Merge git://git.linux-nfs.org/pub/linux/nfs-2.6
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 /*
27  * Set enviroment defines for rt2x00.h
28  */
29 #define DRV_NAME "rt2x00lib"
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00lib.h"
36
37 /*
38  * Ring handler.
39  */
40 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
41                                      const unsigned int queue)
42 {
43         int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
44
45         /*
46          * Check if we are requesting a reqular TX ring,
47          * or if we are requesting a Beacon or Atim ring.
48          * For Atim rings, we should check if it is supported.
49          */
50         if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
51                 return &rt2x00dev->tx[queue];
52
53         if (!rt2x00dev->bcn || !beacon)
54                 return NULL;
55
56         if (queue == IEEE80211_TX_QUEUE_BEACON)
57                 return &rt2x00dev->bcn[0];
58         else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
59                 return &rt2x00dev->bcn[1];
60
61         return NULL;
62 }
63 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
64
65 /*
66  * Link tuning handlers
67  */
68 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
69 {
70         rt2x00_clear_link(&rt2x00dev->link);
71
72         /*
73          * Reset the link tuner.
74          */
75         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
87 {
88         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
89                 return;
90
91         rt2x00lib_stop_link_tuner(rt2x00dev);
92         rt2x00lib_start_link_tuner(rt2x00dev);
93 }
94
95 /*
96  * Radio control handlers.
97  */
98 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
99 {
100         int status;
101
102         /*
103          * Don't enable the radio twice.
104          * And check if the hardware button has been disabled.
105          */
106         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
107             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
108                 return 0;
109
110         /*
111          * Enable radio.
112          */
113         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
114                                                        STATE_RADIO_ON);
115         if (status)
116                 return status;
117
118         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
119
120         /*
121          * Enable RX.
122          */
123         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124
125         /*
126          * Start the TX queues.
127          */
128         ieee80211_start_queues(rt2x00dev->hw);
129
130         return 0;
131 }
132
133 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
134 {
135         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
136                 return;
137
138         /*
139          * Stop all scheduled work.
140          */
141         if (work_pending(&rt2x00dev->beacon_work))
142                 cancel_work_sync(&rt2x00dev->beacon_work);
143         if (work_pending(&rt2x00dev->filter_work))
144                 cancel_work_sync(&rt2x00dev->filter_work);
145         if (work_pending(&rt2x00dev->config_work))
146                 cancel_work_sync(&rt2x00dev->config_work);
147
148         /*
149          * Stop the TX queues.
150          */
151         ieee80211_stop_queues(rt2x00dev->hw);
152
153         /*
154          * Disable RX.
155          */
156         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
157
158         /*
159          * Disable radio.
160          */
161         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
162 }
163
164 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
165 {
166         /*
167          * When we are disabling the RX, we should also stop the link tuner.
168          */
169         if (state == STATE_RADIO_RX_OFF)
170                 rt2x00lib_stop_link_tuner(rt2x00dev);
171
172         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
173
174         /*
175          * When we are enabling the RX, we should also start the link tuner.
176          */
177         if (state == STATE_RADIO_RX_ON &&
178             is_interface_present(&rt2x00dev->interface))
179                 rt2x00lib_start_link_tuner(rt2x00dev);
180 }
181
182 static void rt2x00lib_precalculate_link_signal(struct link *link)
183 {
184         if (link->rx_failed || link->rx_success)
185                 link->rx_percentage =
186                     (link->rx_success * 100) /
187                     (link->rx_failed + link->rx_success);
188         else
189                 link->rx_percentage = 50;
190
191         if (link->tx_failed || link->tx_success)
192                 link->tx_percentage =
193                     (link->tx_success * 100) /
194                     (link->tx_failed + link->tx_success);
195         else
196                 link->tx_percentage = 50;
197
198         link->rx_success = 0;
199         link->rx_failed = 0;
200         link->tx_success = 0;
201         link->tx_failed = 0;
202 }
203
204 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
205                                            int rssi)
206 {
207         int rssi_percentage = 0;
208         int signal;
209
210         /*
211          * We need a positive value for the RSSI.
212          */
213         if (rssi < 0)
214                 rssi += rt2x00dev->rssi_offset;
215
216         /*
217          * Calculate the different percentages,
218          * which will be used for the signal.
219          */
220         if (rt2x00dev->rssi_offset)
221                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
222
223         /*
224          * Add the individual percentages and use the WEIGHT
225          * defines to calculate the current link signal.
226          */
227         signal = ((WEIGHT_RSSI * rssi_percentage) +
228                   (WEIGHT_TX * rt2x00dev->link.tx_percentage) +
229                   (WEIGHT_RX * rt2x00dev->link.rx_percentage)) / 100;
230
231         return (signal > 100) ? 100 : signal;
232 }
233
234 static void rt2x00lib_link_tuner(struct work_struct *work)
235 {
236         struct rt2x00_dev *rt2x00dev =
237             container_of(work, struct rt2x00_dev, link.work.work);
238
239         /*
240          * When the radio is shutting down we should
241          * immediately cease all link tuning.
242          */
243         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
244                 return;
245
246         /*
247          * Update statistics.
248          */
249         rt2x00dev->ops->lib->link_stats(rt2x00dev);
250
251         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
252             rt2x00dev->link.rx_failed;
253
254         /*
255          * Only perform the link tuning when Link tuning
256          * has been enabled (This could have been disabled from the EEPROM).
257          */
258         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
259                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
260
261         /*
262          * Precalculate a portion of the link signal which is
263          * in based on the tx/rx success/failure counters.
264          */
265         rt2x00lib_precalculate_link_signal(&rt2x00dev->link);
266
267         /*
268          * Increase tuner counter, and reschedule the next link tuner run.
269          */
270         rt2x00dev->link.count++;
271         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
272                            LINK_TUNE_INTERVAL);
273 }
274
275 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
276 {
277         struct rt2x00_dev *rt2x00dev =
278             container_of(work, struct rt2x00_dev, filter_work);
279         unsigned int filter = rt2x00dev->interface.filter;
280
281         /*
282          * Since we had stored the filter inside interface.filter,
283          * we should now clear that field. Otherwise the driver will
284          * assume nothing has changed (*total_flags will be compared
285          * to interface.filter to determine if any action is required).
286          */
287         rt2x00dev->interface.filter = 0;
288
289         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
290                                              filter, &filter, 0, NULL);
291 }
292
293 static void rt2x00lib_configuration_scheduled(struct work_struct *work)
294 {
295         struct rt2x00_dev *rt2x00dev =
296             container_of(work, struct rt2x00_dev, config_work);
297         int preamble = !test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
298
299         rt2x00mac_erp_ie_changed(rt2x00dev->hw,
300                                  IEEE80211_ERP_CHANGE_PREAMBLE, 0, preamble);
301 }
302
303 /*
304  * Interrupt context handlers.
305  */
306 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
307 {
308         struct rt2x00_dev *rt2x00dev =
309             container_of(work, struct rt2x00_dev, beacon_work);
310         struct data_ring *ring =
311             rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
312         struct data_entry *entry = rt2x00_get_data_entry(ring);
313         struct sk_buff *skb;
314
315         skb = ieee80211_beacon_get(rt2x00dev->hw,
316                                    rt2x00dev->interface.id,
317                                    &entry->tx_status.control);
318         if (!skb)
319                 return;
320
321         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
322                                           &entry->tx_status.control);
323
324         dev_kfree_skb(skb);
325 }
326
327 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
328 {
329         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
330                 return;
331
332         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
333 }
334 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
335
336 void rt2x00lib_txdone(struct data_entry *entry,
337                       const int status, const int retry)
338 {
339         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
340         struct ieee80211_tx_status *tx_status = &entry->tx_status;
341         struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
342         int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
343         int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
344                       status == TX_FAIL_OTHER);
345
346         /*
347          * Update TX statistics.
348          */
349         tx_status->flags = 0;
350         tx_status->ack_signal = 0;
351         tx_status->excessive_retries = (status == TX_FAIL_RETRY);
352         tx_status->retry_count = retry;
353         rt2x00dev->link.tx_success += success;
354         rt2x00dev->link.tx_failed += retry + fail;
355
356         if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
357                 if (success)
358                         tx_status->flags |= IEEE80211_TX_STATUS_ACK;
359                 else
360                         stats->dot11ACKFailureCount++;
361         }
362
363         tx_status->queue_length = entry->ring->stats.limit;
364         tx_status->queue_number = tx_status->control.queue;
365
366         if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
367                 if (success)
368                         stats->dot11RTSSuccessCount++;
369                 else
370                         stats->dot11RTSFailureCount++;
371         }
372
373         /*
374          * Send the tx_status to mac80211,
375          * that method also cleans up the skb structure.
376          */
377         ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
378         entry->skb = NULL;
379 }
380 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
381
382 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
383                       struct rxdata_entry_desc *desc)
384 {
385         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
386         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
387         struct ieee80211_hw_mode *mode;
388         struct ieee80211_rate *rate;
389         unsigned int i;
390         int val = 0;
391
392         /*
393          * Update RX statistics.
394          */
395         mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
396         for (i = 0; i < mode->num_rates; i++) {
397                 rate = &mode->rates[i];
398
399                 /*
400                  * When frame was received with an OFDM bitrate,
401                  * the signal is the PLCP value. If it was received with
402                  * a CCK bitrate the signal is the rate in 0.5kbit/s.
403                  */
404                 if (!desc->ofdm)
405                         val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
406                 else
407                         val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
408
409                 if (val == desc->signal) {
410                         val = rate->val;
411                         break;
412                 }
413         }
414
415         rt2x00_update_link_rssi(&rt2x00dev->link, desc->rssi);
416         rt2x00dev->link.rx_success++;
417         rx_status->rate = val;
418         rx_status->signal =
419             rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
420         rx_status->ssi = desc->rssi;
421         rx_status->flag = desc->flags;
422
423         /*
424          * Send frame to mac80211
425          */
426         ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
427 }
428 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
429
430 /*
431  * TX descriptor initializer
432  */
433 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
434                              struct data_desc *txd,
435                              struct ieee80211_hdr *ieee80211hdr,
436                              unsigned int length,
437                              struct ieee80211_tx_control *control)
438 {
439         struct txdata_entry_desc desc;
440         struct data_ring *ring;
441         int tx_rate;
442         int bitrate;
443         int duration;
444         int residual;
445         u16 frame_control;
446         u16 seq_ctrl;
447
448         /*
449          * Make sure the descriptor is properly cleared.
450          */
451         memset(&desc, 0x00, sizeof(desc));
452
453         /*
454          * Get ring pointer, if we fail to obtain the
455          * correct ring, then use the first TX ring.
456          */
457         ring = rt2x00lib_get_ring(rt2x00dev, control->queue);
458         if (!ring)
459                 ring = rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
460
461         desc.cw_min = ring->tx_params.cw_min;
462         desc.cw_max = ring->tx_params.cw_max;
463         desc.aifs = ring->tx_params.aifs;
464
465         /*
466          * Identify queue
467          */
468         if (control->queue < rt2x00dev->hw->queues)
469                 desc.queue = control->queue;
470         else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
471                  control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
472                 desc.queue = QUEUE_MGMT;
473         else
474                 desc.queue = QUEUE_OTHER;
475
476         /*
477          * Read required fields from ieee80211 header.
478          */
479         frame_control = le16_to_cpu(ieee80211hdr->frame_control);
480         seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
481
482         tx_rate = control->tx_rate;
483
484         /*
485          * Check if this is a RTS/CTS frame
486          */
487         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
488                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
489                 if (is_rts_frame(frame_control))
490                         __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
491                 if (control->rts_cts_rate)
492                         tx_rate = control->rts_cts_rate;
493         }
494
495         /*
496          * Check for OFDM
497          */
498         if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
499                 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
500
501         /*
502          * Check if more fragments are pending
503          */
504         if (ieee80211_get_morefrag(ieee80211hdr)) {
505                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
506                 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
507         }
508
509         /*
510          * Beacons and probe responses require the tsf timestamp
511          * to be inserted into the frame.
512          */
513         if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
514             is_probe_resp(frame_control))
515                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
516
517         /*
518          * Determine with what IFS priority this frame should be send.
519          * Set ifs to IFS_SIFS when the this is not the first fragment,
520          * or this fragment came after RTS/CTS.
521          */
522         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
523             test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
524                 desc.ifs = IFS_SIFS;
525         else
526                 desc.ifs = IFS_BACKOFF;
527
528         /*
529          * PLCP setup
530          * Length calculation depends on OFDM/CCK rate.
531          */
532         desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
533         desc.service = 0x04;
534
535         if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
536                 desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f;
537                 desc.length_low = ((length + FCS_LEN) & 0x3f);
538         } else {
539                 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
540
541                 /*
542                  * Convert length to microseconds.
543                  */
544                 residual = get_duration_res(length + FCS_LEN, bitrate);
545                 duration = get_duration(length + FCS_LEN, bitrate);
546
547                 if (residual != 0) {
548                         duration++;
549
550                         /*
551                          * Check if we need to set the Length Extension
552                          */
553                         if (bitrate == 110 && residual <= 3)
554                                 desc.service |= 0x80;
555                 }
556
557                 desc.length_high = (duration >> 8) & 0xff;
558                 desc.length_low = duration & 0xff;
559
560                 /*
561                  * When preamble is enabled we should set the
562                  * preamble bit for the signal.
563                  */
564                 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
565                         desc.signal |= 0x08;
566         }
567
568         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, txd, &desc,
569                                            ieee80211hdr, length, control);
570 }
571 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
572
573 /*
574  * Driver initialization handlers.
575  */
576 static void rt2x00lib_channel(struct ieee80211_channel *entry,
577                               const int channel, const int tx_power,
578                               const int value)
579 {
580         entry->chan = channel;
581         if (channel <= 14)
582                 entry->freq = 2407 + (5 * channel);
583         else
584                 entry->freq = 5000 + (5 * channel);
585         entry->val = value;
586         entry->flag =
587             IEEE80211_CHAN_W_IBSS |
588             IEEE80211_CHAN_W_ACTIVE_SCAN |
589             IEEE80211_CHAN_W_SCAN;
590         entry->power_level = tx_power;
591         entry->antenna_max = 0xff;
592 }
593
594 static void rt2x00lib_rate(struct ieee80211_rate *entry,
595                            const int rate, const int mask,
596                            const int plcp, const int flags)
597 {
598         entry->rate = rate;
599         entry->val =
600             DEVICE_SET_RATE_FIELD(rate, RATE) |
601             DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
602             DEVICE_SET_RATE_FIELD(plcp, PLCP);
603         entry->flags = flags;
604         entry->val2 = entry->val;
605         if (entry->flags & IEEE80211_RATE_PREAMBLE2)
606                 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
607         entry->min_rssi_ack = 0;
608         entry->min_rssi_ack_delta = 0;
609 }
610
611 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
612                                     struct hw_mode_spec *spec)
613 {
614         struct ieee80211_hw *hw = rt2x00dev->hw;
615         struct ieee80211_hw_mode *hwmodes;
616         struct ieee80211_channel *channels;
617         struct ieee80211_rate *rates;
618         unsigned int i;
619         unsigned char tx_power;
620
621         hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
622         if (!hwmodes)
623                 goto exit;
624
625         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
626         if (!channels)
627                 goto exit_free_modes;
628
629         rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
630         if (!rates)
631                 goto exit_free_channels;
632
633         /*
634          * Initialize Rate list.
635          */
636         rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
637                        0x00, IEEE80211_RATE_CCK);
638         rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
639                        0x01, IEEE80211_RATE_CCK_2);
640         rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
641                        0x02, IEEE80211_RATE_CCK_2);
642         rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
643                        0x03, IEEE80211_RATE_CCK_2);
644
645         if (spec->num_rates > 4) {
646                 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
647                                0x0b, IEEE80211_RATE_OFDM);
648                 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
649                                0x0f, IEEE80211_RATE_OFDM);
650                 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
651                                0x0a, IEEE80211_RATE_OFDM);
652                 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
653                                0x0e, IEEE80211_RATE_OFDM);
654                 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
655                                0x09, IEEE80211_RATE_OFDM);
656                 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
657                                0x0d, IEEE80211_RATE_OFDM);
658                 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
659                                0x08, IEEE80211_RATE_OFDM);
660                 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
661                                0x0c, IEEE80211_RATE_OFDM);
662         }
663
664         /*
665          * Initialize Channel list.
666          */
667         for (i = 0; i < spec->num_channels; i++) {
668                 if (spec->channels[i].channel <= 14)
669                         tx_power = spec->tx_power_bg[i];
670                 else if (spec->tx_power_a)
671                         tx_power = spec->tx_power_a[i];
672                 else
673                         tx_power = spec->tx_power_default;
674
675                 rt2x00lib_channel(&channels[i],
676                                   spec->channels[i].channel, tx_power, i);
677         }
678
679         /*
680          * Intitialize 802.11b
681          * Rates: CCK.
682          * Channels: OFDM.
683          */
684         if (spec->num_modes > HWMODE_B) {
685                 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
686                 hwmodes[HWMODE_B].num_channels = 14;
687                 hwmodes[HWMODE_B].num_rates = 4;
688                 hwmodes[HWMODE_B].channels = channels;
689                 hwmodes[HWMODE_B].rates = rates;
690         }
691
692         /*
693          * Intitialize 802.11g
694          * Rates: CCK, OFDM.
695          * Channels: OFDM.
696          */
697         if (spec->num_modes > HWMODE_G) {
698                 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
699                 hwmodes[HWMODE_G].num_channels = 14;
700                 hwmodes[HWMODE_G].num_rates = spec->num_rates;
701                 hwmodes[HWMODE_G].channels = channels;
702                 hwmodes[HWMODE_G].rates = rates;
703         }
704
705         /*
706          * Intitialize 802.11a
707          * Rates: OFDM.
708          * Channels: OFDM, UNII, HiperLAN2.
709          */
710         if (spec->num_modes > HWMODE_A) {
711                 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
712                 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
713                 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
714                 hwmodes[HWMODE_A].channels = &channels[14];
715                 hwmodes[HWMODE_A].rates = &rates[4];
716         }
717
718         if (spec->num_modes > HWMODE_G &&
719             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
720                 goto exit_free_rates;
721
722         if (spec->num_modes > HWMODE_B &&
723             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
724                 goto exit_free_rates;
725
726         if (spec->num_modes > HWMODE_A &&
727             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
728                 goto exit_free_rates;
729
730         rt2x00dev->hwmodes = hwmodes;
731
732         return 0;
733
734 exit_free_rates:
735         kfree(rates);
736
737 exit_free_channels:
738         kfree(channels);
739
740 exit_free_modes:
741         kfree(hwmodes);
742
743 exit:
744         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
745         return -ENOMEM;
746 }
747
748 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
749 {
750         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
751                 ieee80211_unregister_hw(rt2x00dev->hw);
752
753         if (likely(rt2x00dev->hwmodes)) {
754                 kfree(rt2x00dev->hwmodes->channels);
755                 kfree(rt2x00dev->hwmodes->rates);
756                 kfree(rt2x00dev->hwmodes);
757                 rt2x00dev->hwmodes = NULL;
758         }
759 }
760
761 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
762 {
763         struct hw_mode_spec *spec = &rt2x00dev->spec;
764         int status;
765
766         /*
767          * Initialize HW modes.
768          */
769         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
770         if (status)
771                 return status;
772
773         /*
774          * Register HW.
775          */
776         status = ieee80211_register_hw(rt2x00dev->hw);
777         if (status) {
778                 rt2x00lib_remove_hw(rt2x00dev);
779                 return status;
780         }
781
782         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
783
784         return 0;
785 }
786
787 /*
788  * Initialization/uninitialization handlers.
789  */
790 static int rt2x00lib_alloc_entries(struct data_ring *ring,
791                                    const u16 max_entries, const u16 data_size,
792                                    const u16 desc_size)
793 {
794         struct data_entry *entry;
795         unsigned int i;
796
797         ring->stats.limit = max_entries;
798         ring->data_size = data_size;
799         ring->desc_size = desc_size;
800
801         /*
802          * Allocate all ring entries.
803          */
804         entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
805         if (!entry)
806                 return -ENOMEM;
807
808         for (i = 0; i < ring->stats.limit; i++) {
809                 entry[i].flags = 0;
810                 entry[i].ring = ring;
811                 entry[i].skb = NULL;
812         }
813
814         ring->entry = entry;
815
816         return 0;
817 }
818
819 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
820 {
821         struct data_ring *ring;
822
823         /*
824          * Allocate the RX ring.
825          */
826         if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
827                                     rt2x00dev->ops->rxd_size))
828                 return -ENOMEM;
829
830         /*
831          * First allocate the TX rings.
832          */
833         txring_for_each(rt2x00dev, ring) {
834                 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
835                                             rt2x00dev->ops->txd_size))
836                         return -ENOMEM;
837         }
838
839         if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
840                 return 0;
841
842         /*
843          * Allocate the BEACON ring.
844          */
845         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
846                                     MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
847                 return -ENOMEM;
848
849         /*
850          * Allocate the Atim ring.
851          */
852         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
853                                     DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
854                 return -ENOMEM;
855
856         return 0;
857 }
858
859 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
860 {
861         struct data_ring *ring;
862
863         ring_for_each(rt2x00dev, ring) {
864                 kfree(ring->entry);
865                 ring->entry = NULL;
866         }
867 }
868
869 void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
870 {
871         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
872                 return;
873
874         /*
875          * Unregister rfkill.
876          */
877         rt2x00rfkill_unregister(rt2x00dev);
878
879         /*
880          * Allow the HW to uninitialize.
881          */
882         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
883
884         /*
885          * Free allocated ring entries.
886          */
887         rt2x00lib_free_ring_entries(rt2x00dev);
888 }
889
890 int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
891 {
892         int status;
893
894         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
895                 return 0;
896
897         /*
898          * Allocate all ring entries.
899          */
900         status = rt2x00lib_alloc_ring_entries(rt2x00dev);
901         if (status) {
902                 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
903                 return status;
904         }
905
906         /*
907          * Initialize the device.
908          */
909         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
910         if (status)
911                 goto exit;
912
913         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
914
915         /*
916          * Register the rfkill handler.
917          */
918         status = rt2x00rfkill_register(rt2x00dev);
919         if (status)
920                 goto exit_unitialize;
921
922         return 0;
923
924 exit_unitialize:
925         rt2x00lib_uninitialize(rt2x00dev);
926
927 exit:
928         rt2x00lib_free_ring_entries(rt2x00dev);
929
930         return status;
931 }
932
933 /*
934  * driver allocation handlers.
935  */
936 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
937 {
938         struct data_ring *ring;
939
940         /*
941          * We need the following rings:
942          * RX: 1
943          * TX: hw->queues
944          * Beacon: 1 (if required)
945          * Atim: 1 (if required)
946          */
947         rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
948             (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
949
950         ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
951         if (!ring) {
952                 ERROR(rt2x00dev, "Ring allocation failed.\n");
953                 return -ENOMEM;
954         }
955
956         /*
957          * Initialize pointers
958          */
959         rt2x00dev->rx = ring;
960         rt2x00dev->tx = &rt2x00dev->rx[1];
961         if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
962                 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
963
964         /*
965          * Initialize ring parameters.
966          * cw_min: 2^5 = 32.
967          * cw_max: 2^10 = 1024.
968          */
969         ring_for_each(rt2x00dev, ring) {
970                 ring->rt2x00dev = rt2x00dev;
971                 ring->tx_params.aifs = 2;
972                 ring->tx_params.cw_min = 5;
973                 ring->tx_params.cw_max = 10;
974         }
975
976         return 0;
977 }
978
979 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
980 {
981         kfree(rt2x00dev->rx);
982         rt2x00dev->rx = NULL;
983         rt2x00dev->tx = NULL;
984         rt2x00dev->bcn = NULL;
985 }
986
987 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
988 {
989         int retval = -ENOMEM;
990
991         /*
992          * Let the driver probe the device to detect the capabilities.
993          */
994         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
995         if (retval) {
996                 ERROR(rt2x00dev, "Failed to allocate device.\n");
997                 goto exit;
998         }
999
1000         /*
1001          * Initialize configuration work.
1002          */
1003         INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
1004         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1005         INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
1006         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1007
1008         /*
1009          * Reset current working type.
1010          */
1011         rt2x00dev->interface.type = INVALID_INTERFACE;
1012
1013         /*
1014          * Allocate ring array.
1015          */
1016         retval = rt2x00lib_alloc_rings(rt2x00dev);
1017         if (retval)
1018                 goto exit;
1019
1020         /*
1021          * Initialize ieee80211 structure.
1022          */
1023         retval = rt2x00lib_probe_hw(rt2x00dev);
1024         if (retval) {
1025                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1026                 goto exit;
1027         }
1028
1029         /*
1030          * Allocatie rfkill.
1031          */
1032         retval = rt2x00rfkill_allocate(rt2x00dev);
1033         if (retval)
1034                 goto exit;
1035
1036         /*
1037          * Open the debugfs entry.
1038          */
1039         rt2x00debug_register(rt2x00dev);
1040
1041         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1042
1043         return 0;
1044
1045 exit:
1046         rt2x00lib_remove_dev(rt2x00dev);
1047
1048         return retval;
1049 }
1050 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1051
1052 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1053 {
1054         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1055
1056         /*
1057          * Disable radio.
1058          */
1059         rt2x00lib_disable_radio(rt2x00dev);
1060
1061         /*
1062          * Uninitialize device.
1063          */
1064         rt2x00lib_uninitialize(rt2x00dev);
1065
1066         /*
1067          * Close debugfs entry.
1068          */
1069         rt2x00debug_deregister(rt2x00dev);
1070
1071         /*
1072          * Free rfkill
1073          */
1074         rt2x00rfkill_free(rt2x00dev);
1075
1076         /*
1077          * Free ieee80211_hw memory.
1078          */
1079         rt2x00lib_remove_hw(rt2x00dev);
1080
1081         /*
1082          * Free firmware image.
1083          */
1084         rt2x00lib_free_firmware(rt2x00dev);
1085
1086         /*
1087          * Free ring structures.
1088          */
1089         rt2x00lib_free_rings(rt2x00dev);
1090 }
1091 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1092
1093 /*
1094  * Device state handlers
1095  */
1096 #ifdef CONFIG_PM
1097 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1098 {
1099         int retval;
1100
1101         NOTICE(rt2x00dev, "Going to sleep.\n");
1102         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1103
1104         /*
1105          * Only continue if mac80211 has open interfaces.
1106          */
1107         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1108                 goto exit;
1109         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1110
1111         /*
1112          * Disable radio and unitialize all items
1113          * that must be recreated on resume.
1114          */
1115         rt2x00mac_stop(rt2x00dev->hw);
1116         rt2x00lib_uninitialize(rt2x00dev);
1117         rt2x00debug_deregister(rt2x00dev);
1118
1119 exit:
1120         /*
1121          * Set device mode to sleep for power management.
1122          */
1123         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1124         if (retval)
1125                 return retval;
1126
1127         return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1130
1131 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1132 {
1133         struct interface *intf = &rt2x00dev->interface;
1134         int retval;
1135
1136         NOTICE(rt2x00dev, "Waking up.\n");
1137         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1138
1139         /*
1140          * Open the debugfs entry.
1141          */
1142         rt2x00debug_register(rt2x00dev);
1143
1144         /*
1145          * Only continue if mac80211 had open interfaces.
1146          */
1147         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1148                 return 0;
1149
1150         /*
1151          * Reinitialize device and all active interfaces.
1152          */
1153         retval = rt2x00mac_start(rt2x00dev->hw);
1154         if (retval)
1155                 goto exit;
1156
1157         /*
1158          * Reconfigure device.
1159          */
1160         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1161         if (!rt2x00dev->hw->conf.radio_enabled)
1162                 rt2x00lib_disable_radio(rt2x00dev);
1163
1164         rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1165         rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1166         rt2x00lib_config_type(rt2x00dev, intf->type);
1167
1168         /*
1169          * It is possible that during that mac80211 has attempted
1170          * to send frames while we were suspending or resuming.
1171          * In that case we have disabled the TX queue and should
1172          * now enable it again
1173          */
1174         ieee80211_start_queues(rt2x00dev->hw);
1175
1176         /*
1177          * When in Master or Ad-hoc mode,
1178          * restart Beacon transmitting by faking a beacondone event.
1179          */
1180         if (intf->type == IEEE80211_IF_TYPE_AP ||
1181             intf->type == IEEE80211_IF_TYPE_IBSS)
1182                 rt2x00lib_beacondone(rt2x00dev);
1183
1184         return 0;
1185
1186 exit:
1187         rt2x00lib_disable_radio(rt2x00dev);
1188         rt2x00lib_uninitialize(rt2x00dev);
1189         rt2x00debug_deregister(rt2x00dev);
1190
1191         return retval;
1192 }
1193 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1194 #endif /* CONFIG_PM */
1195
1196 /*
1197  * rt2x00lib module information.
1198  */
1199 MODULE_AUTHOR(DRV_PROJECT);
1200 MODULE_VERSION(DRV_VERSION);
1201 MODULE_DESCRIPTION("rt2x00 library");
1202 MODULE_LICENSE("GPL");