4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf <barry.kasindorf@amd.com>
10 * Each CPU has a local buffer that stores PC value/event
11 * pairs. We also log context switches when we notice them.
12 * Eventually each CPU's buffer is processed into the global
13 * event buffer by sync_buffer().
15 * We use a local buffer for two reasons: an NMI or similar
16 * interrupt cannot synchronise, and high sampling rates
17 * would lead to catastrophic global synchronisation if
18 * a global buffer was used.
21 #include <linux/sched.h>
22 #include <linux/oprofile.h>
23 #include <linux/vmalloc.h>
24 #include <linux/errno.h>
26 #include "event_buffer.h"
27 #include "cpu_buffer.h"
28 #include "buffer_sync.h"
31 #define OP_BUFFER_FLAGS 0
34 * Read and write access is using spin locking. Thus, writing to the
35 * buffer by NMI handler (x86) could occur also during critical
36 * sections when reading the buffer. To avoid this, there are 2
37 * buffers for independent read and write access. Read access is in
38 * process context only, write access only in the NMI handler. If the
39 * read buffer runs empty, both buffers are swapped atomically. There
40 * is potentially a small window during swapping where the buffers are
41 * disabled and samples could be lost.
43 * Using 2 buffers is a little bit overhead, but the solution is clear
44 * and does not require changes in the ring buffer implementation. It
45 * can be changed to a single buffer solution when the ring buffer
46 * access is implemented as non-locking atomic code.
48 static struct ring_buffer *op_ring_buffer_read;
49 static struct ring_buffer *op_ring_buffer_write;
50 DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
52 static void wq_sync_buffer(struct work_struct *work);
54 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
55 static int work_enabled;
57 unsigned long oprofile_get_cpu_buffer_size(void)
59 return oprofile_cpu_buffer_size;
62 void oprofile_cpu_buffer_inc_smpl_lost(void)
64 struct oprofile_cpu_buffer *cpu_buf
65 = &__get_cpu_var(cpu_buffer);
67 cpu_buf->sample_lost_overflow++;
70 void free_cpu_buffers(void)
72 if (op_ring_buffer_read)
73 ring_buffer_free(op_ring_buffer_read);
74 op_ring_buffer_read = NULL;
75 if (op_ring_buffer_write)
76 ring_buffer_free(op_ring_buffer_write);
77 op_ring_buffer_write = NULL;
80 int alloc_cpu_buffers(void)
84 unsigned long buffer_size = oprofile_cpu_buffer_size;
86 op_ring_buffer_read = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
87 if (!op_ring_buffer_read)
89 op_ring_buffer_write = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
90 if (!op_ring_buffer_write)
93 for_each_possible_cpu(i) {
94 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
97 b->last_is_kernel = -1;
99 b->buffer_size = buffer_size;
100 b->sample_received = 0;
101 b->sample_lost_overflow = 0;
102 b->backtrace_aborted = 0;
103 b->sample_invalid_eip = 0;
105 INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
114 void start_cpu_work(void)
120 for_each_online_cpu(i) {
121 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
124 * Spread the work by 1 jiffy per cpu so they dont all
127 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
131 void end_cpu_work(void)
137 for_each_online_cpu(i) {
138 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
140 cancel_delayed_work(&b->work);
143 flush_scheduled_work();
146 int op_cpu_buffer_write_entry(struct op_entry *entry)
148 entry->event = ring_buffer_lock_reserve(op_ring_buffer_write,
149 sizeof(struct op_sample),
152 entry->sample = ring_buffer_event_data(entry->event);
154 entry->sample = NULL;
162 int op_cpu_buffer_write_commit(struct op_entry *entry)
164 return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event,
168 struct op_sample *op_cpu_buffer_read_entry(int cpu)
170 struct ring_buffer_event *e;
171 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
173 return ring_buffer_event_data(e);
174 if (ring_buffer_swap_cpu(op_ring_buffer_read,
175 op_ring_buffer_write,
178 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
180 return ring_buffer_event_data(e);
184 unsigned long op_cpu_buffer_entries(int cpu)
186 return ring_buffer_entries_cpu(op_ring_buffer_read, cpu)
187 + ring_buffer_entries_cpu(op_ring_buffer_write, cpu);
191 add_sample(struct oprofile_cpu_buffer *cpu_buf,
192 unsigned long pc, unsigned long event)
194 struct op_entry entry;
197 ret = op_cpu_buffer_write_entry(&entry);
201 entry.sample->eip = pc;
202 entry.sample->event = event;
204 return op_cpu_buffer_write_commit(&entry);
208 add_code(struct oprofile_cpu_buffer *buffer, unsigned long value)
210 return add_sample(buffer, ESCAPE_CODE, value);
213 /* This must be safe from any context. It's safe writing here
214 * because of the head/tail separation of the writer and reader
217 * is_kernel is needed because on some architectures you cannot
218 * tell if you are in kernel or user space simply by looking at
219 * pc. We tag this in the buffer by generating kernel enter/exit
220 * events whenever is_kernel changes
222 static int log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
223 int is_kernel, unsigned long event)
225 struct task_struct *task;
227 cpu_buf->sample_received++;
229 if (pc == ESCAPE_CODE) {
230 cpu_buf->sample_invalid_eip++;
234 is_kernel = !!is_kernel;
238 /* notice a switch from user->kernel or vice versa */
239 if (cpu_buf->last_is_kernel != is_kernel) {
240 cpu_buf->last_is_kernel = is_kernel;
241 if (add_code(cpu_buf, is_kernel))
245 /* notice a task switch */
246 if (cpu_buf->last_task != task) {
247 cpu_buf->last_task = task;
248 if (add_code(cpu_buf, (unsigned long)task))
252 if (add_sample(cpu_buf, pc, event))
258 cpu_buf->sample_lost_overflow++;
262 static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
264 add_code(cpu_buf, CPU_TRACE_BEGIN);
265 cpu_buf->tracing = 1;
268 static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
270 cpu_buf->tracing = 0;
274 __oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
275 unsigned long event, int is_kernel)
277 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
279 if (!oprofile_backtrace_depth) {
280 log_sample(cpu_buf, pc, is_kernel, event);
284 oprofile_begin_trace(cpu_buf);
287 * if log_sample() fail we can't backtrace since we lost the
288 * source of this event
290 if (log_sample(cpu_buf, pc, is_kernel, event))
291 oprofile_ops.backtrace(regs, oprofile_backtrace_depth);
293 oprofile_end_trace(cpu_buf);
296 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
297 unsigned long event, int is_kernel)
299 __oprofile_add_ext_sample(pc, regs, event, is_kernel);
302 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
304 int is_kernel = !user_mode(regs);
305 unsigned long pc = profile_pc(regs);
307 __oprofile_add_ext_sample(pc, regs, event, is_kernel);
310 #ifdef CONFIG_OPROFILE_IBS
312 void oprofile_add_ibs_sample(struct pt_regs * const regs,
313 unsigned int * const ibs_sample, int ibs_code)
315 int is_kernel = !user_mode(regs);
316 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
317 struct task_struct *task;
320 cpu_buf->sample_received++;
322 /* notice a switch from user->kernel or vice versa */
323 if (cpu_buf->last_is_kernel != is_kernel) {
324 if (add_code(cpu_buf, is_kernel))
326 cpu_buf->last_is_kernel = is_kernel;
329 /* notice a task switch */
332 if (cpu_buf->last_task != task) {
333 if (add_code(cpu_buf, (unsigned long)task))
335 cpu_buf->last_task = task;
339 fail = fail || add_code(cpu_buf, ibs_code);
340 fail = fail || add_sample(cpu_buf, ibs_sample[0], ibs_sample[1]);
341 fail = fail || add_sample(cpu_buf, ibs_sample[2], ibs_sample[3]);
342 fail = fail || add_sample(cpu_buf, ibs_sample[4], ibs_sample[5]);
344 if (ibs_code == IBS_OP_BEGIN) {
345 fail = fail || add_sample(cpu_buf, ibs_sample[6], ibs_sample[7]);
346 fail = fail || add_sample(cpu_buf, ibs_sample[8], ibs_sample[9]);
347 fail = fail || add_sample(cpu_buf, ibs_sample[10], ibs_sample[11]);
353 if (oprofile_backtrace_depth)
354 oprofile_ops.backtrace(regs, oprofile_backtrace_depth);
359 cpu_buf->sample_lost_overflow++;
365 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
367 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
368 log_sample(cpu_buf, pc, is_kernel, event);
371 void oprofile_add_trace(unsigned long pc)
373 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
375 if (!cpu_buf->tracing)
379 * broken frame can give an eip with the same value as an
380 * escape code, abort the trace if we get it
382 if (pc == ESCAPE_CODE)
385 if (add_sample(cpu_buf, pc, 0))
390 cpu_buf->tracing = 0;
391 cpu_buf->backtrace_aborted++;
396 * This serves to avoid cpu buffer overflow, and makes sure
397 * the task mortuary progresses
399 * By using schedule_delayed_work_on and then schedule_delayed_work
400 * we guarantee this will stay on the correct cpu
402 static void wq_sync_buffer(struct work_struct *work)
404 struct oprofile_cpu_buffer *b =
405 container_of(work, struct oprofile_cpu_buffer, work.work);
406 if (b->cpu != smp_processor_id()) {
407 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
408 smp_processor_id(), b->cpu);
410 if (!cpu_online(b->cpu)) {
411 cancel_delayed_work(&b->work);
417 /* don't re-add the work if we're shutting down */
419 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);