iwlwifi: select proper rate control algorithm
[linux-2.6] / drivers / net / sunhme.c
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2  *           auto carrier detecting ethernet driver.  Also known as the
3  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
4  *
5  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6                  2006 David S. Miller (davem@davemloft.net)
7  *
8  * Changes :
9  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10  *   - port to non-sparc architectures. Tested only on x86 and
11  *     only currently works with QFE PCI cards.
12  *   - ability to specify the MAC address at module load time by passing this
13  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
14  */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/mm.h>
36 #include <linux/bitops.h>
37
38 #include <asm/system.h>
39 #include <asm/io.h>
40 #include <asm/dma.h>
41 #include <asm/byteorder.h>
42
43 #ifdef CONFIG_SPARC
44 #include <asm/idprom.h>
45 #include <asm/sbus.h>
46 #include <asm/openprom.h>
47 #include <asm/oplib.h>
48 #include <asm/prom.h>
49 #include <asm/auxio.h>
50 #endif
51 #include <asm/uaccess.h>
52
53 #include <asm/pgtable.h>
54 #include <asm/irq.h>
55
56 #ifdef CONFIG_PCI
57 #include <linux/pci.h>
58 #endif
59
60 #include "sunhme.h"
61
62 #define DRV_NAME        "sunhme"
63 #define DRV_VERSION     "3.00"
64 #define DRV_RELDATE     "June 23, 2006"
65 #define DRV_AUTHOR      "David S. Miller (davem@davemloft.net)"
66
67 static char version[] =
68         DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
69
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_AUTHOR);
72 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
73 MODULE_LICENSE("GPL");
74
75 static int macaddr[6];
76
77 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
78 module_param_array(macaddr, int, NULL, 0);
79 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
80
81 #ifdef CONFIG_SBUS
82 static struct quattro *qfe_sbus_list;
83 #endif
84
85 #ifdef CONFIG_PCI
86 static struct quattro *qfe_pci_list;
87 #endif
88
89 #undef HMEDEBUG
90 #undef SXDEBUG
91 #undef RXDEBUG
92 #undef TXDEBUG
93 #undef TXLOGGING
94
95 #ifdef TXLOGGING
96 struct hme_tx_logent {
97         unsigned int tstamp;
98         int tx_new, tx_old;
99         unsigned int action;
100 #define TXLOG_ACTION_IRQ        0x01
101 #define TXLOG_ACTION_TXMIT      0x02
102 #define TXLOG_ACTION_TBUSY      0x04
103 #define TXLOG_ACTION_NBUFS      0x08
104         unsigned int status;
105 };
106 #define TX_LOG_LEN      128
107 static struct hme_tx_logent tx_log[TX_LOG_LEN];
108 static int txlog_cur_entry;
109 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
110 {
111         struct hme_tx_logent *tlp;
112         unsigned long flags;
113
114         save_and_cli(flags);
115         tlp = &tx_log[txlog_cur_entry];
116         tlp->tstamp = (unsigned int)jiffies;
117         tlp->tx_new = hp->tx_new;
118         tlp->tx_old = hp->tx_old;
119         tlp->action = a;
120         tlp->status = s;
121         txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
122         restore_flags(flags);
123 }
124 static __inline__ void tx_dump_log(void)
125 {
126         int i, this;
127
128         this = txlog_cur_entry;
129         for (i = 0; i < TX_LOG_LEN; i++) {
130                 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
131                        tx_log[this].tstamp,
132                        tx_log[this].tx_new, tx_log[this].tx_old,
133                        tx_log[this].action, tx_log[this].status);
134                 this = (this + 1) & (TX_LOG_LEN - 1);
135         }
136 }
137 static __inline__ void tx_dump_ring(struct happy_meal *hp)
138 {
139         struct hmeal_init_block *hb = hp->happy_block;
140         struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
141         int i;
142
143         for (i = 0; i < TX_RING_SIZE; i+=4) {
144                 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
145                        i, i + 4,
146                        le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
147                        le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
148                        le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
149                        le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
150         }
151 }
152 #else
153 #define tx_add_log(hp, a, s)            do { } while(0)
154 #define tx_dump_log()                   do { } while(0)
155 #define tx_dump_ring(hp)                do { } while(0)
156 #endif
157
158 #ifdef HMEDEBUG
159 #define HMD(x)  printk x
160 #else
161 #define HMD(x)
162 #endif
163
164 /* #define AUTO_SWITCH_DEBUG */
165
166 #ifdef AUTO_SWITCH_DEBUG
167 #define ASD(x)  printk x
168 #else
169 #define ASD(x)
170 #endif
171
172 #define DEFAULT_IPG0      16 /* For lance-mode only */
173 #define DEFAULT_IPG1       8 /* For all modes */
174 #define DEFAULT_IPG2       4 /* For all modes */
175 #define DEFAULT_JAMSIZE    4 /* Toe jam */
176
177 /* NOTE: In the descriptor writes one _must_ write the address
178  *       member _first_.  The card must not be allowed to see
179  *       the updated descriptor flags until the address is
180  *       correct.  I've added a write memory barrier between
181  *       the two stores so that I can sleep well at night... -DaveM
182  */
183
184 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
185 static void sbus_hme_write32(void __iomem *reg, u32 val)
186 {
187         sbus_writel(val, reg);
188 }
189
190 static u32 sbus_hme_read32(void __iomem *reg)
191 {
192         return sbus_readl(reg);
193 }
194
195 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
196 {
197         rxd->rx_addr = addr;
198         wmb();
199         rxd->rx_flags = flags;
200 }
201
202 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
203 {
204         txd->tx_addr = addr;
205         wmb();
206         txd->tx_flags = flags;
207 }
208
209 static u32 sbus_hme_read_desc32(u32 *p)
210 {
211         return *p;
212 }
213
214 static void pci_hme_write32(void __iomem *reg, u32 val)
215 {
216         writel(val, reg);
217 }
218
219 static u32 pci_hme_read32(void __iomem *reg)
220 {
221         return readl(reg);
222 }
223
224 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
225 {
226         rxd->rx_addr = cpu_to_le32(addr);
227         wmb();
228         rxd->rx_flags = cpu_to_le32(flags);
229 }
230
231 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
232 {
233         txd->tx_addr = cpu_to_le32(addr);
234         wmb();
235         txd->tx_flags = cpu_to_le32(flags);
236 }
237
238 static u32 pci_hme_read_desc32(u32 *p)
239 {
240         return cpu_to_le32p(p);
241 }
242
243 #define hme_write32(__hp, __reg, __val) \
244         ((__hp)->write32((__reg), (__val)))
245 #define hme_read32(__hp, __reg) \
246         ((__hp)->read32(__reg))
247 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
248         ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
249 #define hme_write_txd(__hp, __txd, __flags, __addr) \
250         ((__hp)->write_txd((__txd), (__flags), (__addr)))
251 #define hme_read_desc32(__hp, __p) \
252         ((__hp)->read_desc32(__p))
253 #define hme_dma_map(__hp, __ptr, __size, __dir) \
254         ((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir)))
255 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
256         ((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir)))
257 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
258         ((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)))
259 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
260         ((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)))
261 #else
262 #ifdef CONFIG_SBUS
263 /* SBUS only compilation */
264 #define hme_write32(__hp, __reg, __val) \
265         sbus_writel((__val), (__reg))
266 #define hme_read32(__hp, __reg) \
267         sbus_readl(__reg)
268 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
269 do {    (__rxd)->rx_addr = (__addr); \
270         wmb(); \
271         (__rxd)->rx_flags = (__flags); \
272 } while(0)
273 #define hme_write_txd(__hp, __txd, __flags, __addr) \
274 do {    (__txd)->tx_addr = (__addr); \
275         wmb(); \
276         (__txd)->tx_flags = (__flags); \
277 } while(0)
278 #define hme_read_desc32(__hp, __p)      (*(__p))
279 #define hme_dma_map(__hp, __ptr, __size, __dir) \
280         sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
281 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
282         sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
283 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
284         sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
285 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
286         sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
287 #else
288 /* PCI only compilation */
289 #define hme_write32(__hp, __reg, __val) \
290         writel((__val), (__reg))
291 #define hme_read32(__hp, __reg) \
292         readl(__reg)
293 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
294 do {    (__rxd)->rx_addr = cpu_to_le32(__addr); \
295         wmb(); \
296         (__rxd)->rx_flags = cpu_to_le32(__flags); \
297 } while(0)
298 #define hme_write_txd(__hp, __txd, __flags, __addr) \
299 do {    (__txd)->tx_addr = cpu_to_le32(__addr); \
300         wmb(); \
301         (__txd)->tx_flags = cpu_to_le32(__flags); \
302 } while(0)
303 #define hme_read_desc32(__hp, __p)      cpu_to_le32p(__p)
304 #define hme_dma_map(__hp, __ptr, __size, __dir) \
305         pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
306 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
307         pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
308 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
309         pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
310 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
311         pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
312 #endif
313 #endif
314
315
316 #ifdef SBUS_DMA_BIDIRECTIONAL
317 #       define DMA_BIDIRECTIONAL        SBUS_DMA_BIDIRECTIONAL
318 #else
319 #       define DMA_BIDIRECTIONAL        0
320 #endif
321
322 #ifdef SBUS_DMA_FROMDEVICE
323 #       define DMA_FROMDEVICE           SBUS_DMA_FROMDEVICE
324 #else
325 #       define DMA_TODEVICE             1
326 #endif
327
328 #ifdef SBUS_DMA_TODEVICE
329 #       define DMA_TODEVICE             SBUS_DMA_TODEVICE
330 #else
331 #       define DMA_FROMDEVICE           2
332 #endif
333
334
335 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
336 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
337 {
338         hme_write32(hp, tregs + TCVR_BBDATA, bit);
339         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
340         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
341 }
342
343 #if 0
344 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
345 {
346         u32 ret;
347
348         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
349         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
350         ret = hme_read32(hp, tregs + TCVR_CFG);
351         if (internal)
352                 ret &= TCV_CFG_MDIO0;
353         else
354                 ret &= TCV_CFG_MDIO1;
355
356         return ret;
357 }
358 #endif
359
360 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
361 {
362         u32 retval;
363
364         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
365         udelay(1);
366         retval = hme_read32(hp, tregs + TCVR_CFG);
367         if (internal)
368                 retval &= TCV_CFG_MDIO0;
369         else
370                 retval &= TCV_CFG_MDIO1;
371         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
372
373         return retval;
374 }
375
376 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
377
378 static int happy_meal_bb_read(struct happy_meal *hp,
379                               void __iomem *tregs, int reg)
380 {
381         u32 tmp;
382         int retval = 0;
383         int i;
384
385         ASD(("happy_meal_bb_read: reg=%d ", reg));
386
387         /* Enable the MIF BitBang outputs. */
388         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
389
390         /* Force BitBang into the idle state. */
391         for (i = 0; i < 32; i++)
392                 BB_PUT_BIT(hp, tregs, 1);
393
394         /* Give it the read sequence. */
395         BB_PUT_BIT(hp, tregs, 0);
396         BB_PUT_BIT(hp, tregs, 1);
397         BB_PUT_BIT(hp, tregs, 1);
398         BB_PUT_BIT(hp, tregs, 0);
399
400         /* Give it the PHY address. */
401         tmp = hp->paddr & 0xff;
402         for (i = 4; i >= 0; i--)
403                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
404
405         /* Tell it what register we want to read. */
406         tmp = (reg & 0xff);
407         for (i = 4; i >= 0; i--)
408                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
409
410         /* Close down the MIF BitBang outputs. */
411         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
412
413         /* Now read in the value. */
414         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
415         for (i = 15; i >= 0; i--)
416                 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
417         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
418         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
419         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
420         ASD(("value=%x\n", retval));
421         return retval;
422 }
423
424 static void happy_meal_bb_write(struct happy_meal *hp,
425                                 void __iomem *tregs, int reg,
426                                 unsigned short value)
427 {
428         u32 tmp;
429         int i;
430
431         ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
432
433         /* Enable the MIF BitBang outputs. */
434         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
435
436         /* Force BitBang into the idle state. */
437         for (i = 0; i < 32; i++)
438                 BB_PUT_BIT(hp, tregs, 1);
439
440         /* Give it write sequence. */
441         BB_PUT_BIT(hp, tregs, 0);
442         BB_PUT_BIT(hp, tregs, 1);
443         BB_PUT_BIT(hp, tregs, 0);
444         BB_PUT_BIT(hp, tregs, 1);
445
446         /* Give it the PHY address. */
447         tmp = (hp->paddr & 0xff);
448         for (i = 4; i >= 0; i--)
449                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
450
451         /* Tell it what register we will be writing. */
452         tmp = (reg & 0xff);
453         for (i = 4; i >= 0; i--)
454                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
455
456         /* Tell it to become ready for the bits. */
457         BB_PUT_BIT(hp, tregs, 1);
458         BB_PUT_BIT(hp, tregs, 0);
459
460         for (i = 15; i >= 0; i--)
461                 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
462
463         /* Close down the MIF BitBang outputs. */
464         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
465 }
466
467 #define TCVR_READ_TRIES   16
468
469 static int happy_meal_tcvr_read(struct happy_meal *hp,
470                                 void __iomem *tregs, int reg)
471 {
472         int tries = TCVR_READ_TRIES;
473         int retval;
474
475         ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
476         if (hp->tcvr_type == none) {
477                 ASD(("no transceiver, value=TCVR_FAILURE\n"));
478                 return TCVR_FAILURE;
479         }
480
481         if (!(hp->happy_flags & HFLAG_FENABLE)) {
482                 ASD(("doing bit bang\n"));
483                 return happy_meal_bb_read(hp, tregs, reg);
484         }
485
486         hme_write32(hp, tregs + TCVR_FRAME,
487                     (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
488         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
489                 udelay(20);
490         if (!tries) {
491                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
492                 return TCVR_FAILURE;
493         }
494         retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
495         ASD(("value=%04x\n", retval));
496         return retval;
497 }
498
499 #define TCVR_WRITE_TRIES  16
500
501 static void happy_meal_tcvr_write(struct happy_meal *hp,
502                                   void __iomem *tregs, int reg,
503                                   unsigned short value)
504 {
505         int tries = TCVR_WRITE_TRIES;
506
507         ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
508
509         /* Welcome to Sun Microsystems, can I take your order please? */
510         if (!(hp->happy_flags & HFLAG_FENABLE)) {
511                 happy_meal_bb_write(hp, tregs, reg, value);
512                 return;
513         }
514
515         /* Would you like fries with that? */
516         hme_write32(hp, tregs + TCVR_FRAME,
517                     (FRAME_WRITE | (hp->paddr << 23) |
518                      ((reg & 0xff) << 18) | (value & 0xffff)));
519         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
520                 udelay(20);
521
522         /* Anything else? */
523         if (!tries)
524                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
525
526         /* Fifty-two cents is your change, have a nice day. */
527 }
528
529 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
530  * that keeps watching the auto negotiation process as it progresses.
531  * The DP83840 is first told to start doing it's thing, we set up the time
532  * and place the timer state machine in it's initial state.
533  *
534  * Here the timer peeks at the DP83840 status registers at each click to see
535  * if the auto negotiation has completed, we assume here that the DP83840 PHY
536  * will time out at some point and just tell us what (didn't) happen.  For
537  * complete coverage we only allow so many of the ticks at this level to run,
538  * when this has expired we print a warning message and try another strategy.
539  * This "other" strategy is to force the interface into various speed/duplex
540  * configurations and we stop when we see a link-up condition before the
541  * maximum number of "peek" ticks have occurred.
542  *
543  * Once a valid link status has been detected we configure the BigMAC and
544  * the rest of the Happy Meal to speak the most efficient protocol we could
545  * get a clean link for.  The priority for link configurations, highest first
546  * is:
547  *                 100 Base-T Full Duplex
548  *                 100 Base-T Half Duplex
549  *                 10 Base-T Full Duplex
550  *                 10 Base-T Half Duplex
551  *
552  * We start a new timer now, after a successful auto negotiation status has
553  * been detected.  This timer just waits for the link-up bit to get set in
554  * the BMCR of the DP83840.  When this occurs we print a kernel log message
555  * describing the link type in use and the fact that it is up.
556  *
557  * If a fatal error of some sort is signalled and detected in the interrupt
558  * service routine, and the chip is reset, or the link is ifconfig'd down
559  * and then back up, this entire process repeats itself all over again.
560  */
561 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
562 {
563         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
564
565         /* Downgrade from full to half duplex.  Only possible
566          * via ethtool.
567          */
568         if (hp->sw_bmcr & BMCR_FULLDPLX) {
569                 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
570                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
571                 return 0;
572         }
573
574         /* Downgrade from 100 to 10. */
575         if (hp->sw_bmcr & BMCR_SPEED100) {
576                 hp->sw_bmcr &= ~(BMCR_SPEED100);
577                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
578                 return 0;
579         }
580
581         /* We've tried everything. */
582         return -1;
583 }
584
585 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
586 {
587         printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
588         if (hp->tcvr_type == external)
589                 printk("external ");
590         else
591                 printk("internal ");
592         printk("transceiver at ");
593         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
594         if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
595                 if (hp->sw_lpa & LPA_100FULL)
596                         printk("100Mb/s, Full Duplex.\n");
597                 else
598                         printk("100Mb/s, Half Duplex.\n");
599         } else {
600                 if (hp->sw_lpa & LPA_10FULL)
601                         printk("10Mb/s, Full Duplex.\n");
602                 else
603                         printk("10Mb/s, Half Duplex.\n");
604         }
605 }
606
607 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
608 {
609         printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
610         if (hp->tcvr_type == external)
611                 printk("external ");
612         else
613                 printk("internal ");
614         printk("transceiver at ");
615         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
616         if (hp->sw_bmcr & BMCR_SPEED100)
617                 printk("100Mb/s, ");
618         else
619                 printk("10Mb/s, ");
620         if (hp->sw_bmcr & BMCR_FULLDPLX)
621                 printk("Full Duplex.\n");
622         else
623                 printk("Half Duplex.\n");
624 }
625
626 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
627 {
628         int full;
629
630         /* All we care about is making sure the bigmac tx_cfg has a
631          * proper duplex setting.
632          */
633         if (hp->timer_state == arbwait) {
634                 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
635                 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
636                         goto no_response;
637                 if (hp->sw_lpa & LPA_100FULL)
638                         full = 1;
639                 else if (hp->sw_lpa & LPA_100HALF)
640                         full = 0;
641                 else if (hp->sw_lpa & LPA_10FULL)
642                         full = 1;
643                 else
644                         full = 0;
645         } else {
646                 /* Forcing a link mode. */
647                 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
648                 if (hp->sw_bmcr & BMCR_FULLDPLX)
649                         full = 1;
650                 else
651                         full = 0;
652         }
653
654         /* Before changing other bits in the tx_cfg register, and in
655          * general any of other the TX config registers too, you
656          * must:
657          * 1) Clear Enable
658          * 2) Poll with reads until that bit reads back as zero
659          * 3) Make TX configuration changes
660          * 4) Set Enable once more
661          */
662         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
663                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
664                     ~(BIGMAC_TXCFG_ENABLE));
665         while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
666                 barrier();
667         if (full) {
668                 hp->happy_flags |= HFLAG_FULL;
669                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
670                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
671                             BIGMAC_TXCFG_FULLDPLX);
672         } else {
673                 hp->happy_flags &= ~(HFLAG_FULL);
674                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
675                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
676                             ~(BIGMAC_TXCFG_FULLDPLX));
677         }
678         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
679                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
680                     BIGMAC_TXCFG_ENABLE);
681         return 0;
682 no_response:
683         return 1;
684 }
685
686 static int happy_meal_init(struct happy_meal *hp);
687
688 static int is_lucent_phy(struct happy_meal *hp)
689 {
690         void __iomem *tregs = hp->tcvregs;
691         unsigned short mr2, mr3;
692         int ret = 0;
693
694         mr2 = happy_meal_tcvr_read(hp, tregs, 2);
695         mr3 = happy_meal_tcvr_read(hp, tregs, 3);
696         if ((mr2 & 0xffff) == 0x0180 &&
697             ((mr3 & 0xffff) >> 10) == 0x1d)
698                 ret = 1;
699
700         return ret;
701 }
702
703 static void happy_meal_timer(unsigned long data)
704 {
705         struct happy_meal *hp = (struct happy_meal *) data;
706         void __iomem *tregs = hp->tcvregs;
707         int restart_timer = 0;
708
709         spin_lock_irq(&hp->happy_lock);
710
711         hp->timer_ticks++;
712         switch(hp->timer_state) {
713         case arbwait:
714                 /* Only allow for 5 ticks, thats 10 seconds and much too
715                  * long to wait for arbitration to complete.
716                  */
717                 if (hp->timer_ticks >= 10) {
718                         /* Enter force mode. */
719         do_force_mode:
720                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
721                         printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
722                                hp->dev->name);
723                         hp->sw_bmcr = BMCR_SPEED100;
724                         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
725
726                         if (!is_lucent_phy(hp)) {
727                                 /* OK, seems we need do disable the transceiver for the first
728                                  * tick to make sure we get an accurate link state at the
729                                  * second tick.
730                                  */
731                                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
732                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
733                                 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
734                         }
735                         hp->timer_state = ltrywait;
736                         hp->timer_ticks = 0;
737                         restart_timer = 1;
738                 } else {
739                         /* Anything interesting happen? */
740                         hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
741                         if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
742                                 int ret;
743
744                                 /* Just what we've been waiting for... */
745                                 ret = set_happy_link_modes(hp, tregs);
746                                 if (ret) {
747                                         /* Ooops, something bad happened, go to force
748                                          * mode.
749                                          *
750                                          * XXX Broken hubs which don't support 802.3u
751                                          * XXX auto-negotiation make this happen as well.
752                                          */
753                                         goto do_force_mode;
754                                 }
755
756                                 /* Success, at least so far, advance our state engine. */
757                                 hp->timer_state = lupwait;
758                                 restart_timer = 1;
759                         } else {
760                                 restart_timer = 1;
761                         }
762                 }
763                 break;
764
765         case lupwait:
766                 /* Auto negotiation was successful and we are awaiting a
767                  * link up status.  I have decided to let this timer run
768                  * forever until some sort of error is signalled, reporting
769                  * a message to the user at 10 second intervals.
770                  */
771                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
772                 if (hp->sw_bmsr & BMSR_LSTATUS) {
773                         /* Wheee, it's up, display the link mode in use and put
774                          * the timer to sleep.
775                          */
776                         display_link_mode(hp, tregs);
777                         hp->timer_state = asleep;
778                         restart_timer = 0;
779                 } else {
780                         if (hp->timer_ticks >= 10) {
781                                 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
782                                        "not completely up.\n", hp->dev->name);
783                                 hp->timer_ticks = 0;
784                                 restart_timer = 1;
785                         } else {
786                                 restart_timer = 1;
787                         }
788                 }
789                 break;
790
791         case ltrywait:
792                 /* Making the timeout here too long can make it take
793                  * annoyingly long to attempt all of the link mode
794                  * permutations, but then again this is essentially
795                  * error recovery code for the most part.
796                  */
797                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
798                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
799                 if (hp->timer_ticks == 1) {
800                         if (!is_lucent_phy(hp)) {
801                                 /* Re-enable transceiver, we'll re-enable the transceiver next
802                                  * tick, then check link state on the following tick.
803                                  */
804                                 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
805                                 happy_meal_tcvr_write(hp, tregs,
806                                                       DP83840_CSCONFIG, hp->sw_csconfig);
807                         }
808                         restart_timer = 1;
809                         break;
810                 }
811                 if (hp->timer_ticks == 2) {
812                         if (!is_lucent_phy(hp)) {
813                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
814                                 happy_meal_tcvr_write(hp, tregs,
815                                                       DP83840_CSCONFIG, hp->sw_csconfig);
816                         }
817                         restart_timer = 1;
818                         break;
819                 }
820                 if (hp->sw_bmsr & BMSR_LSTATUS) {
821                         /* Force mode selection success. */
822                         display_forced_link_mode(hp, tregs);
823                         set_happy_link_modes(hp, tregs); /* XXX error? then what? */
824                         hp->timer_state = asleep;
825                         restart_timer = 0;
826                 } else {
827                         if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
828                                 int ret;
829
830                                 ret = try_next_permutation(hp, tregs);
831                                 if (ret == -1) {
832                                         /* Aieee, tried them all, reset the
833                                          * chip and try all over again.
834                                          */
835
836                                         /* Let the user know... */
837                                         printk(KERN_NOTICE "%s: Link down, cable problem?\n",
838                                                hp->dev->name);
839
840                                         ret = happy_meal_init(hp);
841                                         if (ret) {
842                                                 /* ho hum... */
843                                                 printk(KERN_ERR "%s: Error, cannot re-init the "
844                                                        "Happy Meal.\n", hp->dev->name);
845                                         }
846                                         goto out;
847                                 }
848                                 if (!is_lucent_phy(hp)) {
849                                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
850                                                                                DP83840_CSCONFIG);
851                                         hp->sw_csconfig |= CSCONFIG_TCVDISAB;
852                                         happy_meal_tcvr_write(hp, tregs,
853                                                               DP83840_CSCONFIG, hp->sw_csconfig);
854                                 }
855                                 hp->timer_ticks = 0;
856                                 restart_timer = 1;
857                         } else {
858                                 restart_timer = 1;
859                         }
860                 }
861                 break;
862
863         case asleep:
864         default:
865                 /* Can't happens.... */
866                 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
867                        hp->dev->name);
868                 restart_timer = 0;
869                 hp->timer_ticks = 0;
870                 hp->timer_state = asleep; /* foo on you */
871                 break;
872         };
873
874         if (restart_timer) {
875                 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
876                 add_timer(&hp->happy_timer);
877         }
878
879 out:
880         spin_unlock_irq(&hp->happy_lock);
881 }
882
883 #define TX_RESET_TRIES     32
884 #define RX_RESET_TRIES     32
885
886 /* hp->happy_lock must be held */
887 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
888 {
889         int tries = TX_RESET_TRIES;
890
891         HMD(("happy_meal_tx_reset: reset, "));
892
893         /* Would you like to try our SMCC Delux? */
894         hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
895         while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
896                 udelay(20);
897
898         /* Lettuce, tomato, buggy hardware (no extra charge)? */
899         if (!tries)
900                 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
901
902         /* Take care. */
903         HMD(("done\n"));
904 }
905
906 /* hp->happy_lock must be held */
907 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
908 {
909         int tries = RX_RESET_TRIES;
910
911         HMD(("happy_meal_rx_reset: reset, "));
912
913         /* We have a special on GNU/Viking hardware bugs today. */
914         hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
915         while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
916                 udelay(20);
917
918         /* Will that be all? */
919         if (!tries)
920                 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
921
922         /* Don't forget your vik_1137125_wa.  Have a nice day. */
923         HMD(("done\n"));
924 }
925
926 #define STOP_TRIES         16
927
928 /* hp->happy_lock must be held */
929 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
930 {
931         int tries = STOP_TRIES;
932
933         HMD(("happy_meal_stop: reset, "));
934
935         /* We're consolidating our STB products, it's your lucky day. */
936         hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
937         while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
938                 udelay(20);
939
940         /* Come back next week when we are "Sun Microelectronics". */
941         if (!tries)
942                 printk(KERN_ERR "happy meal: Fry guys.");
943
944         /* Remember: "Different name, same old buggy as shit hardware." */
945         HMD(("done\n"));
946 }
947
948 /* hp->happy_lock must be held */
949 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
950 {
951         struct net_device_stats *stats = &hp->net_stats;
952
953         stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
954         hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
955
956         stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
957         hme_write32(hp, bregs + BMAC_UNALECTR, 0);
958
959         stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
960         hme_write32(hp, bregs + BMAC_GLECTR, 0);
961
962         stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
963
964         stats->collisions +=
965                 (hme_read32(hp, bregs + BMAC_EXCTR) +
966                  hme_read32(hp, bregs + BMAC_LTCTR));
967         hme_write32(hp, bregs + BMAC_EXCTR, 0);
968         hme_write32(hp, bregs + BMAC_LTCTR, 0);
969 }
970
971 /* hp->happy_lock must be held */
972 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
973 {
974         ASD(("happy_meal_poll_stop: "));
975
976         /* If polling disabled or not polling already, nothing to do. */
977         if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
978            (HFLAG_POLLENABLE | HFLAG_POLL)) {
979                 HMD(("not polling, return\n"));
980                 return;
981         }
982
983         /* Shut up the MIF. */
984         ASD(("were polling, mif ints off, "));
985         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
986
987         /* Turn off polling. */
988         ASD(("polling off, "));
989         hme_write32(hp, tregs + TCVR_CFG,
990                     hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
991
992         /* We are no longer polling. */
993         hp->happy_flags &= ~(HFLAG_POLL);
994
995         /* Let the bits set. */
996         udelay(200);
997         ASD(("done\n"));
998 }
999
1000 /* Only Sun can take such nice parts and fuck up the programming interface
1001  * like this.  Good job guys...
1002  */
1003 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
1004 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
1005
1006 /* hp->happy_lock must be held */
1007 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
1008 {
1009         u32 tconfig;
1010         int result, tries = TCVR_RESET_TRIES;
1011
1012         tconfig = hme_read32(hp, tregs + TCVR_CFG);
1013         ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1014         if (hp->tcvr_type == external) {
1015                 ASD(("external<"));
1016                 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1017                 hp->tcvr_type = internal;
1018                 hp->paddr = TCV_PADDR_ITX;
1019                 ASD(("ISOLATE,"));
1020                 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1021                                       (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1022                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1023                 if (result == TCVR_FAILURE) {
1024                         ASD(("phyread_fail>\n"));
1025                         return -1;
1026                 }
1027                 ASD(("phyread_ok,PSELECT>"));
1028                 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1029                 hp->tcvr_type = external;
1030                 hp->paddr = TCV_PADDR_ETX;
1031         } else {
1032                 if (tconfig & TCV_CFG_MDIO1) {
1033                         ASD(("internal<PSELECT,"));
1034                         hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1035                         ASD(("ISOLATE,"));
1036                         happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1037                                               (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1038                         result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1039                         if (result == TCVR_FAILURE) {
1040                                 ASD(("phyread_fail>\n"));
1041                                 return -1;
1042                         }
1043                         ASD(("phyread_ok,~PSELECT>"));
1044                         hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1045                         hp->tcvr_type = internal;
1046                         hp->paddr = TCV_PADDR_ITX;
1047                 }
1048         }
1049
1050         ASD(("BMCR_RESET "));
1051         happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1052
1053         while (--tries) {
1054                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1055                 if (result == TCVR_FAILURE)
1056                         return -1;
1057                 hp->sw_bmcr = result;
1058                 if (!(result & BMCR_RESET))
1059                         break;
1060                 udelay(20);
1061         }
1062         if (!tries) {
1063                 ASD(("BMCR RESET FAILED!\n"));
1064                 return -1;
1065         }
1066         ASD(("RESET_OK\n"));
1067
1068         /* Get fresh copies of the PHY registers. */
1069         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1070         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1071         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1072         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1073
1074         ASD(("UNISOLATE"));
1075         hp->sw_bmcr &= ~(BMCR_ISOLATE);
1076         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1077
1078         tries = TCVR_UNISOLATE_TRIES;
1079         while (--tries) {
1080                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1081                 if (result == TCVR_FAILURE)
1082                         return -1;
1083                 if (!(result & BMCR_ISOLATE))
1084                         break;
1085                 udelay(20);
1086         }
1087         if (!tries) {
1088                 ASD((" FAILED!\n"));
1089                 return -1;
1090         }
1091         ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1092         if (!is_lucent_phy(hp)) {
1093                 result = happy_meal_tcvr_read(hp, tregs,
1094                                               DP83840_CSCONFIG);
1095                 happy_meal_tcvr_write(hp, tregs,
1096                                       DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1097         }
1098         return 0;
1099 }
1100
1101 /* Figure out whether we have an internal or external transceiver.
1102  *
1103  * hp->happy_lock must be held
1104  */
1105 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1106 {
1107         unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1108
1109         ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1110         if (hp->happy_flags & HFLAG_POLL) {
1111                 /* If we are polling, we must stop to get the transceiver type. */
1112                 ASD(("<polling> "));
1113                 if (hp->tcvr_type == internal) {
1114                         if (tconfig & TCV_CFG_MDIO1) {
1115                                 ASD(("<internal> <poll stop> "));
1116                                 happy_meal_poll_stop(hp, tregs);
1117                                 hp->paddr = TCV_PADDR_ETX;
1118                                 hp->tcvr_type = external;
1119                                 ASD(("<external>\n"));
1120                                 tconfig &= ~(TCV_CFG_PENABLE);
1121                                 tconfig |= TCV_CFG_PSELECT;
1122                                 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1123                         }
1124                 } else {
1125                         if (hp->tcvr_type == external) {
1126                                 ASD(("<external> "));
1127                                 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1128                                         ASD(("<poll stop> "));
1129                                         happy_meal_poll_stop(hp, tregs);
1130                                         hp->paddr = TCV_PADDR_ITX;
1131                                         hp->tcvr_type = internal;
1132                                         ASD(("<internal>\n"));
1133                                         hme_write32(hp, tregs + TCVR_CFG,
1134                                                     hme_read32(hp, tregs + TCVR_CFG) &
1135                                                     ~(TCV_CFG_PSELECT));
1136                                 }
1137                                 ASD(("\n"));
1138                         } else {
1139                                 ASD(("<none>\n"));
1140                         }
1141                 }
1142         } else {
1143                 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1144
1145                 /* Else we can just work off of the MDIO bits. */
1146                 ASD(("<not polling> "));
1147                 if (reread & TCV_CFG_MDIO1) {
1148                         hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1149                         hp->paddr = TCV_PADDR_ETX;
1150                         hp->tcvr_type = external;
1151                         ASD(("<external>\n"));
1152                 } else {
1153                         if (reread & TCV_CFG_MDIO0) {
1154                                 hme_write32(hp, tregs + TCVR_CFG,
1155                                             tconfig & ~(TCV_CFG_PSELECT));
1156                                 hp->paddr = TCV_PADDR_ITX;
1157                                 hp->tcvr_type = internal;
1158                                 ASD(("<internal>\n"));
1159                         } else {
1160                                 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1161                                 hp->tcvr_type = none; /* Grrr... */
1162                                 ASD(("<none>\n"));
1163                         }
1164                 }
1165         }
1166 }
1167
1168 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1169  *
1170  * The buffers we dma into must be 64 byte aligned.  So we use a special
1171  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1172  * we really need.
1173  *
1174  * We use skb_reserve() to align the data block we get in the skb.  We
1175  * also program the etxregs->cfg register to use an offset of 2.  This
1176  * imperical constant plus the ethernet header size will always leave
1177  * us with a nicely aligned ip header once we pass things up to the
1178  * protocol layers.
1179  *
1180  * The numbers work out to:
1181  *
1182  *         Max ethernet frame size         1518
1183  *         Ethernet header size              14
1184  *         Happy Meal base offset             2
1185  *
1186  * Say a skb data area is at 0xf001b010, and its size alloced is
1187  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1188  *
1189  * First our alloc_skb() routine aligns the data base to a 64 byte
1190  * boundary.  We now have 0xf001b040 as our skb data address.  We
1191  * plug this into the receive descriptor address.
1192  *
1193  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1194  * So now the data we will end up looking at starts at 0xf001b042.  When
1195  * the packet arrives, we will check out the size received and subtract
1196  * this from the skb->length.  Then we just pass the packet up to the
1197  * protocols as is, and allocate a new skb to replace this slot we have
1198  * just received from.
1199  *
1200  * The ethernet layer will strip the ether header from the front of the
1201  * skb we just sent to it, this leaves us with the ip header sitting
1202  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1203  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1204  * bit checksum is obtained from the low bits of the receive descriptor
1205  * flags, thus:
1206  *
1207  *      skb->csum = rxd->rx_flags & 0xffff;
1208  *      skb->ip_summed = CHECKSUM_COMPLETE;
1209  *
1210  * before sending off the skb to the protocols, and we are good as gold.
1211  */
1212 static void happy_meal_clean_rings(struct happy_meal *hp)
1213 {
1214         int i;
1215
1216         for (i = 0; i < RX_RING_SIZE; i++) {
1217                 if (hp->rx_skbs[i] != NULL) {
1218                         struct sk_buff *skb = hp->rx_skbs[i];
1219                         struct happy_meal_rxd *rxd;
1220                         u32 dma_addr;
1221
1222                         rxd = &hp->happy_block->happy_meal_rxd[i];
1223                         dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1224                         hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
1225                         dev_kfree_skb_any(skb);
1226                         hp->rx_skbs[i] = NULL;
1227                 }
1228         }
1229
1230         for (i = 0; i < TX_RING_SIZE; i++) {
1231                 if (hp->tx_skbs[i] != NULL) {
1232                         struct sk_buff *skb = hp->tx_skbs[i];
1233                         struct happy_meal_txd *txd;
1234                         u32 dma_addr;
1235                         int frag;
1236
1237                         hp->tx_skbs[i] = NULL;
1238
1239                         for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1240                                 txd = &hp->happy_block->happy_meal_txd[i];
1241                                 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1242                                 hme_dma_unmap(hp, dma_addr,
1243                                               (hme_read_desc32(hp, &txd->tx_flags)
1244                                                & TXFLAG_SIZE),
1245                                               DMA_TODEVICE);
1246
1247                                 if (frag != skb_shinfo(skb)->nr_frags)
1248                                         i++;
1249                         }
1250
1251                         dev_kfree_skb_any(skb);
1252                 }
1253         }
1254 }
1255
1256 /* hp->happy_lock must be held */
1257 static void happy_meal_init_rings(struct happy_meal *hp)
1258 {
1259         struct hmeal_init_block *hb = hp->happy_block;
1260         struct net_device *dev = hp->dev;
1261         int i;
1262
1263         HMD(("happy_meal_init_rings: counters to zero, "));
1264         hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1265
1266         /* Free any skippy bufs left around in the rings. */
1267         HMD(("clean, "));
1268         happy_meal_clean_rings(hp);
1269
1270         /* Now get new skippy bufs for the receive ring. */
1271         HMD(("init rxring, "));
1272         for (i = 0; i < RX_RING_SIZE; i++) {
1273                 struct sk_buff *skb;
1274
1275                 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1276                 if (!skb) {
1277                         hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1278                         continue;
1279                 }
1280                 hp->rx_skbs[i] = skb;
1281                 skb->dev = dev;
1282
1283                 /* Because we reserve afterwards. */
1284                 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET));
1285                 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1286                               (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1287                               hme_dma_map(hp, skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
1288                 skb_reserve(skb, RX_OFFSET);
1289         }
1290
1291         HMD(("init txring, "));
1292         for (i = 0; i < TX_RING_SIZE; i++)
1293                 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1294
1295         HMD(("done\n"));
1296 }
1297
1298 /* hp->happy_lock must be held */
1299 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1300                                               void __iomem *tregs,
1301                                               struct ethtool_cmd *ep)
1302 {
1303         int timeout;
1304
1305         /* Read all of the registers we are interested in now. */
1306         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1307         hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1308         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1309         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1310
1311         /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1312
1313         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1314         if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1315                 /* Advertise everything we can support. */
1316                 if (hp->sw_bmsr & BMSR_10HALF)
1317                         hp->sw_advertise |= (ADVERTISE_10HALF);
1318                 else
1319                         hp->sw_advertise &= ~(ADVERTISE_10HALF);
1320
1321                 if (hp->sw_bmsr & BMSR_10FULL)
1322                         hp->sw_advertise |= (ADVERTISE_10FULL);
1323                 else
1324                         hp->sw_advertise &= ~(ADVERTISE_10FULL);
1325                 if (hp->sw_bmsr & BMSR_100HALF)
1326                         hp->sw_advertise |= (ADVERTISE_100HALF);
1327                 else
1328                         hp->sw_advertise &= ~(ADVERTISE_100HALF);
1329                 if (hp->sw_bmsr & BMSR_100FULL)
1330                         hp->sw_advertise |= (ADVERTISE_100FULL);
1331                 else
1332                         hp->sw_advertise &= ~(ADVERTISE_100FULL);
1333                 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1334
1335                 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1336                  * XXX and this is because the DP83840 does not support it, changes
1337                  * XXX would need to be made to the tx/rx logic in the driver as well
1338                  * XXX so I completely skip checking for it in the BMSR for now.
1339                  */
1340
1341 #ifdef AUTO_SWITCH_DEBUG
1342                 ASD(("%s: Advertising [ ", hp->dev->name));
1343                 if (hp->sw_advertise & ADVERTISE_10HALF)
1344                         ASD(("10H "));
1345                 if (hp->sw_advertise & ADVERTISE_10FULL)
1346                         ASD(("10F "));
1347                 if (hp->sw_advertise & ADVERTISE_100HALF)
1348                         ASD(("100H "));
1349                 if (hp->sw_advertise & ADVERTISE_100FULL)
1350                         ASD(("100F "));
1351 #endif
1352
1353                 /* Enable Auto-Negotiation, this is usually on already... */
1354                 hp->sw_bmcr |= BMCR_ANENABLE;
1355                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1356
1357                 /* Restart it to make sure it is going. */
1358                 hp->sw_bmcr |= BMCR_ANRESTART;
1359                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1360
1361                 /* BMCR_ANRESTART self clears when the process has begun. */
1362
1363                 timeout = 64;  /* More than enough. */
1364                 while (--timeout) {
1365                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1366                         if (!(hp->sw_bmcr & BMCR_ANRESTART))
1367                                 break; /* got it. */
1368                         udelay(10);
1369                 }
1370                 if (!timeout) {
1371                         printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1372                                "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1373                         printk(KERN_NOTICE "%s: Performing force link detection.\n",
1374                                hp->dev->name);
1375                         goto force_link;
1376                 } else {
1377                         hp->timer_state = arbwait;
1378                 }
1379         } else {
1380 force_link:
1381                 /* Force the link up, trying first a particular mode.
1382                  * Either we are here at the request of ethtool or
1383                  * because the Happy Meal would not start to autoneg.
1384                  */
1385
1386                 /* Disable auto-negotiation in BMCR, enable the duplex and
1387                  * speed setting, init the timer state machine, and fire it off.
1388                  */
1389                 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1390                         hp->sw_bmcr = BMCR_SPEED100;
1391                 } else {
1392                         if (ep->speed == SPEED_100)
1393                                 hp->sw_bmcr = BMCR_SPEED100;
1394                         else
1395                                 hp->sw_bmcr = 0;
1396                         if (ep->duplex == DUPLEX_FULL)
1397                                 hp->sw_bmcr |= BMCR_FULLDPLX;
1398                 }
1399                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1400
1401                 if (!is_lucent_phy(hp)) {
1402                         /* OK, seems we need do disable the transceiver for the first
1403                          * tick to make sure we get an accurate link state at the
1404                          * second tick.
1405                          */
1406                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1407                                                                DP83840_CSCONFIG);
1408                         hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1409                         happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1410                                               hp->sw_csconfig);
1411                 }
1412                 hp->timer_state = ltrywait;
1413         }
1414
1415         hp->timer_ticks = 0;
1416         hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1417         hp->happy_timer.data = (unsigned long) hp;
1418         hp->happy_timer.function = &happy_meal_timer;
1419         add_timer(&hp->happy_timer);
1420 }
1421
1422 /* hp->happy_lock must be held */
1423 static int happy_meal_init(struct happy_meal *hp)
1424 {
1425         void __iomem *gregs        = hp->gregs;
1426         void __iomem *etxregs      = hp->etxregs;
1427         void __iomem *erxregs      = hp->erxregs;
1428         void __iomem *bregs        = hp->bigmacregs;
1429         void __iomem *tregs        = hp->tcvregs;
1430         u32 regtmp, rxcfg;
1431         unsigned char *e = &hp->dev->dev_addr[0];
1432
1433         /* If auto-negotiation timer is running, kill it. */
1434         del_timer(&hp->happy_timer);
1435
1436         HMD(("happy_meal_init: happy_flags[%08x] ",
1437              hp->happy_flags));
1438         if (!(hp->happy_flags & HFLAG_INIT)) {
1439                 HMD(("set HFLAG_INIT, "));
1440                 hp->happy_flags |= HFLAG_INIT;
1441                 happy_meal_get_counters(hp, bregs);
1442         }
1443
1444         /* Stop polling. */
1445         HMD(("to happy_meal_poll_stop\n"));
1446         happy_meal_poll_stop(hp, tregs);
1447
1448         /* Stop transmitter and receiver. */
1449         HMD(("happy_meal_init: to happy_meal_stop\n"));
1450         happy_meal_stop(hp, gregs);
1451
1452         /* Alloc and reset the tx/rx descriptor chains. */
1453         HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1454         happy_meal_init_rings(hp);
1455
1456         /* Shut up the MIF. */
1457         HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1458              hme_read32(hp, tregs + TCVR_IMASK)));
1459         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1460
1461         /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1462         if (hp->happy_flags & HFLAG_FENABLE) {
1463                 HMD(("use frame old[%08x], ",
1464                      hme_read32(hp, tregs + TCVR_CFG)));
1465                 hme_write32(hp, tregs + TCVR_CFG,
1466                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1467         } else {
1468                 HMD(("use bitbang old[%08x], ",
1469                      hme_read32(hp, tregs + TCVR_CFG)));
1470                 hme_write32(hp, tregs + TCVR_CFG,
1471                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1472         }
1473
1474         /* Check the state of the transceiver. */
1475         HMD(("to happy_meal_transceiver_check\n"));
1476         happy_meal_transceiver_check(hp, tregs);
1477
1478         /* Put the Big Mac into a sane state. */
1479         HMD(("happy_meal_init: "));
1480         switch(hp->tcvr_type) {
1481         case none:
1482                 /* Cannot operate if we don't know the transceiver type! */
1483                 HMD(("AAIEEE no transceiver type, EAGAIN"));
1484                 return -EAGAIN;
1485
1486         case internal:
1487                 /* Using the MII buffers. */
1488                 HMD(("internal, using MII, "));
1489                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1490                 break;
1491
1492         case external:
1493                 /* Not using the MII, disable it. */
1494                 HMD(("external, disable MII, "));
1495                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1496                 break;
1497         };
1498
1499         if (happy_meal_tcvr_reset(hp, tregs))
1500                 return -EAGAIN;
1501
1502         /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1503         HMD(("tx/rx reset, "));
1504         happy_meal_tx_reset(hp, bregs);
1505         happy_meal_rx_reset(hp, bregs);
1506
1507         /* Set jam size and inter-packet gaps to reasonable defaults. */
1508         HMD(("jsize/ipg1/ipg2, "));
1509         hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1510         hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1511         hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1512
1513         /* Load up the MAC address and random seed. */
1514         HMD(("rseed/macaddr, "));
1515
1516         /* The docs recommend to use the 10LSB of our MAC here. */
1517         hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1518
1519         hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1520         hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1521         hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1522
1523         HMD(("htable, "));
1524         if ((hp->dev->flags & IFF_ALLMULTI) ||
1525             (hp->dev->mc_count > 64)) {
1526                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1527                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1528                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1529                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1530         } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1531                 u16 hash_table[4];
1532                 struct dev_mc_list *dmi = hp->dev->mc_list;
1533                 char *addrs;
1534                 int i;
1535                 u32 crc;
1536
1537                 for (i = 0; i < 4; i++)
1538                         hash_table[i] = 0;
1539
1540                 for (i = 0; i < hp->dev->mc_count; i++) {
1541                         addrs = dmi->dmi_addr;
1542                         dmi = dmi->next;
1543
1544                         if (!(*addrs & 1))
1545                                 continue;
1546
1547                         crc = ether_crc_le(6, addrs);
1548                         crc >>= 26;
1549                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
1550                 }
1551                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1552                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1553                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1554                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1555         } else {
1556                 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1557                 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1558                 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1559                 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1560         }
1561
1562         /* Set the RX and TX ring ptrs. */
1563         HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1564              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1565              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1566         hme_write32(hp, erxregs + ERX_RING,
1567                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1568         hme_write32(hp, etxregs + ETX_RING,
1569                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1570
1571         /* Parity issues in the ERX unit of some HME revisions can cause some
1572          * registers to not be written unless their parity is even.  Detect such
1573          * lost writes and simply rewrite with a low bit set (which will be ignored
1574          * since the rxring needs to be 2K aligned).
1575          */
1576         if (hme_read32(hp, erxregs + ERX_RING) !=
1577             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1578                 hme_write32(hp, erxregs + ERX_RING,
1579                             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1580                             | 0x4);
1581
1582         /* Set the supported burst sizes. */
1583         HMD(("happy_meal_init: old[%08x] bursts<",
1584              hme_read32(hp, gregs + GREG_CFG)));
1585
1586 #ifndef CONFIG_SPARC
1587         /* It is always PCI and can handle 64byte bursts. */
1588         hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1589 #else
1590         if ((hp->happy_bursts & DMA_BURST64) &&
1591             ((hp->happy_flags & HFLAG_PCI) != 0
1592 #ifdef CONFIG_SBUS
1593              || sbus_can_burst64(hp->happy_dev)
1594 #endif
1595              || 0)) {
1596                 u32 gcfg = GREG_CFG_BURST64;
1597
1598                 /* I have no idea if I should set the extended
1599                  * transfer mode bit for Cheerio, so for now I
1600                  * do not.  -DaveM
1601                  */
1602 #ifdef CONFIG_SBUS
1603                 if ((hp->happy_flags & HFLAG_PCI) == 0 &&
1604                     sbus_can_dma_64bit(hp->happy_dev)) {
1605                         sbus_set_sbus64(hp->happy_dev,
1606                                         hp->happy_bursts);
1607                         gcfg |= GREG_CFG_64BIT;
1608                 }
1609 #endif
1610
1611                 HMD(("64>"));
1612                 hme_write32(hp, gregs + GREG_CFG, gcfg);
1613         } else if (hp->happy_bursts & DMA_BURST32) {
1614                 HMD(("32>"));
1615                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1616         } else if (hp->happy_bursts & DMA_BURST16) {
1617                 HMD(("16>"));
1618                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1619         } else {
1620                 HMD(("XXX>"));
1621                 hme_write32(hp, gregs + GREG_CFG, 0);
1622         }
1623 #endif /* CONFIG_SPARC */
1624
1625         /* Turn off interrupts we do not want to hear. */
1626         HMD((", enable global interrupts, "));
1627         hme_write32(hp, gregs + GREG_IMASK,
1628                     (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1629                      GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1630
1631         /* Set the transmit ring buffer size. */
1632         HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1633              hme_read32(hp, etxregs + ETX_RSIZE)));
1634         hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1635
1636         /* Enable transmitter DVMA. */
1637         HMD(("tx dma enable old[%08x], ",
1638              hme_read32(hp, etxregs + ETX_CFG)));
1639         hme_write32(hp, etxregs + ETX_CFG,
1640                     hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1641
1642         /* This chip really rots, for the receiver sometimes when you
1643          * write to its control registers not all the bits get there
1644          * properly.  I cannot think of a sane way to provide complete
1645          * coverage for this hardware bug yet.
1646          */
1647         HMD(("erx regs bug old[%08x]\n",
1648              hme_read32(hp, erxregs + ERX_CFG)));
1649         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1650         regtmp = hme_read32(hp, erxregs + ERX_CFG);
1651         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1652         if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1653                 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1654                 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1655                        ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1656                 /* XXX Should return failure here... */
1657         }
1658
1659         /* Enable Big Mac hash table filter. */
1660         HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1661              hme_read32(hp, bregs + BMAC_RXCFG)));
1662         rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1663         if (hp->dev->flags & IFF_PROMISC)
1664                 rxcfg |= BIGMAC_RXCFG_PMISC;
1665         hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1666
1667         /* Let the bits settle in the chip. */
1668         udelay(10);
1669
1670         /* Ok, configure the Big Mac transmitter. */
1671         HMD(("BIGMAC init, "));
1672         regtmp = 0;
1673         if (hp->happy_flags & HFLAG_FULL)
1674                 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1675
1676         /* Don't turn on the "don't give up" bit for now.  It could cause hme
1677          * to deadlock with the PHY if a Jabber occurs.
1678          */
1679         hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1680
1681         /* Give up after 16 TX attempts. */
1682         hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1683
1684         /* Enable the output drivers no matter what. */
1685         regtmp = BIGMAC_XCFG_ODENABLE;
1686
1687         /* If card can do lance mode, enable it. */
1688         if (hp->happy_flags & HFLAG_LANCE)
1689                 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1690
1691         /* Disable the MII buffers if using external transceiver. */
1692         if (hp->tcvr_type == external)
1693                 regtmp |= BIGMAC_XCFG_MIIDISAB;
1694
1695         HMD(("XIF config old[%08x], ",
1696              hme_read32(hp, bregs + BMAC_XIFCFG)));
1697         hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1698
1699         /* Start things up. */
1700         HMD(("tx old[%08x] and rx [%08x] ON!\n",
1701              hme_read32(hp, bregs + BMAC_TXCFG),
1702              hme_read32(hp, bregs + BMAC_RXCFG)));
1703         hme_write32(hp, bregs + BMAC_TXCFG,
1704                     hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1705         hme_write32(hp, bregs + BMAC_RXCFG,
1706                     hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1707
1708         /* Get the autonegotiation started, and the watch timer ticking. */
1709         happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1710
1711         /* Success. */
1712         return 0;
1713 }
1714
1715 /* hp->happy_lock must be held */
1716 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1717 {
1718         void __iomem *tregs     = hp->tcvregs;
1719         void __iomem *bregs     = hp->bigmacregs;
1720         void __iomem *gregs     = hp->gregs;
1721
1722         happy_meal_stop(hp, gregs);
1723         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1724         if (hp->happy_flags & HFLAG_FENABLE)
1725                 hme_write32(hp, tregs + TCVR_CFG,
1726                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1727         else
1728                 hme_write32(hp, tregs + TCVR_CFG,
1729                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1730         happy_meal_transceiver_check(hp, tregs);
1731         switch(hp->tcvr_type) {
1732         case none:
1733                 return;
1734         case internal:
1735                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1736                 break;
1737         case external:
1738                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1739                 break;
1740         };
1741         if (happy_meal_tcvr_reset(hp, tregs))
1742                 return;
1743
1744         /* Latch PHY registers as of now. */
1745         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1746         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1747
1748         /* Advertise everything we can support. */
1749         if (hp->sw_bmsr & BMSR_10HALF)
1750                 hp->sw_advertise |= (ADVERTISE_10HALF);
1751         else
1752                 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1753
1754         if (hp->sw_bmsr & BMSR_10FULL)
1755                 hp->sw_advertise |= (ADVERTISE_10FULL);
1756         else
1757                 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1758         if (hp->sw_bmsr & BMSR_100HALF)
1759                 hp->sw_advertise |= (ADVERTISE_100HALF);
1760         else
1761                 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1762         if (hp->sw_bmsr & BMSR_100FULL)
1763                 hp->sw_advertise |= (ADVERTISE_100FULL);
1764         else
1765                 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1766
1767         /* Update the PHY advertisement register. */
1768         happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1769 }
1770
1771 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1772  * the hardware, so we cannot re-read it and get a correct value.
1773  *
1774  * hp->happy_lock must be held
1775  */
1776 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1777 {
1778         int reset = 0;
1779
1780         /* Only print messages for non-counter related interrupts. */
1781         if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1782                       GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1783                       GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1784                       GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1785                       GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1786                       GREG_STAT_SLVPERR))
1787                 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1788                        hp->dev->name, status);
1789
1790         if (status & GREG_STAT_RFIFOVF) {
1791                 /* Receive FIFO overflow is harmless and the hardware will take
1792                    care of it, just some packets are lost. Who cares. */
1793                 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1794         }
1795
1796         if (status & GREG_STAT_STSTERR) {
1797                 /* BigMAC SQE link test failed. */
1798                 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1799                 reset = 1;
1800         }
1801
1802         if (status & GREG_STAT_TFIFO_UND) {
1803                 /* Transmit FIFO underrun, again DMA error likely. */
1804                 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1805                        hp->dev->name);
1806                 reset = 1;
1807         }
1808
1809         if (status & GREG_STAT_MAXPKTERR) {
1810                 /* Driver error, tried to transmit something larger
1811                  * than ethernet max mtu.
1812                  */
1813                 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1814                 reset = 1;
1815         }
1816
1817         if (status & GREG_STAT_NORXD) {
1818                 /* This is harmless, it just means the system is
1819                  * quite loaded and the incoming packet rate was
1820                  * faster than the interrupt handler could keep up
1821                  * with.
1822                  */
1823                 printk(KERN_INFO "%s: Happy Meal out of receive "
1824                        "descriptors, packet dropped.\n",
1825                        hp->dev->name);
1826         }
1827
1828         if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1829                 /* All sorts of DMA receive errors. */
1830                 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1831                 if (status & GREG_STAT_RXERR)
1832                         printk("GenericError ");
1833                 if (status & GREG_STAT_RXPERR)
1834                         printk("ParityError ");
1835                 if (status & GREG_STAT_RXTERR)
1836                         printk("RxTagBotch ");
1837                 printk("]\n");
1838                 reset = 1;
1839         }
1840
1841         if (status & GREG_STAT_EOPERR) {
1842                 /* Driver bug, didn't set EOP bit in tx descriptor given
1843                  * to the happy meal.
1844                  */
1845                 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1846                        hp->dev->name);
1847                 reset = 1;
1848         }
1849
1850         if (status & GREG_STAT_MIFIRQ) {
1851                 /* MIF signalled an interrupt, were we polling it? */
1852                 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1853         }
1854
1855         if (status &
1856             (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1857                 /* All sorts of transmit DMA errors. */
1858                 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1859                 if (status & GREG_STAT_TXEACK)
1860                         printk("GenericError ");
1861                 if (status & GREG_STAT_TXLERR)
1862                         printk("LateError ");
1863                 if (status & GREG_STAT_TXPERR)
1864                         printk("ParityErro ");
1865                 if (status & GREG_STAT_TXTERR)
1866                         printk("TagBotch ");
1867                 printk("]\n");
1868                 reset = 1;
1869         }
1870
1871         if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1872                 /* Bus or parity error when cpu accessed happy meal registers
1873                  * or it's internal FIFO's.  Should never see this.
1874                  */
1875                 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1876                        hp->dev->name,
1877                        (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1878                 reset = 1;
1879         }
1880
1881         if (reset) {
1882                 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1883                 happy_meal_init(hp);
1884                 return 1;
1885         }
1886         return 0;
1887 }
1888
1889 /* hp->happy_lock must be held */
1890 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1891 {
1892         void __iomem *tregs = hp->tcvregs;
1893
1894         printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1895         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1896         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1897
1898         /* Use the fastest transmission protocol possible. */
1899         if (hp->sw_lpa & LPA_100FULL) {
1900                 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1901                 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1902         } else if (hp->sw_lpa & LPA_100HALF) {
1903                 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1904                 hp->sw_bmcr |= BMCR_SPEED100;
1905         } else if (hp->sw_lpa & LPA_10FULL) {
1906                 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1907                 hp->sw_bmcr |= BMCR_FULLDPLX;
1908         } else {
1909                 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1910         }
1911         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1912
1913         /* Finally stop polling and shut up the MIF. */
1914         happy_meal_poll_stop(hp, tregs);
1915 }
1916
1917 #ifdef TXDEBUG
1918 #define TXD(x) printk x
1919 #else
1920 #define TXD(x)
1921 #endif
1922
1923 /* hp->happy_lock must be held */
1924 static void happy_meal_tx(struct happy_meal *hp)
1925 {
1926         struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1927         struct happy_meal_txd *this;
1928         struct net_device *dev = hp->dev;
1929         int elem;
1930
1931         elem = hp->tx_old;
1932         TXD(("TX<"));
1933         while (elem != hp->tx_new) {
1934                 struct sk_buff *skb;
1935                 u32 flags, dma_addr, dma_len;
1936                 int frag;
1937
1938                 TXD(("[%d]", elem));
1939                 this = &txbase[elem];
1940                 flags = hme_read_desc32(hp, &this->tx_flags);
1941                 if (flags & TXFLAG_OWN)
1942                         break;
1943                 skb = hp->tx_skbs[elem];
1944                 if (skb_shinfo(skb)->nr_frags) {
1945                         int last;
1946
1947                         last = elem + skb_shinfo(skb)->nr_frags;
1948                         last &= (TX_RING_SIZE - 1);
1949                         flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1950                         if (flags & TXFLAG_OWN)
1951                                 break;
1952                 }
1953                 hp->tx_skbs[elem] = NULL;
1954                 hp->net_stats.tx_bytes += skb->len;
1955
1956                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1957                         dma_addr = hme_read_desc32(hp, &this->tx_addr);
1958                         dma_len = hme_read_desc32(hp, &this->tx_flags);
1959
1960                         dma_len &= TXFLAG_SIZE;
1961                         hme_dma_unmap(hp, dma_addr, dma_len, DMA_TODEVICE);
1962
1963                         elem = NEXT_TX(elem);
1964                         this = &txbase[elem];
1965                 }
1966
1967                 dev_kfree_skb_irq(skb);
1968                 hp->net_stats.tx_packets++;
1969         }
1970         hp->tx_old = elem;
1971         TXD((">"));
1972
1973         if (netif_queue_stopped(dev) &&
1974             TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1975                 netif_wake_queue(dev);
1976 }
1977
1978 #ifdef RXDEBUG
1979 #define RXD(x) printk x
1980 #else
1981 #define RXD(x)
1982 #endif
1983
1984 /* Originally I used to handle the allocation failure by just giving back just
1985  * that one ring buffer to the happy meal.  Problem is that usually when that
1986  * condition is triggered, the happy meal expects you to do something reasonable
1987  * with all of the packets it has DMA'd in.  So now I just drop the entire
1988  * ring when we cannot get a new skb and give them all back to the happy meal,
1989  * maybe things will be "happier" now.
1990  *
1991  * hp->happy_lock must be held
1992  */
1993 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1994 {
1995         struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1996         struct happy_meal_rxd *this;
1997         int elem = hp->rx_new, drops = 0;
1998         u32 flags;
1999
2000         RXD(("RX<"));
2001         this = &rxbase[elem];
2002         while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2003                 struct sk_buff *skb;
2004                 int len = flags >> 16;
2005                 u16 csum = flags & RXFLAG_CSUM;
2006                 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2007
2008                 RXD(("[%d ", elem));
2009
2010                 /* Check for errors. */
2011                 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2012                         RXD(("ERR(%08x)]", flags));
2013                         hp->net_stats.rx_errors++;
2014                         if (len < ETH_ZLEN)
2015                                 hp->net_stats.rx_length_errors++;
2016                         if (len & (RXFLAG_OVERFLOW >> 16)) {
2017                                 hp->net_stats.rx_over_errors++;
2018                                 hp->net_stats.rx_fifo_errors++;
2019                         }
2020
2021                         /* Return it to the Happy meal. */
2022         drop_it:
2023                         hp->net_stats.rx_dropped++;
2024                         hme_write_rxd(hp, this,
2025                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2026                                       dma_addr);
2027                         goto next;
2028                 }
2029                 skb = hp->rx_skbs[elem];
2030                 if (len > RX_COPY_THRESHOLD) {
2031                         struct sk_buff *new_skb;
2032
2033                         /* Now refill the entry, if we can. */
2034                         new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2035                         if (new_skb == NULL) {
2036                                 drops++;
2037                                 goto drop_it;
2038                         }
2039                         hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
2040                         hp->rx_skbs[elem] = new_skb;
2041                         new_skb->dev = dev;
2042                         skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET));
2043                         hme_write_rxd(hp, this,
2044                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2045                                       hme_dma_map(hp, new_skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
2046                         skb_reserve(new_skb, RX_OFFSET);
2047
2048                         /* Trim the original skb for the netif. */
2049                         skb_trim(skb, len);
2050                 } else {
2051                         struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
2052
2053                         if (copy_skb == NULL) {
2054                                 drops++;
2055                                 goto drop_it;
2056                         }
2057
2058                         skb_reserve(copy_skb, 2);
2059                         skb_put(copy_skb, len);
2060                         hme_dma_sync_for_cpu(hp, dma_addr, len, DMA_FROMDEVICE);
2061                         skb_copy_from_linear_data(skb, copy_skb->data, len);
2062                         hme_dma_sync_for_device(hp, dma_addr, len, DMA_FROMDEVICE);
2063
2064                         /* Reuse original ring buffer. */
2065                         hme_write_rxd(hp, this,
2066                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2067                                       dma_addr);
2068
2069                         skb = copy_skb;
2070                 }
2071
2072                 /* This card is _fucking_ hot... */
2073                 skb->csum = ntohs(csum ^ 0xffff);
2074                 skb->ip_summed = CHECKSUM_COMPLETE;
2075
2076                 RXD(("len=%d csum=%4x]", len, csum));
2077                 skb->protocol = eth_type_trans(skb, dev);
2078                 netif_rx(skb);
2079
2080                 dev->last_rx = jiffies;
2081                 hp->net_stats.rx_packets++;
2082                 hp->net_stats.rx_bytes += len;
2083         next:
2084                 elem = NEXT_RX(elem);
2085                 this = &rxbase[elem];
2086         }
2087         hp->rx_new = elem;
2088         if (drops)
2089                 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2090         RXD((">"));
2091 }
2092
2093 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2094 {
2095         struct net_device *dev = dev_id;
2096         struct happy_meal *hp  = netdev_priv(dev);
2097         u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2098
2099         HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2100
2101         spin_lock(&hp->happy_lock);
2102
2103         if (happy_status & GREG_STAT_ERRORS) {
2104                 HMD(("ERRORS "));
2105                 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2106                         goto out;
2107         }
2108
2109         if (happy_status & GREG_STAT_MIFIRQ) {
2110                 HMD(("MIFIRQ "));
2111                 happy_meal_mif_interrupt(hp);
2112         }
2113
2114         if (happy_status & GREG_STAT_TXALL) {
2115                 HMD(("TXALL "));
2116                 happy_meal_tx(hp);
2117         }
2118
2119         if (happy_status & GREG_STAT_RXTOHOST) {
2120                 HMD(("RXTOHOST "));
2121                 happy_meal_rx(hp, dev);
2122         }
2123
2124         HMD(("done\n"));
2125 out:
2126         spin_unlock(&hp->happy_lock);
2127
2128         return IRQ_HANDLED;
2129 }
2130
2131 #ifdef CONFIG_SBUS
2132 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2133 {
2134         struct quattro *qp = (struct quattro *) cookie;
2135         int i;
2136
2137         for (i = 0; i < 4; i++) {
2138                 struct net_device *dev = qp->happy_meals[i];
2139                 struct happy_meal *hp  = dev->priv;
2140                 u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2141
2142                 HMD(("quattro_interrupt: status=%08x ", happy_status));
2143
2144                 if (!(happy_status & (GREG_STAT_ERRORS |
2145                                       GREG_STAT_MIFIRQ |
2146                                       GREG_STAT_TXALL |
2147                                       GREG_STAT_RXTOHOST)))
2148                         continue;
2149
2150                 spin_lock(&hp->happy_lock);
2151
2152                 if (happy_status & GREG_STAT_ERRORS) {
2153                         HMD(("ERRORS "));
2154                         if (happy_meal_is_not_so_happy(hp, happy_status))
2155                                 goto next;
2156                 }
2157
2158                 if (happy_status & GREG_STAT_MIFIRQ) {
2159                         HMD(("MIFIRQ "));
2160                         happy_meal_mif_interrupt(hp);
2161                 }
2162
2163                 if (happy_status & GREG_STAT_TXALL) {
2164                         HMD(("TXALL "));
2165                         happy_meal_tx(hp);
2166                 }
2167
2168                 if (happy_status & GREG_STAT_RXTOHOST) {
2169                         HMD(("RXTOHOST "));
2170                         happy_meal_rx(hp, dev);
2171                 }
2172
2173         next:
2174                 spin_unlock(&hp->happy_lock);
2175         }
2176         HMD(("done\n"));
2177
2178         return IRQ_HANDLED;
2179 }
2180 #endif
2181
2182 static int happy_meal_open(struct net_device *dev)
2183 {
2184         struct happy_meal *hp = dev->priv;
2185         int res;
2186
2187         HMD(("happy_meal_open: "));
2188
2189         /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2190          * into a single source which we register handling at probe time.
2191          */
2192         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2193                 if (request_irq(dev->irq, &happy_meal_interrupt,
2194                                 IRQF_SHARED, dev->name, (void *)dev)) {
2195                         HMD(("EAGAIN\n"));
2196                         printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2197                                dev->irq);
2198
2199                         return -EAGAIN;
2200                 }
2201         }
2202
2203         HMD(("to happy_meal_init\n"));
2204
2205         spin_lock_irq(&hp->happy_lock);
2206         res = happy_meal_init(hp);
2207         spin_unlock_irq(&hp->happy_lock);
2208
2209         if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2210                 free_irq(dev->irq, dev);
2211         return res;
2212 }
2213
2214 static int happy_meal_close(struct net_device *dev)
2215 {
2216         struct happy_meal *hp = dev->priv;
2217
2218         spin_lock_irq(&hp->happy_lock);
2219         happy_meal_stop(hp, hp->gregs);
2220         happy_meal_clean_rings(hp);
2221
2222         /* If auto-negotiation timer is running, kill it. */
2223         del_timer(&hp->happy_timer);
2224
2225         spin_unlock_irq(&hp->happy_lock);
2226
2227         /* On Quattro QFE cards, all hme interrupts are concentrated
2228          * into a single source which we register handling at probe
2229          * time and never unregister.
2230          */
2231         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2232                 free_irq(dev->irq, dev);
2233
2234         return 0;
2235 }
2236
2237 #ifdef SXDEBUG
2238 #define SXD(x) printk x
2239 #else
2240 #define SXD(x)
2241 #endif
2242
2243 static void happy_meal_tx_timeout(struct net_device *dev)
2244 {
2245         struct happy_meal *hp = dev->priv;
2246
2247         printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2248         tx_dump_log();
2249         printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2250                 hme_read32(hp, hp->gregs + GREG_STAT),
2251                 hme_read32(hp, hp->etxregs + ETX_CFG),
2252                 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2253
2254         spin_lock_irq(&hp->happy_lock);
2255         happy_meal_init(hp);
2256         spin_unlock_irq(&hp->happy_lock);
2257
2258         netif_wake_queue(dev);
2259 }
2260
2261 static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev)
2262 {
2263         struct happy_meal *hp = dev->priv;
2264         int entry;
2265         u32 tx_flags;
2266
2267         tx_flags = TXFLAG_OWN;
2268         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2269                 const u32 csum_start_off = skb_transport_offset(skb);
2270                 const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2271
2272                 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2273                             ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2274                             ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2275         }
2276
2277         spin_lock_irq(&hp->happy_lock);
2278
2279         if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2280                 netif_stop_queue(dev);
2281                 spin_unlock_irq(&hp->happy_lock);
2282                 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2283                        dev->name);
2284                 return 1;
2285         }
2286
2287         entry = hp->tx_new;
2288         SXD(("SX<l[%d]e[%d]>", len, entry));
2289         hp->tx_skbs[entry] = skb;
2290
2291         if (skb_shinfo(skb)->nr_frags == 0) {
2292                 u32 mapping, len;
2293
2294                 len = skb->len;
2295                 mapping = hme_dma_map(hp, skb->data, len, DMA_TODEVICE);
2296                 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2297                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2298                               (tx_flags | (len & TXFLAG_SIZE)),
2299                               mapping);
2300                 entry = NEXT_TX(entry);
2301         } else {
2302                 u32 first_len, first_mapping;
2303                 int frag, first_entry = entry;
2304
2305                 /* We must give this initial chunk to the device last.
2306                  * Otherwise we could race with the device.
2307                  */
2308                 first_len = skb_headlen(skb);
2309                 first_mapping = hme_dma_map(hp, skb->data, first_len, DMA_TODEVICE);
2310                 entry = NEXT_TX(entry);
2311
2312                 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2313                         skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2314                         u32 len, mapping, this_txflags;
2315
2316                         len = this_frag->size;
2317                         mapping = hme_dma_map(hp,
2318                                               ((void *) page_address(this_frag->page) +
2319                                                this_frag->page_offset),
2320                                               len, DMA_TODEVICE);
2321                         this_txflags = tx_flags;
2322                         if (frag == skb_shinfo(skb)->nr_frags - 1)
2323                                 this_txflags |= TXFLAG_EOP;
2324                         hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2325                                       (this_txflags | (len & TXFLAG_SIZE)),
2326                                       mapping);
2327                         entry = NEXT_TX(entry);
2328                 }
2329                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2330                               (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2331                               first_mapping);
2332         }
2333
2334         hp->tx_new = entry;
2335
2336         if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2337                 netif_stop_queue(dev);
2338
2339         /* Get it going. */
2340         hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2341
2342         spin_unlock_irq(&hp->happy_lock);
2343
2344         dev->trans_start = jiffies;
2345
2346         tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2347         return 0;
2348 }
2349
2350 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2351 {
2352         struct happy_meal *hp = dev->priv;
2353
2354         spin_lock_irq(&hp->happy_lock);
2355         happy_meal_get_counters(hp, hp->bigmacregs);
2356         spin_unlock_irq(&hp->happy_lock);
2357
2358         return &hp->net_stats;
2359 }
2360
2361 static void happy_meal_set_multicast(struct net_device *dev)
2362 {
2363         struct happy_meal *hp = dev->priv;
2364         void __iomem *bregs = hp->bigmacregs;
2365         struct dev_mc_list *dmi = dev->mc_list;
2366         char *addrs;
2367         int i;
2368         u32 crc;
2369
2370         spin_lock_irq(&hp->happy_lock);
2371
2372         netif_stop_queue(dev);
2373
2374         if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
2375                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2376                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2377                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2378                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2379         } else if (dev->flags & IFF_PROMISC) {
2380                 hme_write32(hp, bregs + BMAC_RXCFG,
2381                             hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2382         } else {
2383                 u16 hash_table[4];
2384
2385                 for (i = 0; i < 4; i++)
2386                         hash_table[i] = 0;
2387
2388                 for (i = 0; i < dev->mc_count; i++) {
2389                         addrs = dmi->dmi_addr;
2390                         dmi = dmi->next;
2391
2392                         if (!(*addrs & 1))
2393                                 continue;
2394
2395                         crc = ether_crc_le(6, addrs);
2396                         crc >>= 26;
2397                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
2398                 }
2399                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2400                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2401                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2402                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2403         }
2404
2405         netif_wake_queue(dev);
2406
2407         spin_unlock_irq(&hp->happy_lock);
2408 }
2409
2410 /* Ethtool support... */
2411 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2412 {
2413         struct happy_meal *hp = dev->priv;
2414
2415         cmd->supported =
2416                 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2417                  SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2418                  SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2419
2420         /* XXX hardcoded stuff for now */
2421         cmd->port = PORT_TP; /* XXX no MII support */
2422         cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2423         cmd->phy_address = 0; /* XXX fixed PHYAD */
2424
2425         /* Record PHY settings. */
2426         spin_lock_irq(&hp->happy_lock);
2427         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2428         hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2429         spin_unlock_irq(&hp->happy_lock);
2430
2431         if (hp->sw_bmcr & BMCR_ANENABLE) {
2432                 cmd->autoneg = AUTONEG_ENABLE;
2433                 cmd->speed =
2434                         (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2435                         SPEED_100 : SPEED_10;
2436                 if (cmd->speed == SPEED_100)
2437                         cmd->duplex =
2438                                 (hp->sw_lpa & (LPA_100FULL)) ?
2439                                 DUPLEX_FULL : DUPLEX_HALF;
2440                 else
2441                         cmd->duplex =
2442                                 (hp->sw_lpa & (LPA_10FULL)) ?
2443                                 DUPLEX_FULL : DUPLEX_HALF;
2444         } else {
2445                 cmd->autoneg = AUTONEG_DISABLE;
2446                 cmd->speed =
2447                         (hp->sw_bmcr & BMCR_SPEED100) ?
2448                         SPEED_100 : SPEED_10;
2449                 cmd->duplex =
2450                         (hp->sw_bmcr & BMCR_FULLDPLX) ?
2451                         DUPLEX_FULL : DUPLEX_HALF;
2452         }
2453         return 0;
2454 }
2455
2456 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2457 {
2458         struct happy_meal *hp = dev->priv;
2459
2460         /* Verify the settings we care about. */
2461         if (cmd->autoneg != AUTONEG_ENABLE &&
2462             cmd->autoneg != AUTONEG_DISABLE)
2463                 return -EINVAL;
2464         if (cmd->autoneg == AUTONEG_DISABLE &&
2465             ((cmd->speed != SPEED_100 &&
2466               cmd->speed != SPEED_10) ||
2467              (cmd->duplex != DUPLEX_HALF &&
2468               cmd->duplex != DUPLEX_FULL)))
2469                 return -EINVAL;
2470
2471         /* Ok, do it to it. */
2472         spin_lock_irq(&hp->happy_lock);
2473         del_timer(&hp->happy_timer);
2474         happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2475         spin_unlock_irq(&hp->happy_lock);
2476
2477         return 0;
2478 }
2479
2480 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2481 {
2482         struct happy_meal *hp = dev->priv;
2483
2484         strcpy(info->driver, "sunhme");
2485         strcpy(info->version, "2.02");
2486         if (hp->happy_flags & HFLAG_PCI) {
2487                 struct pci_dev *pdev = hp->happy_dev;
2488                 strcpy(info->bus_info, pci_name(pdev));
2489         }
2490 #ifdef CONFIG_SBUS
2491         else {
2492                 struct sbus_dev *sdev = hp->happy_dev;
2493                 sprintf(info->bus_info, "SBUS:%d",
2494                         sdev->slot);
2495         }
2496 #endif
2497 }
2498
2499 static u32 hme_get_link(struct net_device *dev)
2500 {
2501         struct happy_meal *hp = dev->priv;
2502
2503         spin_lock_irq(&hp->happy_lock);
2504         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2505         spin_unlock_irq(&hp->happy_lock);
2506
2507         return (hp->sw_bmsr & BMSR_LSTATUS);
2508 }
2509
2510 static const struct ethtool_ops hme_ethtool_ops = {
2511         .get_settings           = hme_get_settings,
2512         .set_settings           = hme_set_settings,
2513         .get_drvinfo            = hme_get_drvinfo,
2514         .get_link               = hme_get_link,
2515 };
2516
2517 static int hme_version_printed;
2518
2519 #ifdef CONFIG_SBUS
2520 void __devinit quattro_get_ranges(struct quattro *qp)
2521 {
2522         struct sbus_dev *sdev = qp->quattro_dev;
2523         int err;
2524
2525         err = prom_getproperty(sdev->prom_node,
2526                                "ranges",
2527                                (char *)&qp->ranges[0],
2528                                sizeof(qp->ranges));
2529         if (err == 0 || err == -1) {
2530                 qp->nranges = 0;
2531                 return;
2532         }
2533         qp->nranges = (err / sizeof(struct linux_prom_ranges));
2534 }
2535
2536 static void __devinit quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp)
2537 {
2538         struct sbus_dev *sdev = hp->happy_dev;
2539         int rng;
2540
2541         for (rng = 0; rng < qp->nranges; rng++) {
2542                 struct linux_prom_ranges *rngp = &qp->ranges[rng];
2543                 int reg;
2544
2545                 for (reg = 0; reg < 5; reg++) {
2546                         if (sdev->reg_addrs[reg].which_io ==
2547                             rngp->ot_child_space)
2548                                 break;
2549                 }
2550                 if (reg == 5)
2551                         continue;
2552
2553                 sdev->reg_addrs[reg].which_io = rngp->ot_parent_space;
2554                 sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base;
2555         }
2556 }
2557
2558 /* Given a happy meal sbus device, find it's quattro parent.
2559  * If none exist, allocate and return a new one.
2560  *
2561  * Return NULL on failure.
2562  */
2563 static struct quattro * __devinit quattro_sbus_find(struct sbus_dev *goal_sdev)
2564 {
2565         struct sbus_dev *sdev;
2566         struct quattro *qp;
2567         int i;
2568
2569         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2570                 for (i = 0, sdev = qp->quattro_dev;
2571                      (sdev != NULL) && (i < 4);
2572                      sdev = sdev->next, i++) {
2573                         if (sdev == goal_sdev)
2574                                 return qp;
2575                 }
2576         }
2577
2578         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2579         if (qp != NULL) {
2580                 int i;
2581
2582                 for (i = 0; i < 4; i++)
2583                         qp->happy_meals[i] = NULL;
2584
2585                 qp->quattro_dev = goal_sdev;
2586                 qp->next = qfe_sbus_list;
2587                 qfe_sbus_list = qp;
2588                 quattro_get_ranges(qp);
2589         }
2590         return qp;
2591 }
2592
2593 /* After all quattro cards have been probed, we call these functions
2594  * to register the IRQ handlers.
2595  */
2596 static void __init quattro_sbus_register_irqs(void)
2597 {
2598         struct quattro *qp;
2599
2600         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2601                 struct sbus_dev *sdev = qp->quattro_dev;
2602                 int err;
2603
2604                 err = request_irq(sdev->irqs[0],
2605                                   quattro_sbus_interrupt,
2606                                   IRQF_SHARED, "Quattro",
2607                                   qp);
2608                 if (err != 0) {
2609                         printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err);
2610                         panic("QFE request irq");
2611                 }
2612         }
2613 }
2614
2615 static void quattro_sbus_free_irqs(void)
2616 {
2617         struct quattro *qp;
2618
2619         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2620                 struct sbus_dev *sdev = qp->quattro_dev;
2621
2622                 free_irq(sdev->irqs[0], qp);
2623         }
2624 }
2625 #endif /* CONFIG_SBUS */
2626
2627 #ifdef CONFIG_PCI
2628 static struct quattro * __devinit quattro_pci_find(struct pci_dev *pdev)
2629 {
2630         struct pci_dev *bdev = pdev->bus->self;
2631         struct quattro *qp;
2632
2633         if (!bdev) return NULL;
2634         for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2635                 struct pci_dev *qpdev = qp->quattro_dev;
2636
2637                 if (qpdev == bdev)
2638                         return qp;
2639         }
2640         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2641         if (qp != NULL) {
2642                 int i;
2643
2644                 for (i = 0; i < 4; i++)
2645                         qp->happy_meals[i] = NULL;
2646
2647                 qp->quattro_dev = bdev;
2648                 qp->next = qfe_pci_list;
2649                 qfe_pci_list = qp;
2650
2651                 /* No range tricks necessary on PCI. */
2652                 qp->nranges = 0;
2653         }
2654         return qp;
2655 }
2656 #endif /* CONFIG_PCI */
2657
2658 #ifdef CONFIG_SBUS
2659 static int __devinit happy_meal_sbus_probe_one(struct sbus_dev *sdev, int is_qfe)
2660 {
2661         struct device_node *dp = sdev->ofdev.node;
2662         struct quattro *qp = NULL;
2663         struct happy_meal *hp;
2664         struct net_device *dev;
2665         int i, qfe_slot = -1;
2666         int err = -ENODEV;
2667         DECLARE_MAC_BUF(mac);
2668
2669         if (is_qfe) {
2670                 qp = quattro_sbus_find(sdev);
2671                 if (qp == NULL)
2672                         goto err_out;
2673                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2674                         if (qp->happy_meals[qfe_slot] == NULL)
2675                                 break;
2676                 if (qfe_slot == 4)
2677                         goto err_out;
2678         }
2679
2680         err = -ENOMEM;
2681         dev = alloc_etherdev(sizeof(struct happy_meal));
2682         if (!dev)
2683                 goto err_out;
2684         SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
2685
2686         if (hme_version_printed++ == 0)
2687                 printk(KERN_INFO "%s", version);
2688
2689         /* If user did not specify a MAC address specifically, use
2690          * the Quattro local-mac-address property...
2691          */
2692         for (i = 0; i < 6; i++) {
2693                 if (macaddr[i] != 0)
2694                         break;
2695         }
2696         if (i < 6) { /* a mac address was given */
2697                 for (i = 0; i < 6; i++)
2698                         dev->dev_addr[i] = macaddr[i];
2699                 macaddr[5]++;
2700         } else {
2701                 const unsigned char *addr;
2702                 int len;
2703
2704                 addr = of_get_property(dp, "local-mac-address", &len);
2705
2706                 if (qfe_slot != -1 && addr && len == 6)
2707                         memcpy(dev->dev_addr, addr, 6);
2708                 else
2709                         memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2710         }
2711
2712         hp = dev->priv;
2713
2714         hp->happy_dev = sdev;
2715
2716         spin_lock_init(&hp->happy_lock);
2717
2718         err = -ENODEV;
2719         if (sdev->num_registers != 5) {
2720                 printk(KERN_ERR "happymeal: Device needs 5 regs, has %d.\n",
2721                        sdev->num_registers);
2722                 goto err_out_free_netdev;
2723         }
2724
2725         if (qp != NULL) {
2726                 hp->qfe_parent = qp;
2727                 hp->qfe_ent = qfe_slot;
2728                 qp->happy_meals[qfe_slot] = dev;
2729                 quattro_apply_ranges(qp, hp);
2730         }
2731
2732         hp->gregs = sbus_ioremap(&sdev->resource[0], 0,
2733                                  GREG_REG_SIZE, "HME Global Regs");
2734         if (!hp->gregs) {
2735                 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2736                 goto err_out_free_netdev;
2737         }
2738
2739         hp->etxregs = sbus_ioremap(&sdev->resource[1], 0,
2740                                    ETX_REG_SIZE, "HME TX Regs");
2741         if (!hp->etxregs) {
2742                 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2743                 goto err_out_iounmap;
2744         }
2745
2746         hp->erxregs = sbus_ioremap(&sdev->resource[2], 0,
2747                                    ERX_REG_SIZE, "HME RX Regs");
2748         if (!hp->erxregs) {
2749                 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2750                 goto err_out_iounmap;
2751         }
2752
2753         hp->bigmacregs = sbus_ioremap(&sdev->resource[3], 0,
2754                                       BMAC_REG_SIZE, "HME BIGMAC Regs");
2755         if (!hp->bigmacregs) {
2756                 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2757                 goto err_out_iounmap;
2758         }
2759
2760         hp->tcvregs = sbus_ioremap(&sdev->resource[4], 0,
2761                                    TCVR_REG_SIZE, "HME Tranceiver Regs");
2762         if (!hp->tcvregs) {
2763                 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2764                 goto err_out_iounmap;
2765         }
2766
2767         hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2768         if (hp->hm_revision == 0xff)
2769                 hp->hm_revision = 0xa0;
2770
2771         /* Now enable the feature flags we can. */
2772         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2773                 hp->happy_flags = HFLAG_20_21;
2774         else if (hp->hm_revision != 0xa0)
2775                 hp->happy_flags = HFLAG_NOT_A0;
2776
2777         if (qp != NULL)
2778                 hp->happy_flags |= HFLAG_QUATTRO;
2779
2780         /* Get the supported DVMA burst sizes from our Happy SBUS. */
2781         hp->happy_bursts = of_getintprop_default(sdev->bus->ofdev.node,
2782                                                  "burst-sizes", 0x00);
2783
2784         hp->happy_block = sbus_alloc_consistent(hp->happy_dev,
2785                                                 PAGE_SIZE,
2786                                                 &hp->hblock_dvma);
2787         err = -ENOMEM;
2788         if (!hp->happy_block) {
2789                 printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
2790                 goto err_out_iounmap;
2791         }
2792
2793         /* Force check of the link first time we are brought up. */
2794         hp->linkcheck = 0;
2795
2796         /* Force timer state to 'asleep' with count of zero. */
2797         hp->timer_state = asleep;
2798         hp->timer_ticks = 0;
2799
2800         init_timer(&hp->happy_timer);
2801
2802         hp->dev = dev;
2803         dev->open = &happy_meal_open;
2804         dev->stop = &happy_meal_close;
2805         dev->hard_start_xmit = &happy_meal_start_xmit;
2806         dev->get_stats = &happy_meal_get_stats;
2807         dev->set_multicast_list = &happy_meal_set_multicast;
2808         dev->tx_timeout = &happy_meal_tx_timeout;
2809         dev->watchdog_timeo = 5*HZ;
2810         dev->ethtool_ops = &hme_ethtool_ops;
2811
2812         /* Happy Meal can do it all... except VLAN. */
2813         dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_VLAN_CHALLENGED;
2814
2815         dev->irq = sdev->irqs[0];
2816
2817 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2818         /* Hook up PCI register/dma accessors. */
2819         hp->read_desc32 = sbus_hme_read_desc32;
2820         hp->write_txd = sbus_hme_write_txd;
2821         hp->write_rxd = sbus_hme_write_rxd;
2822         hp->dma_map = (u32 (*)(void *, void *, long, int))sbus_map_single;
2823         hp->dma_unmap = (void (*)(void *, u32, long, int))sbus_unmap_single;
2824         hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
2825                 sbus_dma_sync_single_for_cpu;
2826         hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
2827                 sbus_dma_sync_single_for_device;
2828         hp->read32 = sbus_hme_read32;
2829         hp->write32 = sbus_hme_write32;
2830 #endif
2831
2832         /* Grrr, Happy Meal comes up by default not advertising
2833          * full duplex 100baseT capabilities, fix this.
2834          */
2835         spin_lock_irq(&hp->happy_lock);
2836         happy_meal_set_initial_advertisement(hp);
2837         spin_unlock_irq(&hp->happy_lock);
2838
2839         if (register_netdev(hp->dev)) {
2840                 printk(KERN_ERR "happymeal: Cannot register net device, "
2841                        "aborting.\n");
2842                 goto err_out_free_consistent;
2843         }
2844
2845         dev_set_drvdata(&sdev->ofdev.dev, hp);
2846
2847         if (qfe_slot != -1)
2848                 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2849                        dev->name, qfe_slot);
2850         else
2851                 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2852                        dev->name);
2853
2854         printk("%s\n", print_mac(mac, dev->dev_addr));
2855
2856         return 0;
2857
2858 err_out_free_consistent:
2859         sbus_free_consistent(hp->happy_dev,
2860                              PAGE_SIZE,
2861                              hp->happy_block,
2862                              hp->hblock_dvma);
2863
2864 err_out_iounmap:
2865         if (hp->gregs)
2866                 sbus_iounmap(hp->gregs, GREG_REG_SIZE);
2867         if (hp->etxregs)
2868                 sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
2869         if (hp->erxregs)
2870                 sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
2871         if (hp->bigmacregs)
2872                 sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
2873         if (hp->tcvregs)
2874                 sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
2875
2876 err_out_free_netdev:
2877         free_netdev(dev);
2878
2879 err_out:
2880         return err;
2881 }
2882 #endif
2883
2884 #ifdef CONFIG_PCI
2885 #ifndef CONFIG_SPARC
2886 static int is_quattro_p(struct pci_dev *pdev)
2887 {
2888         struct pci_dev *busdev = pdev->bus->self;
2889         struct list_head *tmp;
2890         int n_hmes;
2891
2892         if (busdev == NULL ||
2893             busdev->vendor != PCI_VENDOR_ID_DEC ||
2894             busdev->device != PCI_DEVICE_ID_DEC_21153)
2895                 return 0;
2896
2897         n_hmes = 0;
2898         tmp = pdev->bus->devices.next;
2899         while (tmp != &pdev->bus->devices) {
2900                 struct pci_dev *this_pdev = pci_dev_b(tmp);
2901
2902                 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2903                     this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2904                         n_hmes++;
2905
2906                 tmp = tmp->next;
2907         }
2908
2909         if (n_hmes != 4)
2910                 return 0;
2911
2912         return 1;
2913 }
2914
2915 /* Fetch MAC address from vital product data of PCI ROM. */
2916 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2917 {
2918         int this_offset;
2919
2920         for (this_offset = 0x20; this_offset < len; this_offset++) {
2921                 void __iomem *p = rom_base + this_offset;
2922
2923                 if (readb(p + 0) != 0x90 ||
2924                     readb(p + 1) != 0x00 ||
2925                     readb(p + 2) != 0x09 ||
2926                     readb(p + 3) != 0x4e ||
2927                     readb(p + 4) != 0x41 ||
2928                     readb(p + 5) != 0x06)
2929                         continue;
2930
2931                 this_offset += 6;
2932                 p += 6;
2933
2934                 if (index == 0) {
2935                         int i;
2936
2937                         for (i = 0; i < 6; i++)
2938                                 dev_addr[i] = readb(p + i);
2939                         return 1;
2940                 }
2941                 index--;
2942         }
2943         return 0;
2944 }
2945
2946 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2947 {
2948         size_t size;
2949         void __iomem *p = pci_map_rom(pdev, &size);
2950
2951         if (p) {
2952                 int index = 0;
2953                 int found;
2954
2955                 if (is_quattro_p(pdev))
2956                         index = PCI_SLOT(pdev->devfn);
2957
2958                 found = readb(p) == 0x55 &&
2959                         readb(p + 1) == 0xaa &&
2960                         find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2961                 pci_unmap_rom(pdev, p);
2962                 if (found)
2963                         return;
2964         }
2965
2966         /* Sun MAC prefix then 3 random bytes. */
2967         dev_addr[0] = 0x08;
2968         dev_addr[1] = 0x00;
2969         dev_addr[2] = 0x20;
2970         get_random_bytes(&dev_addr[3], 3);
2971         return;
2972 }
2973 #endif /* !(CONFIG_SPARC) */
2974
2975 static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
2976                                           const struct pci_device_id *ent)
2977 {
2978         struct quattro *qp = NULL;
2979 #ifdef CONFIG_SPARC
2980         struct device_node *dp;
2981 #endif
2982         struct happy_meal *hp;
2983         struct net_device *dev;
2984         void __iomem *hpreg_base;
2985         unsigned long hpreg_res;
2986         int i, qfe_slot = -1;
2987         char prom_name[64];
2988         int err;
2989         DECLARE_MAC_BUF(mac);
2990
2991         /* Now make sure pci_dev cookie is there. */
2992 #ifdef CONFIG_SPARC
2993         dp = pci_device_to_OF_node(pdev);
2994         strcpy(prom_name, dp->name);
2995 #else
2996         if (is_quattro_p(pdev))
2997                 strcpy(prom_name, "SUNW,qfe");
2998         else
2999                 strcpy(prom_name, "SUNW,hme");
3000 #endif
3001
3002         err = -ENODEV;
3003
3004         if (pci_enable_device(pdev))
3005                 goto err_out;
3006         pci_set_master(pdev);
3007
3008         if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3009                 qp = quattro_pci_find(pdev);
3010                 if (qp == NULL)
3011                         goto err_out;
3012                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3013                         if (qp->happy_meals[qfe_slot] == NULL)
3014                                 break;
3015                 if (qfe_slot == 4)
3016                         goto err_out;
3017         }
3018
3019         dev = alloc_etherdev(sizeof(struct happy_meal));
3020         err = -ENOMEM;
3021         if (!dev)
3022                 goto err_out;
3023         SET_NETDEV_DEV(dev, &pdev->dev);
3024
3025         if (hme_version_printed++ == 0)
3026                 printk(KERN_INFO "%s", version);
3027
3028         dev->base_addr = (long) pdev;
3029
3030         hp = (struct happy_meal *)dev->priv;
3031         memset(hp, 0, sizeof(*hp));
3032
3033         hp->happy_dev = pdev;
3034
3035         spin_lock_init(&hp->happy_lock);
3036
3037         if (qp != NULL) {
3038                 hp->qfe_parent = qp;
3039                 hp->qfe_ent = qfe_slot;
3040                 qp->happy_meals[qfe_slot] = dev;
3041         }
3042
3043         hpreg_res = pci_resource_start(pdev, 0);
3044         err = -ENODEV;
3045         if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3046                 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3047                 goto err_out_clear_quattro;
3048         }
3049         if (pci_request_regions(pdev, DRV_NAME)) {
3050                 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3051                        "aborting.\n");
3052                 goto err_out_clear_quattro;
3053         }
3054
3055         if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == 0) {
3056                 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3057                 goto err_out_free_res;
3058         }
3059
3060         for (i = 0; i < 6; i++) {
3061                 if (macaddr[i] != 0)
3062                         break;
3063         }
3064         if (i < 6) { /* a mac address was given */
3065                 for (i = 0; i < 6; i++)
3066                         dev->dev_addr[i] = macaddr[i];
3067                 macaddr[5]++;
3068         } else {
3069 #ifdef CONFIG_SPARC
3070                 const unsigned char *addr;
3071                 int len;
3072
3073                 if (qfe_slot != -1 &&
3074                     (addr = of_get_property(dp,
3075                                             "local-mac-address", &len)) != NULL
3076                     && len == 6) {
3077                         memcpy(dev->dev_addr, addr, 6);
3078                 } else {
3079                         memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3080                 }
3081 #else
3082                 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3083 #endif
3084         }
3085
3086         /* Layout registers. */
3087         hp->gregs      = (hpreg_base + 0x0000UL);
3088         hp->etxregs    = (hpreg_base + 0x2000UL);
3089         hp->erxregs    = (hpreg_base + 0x4000UL);
3090         hp->bigmacregs = (hpreg_base + 0x6000UL);
3091         hp->tcvregs    = (hpreg_base + 0x7000UL);
3092
3093 #ifdef CONFIG_SPARC
3094         hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3095         if (hp->hm_revision == 0xff)
3096                 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3097 #else
3098         /* works with this on non-sparc hosts */
3099         hp->hm_revision = 0x20;
3100 #endif
3101
3102         /* Now enable the feature flags we can. */
3103         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3104                 hp->happy_flags = HFLAG_20_21;
3105         else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3106                 hp->happy_flags = HFLAG_NOT_A0;
3107
3108         if (qp != NULL)
3109                 hp->happy_flags |= HFLAG_QUATTRO;
3110
3111         /* And of course, indicate this is PCI. */
3112         hp->happy_flags |= HFLAG_PCI;
3113
3114 #ifdef CONFIG_SPARC
3115         /* Assume PCI happy meals can handle all burst sizes. */
3116         hp->happy_bursts = DMA_BURSTBITS;
3117 #endif
3118
3119         hp->happy_block = (struct hmeal_init_block *)
3120                 pci_alloc_consistent(pdev, PAGE_SIZE, &hp->hblock_dvma);
3121
3122         err = -ENODEV;
3123         if (!hp->happy_block) {
3124                 printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
3125                 goto err_out_iounmap;
3126         }
3127
3128         hp->linkcheck = 0;
3129         hp->timer_state = asleep;
3130         hp->timer_ticks = 0;
3131
3132         init_timer(&hp->happy_timer);
3133
3134         hp->dev = dev;
3135         dev->open = &happy_meal_open;
3136         dev->stop = &happy_meal_close;
3137         dev->hard_start_xmit = &happy_meal_start_xmit;
3138         dev->get_stats = &happy_meal_get_stats;
3139         dev->set_multicast_list = &happy_meal_set_multicast;
3140         dev->tx_timeout = &happy_meal_tx_timeout;
3141         dev->watchdog_timeo = 5*HZ;
3142         dev->ethtool_ops = &hme_ethtool_ops;
3143         dev->irq = pdev->irq;
3144         dev->dma = 0;
3145
3146         /* Happy Meal can do it all... except VLAN. */
3147         dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_VLAN_CHALLENGED;
3148
3149 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3150         /* Hook up PCI register/dma accessors. */
3151         hp->read_desc32 = pci_hme_read_desc32;
3152         hp->write_txd = pci_hme_write_txd;
3153         hp->write_rxd = pci_hme_write_rxd;
3154         hp->dma_map = (u32 (*)(void *, void *, long, int))pci_map_single;
3155         hp->dma_unmap = (void (*)(void *, u32, long, int))pci_unmap_single;
3156         hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
3157                 pci_dma_sync_single_for_cpu;
3158         hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
3159                 pci_dma_sync_single_for_device;
3160         hp->read32 = pci_hme_read32;
3161         hp->write32 = pci_hme_write32;
3162 #endif
3163
3164         /* Grrr, Happy Meal comes up by default not advertising
3165          * full duplex 100baseT capabilities, fix this.
3166          */
3167         spin_lock_irq(&hp->happy_lock);
3168         happy_meal_set_initial_advertisement(hp);
3169         spin_unlock_irq(&hp->happy_lock);
3170
3171         if (register_netdev(hp->dev)) {
3172                 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3173                        "aborting.\n");
3174                 goto err_out_iounmap;
3175         }
3176
3177         dev_set_drvdata(&pdev->dev, hp);
3178
3179         if (!qfe_slot) {
3180                 struct pci_dev *qpdev = qp->quattro_dev;
3181
3182                 prom_name[0] = 0;
3183                 if (!strncmp(dev->name, "eth", 3)) {
3184                         int i = simple_strtoul(dev->name + 3, NULL, 10);
3185                         sprintf(prom_name, "-%d", i + 3);
3186                 }
3187                 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3188                 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3189                     qpdev->device == PCI_DEVICE_ID_DEC_21153)
3190                         printk("DEC 21153 PCI Bridge\n");
3191                 else
3192                         printk("unknown bridge %04x.%04x\n",
3193                                 qpdev->vendor, qpdev->device);
3194         }
3195
3196         if (qfe_slot != -1)
3197                 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3198                        dev->name, qfe_slot);
3199         else
3200                 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3201                        dev->name);
3202
3203         printk("%s\n", print_mac(mac, dev->dev_addr));
3204
3205         return 0;
3206
3207 err_out_iounmap:
3208         iounmap(hp->gregs);
3209
3210 err_out_free_res:
3211         pci_release_regions(pdev);
3212
3213 err_out_clear_quattro:
3214         if (qp != NULL)
3215                 qp->happy_meals[qfe_slot] = NULL;
3216
3217         free_netdev(dev);
3218
3219 err_out:
3220         return err;
3221 }
3222
3223 static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
3224 {
3225         struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3226         struct net_device *net_dev = hp->dev;
3227
3228         unregister_netdev(net_dev);
3229
3230         pci_free_consistent(hp->happy_dev,
3231                             PAGE_SIZE,
3232                             hp->happy_block,
3233                             hp->hblock_dvma);
3234         iounmap(hp->gregs);
3235         pci_release_regions(hp->happy_dev);
3236
3237         free_netdev(net_dev);
3238
3239         dev_set_drvdata(&pdev->dev, NULL);
3240 }
3241
3242 static struct pci_device_id happymeal_pci_ids[] = {
3243         { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3244         { }                     /* Terminating entry */
3245 };
3246
3247 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3248
3249 static struct pci_driver hme_pci_driver = {
3250         .name           = "hme",
3251         .id_table       = happymeal_pci_ids,
3252         .probe          = happy_meal_pci_probe,
3253         .remove         = __devexit_p(happy_meal_pci_remove),
3254 };
3255
3256 static int __init happy_meal_pci_init(void)
3257 {
3258         return pci_register_driver(&hme_pci_driver);
3259 }
3260
3261 static void happy_meal_pci_exit(void)
3262 {
3263         pci_unregister_driver(&hme_pci_driver);
3264
3265         while (qfe_pci_list) {
3266                 struct quattro *qfe = qfe_pci_list;
3267                 struct quattro *next = qfe->next;
3268
3269                 kfree(qfe);
3270
3271                 qfe_pci_list = next;
3272         }
3273 }
3274
3275 #endif
3276
3277 #ifdef CONFIG_SBUS
3278 static int __devinit hme_sbus_probe(struct of_device *dev, const struct of_device_id *match)
3279 {
3280         struct sbus_dev *sdev = to_sbus_device(&dev->dev);
3281         struct device_node *dp = dev->node;
3282         const char *model = of_get_property(dp, "model", NULL);
3283         int is_qfe = (match->data != NULL);
3284
3285         if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3286                 is_qfe = 1;
3287
3288         return happy_meal_sbus_probe_one(sdev, is_qfe);
3289 }
3290
3291 static int __devexit hme_sbus_remove(struct of_device *dev)
3292 {
3293         struct happy_meal *hp = dev_get_drvdata(&dev->dev);
3294         struct net_device *net_dev = hp->dev;
3295
3296         unregister_netdev(net_dev);
3297
3298         /* XXX qfe parent interrupt... */
3299
3300         sbus_iounmap(hp->gregs, GREG_REG_SIZE);
3301         sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
3302         sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
3303         sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
3304         sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
3305         sbus_free_consistent(hp->happy_dev,
3306                              PAGE_SIZE,
3307                              hp->happy_block,
3308                              hp->hblock_dvma);
3309
3310         free_netdev(net_dev);
3311
3312         dev_set_drvdata(&dev->dev, NULL);
3313
3314         return 0;
3315 }
3316
3317 static struct of_device_id hme_sbus_match[] = {
3318         {
3319                 .name = "SUNW,hme",
3320         },
3321         {
3322                 .name = "SUNW,qfe",
3323                 .data = (void *) 1,
3324         },
3325         {
3326                 .name = "qfe",
3327                 .data = (void *) 1,
3328         },
3329         {},
3330 };
3331
3332 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3333
3334 static struct of_platform_driver hme_sbus_driver = {
3335         .name           = "hme",
3336         .match_table    = hme_sbus_match,
3337         .probe          = hme_sbus_probe,
3338         .remove         = __devexit_p(hme_sbus_remove),
3339 };
3340
3341 static int __init happy_meal_sbus_init(void)
3342 {
3343         int err;
3344
3345         err = of_register_driver(&hme_sbus_driver, &sbus_bus_type);
3346         if (!err)
3347                 quattro_sbus_register_irqs();
3348
3349         return err;
3350 }
3351
3352 static void happy_meal_sbus_exit(void)
3353 {
3354         of_unregister_driver(&hme_sbus_driver);
3355         quattro_sbus_free_irqs();
3356
3357         while (qfe_sbus_list) {
3358                 struct quattro *qfe = qfe_sbus_list;
3359                 struct quattro *next = qfe->next;
3360
3361                 kfree(qfe);
3362
3363                 qfe_sbus_list = next;
3364         }
3365 }
3366 #endif
3367
3368 static int __init happy_meal_probe(void)
3369 {
3370         int err = 0;
3371
3372 #ifdef CONFIG_SBUS
3373         err = happy_meal_sbus_init();
3374 #endif
3375 #ifdef CONFIG_PCI
3376         if (!err) {
3377                 err = happy_meal_pci_init();
3378 #ifdef CONFIG_SBUS
3379                 if (err)
3380                         happy_meal_sbus_exit();
3381 #endif
3382         }
3383 #endif
3384
3385         return err;
3386 }
3387
3388
3389 static void __exit happy_meal_exit(void)
3390 {
3391 #ifdef CONFIG_SBUS
3392         happy_meal_sbus_exit();
3393 #endif
3394 #ifdef CONFIG_PCI
3395         happy_meal_pci_exit();
3396 #endif
3397 }
3398
3399 module_init(happy_meal_probe);
3400 module_exit(happy_meal_exit);