Pull vector-domain into release branch
[linux-2.6] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40
41 #include <asm/mman.h>
42
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45         loff_t offset, unsigned long nr_segs);
46
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock               (vmtruncate)
63  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock             (exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
73  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page               (access_process_vm)
77  *
78  *  ->i_mutex                   (generic_file_buffered_write)
79  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock                 (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
103  *    ->inode_lock              (zap_pte_range->set_page_dirty)
104  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock             (proc_pid_lookup)
108  */
109
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117         struct address_space *mapping = page->mapping;
118
119         radix_tree_delete(&mapping->page_tree, page->index);
120         page->mapping = NULL;
121         mapping->nrpages--;
122         __dec_zone_page_state(page, NR_FILE_PAGES);
123         BUG_ON(page_mapped(page));
124 }
125
126 void remove_from_page_cache(struct page *page)
127 {
128         struct address_space *mapping = page->mapping;
129
130         BUG_ON(!PageLocked(page));
131
132         write_lock_irq(&mapping->tree_lock);
133         __remove_from_page_cache(page);
134         write_unlock_irq(&mapping->tree_lock);
135 }
136
137 static int sync_page(void *word)
138 {
139         struct address_space *mapping;
140         struct page *page;
141
142         page = container_of((unsigned long *)word, struct page, flags);
143
144         /*
145          * page_mapping() is being called without PG_locked held.
146          * Some knowledge of the state and use of the page is used to
147          * reduce the requirements down to a memory barrier.
148          * The danger here is of a stale page_mapping() return value
149          * indicating a struct address_space different from the one it's
150          * associated with when it is associated with one.
151          * After smp_mb(), it's either the correct page_mapping() for
152          * the page, or an old page_mapping() and the page's own
153          * page_mapping() has gone NULL.
154          * The ->sync_page() address_space operation must tolerate
155          * page_mapping() going NULL. By an amazing coincidence,
156          * this comes about because none of the users of the page
157          * in the ->sync_page() methods make essential use of the
158          * page_mapping(), merely passing the page down to the backing
159          * device's unplug functions when it's non-NULL, which in turn
160          * ignore it for all cases but swap, where only page_private(page) is
161          * of interest. When page_mapping() does go NULL, the entire
162          * call stack gracefully ignores the page and returns.
163          * -- wli
164          */
165         smp_mb();
166         mapping = page_mapping(page);
167         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168                 mapping->a_ops->sync_page(page);
169         io_schedule();
170         return 0;
171 }
172
173 /**
174  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175  * @mapping:    address space structure to write
176  * @start:      offset in bytes where the range starts
177  * @end:        offset in bytes where the range ends (inclusive)
178  * @sync_mode:  enable synchronous operation
179  *
180  * Start writeback against all of a mapping's dirty pages that lie
181  * within the byte offsets <start, end> inclusive.
182  *
183  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184  * opposed to a regular memory cleansing writeback.  The difference between
185  * these two operations is that if a dirty page/buffer is encountered, it must
186  * be waited upon, and not just skipped over.
187  */
188 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189                                 loff_t end, int sync_mode)
190 {
191         int ret;
192         struct writeback_control wbc = {
193                 .sync_mode = sync_mode,
194                 .nr_to_write = mapping->nrpages * 2,
195                 .range_start = start,
196                 .range_end = end,
197         };
198
199         if (!mapping_cap_writeback_dirty(mapping))
200                 return 0;
201
202         ret = do_writepages(mapping, &wbc);
203         return ret;
204 }
205
206 static inline int __filemap_fdatawrite(struct address_space *mapping,
207         int sync_mode)
208 {
209         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
210 }
211
212 int filemap_fdatawrite(struct address_space *mapping)
213 {
214         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215 }
216 EXPORT_SYMBOL(filemap_fdatawrite);
217
218 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
219                                 loff_t end)
220 {
221         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
222 }
223
224 /**
225  * filemap_flush - mostly a non-blocking flush
226  * @mapping:    target address_space
227  *
228  * This is a mostly non-blocking flush.  Not suitable for data-integrity
229  * purposes - I/O may not be started against all dirty pages.
230  */
231 int filemap_flush(struct address_space *mapping)
232 {
233         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234 }
235 EXPORT_SYMBOL(filemap_flush);
236
237 /**
238  * wait_on_page_writeback_range - wait for writeback to complete
239  * @mapping:    target address_space
240  * @start:      beginning page index
241  * @end:        ending page index
242  *
243  * Wait for writeback to complete against pages indexed by start->end
244  * inclusive
245  */
246 int wait_on_page_writeback_range(struct address_space *mapping,
247                                 pgoff_t start, pgoff_t end)
248 {
249         struct pagevec pvec;
250         int nr_pages;
251         int ret = 0;
252         pgoff_t index;
253
254         if (end < start)
255                 return 0;
256
257         pagevec_init(&pvec, 0);
258         index = start;
259         while ((index <= end) &&
260                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261                         PAGECACHE_TAG_WRITEBACK,
262                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
263                 unsigned i;
264
265                 for (i = 0; i < nr_pages; i++) {
266                         struct page *page = pvec.pages[i];
267
268                         /* until radix tree lookup accepts end_index */
269                         if (page->index > end)
270                                 continue;
271
272                         wait_on_page_writeback(page);
273                         if (PageError(page))
274                                 ret = -EIO;
275                 }
276                 pagevec_release(&pvec);
277                 cond_resched();
278         }
279
280         /* Check for outstanding write errors */
281         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282                 ret = -ENOSPC;
283         if (test_and_clear_bit(AS_EIO, &mapping->flags))
284                 ret = -EIO;
285
286         return ret;
287 }
288
289 /**
290  * sync_page_range - write and wait on all pages in the passed range
291  * @inode:      target inode
292  * @mapping:    target address_space
293  * @pos:        beginning offset in pages to write
294  * @count:      number of bytes to write
295  *
296  * Write and wait upon all the pages in the passed range.  This is a "data
297  * integrity" operation.  It waits upon in-flight writeout before starting and
298  * waiting upon new writeout.  If there was an IO error, return it.
299  *
300  * We need to re-take i_mutex during the generic_osync_inode list walk because
301  * it is otherwise livelockable.
302  */
303 int sync_page_range(struct inode *inode, struct address_space *mapping,
304                         loff_t pos, loff_t count)
305 {
306         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
308         int ret;
309
310         if (!mapping_cap_writeback_dirty(mapping) || !count)
311                 return 0;
312         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
313         if (ret == 0) {
314                 mutex_lock(&inode->i_mutex);
315                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316                 mutex_unlock(&inode->i_mutex);
317         }
318         if (ret == 0)
319                 ret = wait_on_page_writeback_range(mapping, start, end);
320         return ret;
321 }
322 EXPORT_SYMBOL(sync_page_range);
323
324 /**
325  * sync_page_range_nolock
326  * @inode:      target inode
327  * @mapping:    target address_space
328  * @pos:        beginning offset in pages to write
329  * @count:      number of bytes to write
330  *
331  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
332  * as it forces O_SYNC writers to different parts of the same file
333  * to be serialised right until io completion.
334  */
335 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336                            loff_t pos, loff_t count)
337 {
338         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
340         int ret;
341
342         if (!mapping_cap_writeback_dirty(mapping) || !count)
343                 return 0;
344         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
345         if (ret == 0)
346                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
347         if (ret == 0)
348                 ret = wait_on_page_writeback_range(mapping, start, end);
349         return ret;
350 }
351 EXPORT_SYMBOL(sync_page_range_nolock);
352
353 /**
354  * filemap_fdatawait - wait for all under-writeback pages to complete
355  * @mapping: address space structure to wait for
356  *
357  * Walk the list of under-writeback pages of the given address space
358  * and wait for all of them.
359  */
360 int filemap_fdatawait(struct address_space *mapping)
361 {
362         loff_t i_size = i_size_read(mapping->host);
363
364         if (i_size == 0)
365                 return 0;
366
367         return wait_on_page_writeback_range(mapping, 0,
368                                 (i_size - 1) >> PAGE_CACHE_SHIFT);
369 }
370 EXPORT_SYMBOL(filemap_fdatawait);
371
372 int filemap_write_and_wait(struct address_space *mapping)
373 {
374         int err = 0;
375
376         if (mapping->nrpages) {
377                 err = filemap_fdatawrite(mapping);
378                 /*
379                  * Even if the above returned error, the pages may be
380                  * written partially (e.g. -ENOSPC), so we wait for it.
381                  * But the -EIO is special case, it may indicate the worst
382                  * thing (e.g. bug) happened, so we avoid waiting for it.
383                  */
384                 if (err != -EIO) {
385                         int err2 = filemap_fdatawait(mapping);
386                         if (!err)
387                                 err = err2;
388                 }
389         }
390         return err;
391 }
392 EXPORT_SYMBOL(filemap_write_and_wait);
393
394 /**
395  * filemap_write_and_wait_range - write out & wait on a file range
396  * @mapping:    the address_space for the pages
397  * @lstart:     offset in bytes where the range starts
398  * @lend:       offset in bytes where the range ends (inclusive)
399  *
400  * Write out and wait upon file offsets lstart->lend, inclusive.
401  *
402  * Note that `lend' is inclusive (describes the last byte to be written) so
403  * that this function can be used to write to the very end-of-file (end = -1).
404  */
405 int filemap_write_and_wait_range(struct address_space *mapping,
406                                  loff_t lstart, loff_t lend)
407 {
408         int err = 0;
409
410         if (mapping->nrpages) {
411                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
412                                                  WB_SYNC_ALL);
413                 /* See comment of filemap_write_and_wait() */
414                 if (err != -EIO) {
415                         int err2 = wait_on_page_writeback_range(mapping,
416                                                 lstart >> PAGE_CACHE_SHIFT,
417                                                 lend >> PAGE_CACHE_SHIFT);
418                         if (!err)
419                                 err = err2;
420                 }
421         }
422         return err;
423 }
424
425 /**
426  * add_to_page_cache - add newly allocated pagecache pages
427  * @page:       page to add
428  * @mapping:    the page's address_space
429  * @offset:     page index
430  * @gfp_mask:   page allocation mode
431  *
432  * This function is used to add newly allocated pagecache pages;
433  * the page is new, so we can just run SetPageLocked() against it.
434  * The other page state flags were set by rmqueue().
435  *
436  * This function does not add the page to the LRU.  The caller must do that.
437  */
438 int add_to_page_cache(struct page *page, struct address_space *mapping,
439                 pgoff_t offset, gfp_t gfp_mask)
440 {
441         int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442
443         if (error == 0) {
444                 write_lock_irq(&mapping->tree_lock);
445                 error = radix_tree_insert(&mapping->page_tree, offset, page);
446                 if (!error) {
447                         page_cache_get(page);
448                         SetPageLocked(page);
449                         page->mapping = mapping;
450                         page->index = offset;
451                         mapping->nrpages++;
452                         __inc_zone_page_state(page, NR_FILE_PAGES);
453                 }
454                 write_unlock_irq(&mapping->tree_lock);
455                 radix_tree_preload_end();
456         }
457         return error;
458 }
459 EXPORT_SYMBOL(add_to_page_cache);
460
461 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
462                                 pgoff_t offset, gfp_t gfp_mask)
463 {
464         int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
465         if (ret == 0)
466                 lru_cache_add(page);
467         return ret;
468 }
469
470 #ifdef CONFIG_NUMA
471 struct page *__page_cache_alloc(gfp_t gfp)
472 {
473         if (cpuset_do_page_mem_spread()) {
474                 int n = cpuset_mem_spread_node();
475                 return alloc_pages_node(n, gfp, 0);
476         }
477         return alloc_pages(gfp, 0);
478 }
479 EXPORT_SYMBOL(__page_cache_alloc);
480 #endif
481
482 static int __sleep_on_page_lock(void *word)
483 {
484         io_schedule();
485         return 0;
486 }
487
488 /*
489  * In order to wait for pages to become available there must be
490  * waitqueues associated with pages. By using a hash table of
491  * waitqueues where the bucket discipline is to maintain all
492  * waiters on the same queue and wake all when any of the pages
493  * become available, and for the woken contexts to check to be
494  * sure the appropriate page became available, this saves space
495  * at a cost of "thundering herd" phenomena during rare hash
496  * collisions.
497  */
498 static wait_queue_head_t *page_waitqueue(struct page *page)
499 {
500         const struct zone *zone = page_zone(page);
501
502         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503 }
504
505 static inline void wake_up_page(struct page *page, int bit)
506 {
507         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
508 }
509
510 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
511 {
512         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513
514         if (test_bit(bit_nr, &page->flags))
515                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
516                                                         TASK_UNINTERRUPTIBLE);
517 }
518 EXPORT_SYMBOL(wait_on_page_bit);
519
520 /**
521  * unlock_page - unlock a locked page
522  * @page: the page
523  *
524  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526  * mechananism between PageLocked pages and PageWriteback pages is shared.
527  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
528  *
529  * The first mb is necessary to safely close the critical section opened by the
530  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532  * parallel wait_on_page_locked()).
533  */
534 void fastcall unlock_page(struct page *page)
535 {
536         smp_mb__before_clear_bit();
537         if (!TestClearPageLocked(page))
538                 BUG();
539         smp_mb__after_clear_bit(); 
540         wake_up_page(page, PG_locked);
541 }
542 EXPORT_SYMBOL(unlock_page);
543
544 /**
545  * end_page_writeback - end writeback against a page
546  * @page: the page
547  */
548 void end_page_writeback(struct page *page)
549 {
550         if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
551                 if (!test_clear_page_writeback(page))
552                         BUG();
553         }
554         smp_mb__after_clear_bit();
555         wake_up_page(page, PG_writeback);
556 }
557 EXPORT_SYMBOL(end_page_writeback);
558
559 /**
560  * __lock_page - get a lock on the page, assuming we need to sleep to get it
561  * @page: the page to lock
562  *
563  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
564  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
565  * chances are that on the second loop, the block layer's plug list is empty,
566  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
567  */
568 void fastcall __lock_page(struct page *page)
569 {
570         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
571
572         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
573                                                         TASK_UNINTERRUPTIBLE);
574 }
575 EXPORT_SYMBOL(__lock_page);
576
577 /*
578  * Variant of lock_page that does not require the caller to hold a reference
579  * on the page's mapping.
580  */
581 void fastcall __lock_page_nosync(struct page *page)
582 {
583         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
584         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
585                                                         TASK_UNINTERRUPTIBLE);
586 }
587
588 /**
589  * find_get_page - find and get a page reference
590  * @mapping: the address_space to search
591  * @offset: the page index
592  *
593  * Is there a pagecache struct page at the given (mapping, offset) tuple?
594  * If yes, increment its refcount and return it; if no, return NULL.
595  */
596 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
597 {
598         struct page *page;
599
600         read_lock_irq(&mapping->tree_lock);
601         page = radix_tree_lookup(&mapping->page_tree, offset);
602         if (page)
603                 page_cache_get(page);
604         read_unlock_irq(&mapping->tree_lock);
605         return page;
606 }
607 EXPORT_SYMBOL(find_get_page);
608
609 /**
610  * find_lock_page - locate, pin and lock a pagecache page
611  * @mapping: the address_space to search
612  * @offset: the page index
613  *
614  * Locates the desired pagecache page, locks it, increments its reference
615  * count and returns its address.
616  *
617  * Returns zero if the page was not present. find_lock_page() may sleep.
618  */
619 struct page *find_lock_page(struct address_space *mapping,
620                                 unsigned long offset)
621 {
622         struct page *page;
623
624         read_lock_irq(&mapping->tree_lock);
625 repeat:
626         page = radix_tree_lookup(&mapping->page_tree, offset);
627         if (page) {
628                 page_cache_get(page);
629                 if (TestSetPageLocked(page)) {
630                         read_unlock_irq(&mapping->tree_lock);
631                         __lock_page(page);
632                         read_lock_irq(&mapping->tree_lock);
633
634                         /* Has the page been truncated while we slept? */
635                         if (unlikely(page->mapping != mapping ||
636                                      page->index != offset)) {
637                                 unlock_page(page);
638                                 page_cache_release(page);
639                                 goto repeat;
640                         }
641                 }
642         }
643         read_unlock_irq(&mapping->tree_lock);
644         return page;
645 }
646 EXPORT_SYMBOL(find_lock_page);
647
648 /**
649  * find_or_create_page - locate or add a pagecache page
650  * @mapping: the page's address_space
651  * @index: the page's index into the mapping
652  * @gfp_mask: page allocation mode
653  *
654  * Locates a page in the pagecache.  If the page is not present, a new page
655  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
656  * LRU list.  The returned page is locked and has its reference count
657  * incremented.
658  *
659  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
660  * allocation!
661  *
662  * find_or_create_page() returns the desired page's address, or zero on
663  * memory exhaustion.
664  */
665 struct page *find_or_create_page(struct address_space *mapping,
666                 unsigned long index, gfp_t gfp_mask)
667 {
668         struct page *page, *cached_page = NULL;
669         int err;
670 repeat:
671         page = find_lock_page(mapping, index);
672         if (!page) {
673                 if (!cached_page) {
674                         cached_page =
675                                 __page_cache_alloc(gfp_mask);
676                         if (!cached_page)
677                                 return NULL;
678                 }
679                 err = add_to_page_cache_lru(cached_page, mapping,
680                                         index, gfp_mask);
681                 if (!err) {
682                         page = cached_page;
683                         cached_page = NULL;
684                 } else if (err == -EEXIST)
685                         goto repeat;
686         }
687         if (cached_page)
688                 page_cache_release(cached_page);
689         return page;
690 }
691 EXPORT_SYMBOL(find_or_create_page);
692
693 /**
694  * find_get_pages - gang pagecache lookup
695  * @mapping:    The address_space to search
696  * @start:      The starting page index
697  * @nr_pages:   The maximum number of pages
698  * @pages:      Where the resulting pages are placed
699  *
700  * find_get_pages() will search for and return a group of up to
701  * @nr_pages pages in the mapping.  The pages are placed at @pages.
702  * find_get_pages() takes a reference against the returned pages.
703  *
704  * The search returns a group of mapping-contiguous pages with ascending
705  * indexes.  There may be holes in the indices due to not-present pages.
706  *
707  * find_get_pages() returns the number of pages which were found.
708  */
709 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
710                             unsigned int nr_pages, struct page **pages)
711 {
712         unsigned int i;
713         unsigned int ret;
714
715         read_lock_irq(&mapping->tree_lock);
716         ret = radix_tree_gang_lookup(&mapping->page_tree,
717                                 (void **)pages, start, nr_pages);
718         for (i = 0; i < ret; i++)
719                 page_cache_get(pages[i]);
720         read_unlock_irq(&mapping->tree_lock);
721         return ret;
722 }
723
724 /**
725  * find_get_pages_contig - gang contiguous pagecache lookup
726  * @mapping:    The address_space to search
727  * @index:      The starting page index
728  * @nr_pages:   The maximum number of pages
729  * @pages:      Where the resulting pages are placed
730  *
731  * find_get_pages_contig() works exactly like find_get_pages(), except
732  * that the returned number of pages are guaranteed to be contiguous.
733  *
734  * find_get_pages_contig() returns the number of pages which were found.
735  */
736 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
737                                unsigned int nr_pages, struct page **pages)
738 {
739         unsigned int i;
740         unsigned int ret;
741
742         read_lock_irq(&mapping->tree_lock);
743         ret = radix_tree_gang_lookup(&mapping->page_tree,
744                                 (void **)pages, index, nr_pages);
745         for (i = 0; i < ret; i++) {
746                 if (pages[i]->mapping == NULL || pages[i]->index != index)
747                         break;
748
749                 page_cache_get(pages[i]);
750                 index++;
751         }
752         read_unlock_irq(&mapping->tree_lock);
753         return i;
754 }
755 EXPORT_SYMBOL(find_get_pages_contig);
756
757 /**
758  * find_get_pages_tag - find and return pages that match @tag
759  * @mapping:    the address_space to search
760  * @index:      the starting page index
761  * @tag:        the tag index
762  * @nr_pages:   the maximum number of pages
763  * @pages:      where the resulting pages are placed
764  *
765  * Like find_get_pages, except we only return pages which are tagged with
766  * @tag.   We update @index to index the next page for the traversal.
767  */
768 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
769                         int tag, unsigned int nr_pages, struct page **pages)
770 {
771         unsigned int i;
772         unsigned int ret;
773
774         read_lock_irq(&mapping->tree_lock);
775         ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
776                                 (void **)pages, *index, nr_pages, tag);
777         for (i = 0; i < ret; i++)
778                 page_cache_get(pages[i]);
779         if (ret)
780                 *index = pages[ret - 1]->index + 1;
781         read_unlock_irq(&mapping->tree_lock);
782         return ret;
783 }
784 EXPORT_SYMBOL(find_get_pages_tag);
785
786 /**
787  * grab_cache_page_nowait - returns locked page at given index in given cache
788  * @mapping: target address_space
789  * @index: the page index
790  *
791  * Same as grab_cache_page(), but do not wait if the page is unavailable.
792  * This is intended for speculative data generators, where the data can
793  * be regenerated if the page couldn't be grabbed.  This routine should
794  * be safe to call while holding the lock for another page.
795  *
796  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
797  * and deadlock against the caller's locked page.
798  */
799 struct page *
800 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
801 {
802         struct page *page = find_get_page(mapping, index);
803
804         if (page) {
805                 if (!TestSetPageLocked(page))
806                         return page;
807                 page_cache_release(page);
808                 return NULL;
809         }
810         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
811         if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
812                 page_cache_release(page);
813                 page = NULL;
814         }
815         return page;
816 }
817 EXPORT_SYMBOL(grab_cache_page_nowait);
818
819 /*
820  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
821  * a _large_ part of the i/o request. Imagine the worst scenario:
822  *
823  *      ---R__________________________________________B__________
824  *         ^ reading here                             ^ bad block(assume 4k)
825  *
826  * read(R) => miss => readahead(R...B) => media error => frustrating retries
827  * => failing the whole request => read(R) => read(R+1) =>
828  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
829  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
830  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
831  *
832  * It is going insane. Fix it by quickly scaling down the readahead size.
833  */
834 static void shrink_readahead_size_eio(struct file *filp,
835                                         struct file_ra_state *ra)
836 {
837         if (!ra->ra_pages)
838                 return;
839
840         ra->ra_pages /= 4;
841 }
842
843 /**
844  * do_generic_mapping_read - generic file read routine
845  * @mapping:    address_space to be read
846  * @_ra:        file's readahead state
847  * @filp:       the file to read
848  * @ppos:       current file position
849  * @desc:       read_descriptor
850  * @actor:      read method
851  *
852  * This is a generic file read routine, and uses the
853  * mapping->a_ops->readpage() function for the actual low-level stuff.
854  *
855  * This is really ugly. But the goto's actually try to clarify some
856  * of the logic when it comes to error handling etc.
857  *
858  * Note the struct file* is only passed for the use of readpage.
859  * It may be NULL.
860  */
861 void do_generic_mapping_read(struct address_space *mapping,
862                              struct file_ra_state *_ra,
863                              struct file *filp,
864                              loff_t *ppos,
865                              read_descriptor_t *desc,
866                              read_actor_t actor)
867 {
868         struct inode *inode = mapping->host;
869         unsigned long index;
870         unsigned long offset;
871         unsigned long last_index;
872         unsigned long next_index;
873         unsigned long prev_index;
874         unsigned int prev_offset;
875         struct page *cached_page;
876         int error;
877         struct file_ra_state ra = *_ra;
878
879         cached_page = NULL;
880         index = *ppos >> PAGE_CACHE_SHIFT;
881         next_index = index;
882         prev_index = ra.prev_index;
883         prev_offset = ra.prev_offset;
884         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
885         offset = *ppos & ~PAGE_CACHE_MASK;
886
887         for (;;) {
888                 struct page *page;
889                 unsigned long end_index;
890                 loff_t isize;
891                 unsigned long nr, ret;
892
893                 cond_resched();
894 find_page:
895                 page = find_get_page(mapping, index);
896                 if (!page) {
897                         page_cache_sync_readahead(mapping,
898                                         &ra, filp,
899                                         index, last_index - index);
900                         page = find_get_page(mapping, index);
901                         if (unlikely(page == NULL))
902                                 goto no_cached_page;
903                 }
904                 if (PageReadahead(page)) {
905                         page_cache_async_readahead(mapping,
906                                         &ra, filp, page,
907                                         index, last_index - index);
908                 }
909                 if (!PageUptodate(page))
910                         goto page_not_up_to_date;
911 page_ok:
912                 /*
913                  * i_size must be checked after we know the page is Uptodate.
914                  *
915                  * Checking i_size after the check allows us to calculate
916                  * the correct value for "nr", which means the zero-filled
917                  * part of the page is not copied back to userspace (unless
918                  * another truncate extends the file - this is desired though).
919                  */
920
921                 isize = i_size_read(inode);
922                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
923                 if (unlikely(!isize || index > end_index)) {
924                         page_cache_release(page);
925                         goto out;
926                 }
927
928                 /* nr is the maximum number of bytes to copy from this page */
929                 nr = PAGE_CACHE_SIZE;
930                 if (index == end_index) {
931                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
932                         if (nr <= offset) {
933                                 page_cache_release(page);
934                                 goto out;
935                         }
936                 }
937                 nr = nr - offset;
938
939                 /* If users can be writing to this page using arbitrary
940                  * virtual addresses, take care about potential aliasing
941                  * before reading the page on the kernel side.
942                  */
943                 if (mapping_writably_mapped(mapping))
944                         flush_dcache_page(page);
945
946                 /*
947                  * When a sequential read accesses a page several times,
948                  * only mark it as accessed the first time.
949                  */
950                 if (prev_index != index || offset != prev_offset)
951                         mark_page_accessed(page);
952                 prev_index = index;
953
954                 /*
955                  * Ok, we have the page, and it's up-to-date, so
956                  * now we can copy it to user space...
957                  *
958                  * The actor routine returns how many bytes were actually used..
959                  * NOTE! This may not be the same as how much of a user buffer
960                  * we filled up (we may be padding etc), so we can only update
961                  * "pos" here (the actor routine has to update the user buffer
962                  * pointers and the remaining count).
963                  */
964                 ret = actor(desc, page, offset, nr);
965                 offset += ret;
966                 index += offset >> PAGE_CACHE_SHIFT;
967                 offset &= ~PAGE_CACHE_MASK;
968                 prev_offset = offset;
969                 ra.prev_offset = offset;
970
971                 page_cache_release(page);
972                 if (ret == nr && desc->count)
973                         continue;
974                 goto out;
975
976 page_not_up_to_date:
977                 /* Get exclusive access to the page ... */
978                 lock_page(page);
979
980                 /* Did it get truncated before we got the lock? */
981                 if (!page->mapping) {
982                         unlock_page(page);
983                         page_cache_release(page);
984                         continue;
985                 }
986
987                 /* Did somebody else fill it already? */
988                 if (PageUptodate(page)) {
989                         unlock_page(page);
990                         goto page_ok;
991                 }
992
993 readpage:
994                 /* Start the actual read. The read will unlock the page. */
995                 error = mapping->a_ops->readpage(filp, page);
996
997                 if (unlikely(error)) {
998                         if (error == AOP_TRUNCATED_PAGE) {
999                                 page_cache_release(page);
1000                                 goto find_page;
1001                         }
1002                         goto readpage_error;
1003                 }
1004
1005                 if (!PageUptodate(page)) {
1006                         lock_page(page);
1007                         if (!PageUptodate(page)) {
1008                                 if (page->mapping == NULL) {
1009                                         /*
1010                                          * invalidate_inode_pages got it
1011                                          */
1012                                         unlock_page(page);
1013                                         page_cache_release(page);
1014                                         goto find_page;
1015                                 }
1016                                 unlock_page(page);
1017                                 error = -EIO;
1018                                 shrink_readahead_size_eio(filp, &ra);
1019                                 goto readpage_error;
1020                         }
1021                         unlock_page(page);
1022                 }
1023
1024                 goto page_ok;
1025
1026 readpage_error:
1027                 /* UHHUH! A synchronous read error occurred. Report it */
1028                 desc->error = error;
1029                 page_cache_release(page);
1030                 goto out;
1031
1032 no_cached_page:
1033                 /*
1034                  * Ok, it wasn't cached, so we need to create a new
1035                  * page..
1036                  */
1037                 if (!cached_page) {
1038                         cached_page = page_cache_alloc_cold(mapping);
1039                         if (!cached_page) {
1040                                 desc->error = -ENOMEM;
1041                                 goto out;
1042                         }
1043                 }
1044                 error = add_to_page_cache_lru(cached_page, mapping,
1045                                                 index, GFP_KERNEL);
1046                 if (error) {
1047                         if (error == -EEXIST)
1048                                 goto find_page;
1049                         desc->error = error;
1050                         goto out;
1051                 }
1052                 page = cached_page;
1053                 cached_page = NULL;
1054                 goto readpage;
1055         }
1056
1057 out:
1058         *_ra = ra;
1059         _ra->prev_index = prev_index;
1060
1061         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1062         if (cached_page)
1063                 page_cache_release(cached_page);
1064         if (filp)
1065                 file_accessed(filp);
1066 }
1067 EXPORT_SYMBOL(do_generic_mapping_read);
1068
1069 int file_read_actor(read_descriptor_t *desc, struct page *page,
1070                         unsigned long offset, unsigned long size)
1071 {
1072         char *kaddr;
1073         unsigned long left, count = desc->count;
1074
1075         if (size > count)
1076                 size = count;
1077
1078         /*
1079          * Faults on the destination of a read are common, so do it before
1080          * taking the kmap.
1081          */
1082         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1083                 kaddr = kmap_atomic(page, KM_USER0);
1084                 left = __copy_to_user_inatomic(desc->arg.buf,
1085                                                 kaddr + offset, size);
1086                 kunmap_atomic(kaddr, KM_USER0);
1087                 if (left == 0)
1088                         goto success;
1089         }
1090
1091         /* Do it the slow way */
1092         kaddr = kmap(page);
1093         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1094         kunmap(page);
1095
1096         if (left) {
1097                 size -= left;
1098                 desc->error = -EFAULT;
1099         }
1100 success:
1101         desc->count = count - size;
1102         desc->written += size;
1103         desc->arg.buf += size;
1104         return size;
1105 }
1106
1107 /*
1108  * Performs necessary checks before doing a write
1109  * @iov:        io vector request
1110  * @nr_segs:    number of segments in the iovec
1111  * @count:      number of bytes to write
1112  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1113  *
1114  * Adjust number of segments and amount of bytes to write (nr_segs should be
1115  * properly initialized first). Returns appropriate error code that caller
1116  * should return or zero in case that write should be allowed.
1117  */
1118 int generic_segment_checks(const struct iovec *iov,
1119                         unsigned long *nr_segs, size_t *count, int access_flags)
1120 {
1121         unsigned long   seg;
1122         size_t cnt = 0;
1123         for (seg = 0; seg < *nr_segs; seg++) {
1124                 const struct iovec *iv = &iov[seg];
1125
1126                 /*
1127                  * If any segment has a negative length, or the cumulative
1128                  * length ever wraps negative then return -EINVAL.
1129                  */
1130                 cnt += iv->iov_len;
1131                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1132                         return -EINVAL;
1133                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1134                         continue;
1135                 if (seg == 0)
1136                         return -EFAULT;
1137                 *nr_segs = seg;
1138                 cnt -= iv->iov_len;     /* This segment is no good */
1139                 break;
1140         }
1141         *count = cnt;
1142         return 0;
1143 }
1144 EXPORT_SYMBOL(generic_segment_checks);
1145
1146 /**
1147  * generic_file_aio_read - generic filesystem read routine
1148  * @iocb:       kernel I/O control block
1149  * @iov:        io vector request
1150  * @nr_segs:    number of segments in the iovec
1151  * @pos:        current file position
1152  *
1153  * This is the "read()" routine for all filesystems
1154  * that can use the page cache directly.
1155  */
1156 ssize_t
1157 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1158                 unsigned long nr_segs, loff_t pos)
1159 {
1160         struct file *filp = iocb->ki_filp;
1161         ssize_t retval;
1162         unsigned long seg;
1163         size_t count;
1164         loff_t *ppos = &iocb->ki_pos;
1165
1166         count = 0;
1167         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1168         if (retval)
1169                 return retval;
1170
1171         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1172         if (filp->f_flags & O_DIRECT) {
1173                 loff_t size;
1174                 struct address_space *mapping;
1175                 struct inode *inode;
1176
1177                 mapping = filp->f_mapping;
1178                 inode = mapping->host;
1179                 retval = 0;
1180                 if (!count)
1181                         goto out; /* skip atime */
1182                 size = i_size_read(inode);
1183                 if (pos < size) {
1184                         retval = generic_file_direct_IO(READ, iocb,
1185                                                 iov, pos, nr_segs);
1186                         if (retval > 0)
1187                                 *ppos = pos + retval;
1188                 }
1189                 if (likely(retval != 0)) {
1190                         file_accessed(filp);
1191                         goto out;
1192                 }
1193         }
1194
1195         retval = 0;
1196         if (count) {
1197                 for (seg = 0; seg < nr_segs; seg++) {
1198                         read_descriptor_t desc;
1199
1200                         desc.written = 0;
1201                         desc.arg.buf = iov[seg].iov_base;
1202                         desc.count = iov[seg].iov_len;
1203                         if (desc.count == 0)
1204                                 continue;
1205                         desc.error = 0;
1206                         do_generic_file_read(filp,ppos,&desc,file_read_actor);
1207                         retval += desc.written;
1208                         if (desc.error) {
1209                                 retval = retval ?: desc.error;
1210                                 break;
1211                         }
1212                         if (desc.count > 0)
1213                                 break;
1214                 }
1215         }
1216 out:
1217         return retval;
1218 }
1219 EXPORT_SYMBOL(generic_file_aio_read);
1220
1221 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1222 {
1223         ssize_t written;
1224         unsigned long count = desc->count;
1225         struct file *file = desc->arg.data;
1226
1227         if (size > count)
1228                 size = count;
1229
1230         written = file->f_op->sendpage(file, page, offset,
1231                                        size, &file->f_pos, size<count);
1232         if (written < 0) {
1233                 desc->error = written;
1234                 written = 0;
1235         }
1236         desc->count = count - written;
1237         desc->written += written;
1238         return written;
1239 }
1240
1241 static ssize_t
1242 do_readahead(struct address_space *mapping, struct file *filp,
1243              unsigned long index, unsigned long nr)
1244 {
1245         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1246                 return -EINVAL;
1247
1248         force_page_cache_readahead(mapping, filp, index,
1249                                         max_sane_readahead(nr));
1250         return 0;
1251 }
1252
1253 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1254 {
1255         ssize_t ret;
1256         struct file *file;
1257
1258         ret = -EBADF;
1259         file = fget(fd);
1260         if (file) {
1261                 if (file->f_mode & FMODE_READ) {
1262                         struct address_space *mapping = file->f_mapping;
1263                         unsigned long start = offset >> PAGE_CACHE_SHIFT;
1264                         unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1265                         unsigned long len = end - start + 1;
1266                         ret = do_readahead(mapping, file, start, len);
1267                 }
1268                 fput(file);
1269         }
1270         return ret;
1271 }
1272
1273 #ifdef CONFIG_MMU
1274 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1275 /**
1276  * page_cache_read - adds requested page to the page cache if not already there
1277  * @file:       file to read
1278  * @offset:     page index
1279  *
1280  * This adds the requested page to the page cache if it isn't already there,
1281  * and schedules an I/O to read in its contents from disk.
1282  */
1283 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1284 {
1285         struct address_space *mapping = file->f_mapping;
1286         struct page *page; 
1287         int ret;
1288
1289         do {
1290                 page = page_cache_alloc_cold(mapping);
1291                 if (!page)
1292                         return -ENOMEM;
1293
1294                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1295                 if (ret == 0)
1296                         ret = mapping->a_ops->readpage(file, page);
1297                 else if (ret == -EEXIST)
1298                         ret = 0; /* losing race to add is OK */
1299
1300                 page_cache_release(page);
1301
1302         } while (ret == AOP_TRUNCATED_PAGE);
1303                 
1304         return ret;
1305 }
1306
1307 #define MMAP_LOTSAMISS  (100)
1308
1309 /**
1310  * filemap_fault - read in file data for page fault handling
1311  * @vma:        vma in which the fault was taken
1312  * @vmf:        struct vm_fault containing details of the fault
1313  *
1314  * filemap_fault() is invoked via the vma operations vector for a
1315  * mapped memory region to read in file data during a page fault.
1316  *
1317  * The goto's are kind of ugly, but this streamlines the normal case of having
1318  * it in the page cache, and handles the special cases reasonably without
1319  * having a lot of duplicated code.
1320  */
1321 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1322 {
1323         int error;
1324         struct file *file = vma->vm_file;
1325         struct address_space *mapping = file->f_mapping;
1326         struct file_ra_state *ra = &file->f_ra;
1327         struct inode *inode = mapping->host;
1328         struct page *page;
1329         unsigned long size;
1330         int did_readaround = 0;
1331         int ret = 0;
1332
1333         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1334         if (vmf->pgoff >= size)
1335                 goto outside_data_content;
1336
1337         /* If we don't want any read-ahead, don't bother */
1338         if (VM_RandomReadHint(vma))
1339                 goto no_cached_page;
1340
1341         /*
1342          * Do we have something in the page cache already?
1343          */
1344 retry_find:
1345         page = find_lock_page(mapping, vmf->pgoff);
1346         /*
1347          * For sequential accesses, we use the generic readahead logic.
1348          */
1349         if (VM_SequentialReadHint(vma)) {
1350                 if (!page) {
1351                         page_cache_sync_readahead(mapping, ra, file,
1352                                                            vmf->pgoff, 1);
1353                         page = find_lock_page(mapping, vmf->pgoff);
1354                         if (!page)
1355                                 goto no_cached_page;
1356                 }
1357                 if (PageReadahead(page)) {
1358                         page_cache_async_readahead(mapping, ra, file, page,
1359                                                            vmf->pgoff, 1);
1360                 }
1361         }
1362
1363         if (!page) {
1364                 unsigned long ra_pages;
1365
1366                 ra->mmap_miss++;
1367
1368                 /*
1369                  * Do we miss much more than hit in this file? If so,
1370                  * stop bothering with read-ahead. It will only hurt.
1371                  */
1372                 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1373                         goto no_cached_page;
1374
1375                 /*
1376                  * To keep the pgmajfault counter straight, we need to
1377                  * check did_readaround, as this is an inner loop.
1378                  */
1379                 if (!did_readaround) {
1380                         ret = VM_FAULT_MAJOR;
1381                         count_vm_event(PGMAJFAULT);
1382                 }
1383                 did_readaround = 1;
1384                 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1385                 if (ra_pages) {
1386                         pgoff_t start = 0;
1387
1388                         if (vmf->pgoff > ra_pages / 2)
1389                                 start = vmf->pgoff - ra_pages / 2;
1390                         do_page_cache_readahead(mapping, file, start, ra_pages);
1391                 }
1392                 page = find_lock_page(mapping, vmf->pgoff);
1393                 if (!page)
1394                         goto no_cached_page;
1395         }
1396
1397         if (!did_readaround)
1398                 ra->mmap_hit++;
1399
1400         /*
1401          * We have a locked page in the page cache, now we need to check
1402          * that it's up-to-date. If not, it is going to be due to an error.
1403          */
1404         if (unlikely(!PageUptodate(page)))
1405                 goto page_not_uptodate;
1406
1407         /* Must recheck i_size under page lock */
1408         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1409         if (unlikely(vmf->pgoff >= size)) {
1410                 unlock_page(page);
1411                 goto outside_data_content;
1412         }
1413
1414         /*
1415          * Found the page and have a reference on it.
1416          */
1417         mark_page_accessed(page);
1418         ra->prev_index = page->index;
1419         vmf->page = page;
1420         return ret | VM_FAULT_LOCKED;
1421
1422 outside_data_content:
1423         /*
1424          * An external ptracer can access pages that normally aren't
1425          * accessible..
1426          */
1427         if (vma->vm_mm == current->mm)
1428                 return VM_FAULT_SIGBUS;
1429
1430         /* Fall through to the non-read-ahead case */
1431 no_cached_page:
1432         /*
1433          * We're only likely to ever get here if MADV_RANDOM is in
1434          * effect.
1435          */
1436         error = page_cache_read(file, vmf->pgoff);
1437
1438         /*
1439          * The page we want has now been added to the page cache.
1440          * In the unlikely event that someone removed it in the
1441          * meantime, we'll just come back here and read it again.
1442          */
1443         if (error >= 0)
1444                 goto retry_find;
1445
1446         /*
1447          * An error return from page_cache_read can result if the
1448          * system is low on memory, or a problem occurs while trying
1449          * to schedule I/O.
1450          */
1451         if (error == -ENOMEM)
1452                 return VM_FAULT_OOM;
1453         return VM_FAULT_SIGBUS;
1454
1455 page_not_uptodate:
1456         /* IO error path */
1457         if (!did_readaround) {
1458                 ret = VM_FAULT_MAJOR;
1459                 count_vm_event(PGMAJFAULT);
1460         }
1461
1462         /*
1463          * Umm, take care of errors if the page isn't up-to-date.
1464          * Try to re-read it _once_. We do this synchronously,
1465          * because there really aren't any performance issues here
1466          * and we need to check for errors.
1467          */
1468         ClearPageError(page);
1469         error = mapping->a_ops->readpage(file, page);
1470         page_cache_release(page);
1471
1472         if (!error || error == AOP_TRUNCATED_PAGE)
1473                 goto retry_find;
1474
1475         /* Things didn't work out. Return zero to tell the mm layer so. */
1476         shrink_readahead_size_eio(file, ra);
1477         return VM_FAULT_SIGBUS;
1478 }
1479 EXPORT_SYMBOL(filemap_fault);
1480
1481 struct vm_operations_struct generic_file_vm_ops = {
1482         .fault          = filemap_fault,
1483 };
1484
1485 /* This is used for a general mmap of a disk file */
1486
1487 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1488 {
1489         struct address_space *mapping = file->f_mapping;
1490
1491         if (!mapping->a_ops->readpage)
1492                 return -ENOEXEC;
1493         file_accessed(file);
1494         vma->vm_ops = &generic_file_vm_ops;
1495         vma->vm_flags |= VM_CAN_NONLINEAR;
1496         return 0;
1497 }
1498
1499 /*
1500  * This is for filesystems which do not implement ->writepage.
1501  */
1502 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1503 {
1504         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1505                 return -EINVAL;
1506         return generic_file_mmap(file, vma);
1507 }
1508 #else
1509 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1510 {
1511         return -ENOSYS;
1512 }
1513 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1514 {
1515         return -ENOSYS;
1516 }
1517 #endif /* CONFIG_MMU */
1518
1519 EXPORT_SYMBOL(generic_file_mmap);
1520 EXPORT_SYMBOL(generic_file_readonly_mmap);
1521
1522 static struct page *__read_cache_page(struct address_space *mapping,
1523                                 unsigned long index,
1524                                 int (*filler)(void *,struct page*),
1525                                 void *data)
1526 {
1527         struct page *page, *cached_page = NULL;
1528         int err;
1529 repeat:
1530         page = find_get_page(mapping, index);
1531         if (!page) {
1532                 if (!cached_page) {
1533                         cached_page = page_cache_alloc_cold(mapping);
1534                         if (!cached_page)
1535                                 return ERR_PTR(-ENOMEM);
1536                 }
1537                 err = add_to_page_cache_lru(cached_page, mapping,
1538                                         index, GFP_KERNEL);
1539                 if (err == -EEXIST)
1540                         goto repeat;
1541                 if (err < 0) {
1542                         /* Presumably ENOMEM for radix tree node */
1543                         page_cache_release(cached_page);
1544                         return ERR_PTR(err);
1545                 }
1546                 page = cached_page;
1547                 cached_page = NULL;
1548                 err = filler(data, page);
1549                 if (err < 0) {
1550                         page_cache_release(page);
1551                         page = ERR_PTR(err);
1552                 }
1553         }
1554         if (cached_page)
1555                 page_cache_release(cached_page);
1556         return page;
1557 }
1558
1559 /*
1560  * Same as read_cache_page, but don't wait for page to become unlocked
1561  * after submitting it to the filler.
1562  */
1563 struct page *read_cache_page_async(struct address_space *mapping,
1564                                 unsigned long index,
1565                                 int (*filler)(void *,struct page*),
1566                                 void *data)
1567 {
1568         struct page *page;
1569         int err;
1570
1571 retry:
1572         page = __read_cache_page(mapping, index, filler, data);
1573         if (IS_ERR(page))
1574                 return page;
1575         if (PageUptodate(page))
1576                 goto out;
1577
1578         lock_page(page);
1579         if (!page->mapping) {
1580                 unlock_page(page);
1581                 page_cache_release(page);
1582                 goto retry;
1583         }
1584         if (PageUptodate(page)) {
1585                 unlock_page(page);
1586                 goto out;
1587         }
1588         err = filler(data, page);
1589         if (err < 0) {
1590                 page_cache_release(page);
1591                 return ERR_PTR(err);
1592         }
1593 out:
1594         mark_page_accessed(page);
1595         return page;
1596 }
1597 EXPORT_SYMBOL(read_cache_page_async);
1598
1599 /**
1600  * read_cache_page - read into page cache, fill it if needed
1601  * @mapping:    the page's address_space
1602  * @index:      the page index
1603  * @filler:     function to perform the read
1604  * @data:       destination for read data
1605  *
1606  * Read into the page cache. If a page already exists, and PageUptodate() is
1607  * not set, try to fill the page then wait for it to become unlocked.
1608  *
1609  * If the page does not get brought uptodate, return -EIO.
1610  */
1611 struct page *read_cache_page(struct address_space *mapping,
1612                                 unsigned long index,
1613                                 int (*filler)(void *,struct page*),
1614                                 void *data)
1615 {
1616         struct page *page;
1617
1618         page = read_cache_page_async(mapping, index, filler, data);
1619         if (IS_ERR(page))
1620                 goto out;
1621         wait_on_page_locked(page);
1622         if (!PageUptodate(page)) {
1623                 page_cache_release(page);
1624                 page = ERR_PTR(-EIO);
1625         }
1626  out:
1627         return page;
1628 }
1629 EXPORT_SYMBOL(read_cache_page);
1630
1631 /*
1632  * If the page was newly created, increment its refcount and add it to the
1633  * caller's lru-buffering pagevec.  This function is specifically for
1634  * generic_file_write().
1635  */
1636 static inline struct page *
1637 __grab_cache_page(struct address_space *mapping, unsigned long index,
1638                         struct page **cached_page, struct pagevec *lru_pvec)
1639 {
1640         int err;
1641         struct page *page;
1642 repeat:
1643         page = find_lock_page(mapping, index);
1644         if (!page) {
1645                 if (!*cached_page) {
1646                         *cached_page = page_cache_alloc(mapping);
1647                         if (!*cached_page)
1648                                 return NULL;
1649                 }
1650                 err = add_to_page_cache(*cached_page, mapping,
1651                                         index, GFP_KERNEL);
1652                 if (err == -EEXIST)
1653                         goto repeat;
1654                 if (err == 0) {
1655                         page = *cached_page;
1656                         page_cache_get(page);
1657                         if (!pagevec_add(lru_pvec, page))
1658                                 __pagevec_lru_add(lru_pvec);
1659                         *cached_page = NULL;
1660                 }
1661         }
1662         return page;
1663 }
1664
1665 /*
1666  * The logic we want is
1667  *
1668  *      if suid or (sgid and xgrp)
1669  *              remove privs
1670  */
1671 int should_remove_suid(struct dentry *dentry)
1672 {
1673         mode_t mode = dentry->d_inode->i_mode;
1674         int kill = 0;
1675
1676         /* suid always must be killed */
1677         if (unlikely(mode & S_ISUID))
1678                 kill = ATTR_KILL_SUID;
1679
1680         /*
1681          * sgid without any exec bits is just a mandatory locking mark; leave
1682          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1683          */
1684         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1685                 kill |= ATTR_KILL_SGID;
1686
1687         if (unlikely(kill && !capable(CAP_FSETID)))
1688                 return kill;
1689
1690         return 0;
1691 }
1692 EXPORT_SYMBOL(should_remove_suid);
1693
1694 int __remove_suid(struct dentry *dentry, int kill)
1695 {
1696         struct iattr newattrs;
1697
1698         newattrs.ia_valid = ATTR_FORCE | kill;
1699         return notify_change(dentry, &newattrs);
1700 }
1701
1702 int remove_suid(struct dentry *dentry)
1703 {
1704         int kill = should_remove_suid(dentry);
1705
1706         if (unlikely(kill))
1707                 return __remove_suid(dentry, kill);
1708
1709         return 0;
1710 }
1711 EXPORT_SYMBOL(remove_suid);
1712
1713 size_t
1714 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1715                         const struct iovec *iov, size_t base, size_t bytes)
1716 {
1717         size_t copied = 0, left = 0;
1718
1719         while (bytes) {
1720                 char __user *buf = iov->iov_base + base;
1721                 int copy = min(bytes, iov->iov_len - base);
1722
1723                 base = 0;
1724                 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1725                 copied += copy;
1726                 bytes -= copy;
1727                 vaddr += copy;
1728                 iov++;
1729
1730                 if (unlikely(left))
1731                         break;
1732         }
1733         return copied - left;
1734 }
1735
1736 /*
1737  * Performs necessary checks before doing a write
1738  *
1739  * Can adjust writing position or amount of bytes to write.
1740  * Returns appropriate error code that caller should return or
1741  * zero in case that write should be allowed.
1742  */
1743 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1744 {
1745         struct inode *inode = file->f_mapping->host;
1746         unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1747
1748         if (unlikely(*pos < 0))
1749                 return -EINVAL;
1750
1751         if (!isblk) {
1752                 /* FIXME: this is for backwards compatibility with 2.4 */
1753                 if (file->f_flags & O_APPEND)
1754                         *pos = i_size_read(inode);
1755
1756                 if (limit != RLIM_INFINITY) {
1757                         if (*pos >= limit) {
1758                                 send_sig(SIGXFSZ, current, 0);
1759                                 return -EFBIG;
1760                         }
1761                         if (*count > limit - (typeof(limit))*pos) {
1762                                 *count = limit - (typeof(limit))*pos;
1763                         }
1764                 }
1765         }
1766
1767         /*
1768          * LFS rule
1769          */
1770         if (unlikely(*pos + *count > MAX_NON_LFS &&
1771                                 !(file->f_flags & O_LARGEFILE))) {
1772                 if (*pos >= MAX_NON_LFS) {
1773                         return -EFBIG;
1774                 }
1775                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1776                         *count = MAX_NON_LFS - (unsigned long)*pos;
1777                 }
1778         }
1779
1780         /*
1781          * Are we about to exceed the fs block limit ?
1782          *
1783          * If we have written data it becomes a short write.  If we have
1784          * exceeded without writing data we send a signal and return EFBIG.
1785          * Linus frestrict idea will clean these up nicely..
1786          */
1787         if (likely(!isblk)) {
1788                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1789                         if (*count || *pos > inode->i_sb->s_maxbytes) {
1790                                 return -EFBIG;
1791                         }
1792                         /* zero-length writes at ->s_maxbytes are OK */
1793                 }
1794
1795                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1796                         *count = inode->i_sb->s_maxbytes - *pos;
1797         } else {
1798 #ifdef CONFIG_BLOCK
1799                 loff_t isize;
1800                 if (bdev_read_only(I_BDEV(inode)))
1801                         return -EPERM;
1802                 isize = i_size_read(inode);
1803                 if (*pos >= isize) {
1804                         if (*count || *pos > isize)
1805                                 return -ENOSPC;
1806                 }
1807
1808                 if (*pos + *count > isize)
1809                         *count = isize - *pos;
1810 #else
1811                 return -EPERM;
1812 #endif
1813         }
1814         return 0;
1815 }
1816 EXPORT_SYMBOL(generic_write_checks);
1817
1818 ssize_t
1819 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1820                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1821                 size_t count, size_t ocount)
1822 {
1823         struct file     *file = iocb->ki_filp;
1824         struct address_space *mapping = file->f_mapping;
1825         struct inode    *inode = mapping->host;
1826         ssize_t         written;
1827
1828         if (count != ocount)
1829                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1830
1831         written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1832         if (written > 0) {
1833                 loff_t end = pos + written;
1834                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1835                         i_size_write(inode,  end);
1836                         mark_inode_dirty(inode);
1837                 }
1838                 *ppos = end;
1839         }
1840
1841         /*
1842          * Sync the fs metadata but not the minor inode changes and
1843          * of course not the data as we did direct DMA for the IO.
1844          * i_mutex is held, which protects generic_osync_inode() from
1845          * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
1846          */
1847         if ((written >= 0 || written == -EIOCBQUEUED) &&
1848             ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1849                 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1850                 if (err < 0)
1851                         written = err;
1852         }
1853         return written;
1854 }
1855 EXPORT_SYMBOL(generic_file_direct_write);
1856
1857 ssize_t
1858 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1859                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1860                 size_t count, ssize_t written)
1861 {
1862         struct file *file = iocb->ki_filp;
1863         struct address_space * mapping = file->f_mapping;
1864         const struct address_space_operations *a_ops = mapping->a_ops;
1865         struct inode    *inode = mapping->host;
1866         long            status = 0;
1867         struct page     *page;
1868         struct page     *cached_page = NULL;
1869         size_t          bytes;
1870         struct pagevec  lru_pvec;
1871         const struct iovec *cur_iov = iov; /* current iovec */
1872         size_t          iov_base = 0;      /* offset in the current iovec */
1873         char __user     *buf;
1874
1875         pagevec_init(&lru_pvec, 0);
1876
1877         /*
1878          * handle partial DIO write.  Adjust cur_iov if needed.
1879          */
1880         if (likely(nr_segs == 1))
1881                 buf = iov->iov_base + written;
1882         else {
1883                 filemap_set_next_iovec(&cur_iov, &iov_base, written);
1884                 buf = cur_iov->iov_base + iov_base;
1885         }
1886
1887         do {
1888                 unsigned long index;
1889                 unsigned long offset;
1890                 size_t copied;
1891
1892                 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1893                 index = pos >> PAGE_CACHE_SHIFT;
1894                 bytes = PAGE_CACHE_SIZE - offset;
1895
1896                 /* Limit the size of the copy to the caller's write size */
1897                 bytes = min(bytes, count);
1898
1899                 /* We only need to worry about prefaulting when writes are from
1900                  * user-space.  NFSd uses vfs_writev with several non-aligned
1901                  * segments in the vector, and limiting to one segment a time is
1902                  * a noticeable performance for re-write
1903                  */
1904                 if (!segment_eq(get_fs(), KERNEL_DS)) {
1905                         /*
1906                          * Limit the size of the copy to that of the current
1907                          * segment, because fault_in_pages_readable() doesn't
1908                          * know how to walk segments.
1909                          */
1910                         bytes = min(bytes, cur_iov->iov_len - iov_base);
1911
1912                         /*
1913                          * Bring in the user page that we will copy from
1914                          * _first_.  Otherwise there's a nasty deadlock on
1915                          * copying from the same page as we're writing to,
1916                          * without it being marked up-to-date.
1917                          */
1918                         fault_in_pages_readable(buf, bytes);
1919                 }
1920                 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1921                 if (!page) {
1922                         status = -ENOMEM;
1923                         break;
1924                 }
1925
1926                 if (unlikely(bytes == 0)) {
1927                         status = 0;
1928                         copied = 0;
1929                         goto zero_length_segment;
1930                 }
1931
1932                 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1933                 if (unlikely(status)) {
1934                         loff_t isize = i_size_read(inode);
1935
1936                         if (status != AOP_TRUNCATED_PAGE)
1937                                 unlock_page(page);
1938                         page_cache_release(page);
1939                         if (status == AOP_TRUNCATED_PAGE)
1940                                 continue;
1941                         /*
1942                          * prepare_write() may have instantiated a few blocks
1943                          * outside i_size.  Trim these off again.
1944                          */
1945                         if (pos + bytes > isize)
1946                                 vmtruncate(inode, isize);
1947                         break;
1948                 }
1949                 if (likely(nr_segs == 1))
1950                         copied = filemap_copy_from_user(page, offset,
1951                                                         buf, bytes);
1952                 else
1953                         copied = filemap_copy_from_user_iovec(page, offset,
1954                                                 cur_iov, iov_base, bytes);
1955                 flush_dcache_page(page);
1956                 status = a_ops->commit_write(file, page, offset, offset+bytes);
1957                 if (status == AOP_TRUNCATED_PAGE) {
1958                         page_cache_release(page);
1959                         continue;
1960                 }
1961 zero_length_segment:
1962                 if (likely(copied >= 0)) {
1963                         if (!status)
1964                                 status = copied;
1965
1966                         if (status >= 0) {
1967                                 written += status;
1968                                 count -= status;
1969                                 pos += status;
1970                                 buf += status;
1971                                 if (unlikely(nr_segs > 1)) {
1972                                         filemap_set_next_iovec(&cur_iov,
1973                                                         &iov_base, status);
1974                                         if (count)
1975                                                 buf = cur_iov->iov_base +
1976                                                         iov_base;
1977                                 } else {
1978                                         iov_base += status;
1979                                 }
1980                         }
1981                 }
1982                 if (unlikely(copied != bytes))
1983                         if (status >= 0)
1984                                 status = -EFAULT;
1985                 unlock_page(page);
1986                 mark_page_accessed(page);
1987                 page_cache_release(page);
1988                 if (status < 0)
1989                         break;
1990                 balance_dirty_pages_ratelimited(mapping);
1991                 cond_resched();
1992         } while (count);
1993         *ppos = pos;
1994
1995         if (cached_page)
1996                 page_cache_release(cached_page);
1997
1998         /*
1999          * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2000          */
2001         if (likely(status >= 0)) {
2002                 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2003                         if (!a_ops->writepage || !is_sync_kiocb(iocb))
2004                                 status = generic_osync_inode(inode, mapping,
2005                                                 OSYNC_METADATA|OSYNC_DATA);
2006                 }
2007         }
2008         
2009         /*
2010          * If we get here for O_DIRECT writes then we must have fallen through
2011          * to buffered writes (block instantiation inside i_size).  So we sync
2012          * the file data here, to try to honour O_DIRECT expectations.
2013          */
2014         if (unlikely(file->f_flags & O_DIRECT) && written)
2015                 status = filemap_write_and_wait(mapping);
2016
2017         pagevec_lru_add(&lru_pvec);
2018         return written ? written : status;
2019 }
2020 EXPORT_SYMBOL(generic_file_buffered_write);
2021
2022 static ssize_t
2023 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2024                                 unsigned long nr_segs, loff_t *ppos)
2025 {
2026         struct file *file = iocb->ki_filp;
2027         struct address_space * mapping = file->f_mapping;
2028         size_t ocount;          /* original count */
2029         size_t count;           /* after file limit checks */
2030         struct inode    *inode = mapping->host;
2031         loff_t          pos;
2032         ssize_t         written;
2033         ssize_t         err;
2034
2035         ocount = 0;
2036         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2037         if (err)
2038                 return err;
2039
2040         count = ocount;
2041         pos = *ppos;
2042
2043         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2044
2045         /* We can write back this queue in page reclaim */
2046         current->backing_dev_info = mapping->backing_dev_info;
2047         written = 0;
2048
2049         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2050         if (err)
2051                 goto out;
2052
2053         if (count == 0)
2054                 goto out;
2055
2056         err = remove_suid(file->f_path.dentry);
2057         if (err)
2058                 goto out;
2059
2060         file_update_time(file);
2061
2062         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2063         if (unlikely(file->f_flags & O_DIRECT)) {
2064                 loff_t endbyte;
2065                 ssize_t written_buffered;
2066
2067                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2068                                                         ppos, count, ocount);
2069                 if (written < 0 || written == count)
2070                         goto out;
2071                 /*
2072                  * direct-io write to a hole: fall through to buffered I/O
2073                  * for completing the rest of the request.
2074                  */
2075                 pos += written;
2076                 count -= written;
2077                 written_buffered = generic_file_buffered_write(iocb, iov,
2078                                                 nr_segs, pos, ppos, count,
2079                                                 written);
2080                 /*
2081                  * If generic_file_buffered_write() retuned a synchronous error
2082                  * then we want to return the number of bytes which were
2083                  * direct-written, or the error code if that was zero.  Note
2084                  * that this differs from normal direct-io semantics, which
2085                  * will return -EFOO even if some bytes were written.
2086                  */
2087                 if (written_buffered < 0) {
2088                         err = written_buffered;
2089                         goto out;
2090                 }
2091
2092                 /*
2093                  * We need to ensure that the page cache pages are written to
2094                  * disk and invalidated to preserve the expected O_DIRECT
2095                  * semantics.
2096                  */
2097                 endbyte = pos + written_buffered - written - 1;
2098                 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2099                                             SYNC_FILE_RANGE_WAIT_BEFORE|
2100                                             SYNC_FILE_RANGE_WRITE|
2101                                             SYNC_FILE_RANGE_WAIT_AFTER);
2102                 if (err == 0) {
2103                         written = written_buffered;
2104                         invalidate_mapping_pages(mapping,
2105                                                  pos >> PAGE_CACHE_SHIFT,
2106                                                  endbyte >> PAGE_CACHE_SHIFT);
2107                 } else {
2108                         /*
2109                          * We don't know how much we wrote, so just return
2110                          * the number of bytes which were direct-written
2111                          */
2112                 }
2113         } else {
2114                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2115                                 pos, ppos, count, written);
2116         }
2117 out:
2118         current->backing_dev_info = NULL;
2119         return written ? written : err;
2120 }
2121
2122 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2123                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2124 {
2125         struct file *file = iocb->ki_filp;
2126         struct address_space *mapping = file->f_mapping;
2127         struct inode *inode = mapping->host;
2128         ssize_t ret;
2129
2130         BUG_ON(iocb->ki_pos != pos);
2131
2132         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2133                         &iocb->ki_pos);
2134
2135         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2136                 ssize_t err;
2137
2138                 err = sync_page_range_nolock(inode, mapping, pos, ret);
2139                 if (err < 0)
2140                         ret = err;
2141         }
2142         return ret;
2143 }
2144 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2145
2146 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2147                 unsigned long nr_segs, loff_t pos)
2148 {
2149         struct file *file = iocb->ki_filp;
2150         struct address_space *mapping = file->f_mapping;
2151         struct inode *inode = mapping->host;
2152         ssize_t ret;
2153
2154         BUG_ON(iocb->ki_pos != pos);
2155
2156         mutex_lock(&inode->i_mutex);
2157         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2158                         &iocb->ki_pos);
2159         mutex_unlock(&inode->i_mutex);
2160
2161         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2162                 ssize_t err;
2163
2164                 err = sync_page_range(inode, mapping, pos, ret);
2165                 if (err < 0)
2166                         ret = err;
2167         }
2168         return ret;
2169 }
2170 EXPORT_SYMBOL(generic_file_aio_write);
2171
2172 /*
2173  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2174  * went wrong during pagecache shootdown.
2175  */
2176 static ssize_t
2177 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2178         loff_t offset, unsigned long nr_segs)
2179 {
2180         struct file *file = iocb->ki_filp;
2181         struct address_space *mapping = file->f_mapping;
2182         ssize_t retval;
2183         size_t write_len;
2184         pgoff_t end = 0; /* silence gcc */
2185
2186         /*
2187          * If it's a write, unmap all mmappings of the file up-front.  This
2188          * will cause any pte dirty bits to be propagated into the pageframes
2189          * for the subsequent filemap_write_and_wait().
2190          */
2191         if (rw == WRITE) {
2192                 write_len = iov_length(iov, nr_segs);
2193                 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2194                 if (mapping_mapped(mapping))
2195                         unmap_mapping_range(mapping, offset, write_len, 0);
2196         }
2197
2198         retval = filemap_write_and_wait(mapping);
2199         if (retval)
2200                 goto out;
2201
2202         /*
2203          * After a write we want buffered reads to be sure to go to disk to get
2204          * the new data.  We invalidate clean cached page from the region we're
2205          * about to write.  We do this *before* the write so that we can return
2206          * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2207          */
2208         if (rw == WRITE && mapping->nrpages) {
2209                 retval = invalidate_inode_pages2_range(mapping,
2210                                         offset >> PAGE_CACHE_SHIFT, end);
2211                 if (retval)
2212                         goto out;
2213         }
2214
2215         retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2216         if (retval)
2217                 goto out;
2218
2219         /*
2220          * Finally, try again to invalidate clean pages which might have been
2221          * faulted in by get_user_pages() if the source of the write was an
2222          * mmap()ed region of the file we're writing.  That's a pretty crazy
2223          * thing to do, so we don't support it 100%.  If this invalidation
2224          * fails and we have -EIOCBQUEUED we ignore the failure.
2225          */
2226         if (rw == WRITE && mapping->nrpages) {
2227                 int err = invalidate_inode_pages2_range(mapping,
2228                                               offset >> PAGE_CACHE_SHIFT, end);
2229                 if (err && retval >= 0)
2230                         retval = err;
2231         }
2232 out:
2233         return retval;
2234 }
2235
2236 /**
2237  * try_to_release_page() - release old fs-specific metadata on a page
2238  *
2239  * @page: the page which the kernel is trying to free
2240  * @gfp_mask: memory allocation flags (and I/O mode)
2241  *
2242  * The address_space is to try to release any data against the page
2243  * (presumably at page->private).  If the release was successful, return `1'.
2244  * Otherwise return zero.
2245  *
2246  * The @gfp_mask argument specifies whether I/O may be performed to release
2247  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2248  *
2249  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2250  */
2251 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2252 {
2253         struct address_space * const mapping = page->mapping;
2254
2255         BUG_ON(!PageLocked(page));
2256         if (PageWriteback(page))
2257                 return 0;
2258
2259         if (mapping && mapping->a_ops->releasepage)
2260                 return mapping->a_ops->releasepage(page, gfp_mask);
2261         return try_to_free_buffers(page);
2262 }
2263
2264 EXPORT_SYMBOL(try_to_release_page);