOL_OPS(dev, ðtool_ops);
532 dev->watchdog_timeo = ETHER1394_TIMEOUT;
533 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
534 dev->features = NETIF_F_HIGHDMA;
535 dev->addr_len = ETH1394_ALEN;
536 dev->hard_header_len = ETH1394_HLEN;
537 dev->type = ARPHRD_IEEE1394;
539 /* FIXME: This value was copied from ether_setup(). Is it too much? */
540 dev->tx_queue_len = 1000;
544 * Wake the queue up after commonly encountered transmit failure conditions are
545 * hopefully over. Currently only tlabel exhaustion is accounted for.
547 static void ether1394_wake_queue(struct work_struct *work)
549 struct eth1394_priv *priv;
550 struct hpsb_packet *packet;
552 priv = container_of(work, struct eth1394_priv, wake);
553 packet = hpsb_alloc_packet(0);
555 /* This is really bad, but unjam the queue anyway. */
559 packet->host = priv->host;
560 packet->node_id = priv->wake_node;
562 * A transaction label is all we really want. If we get one, it almost
563 * always means we can get a lot more because the ieee1394 core recycled
564 * a whole batch of tlabels, at last.
566 if (hpsb_get_tlabel(packet) == 0)
567 hpsb_free_tlabel(packet);
569 hpsb_free_packet(packet);
571 netif_wake_queue(priv->wake_dev);
575 * This function is called every time a card is found. It is generally called
576 * when the module is installed. This is where we add all of our ethernet
577 * devices. One for each host.
579 static void ether1394_add_host(struct hpsb_host *host)
581 struct eth1394_host_info *hi = NULL;
582 struct net_device *dev = NULL;
583 struct eth1394_priv *priv;
586 if (hpsb_config_rom_ip1394_add(host) != 0) {
587 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
591 fifo_addr = hpsb_allocate_and_register_addrspace(
592 ð1394_highlevel, host, &addr_ops,
593 ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
594 CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
595 if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
596 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
597 hpsb_config_rom_ip1394_remove(host);
601 dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
603 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
607 SET_NETDEV_DEV(dev, &host->device);
609 priv = netdev_priv(dev);
610 INIT_LIST_HEAD(&priv->ip_node_list);
611 spin_lock_init(&priv->lock);
613 priv->local_fifo = fifo_addr;
614 INIT_WORK(&priv->wake, ether1394_wake_queue);
615 priv->wake_dev = dev;
617 hi = hpsb_create_hostinfo(ð1394_highlevel, host, sizeof(*hi));
619 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
623 ether1394_reset_priv(dev, 1);
625 if (register_netdev(dev)) {
626 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
630 ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
636 /* Ignore validity in hopes that it will be set in the future. It'll
637 * be checked when the eth device is opened. */
638 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
640 ether1394_recv_init(priv);
646 hpsb_destroy_hostinfo(ð1394_highlevel, host);
647 hpsb_unregister_addrspace(ð1394_highlevel, host, fifo_addr);
648 hpsb_config_rom_ip1394_remove(host);
651 /* Remove a card from our list */
652 static void ether1394_remove_host(struct hpsb_host *host)
654 struct eth1394_host_info *hi;
655 struct eth1394_priv *priv;
657 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
660 priv = netdev_priv(hi->dev);
661 hpsb_unregister_addrspace(ð1394_highlevel, host, priv->local_fifo);
662 hpsb_config_rom_ip1394_remove(host);
664 hpsb_iso_shutdown(priv->iso);
665 unregister_netdev(hi->dev);
666 free_netdev(hi->dev);
669 /* A bus reset happened */
670 static void ether1394_host_reset(struct hpsb_host *host)
672 struct eth1394_host_info *hi;
673 struct eth1394_priv *priv;
674 struct net_device *dev;
675 struct list_head *lh, *n;
676 struct eth1394_node_ref *node;
677 struct eth1394_node_info *node_info;
680 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
682 /* This can happen for hosts that we don't use */
687 priv = netdev_priv(dev);
689 /* Reset our private host data, but not our MTU */
690 netif_stop_queue(dev);
691 ether1394_reset_priv(dev, 0);
693 list_for_each_entry(node, &priv->ip_node_list, list) {
694 node_info = node->ud->device.driver_data;
696 spin_lock_irqsave(&node_info->pdg.lock, flags);
698 list_for_each_safe(lh, n, &node_info->pdg.list)
699 purge_partial_datagram(lh);
701 INIT_LIST_HEAD(&(node_info->pdg.list));
702 node_info->pdg.sz = 0;
704 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
707 netif_wake_queue(dev);
710 /******************************************
711 * HW Header net device functions
712 ******************************************/
713 /* These functions have been adapted from net/ethernet/eth.c */
715 /* Create a fake MAC header for an arbitrary protocol layer.
716 * saddr=NULL means use device source address
717 * daddr=NULL means leave destination address (eg unresolved arp). */
718 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
719 unsigned short type, const void *daddr,
720 const void *saddr, unsigned len)
722 struct eth1394hdr *eth =
723 (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
725 eth->h_proto = htons(type);
727 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
728 memset(eth->h_dest, 0, dev->addr_len);
729 return dev->hard_header_len;
733 memcpy(eth->h_dest, daddr, dev->addr_len);
734 return dev->hard_header_len;
737 return -dev->hard_header_len;
740 /* Rebuild the faked MAC header. This is called after an ARP
741 * (or in future other address resolution) has completed on this
742 * sk_buff. We now let ARP fill in the other fields.
744 * This routine CANNOT use cached dst->neigh!
745 * Really, it is used only when dst->neigh is wrong.
747 static int ether1394_rebuild_header(struct sk_buff *skb)
749 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
751 if (eth->h_proto == htons(ETH_P_IP))
752 return arp_find((unsigned char *)ð->h_dest, skb);
754 ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
755 "unable to resolve type %04x addresses\n",
756 ntohs(eth->h_proto));
760 static int ether1394_header_parse(const struct sk_buff *skb,
761 unsigned char *haddr)
763 memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN);
767 static int ether1394_header_cache(const struct neighbour *neigh,
770 unsigned short type = hh->hh_type;
771 struct net_device *dev = neigh->dev;
772 struct eth1394hdr *eth =
773 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
775 if (type == htons(ETH_P_802_3))
779 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
781 hh->hh_len = ETH1394_HLEN;
785 /* Called by Address Resolution module to notify changes in address. */
786 static void ether1394_header_cache_update(struct hh_cache *hh,
787 const struct net_device *dev,
788 const unsigned char * haddr)
790 memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
793 /******************************************
794 * Datagram reception code
795 ******************************************/
797 /* Copied from net/ethernet/eth.c */
798 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
800 struct eth1394hdr *eth;
803 skb_reset_mac_header(skb);
804 skb_pull(skb, ETH1394_HLEN);
805 eth = eth1394_hdr(skb);
807 if (*eth->h_dest & 1) {
808 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
809 skb->pkt_type = PACKET_BROADCAST;
812 skb->pkt_type = PACKET_MULTICAST;
815 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
816 skb->pkt_type = PACKET_OTHERHOST;
819 if (ntohs(eth->h_proto) >= 1536)
824 if (*(unsigned short *)rawp == 0xFFFF)
825 return htons(ETH_P_802_3);
827 return htons(ETH_P_802_2);
830 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
831 * We also perform ARP translation here, if need be. */
832 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
833 nodeid_t srcid, nodeid_t destid,
836 struct eth1394_priv *priv = netdev_priv(dev);
838 unsigned short ret = 0;
840 /* Setup our hw addresses. We use these to build the ethernet header. */
841 if (destid == (LOCAL_BUS | ALL_NODES))
842 dest_hw = ~0ULL; /* broadcast */
844 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
845 priv->host->csr.guid_lo);
847 /* If this is an ARP packet, convert it. First, we want to make
848 * use of some of the fields, since they tell us a little bit
849 * about the sending machine. */
850 if (ether_type == htons(ETH_P_ARP)) {
851 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
852 struct arphdr *arp = (struct arphdr *)skb->data;
853 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
854 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
855 ntohl(arp1394->fifo_lo);
856 u8 max_rec = min(priv->host->csr.max_rec,
857 (u8)(arp1394->max_rec));
858 int sspd = arp1394->sspd;
860 struct eth1394_node_ref *node;
861 struct eth1394_node_info *node_info;
864 /* Sanity check. MacOSX seems to be sending us 131 in this
865 * field (atleast on my Panther G5). Not sure why. */
866 if (sspd > 5 || sspd < 0)
869 maxpayload = min(eth1394_speedto_maxpayload[sspd],
870 (u16)(1 << (max_rec + 1)));
872 guid = get_unaligned(&arp1394->s_uniq_id);
873 node = eth1394_find_node_guid(&priv->ip_node_list,
879 (struct eth1394_node_info *)node->ud->device.driver_data;
881 /* Update our speed/payload/fifo_offset table */
882 node_info->maxpayload = maxpayload;
883 node_info->sspd = sspd;
884 node_info->fifo = fifo_addr;
886 /* Now that we're done with the 1394 specific stuff, we'll
887 * need to alter some of the data. Believe it or not, all
888 * that needs to be done is sender_IP_address needs to be
889 * moved, the destination hardware address get stuffed
890 * in and the hardware address length set to 8.
892 * IMPORTANT: The code below overwrites 1394 specific data
893 * needed above so keep the munging of the data for the
894 * higher level IP stack last. */
897 arp_ptr += arp->ar_hln; /* skip over sender unique id */
898 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
899 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
901 if (arp->ar_op == htons(ARPOP_REQUEST))
902 memset(arp_ptr, 0, sizeof(u64));
904 memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
907 /* Now add the ethernet header. */
908 if (dev_hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
910 ret = ether1394_type_trans(skb, dev);
915 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
917 struct fragment_info *fi;
918 int end = offset + len;
920 list_for_each_entry(fi, frag_list, list)
921 if (offset < fi->offset + fi->len && end > fi->offset)
927 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
929 struct partial_datagram *pd;
931 list_for_each_entry(pd, pdgl, list)
938 /* Assumes that new fragment does not overlap any existing fragments */
939 static int new_fragment(struct list_head *frag_info, int offset, int len)
941 struct list_head *lh;
942 struct fragment_info *fi, *fi2, *new;
944 list_for_each(lh, frag_info) {
945 fi = list_entry(lh, struct fragment_info, list);
946 if (fi->offset + fi->len == offset) {
947 /* The new fragment can be tacked on to the end */
949 /* Did the new fragment plug a hole? */
950 fi2 = list_entry(lh->next, struct fragment_info, list);
951 if (fi->offset + fi->len == fi2->offset) {
952 /* glue fragments together */
958 } else if (offset + len == fi->offset) {
959 /* The new fragment can be tacked on to the beginning */
962 /* Did the new fragment plug a hole? */
963 fi2 = list_entry(lh->prev, struct fragment_info, list);
964 if (fi2->offset + fi2->len == fi->offset) {
965 /* glue fragments together */
971 } else if (offset > fi->offset + fi->len) {
973 } else if (offset + len < fi->offset) {
979 new = kmalloc(sizeof(*new), GFP_ATOMIC);
983 new->offset = offset;
986 list_add(&new->list, lh);
990 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
991 int dgl, int dg_size, char *frag_buf,
992 int frag_off, int frag_len)
994 struct partial_datagram *new;
996 new = kmalloc(sizeof(*new), GFP_ATOMIC);
1000 INIT_LIST_HEAD(&new->frag_info);
1002 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1008 new->dg_size = dg_size;
1010 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1012 struct fragment_info *fi = list_entry(new->frag_info.next,
1013 struct fragment_info,
1020 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1021 new->pbuf = skb_put(new->skb, dg_size);
1022 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1024 list_add(&new->list, pdgl);
1028 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1029 char *frag_buf, int frag_off, int frag_len)
1031 struct partial_datagram *pd =
1032 list_entry(lh, struct partial_datagram, list);
1034 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1037 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1039 /* Move list entry to beginnig of list so that oldest partial
1040 * datagrams percolate to the end of the list */
1041 list_move(lh, pdgl);
1045 static int is_datagram_complete(struct list_head *lh, int dg_size)
1047 struct partial_datagram *pd;
1048 struct fragment_info *fi;
1050 pd = list_entry(lh, struct partial_datagram, list);
1051 fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1053 return (fi->len == dg_size);
1056 /* Packet reception. We convert the IP1394 encapsulation header to an
1057 * ethernet header, and fill it with some of our other fields. This is
1058 * an incoming packet from the 1394 bus. */
1059 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1062 struct sk_buff *skb;
1063 unsigned long flags;
1064 struct eth1394_priv *priv = netdev_priv(dev);
1065 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1066 u16 ether_type = 0; /* initialized to clear warning */
1068 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1069 struct eth1394_node_info *node_info;
1072 struct eth1394_node_ref *node;
1073 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1074 if (unlikely(!node)) {
1075 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1076 "lookup failure: " NODE_BUS_FMT,
1077 NODE_BUS_ARGS(priv->host, srcid));
1078 priv->stats.rx_dropped++;
1083 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1086 node_info = (struct eth1394_node_info *)ud->device.driver_data;
1088 /* First, did we receive a fragmented or unfragmented datagram? */
1089 hdr->words.word1 = ntohs(hdr->words.word1);
1091 hdr_len = hdr_type_len[hdr->common.lf];
1093 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1094 /* An unfragmented datagram has been received by the ieee1394
1095 * bus. Build an skbuff around it so we can pass it to the
1096 * high level network layer. */
1098 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1099 if (unlikely(!skb)) {
1100 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1101 priv->stats.rx_dropped++;
1104 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1105 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1107 ether_type = hdr->uf.ether_type;
1109 /* A datagram fragment has been received, now the fun begins. */
1111 struct list_head *pdgl, *lh;
1112 struct partial_datagram *pd;
1114 int fg_len = len - hdr_len;
1118 struct pdg_list *pdg = &(node_info->pdg);
1120 hdr->words.word3 = ntohs(hdr->words.word3);
1121 /* The 4th header word is reserved so no need to do ntohs() */
1123 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1124 ether_type = hdr->ff.ether_type;
1126 dg_size = hdr->ff.dg_size + 1;
1129 hdr->words.word2 = ntohs(hdr->words.word2);
1131 dg_size = hdr->sf.dg_size + 1;
1132 fg_off = hdr->sf.fg_off;
1134 spin_lock_irqsave(&pdg->lock, flags);
1136 pdgl = &(pdg->list);
1137 lh = find_partial_datagram(pdgl, dgl);
1140 while (pdg->sz >= max_partial_datagrams) {
1141 /* remove the oldest */
1142 purge_partial_datagram(pdgl->prev);
1146 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1147 buf + hdr_len, fg_off,
1150 spin_unlock_irqrestore(&pdg->lock, flags);
1154 lh = find_partial_datagram(pdgl, dgl);
1156 struct partial_datagram *pd;
1158 pd = list_entry(lh, struct partial_datagram, list);
1160 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1161 /* Overlapping fragments, obliterate old
1162 * datagram and start new one. */
1163 purge_partial_datagram(lh);
1164 retval = new_partial_datagram(dev, pdgl, dgl,
1170 spin_unlock_irqrestore(&pdg->lock, flags);
1174 retval = update_partial_datagram(pdgl, lh,
1178 /* Couldn't save off fragment anyway
1179 * so might as well obliterate the
1181 purge_partial_datagram(lh);
1183 spin_unlock_irqrestore(&pdg->lock, flags);
1186 } /* fragment overlap */
1187 } /* new datagram or add to existing one */
1189 pd = list_entry(lh, struct partial_datagram, list);
1191 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1192 pd->ether_type = ether_type;
1194 if (is_datagram_complete(lh, dg_size)) {
1195 ether_type = pd->ether_type;
1197 skb = skb_get(pd->skb);
1198 purge_partial_datagram(lh);
1199 spin_unlock_irqrestore(&pdg->lock, flags);
1201 /* Datagram is not complete, we're done for the
1203 spin_unlock_irqrestore(&pdg->lock, flags);
1206 } /* unframgented datagram or fragmented one */
1208 /* Write metadata, and then pass to the receive level */
1210 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1212 /* Parse the encapsulation header. This actually does the job of
1213 * converting to an ethernet frame header, aswell as arp
1214 * conversion if needed. ARP conversion is easier in this
1215 * direction, since we are using ethernet as our backend. */
1216 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1219 spin_lock_irqsave(&priv->lock, flags);
1221 if (!skb->protocol) {
1222 priv->stats.rx_errors++;
1223 priv->stats.rx_dropped++;
1224 dev_kfree_skb_any(skb);
1228 if (netif_rx(skb) == NET_RX_DROP) {
1229 priv->stats.rx_errors++;
1230 priv->stats.rx_dropped++;
1235 priv->stats.rx_packets++;
1236 priv->stats.rx_bytes += skb->len;
1239 if (netif_queue_stopped(dev))
1240 netif_wake_queue(dev);
1241 spin_unlock_irqrestore(&priv->lock, flags);
1243 dev->last_rx = jiffies;
1248 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1249 quadlet_t *data, u64 addr, size_t len, u16 flags)
1251 struct eth1394_host_info *hi;
1253 hi = hpsb_get_hostinfo(ð1394_highlevel, host);
1254 if (unlikely(!hi)) {
1255 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1257 return RCODE_ADDRESS_ERROR;
1260 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1261 return RCODE_ADDRESS_ERROR;
1263 return RCODE_COMPLETE;
1266 static void ether1394_iso(struct hpsb_iso *iso)
1270 struct eth1394_host_info *hi;
1271 struct net_device *dev;
1272 struct eth1394_priv *priv;
1279 hi = hpsb_get_hostinfo(ð1394_highlevel, iso->host);
1280 if (unlikely(!hi)) {
1281 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1288 nready = hpsb_iso_n_ready(iso);
1289 for (i = 0; i < nready; i++) {
1290 struct hpsb_iso_packet_info *info =
1291 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1292 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1294 /* skip over GASP header */
1295 buf = (char *)data + 8;
1296 len = info->len - 8;
1298 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1299 (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1300 source_id = be32_to_cpu(data[0]) >> 16;
1302 priv = netdev_priv(dev);
1304 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1305 || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1306 /* This packet is not for us */
1309 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1313 hpsb_iso_recv_release_packets(iso, i);
1315 dev->last_rx = jiffies;
1318 /******************************************
1319 * Datagram transmission code
1320 ******************************************/
1322 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1323 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1324 * needs to be munged a bit. The remainder of the arphdr is formatted based
1325 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1328 * Now that the EUI is used for the hardware address all we need to do to make
1329 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1330 * speed, and unicast FIFO address information between the sender_unique_id
1331 * and the IP addresses.
1333 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1334 struct net_device *dev)
1336 struct eth1394_priv *priv = netdev_priv(dev);
1337 struct arphdr *arp = (struct arphdr *)skb->data;
1338 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1339 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1341 arp1394->hw_addr_len = 16;
1342 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1343 arp1394->max_rec = priv->host->csr.max_rec;
1344 arp1394->sspd = priv->host->csr.lnk_spd;
1345 arp1394->fifo_hi = htons(priv->local_fifo >> 32);
1346 arp1394->fifo_lo = htonl(priv->local_fifo & ~0x0);
1349 /* We need to encapsulate the standard header with our own. We use the
1350 * ethernet header's proto for our own. */
1351 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1353 union eth1394_hdr *hdr,
1354 u16 dg_size, u16 dgl)
1356 unsigned int adj_max_payload =
1357 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1359 /* Does it all fit in one packet? */
1360 if (dg_size <= adj_max_payload) {
1361 hdr->uf.lf = ETH1394_HDR_LF_UF;
1362 hdr->uf.ether_type = proto;
1364 hdr->ff.lf = ETH1394_HDR_LF_FF;
1365 hdr->ff.ether_type = proto;
1366 hdr->ff.dg_size = dg_size - 1;
1368 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1370 return (dg_size + adj_max_payload - 1) / adj_max_payload;
1373 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1374 unsigned int max_payload,
1375 union eth1394_hdr *hdr)
1377 union eth1394_hdr *bufhdr;
1378 int ftype = hdr->common.lf;
1379 int hdrsz = hdr_type_len[ftype];
1380 unsigned int adj_max_payload = max_payload - hdrsz;
1383 case ETH1394_HDR_LF_UF:
1384 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1385 bufhdr->words.word1 = htons(hdr->words.word1);
1386 bufhdr->words.word2 = hdr->words.word2;
1389 case ETH1394_HDR_LF_FF:
1390 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1391 bufhdr->words.word1 = htons(hdr->words.word1);
1392 bufhdr->words.word2 = hdr->words.word2;
1393 bufhdr->words.word3 = htons(hdr->words.word3);
1394 bufhdr->words.word4 = 0;
1396 /* Set frag type here for future interior fragments */
1397 hdr->common.lf = ETH1394_HDR_LF_IF;
1402 hdr->sf.fg_off += adj_max_payload;
1403 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1404 if (max_payload >= skb->len)
1405 hdr->common.lf = ETH1394_HDR_LF_LF;
1406 bufhdr->words.word1 = htons(hdr->words.word1);
1407 bufhdr->words.word2 = htons(hdr->words.word2);
1408 bufhdr->words.word3 = htons(hdr->words.word3);
1409 bufhdr->words.word4 = 0;
1411 return min(max_payload, skb->len);
1414 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1416 struct hpsb_packet *p;
1418 p = hpsb_alloc_packet(0);
1421 p->generation = get_hpsb_generation(host);
1422 p->type = hpsb_async;
1427 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1428 struct hpsb_host *host, nodeid_t node,
1429 u64 addr, void *data, int tx_len)
1433 if (hpsb_get_tlabel(p))
1436 p->tcode = TCODE_WRITEB;
1437 p->header_size = 16;
1438 p->expect_response = 1;
1440 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1441 p->header[1] = host->node_id << 16 | addr >> 32;
1442 p->header[2] = addr & 0xffffffff;
1443 p->header[3] = tx_len << 16;
1444 p->data_size = (tx_len + 3) & ~3;
1450 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1451 struct eth1394_priv *priv,
1452 struct sk_buff *skb, int length)
1455 p->tcode = TCODE_STREAM_DATA;
1457 p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1458 TCODE_STREAM_DATA << 4;
1459 p->data_size = length;
1460 p->data = (quadlet_t *)skb->data - 2;
1461 p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1462 ETHER1394_GASP_SPECIFIER_ID_HI);
1463 p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1464 ETHER1394_GASP_VERSION);
1466 p->speed_code = priv->bc_sspd;
1468 /* prevent hpsb_send_packet() from overriding our speed code */
1469 p->node_id = LOCAL_BUS | ALL_NODES;
1472 static void ether1394_free_packet(struct hpsb_packet *packet)
1474 if (packet->tcode != TCODE_STREAM_DATA)
1475 hpsb_free_tlabel(packet);
1476 hpsb_free_packet(packet);
1479 static void ether1394_complete_cb(void *__ptask);
1481 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1483 struct eth1394_priv *priv = ptask->priv;
1484 struct hpsb_packet *packet = NULL;
1486 packet = ether1394_alloc_common_packet(priv->host);
1490 if (ptask->tx_type == ETH1394_GASP) {
1491 int length = tx_len + 2 * sizeof(quadlet_t);
1493 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1494 } else if (ether1394_prep_write_packet(packet, priv->host,
1496 ptask->addr, ptask->skb->data,
1498 hpsb_free_packet(packet);
1502 ptask->packet = packet;
1503 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1506 if (hpsb_send_packet(packet) < 0) {
1507 ether1394_free_packet(packet);
1514 /* Task function to be run when a datagram transmission is completed */
1515 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1517 struct sk_buff *skb = ptask->skb;
1518 struct eth1394_priv *priv = netdev_priv(skb->dev);
1519 unsigned long flags;
1522 spin_lock_irqsave(&priv->lock, flags);
1524 priv->stats.tx_dropped++;
1525 priv->stats.tx_errors++;
1527 priv->stats.tx_bytes += skb->len;
1528 priv->stats.tx_packets++;
1530 spin_unlock_irqrestore(&priv->lock, flags);
1532 dev_kfree_skb_any(skb);
1533 kmem_cache_free(packet_task_cache, ptask);
1536 /* Callback for when a packet has been sent and the status of that packet is
1538 static void ether1394_complete_cb(void *__ptask)
1540 struct packet_task *ptask = (struct packet_task *)__ptask;
1541 struct hpsb_packet *packet = ptask->packet;
1544 if (packet->tcode != TCODE_STREAM_DATA)
1545 fail = hpsb_packet_success(packet);
1547 ether1394_free_packet(packet);
1549 ptask->outstanding_pkts--;
1550 if (ptask->outstanding_pkts > 0 && !fail) {
1553 /* Add the encapsulation header to the fragment */
1554 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1556 err = ether1394_send_packet(ptask, tx_len);
1559 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1561 ether1394_dg_complete(ptask, 1);
1564 ether1394_dg_complete(ptask, fail);
1568 /* Transmit a packet (called by kernel) */
1569 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1571 struct eth1394hdr hdr_buf;
1572 struct eth1394_priv *priv = netdev_priv(dev);
1574 unsigned long flags;
1576 eth1394_tx_type tx_type;
1577 unsigned int tx_len;
1578 unsigned int max_payload;
1581 struct packet_task *ptask;
1582 struct eth1394_node_ref *node;
1583 struct eth1394_node_info *node_info = NULL;
1585 ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1589 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1590 * it does not set our validity bit. We need to compensate for
1591 * that somewhere else, but not in eth1394. */
1593 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1597 skb = skb_share_check(skb, GFP_ATOMIC);
1601 /* Get rid of the fake eth1394 header, but first make a copy.
1602 * We might need to rebuild the header on tx failure. */
1603 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1604 skb_pull(skb, ETH1394_HLEN);
1606 proto = hdr_buf.h_proto;
1609 /* Set the transmission type for the packet. ARP packets and IP
1610 * broadcast packets are sent via GASP. */
1611 if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1612 proto == htons(ETH_P_ARP) ||
1613 (proto == htons(ETH_P_IP) &&
1614 IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1615 tx_type = ETH1394_GASP;
1616 dest_node = LOCAL_BUS | ALL_NODES;
1617 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1618 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1620 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1623 __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
1625 node = eth1394_find_node_guid(&priv->ip_node_list,
1631 (struct eth1394_node_info *)node->ud->device.driver_data;
1632 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1635 dest_node = node->ud->ne->nodeid;
1636 max_payload = node_info->maxpayload;
1637 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1639 dgl = node_info->dgl;
1640 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1642 tx_type = ETH1394_WRREQ;
1645 /* If this is an ARP packet, convert it */
1646 if (proto == htons(ETH_P_ARP))
1647 ether1394_arp_to_1394arp(skb, dev);
1649 ptask->hdr.words.word1 = 0;
1650 ptask->hdr.words.word2 = 0;
1651 ptask->hdr.words.word3 = 0;
1652 ptask->hdr.words.word4 = 0;
1655 ptask->tx_type = tx_type;
1657 if (tx_type != ETH1394_GASP) {
1660 spin_lock_irqsave(&priv->lock, flags);
1661 addr = node_info->fifo;
1662 spin_unlock_irqrestore(&priv->lock, flags);
1665 ptask->dest_node = dest_node;
1668 ptask->tx_type = tx_type;
1669 ptask->max_payload = max_payload;
1670 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1671 proto, &ptask->hdr, dg_size, dgl);
1673 /* Add the encapsulation header to the fragment */
1674 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1675 dev->trans_start = jiffies;
1676 if (ether1394_send_packet(ptask, tx_len)) {
1677 if (dest_node == (LOCAL_BUS | ALL_NODES))
1680 /* At this point we want to restore the packet. When we return
1681 * here with NETDEV_TX_BUSY we will get another entrance in this
1682 * routine with the same skb and we need it to look the same.
1683 * So we pull 4 more bytes, then build the header again. */
1685 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1686 hdr_buf.h_dest, NULL, 0);
1688 /* Most failures of ether1394_send_packet are recoverable. */
1689 netif_stop_queue(dev);
1690 priv->wake_node = dest_node;
1691 schedule_work(&priv->wake);
1692 kmem_cache_free(packet_task_cache, ptask);
1693 return NETDEV_TX_BUSY;
1696 return NETDEV_TX_OK;
1699 kmem_cache_free(packet_task_cache, ptask);
1704 spin_lock_irqsave(&priv->lock, flags);
1705 priv->stats.tx_dropped++;
1706 priv->stats.tx_errors++;
1707 spin_unlock_irqrestore(&priv->lock, flags);
1710 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1711 * causes serious problems" here, allegedly. Before that patch,
1712 * -ERRNO was returned which is not appropriate under Linux 2.6.
1713 * Perhaps more needs to be done? Stop the queue in serious
1714 * conditions and restart it elsewhere?
1716 /* return NETDEV_TX_BUSY; */
1717 return NETDEV_TX_OK;
1720 static void ether1394_get_drvinfo(struct net_device *dev,
1721 struct ethtool_drvinfo *info)
1723 strcpy(info->driver, driver_name);
1724 strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1727 static struct ethtool_ops ethtool_ops = {
1728 .get_drvinfo = ether1394_get_drvinfo
1731 static int __init ether1394_init_module(void)
1735 packet_task_cache = kmem_cache_create("packet_task",
1736 sizeof(struct packet_task),
1738 if (!packet_task_cache)
1741 hpsb_register_highlevel(ð1394_highlevel);
1742 err = hpsb_register_protocol(ð1394_proto_driver);
1744 hpsb_unregister_highlevel(ð1394_highlevel);
1745 kmem_cache_destroy(packet_task_cache);
1750 static void __exit ether1394_exit_module(void)
1752 hpsb_unregister_protocol(ð1394_proto_driver);
1753 hpsb_unregister_highlevel(ð1394_highlevel);
1754 kmem_cache_destroy(packet_task_cache);
1757 module_init(ether1394_init_module);
1758 module_exit(ether1394_exit_module);