Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84
85 #include <asm/io.h>
86 #include <asm/irq.h>
87 #include <asm/uaccess.h>
88 #include <linux/module.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/crc32.h>
91 #include <linux/mii.h>
92 #include <linux/phy.h>
93 #include <linux/phy_fixed.h>
94 #include <linux/of.h>
95
96 #include "gianfar.h"
97 #include "fsl_pq_mdio.h"
98
99 #define TX_TIMEOUT      (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
102
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
105
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113                 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct of_device *ofdev,
123                 const struct of_device_id *match);
124 static int gfar_remove(struct of_device *ofdev);
125 static void free_skb_resources(struct gfar_private *priv);
126 static void gfar_set_multi(struct net_device *dev);
127 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
128 static void gfar_configure_serdes(struct net_device *dev);
129 static int gfar_poll(struct napi_struct *napi, int budget);
130 #ifdef CONFIG_NET_POLL_CONTROLLER
131 static void gfar_netpoll(struct net_device *dev);
132 #endif
133 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
134 static int gfar_clean_tx_ring(struct net_device *dev);
135 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
136                               int amount_pull);
137 static void gfar_vlan_rx_register(struct net_device *netdev,
138                                 struct vlan_group *grp);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static const struct net_device_ops gfar_netdev_ops = {
151         .ndo_open = gfar_enet_open,
152         .ndo_start_xmit = gfar_start_xmit,
153         .ndo_stop = gfar_close,
154         .ndo_change_mtu = gfar_change_mtu,
155         .ndo_set_multicast_list = gfar_set_multi,
156         .ndo_tx_timeout = gfar_timeout,
157         .ndo_do_ioctl = gfar_ioctl,
158         .ndo_vlan_rx_register = gfar_vlan_rx_register,
159         .ndo_set_mac_address = eth_mac_addr,
160         .ndo_validate_addr = eth_validate_addr,
161 #ifdef CONFIG_NET_POLL_CONTROLLER
162         .ndo_poll_controller = gfar_netpoll,
163 #endif
164 };
165
166 /* Returns 1 if incoming frames use an FCB */
167 static inline int gfar_uses_fcb(struct gfar_private *priv)
168 {
169         return priv->vlgrp || priv->rx_csum_enable;
170 }
171
172 static int gfar_of_init(struct net_device *dev)
173 {
174         const char *model;
175         const char *ctype;
176         const void *mac_addr;
177         u64 addr, size;
178         int err = 0;
179         struct gfar_private *priv = netdev_priv(dev);
180         struct device_node *np = priv->node;
181         const u32 *stash;
182         const u32 *stash_len;
183         const u32 *stash_idx;
184
185         if (!np || !of_device_is_available(np))
186                 return -ENODEV;
187
188         /* get a pointer to the register memory */
189         addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
190         priv->regs = ioremap(addr, size);
191
192         if (priv->regs == NULL)
193                 return -ENOMEM;
194
195         priv->interruptTransmit = irq_of_parse_and_map(np, 0);
196
197         model = of_get_property(np, "model", NULL);
198
199         /* If we aren't the FEC we have multiple interrupts */
200         if (model && strcasecmp(model, "FEC")) {
201                 priv->interruptReceive = irq_of_parse_and_map(np, 1);
202
203                 priv->interruptError = irq_of_parse_and_map(np, 2);
204
205                 if (priv->interruptTransmit < 0 ||
206                                 priv->interruptReceive < 0 ||
207                                 priv->interruptError < 0) {
208                         err = -EINVAL;
209                         goto err_out;
210                 }
211         }
212
213         stash = of_get_property(np, "bd-stash", NULL);
214
215         if(stash) {
216                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
217                 priv->bd_stash_en = 1;
218         }
219
220         stash_len = of_get_property(np, "rx-stash-len", NULL);
221
222         if (stash_len)
223                 priv->rx_stash_size = *stash_len;
224
225         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
226
227         if (stash_idx)
228                 priv->rx_stash_index = *stash_idx;
229
230         if (stash_len || stash_idx)
231                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
232
233         mac_addr = of_get_mac_address(np);
234         if (mac_addr)
235                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
236
237         if (model && !strcasecmp(model, "TSEC"))
238                 priv->device_flags =
239                         FSL_GIANFAR_DEV_HAS_GIGABIT |
240                         FSL_GIANFAR_DEV_HAS_COALESCE |
241                         FSL_GIANFAR_DEV_HAS_RMON |
242                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
243         if (model && !strcasecmp(model, "eTSEC"))
244                 priv->device_flags =
245                         FSL_GIANFAR_DEV_HAS_GIGABIT |
246                         FSL_GIANFAR_DEV_HAS_COALESCE |
247                         FSL_GIANFAR_DEV_HAS_RMON |
248                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
249                         FSL_GIANFAR_DEV_HAS_PADDING |
250                         FSL_GIANFAR_DEV_HAS_CSUM |
251                         FSL_GIANFAR_DEV_HAS_VLAN |
252                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
253                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
254
255         ctype = of_get_property(np, "phy-connection-type", NULL);
256
257         /* We only care about rgmii-id.  The rest are autodetected */
258         if (ctype && !strcmp(ctype, "rgmii-id"))
259                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
260         else
261                 priv->interface = PHY_INTERFACE_MODE_MII;
262
263         if (of_get_property(np, "fsl,magic-packet", NULL))
264                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
265
266         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
267
268         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
269         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
270
271         return 0;
272
273 err_out:
274         iounmap(priv->regs);
275         return err;
276 }
277
278 /* Ioctl MII Interface */
279 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
280 {
281         struct gfar_private *priv = netdev_priv(dev);
282
283         if (!netif_running(dev))
284                 return -EINVAL;
285
286         if (!priv->phydev)
287                 return -ENODEV;
288
289         return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
290 }
291
292 /* Set up the ethernet device structure, private data,
293  * and anything else we need before we start */
294 static int gfar_probe(struct of_device *ofdev,
295                 const struct of_device_id *match)
296 {
297         u32 tempval;
298         struct net_device *dev = NULL;
299         struct gfar_private *priv = NULL;
300         DECLARE_MAC_BUF(mac);
301         int err = 0;
302         int len_devname;
303
304         /* Create an ethernet device instance */
305         dev = alloc_etherdev(sizeof (*priv));
306
307         if (NULL == dev)
308                 return -ENOMEM;
309
310         priv = netdev_priv(dev);
311         priv->ndev = dev;
312         priv->ofdev = ofdev;
313         priv->node = ofdev->node;
314         SET_NETDEV_DEV(dev, &ofdev->dev);
315
316         err = gfar_of_init(dev);
317
318         if (err)
319                 goto regs_fail;
320
321         spin_lock_init(&priv->txlock);
322         spin_lock_init(&priv->rxlock);
323         spin_lock_init(&priv->bflock);
324         INIT_WORK(&priv->reset_task, gfar_reset_task);
325
326         dev_set_drvdata(&ofdev->dev, priv);
327
328         /* Stop the DMA engine now, in case it was running before */
329         /* (The firmware could have used it, and left it running). */
330         gfar_halt(dev);
331
332         /* Reset MAC layer */
333         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
334
335         /* We need to delay at least 3 TX clocks */
336         udelay(2);
337
338         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
339         gfar_write(&priv->regs->maccfg1, tempval);
340
341         /* Initialize MACCFG2. */
342         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
343
344         /* Initialize ECNTRL */
345         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
346
347         /* Set the dev->base_addr to the gfar reg region */
348         dev->base_addr = (unsigned long) (priv->regs);
349
350         SET_NETDEV_DEV(dev, &ofdev->dev);
351
352         /* Fill in the dev structure */
353         dev->watchdog_timeo = TX_TIMEOUT;
354         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
355         dev->mtu = 1500;
356
357         dev->netdev_ops = &gfar_netdev_ops;
358         dev->ethtool_ops = &gfar_ethtool_ops;
359
360         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
361                 priv->rx_csum_enable = 1;
362                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
363         } else
364                 priv->rx_csum_enable = 0;
365
366         priv->vlgrp = NULL;
367
368         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
369                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
370
371         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
372                 priv->extended_hash = 1;
373                 priv->hash_width = 9;
374
375                 priv->hash_regs[0] = &priv->regs->igaddr0;
376                 priv->hash_regs[1] = &priv->regs->igaddr1;
377                 priv->hash_regs[2] = &priv->regs->igaddr2;
378                 priv->hash_regs[3] = &priv->regs->igaddr3;
379                 priv->hash_regs[4] = &priv->regs->igaddr4;
380                 priv->hash_regs[5] = &priv->regs->igaddr5;
381                 priv->hash_regs[6] = &priv->regs->igaddr6;
382                 priv->hash_regs[7] = &priv->regs->igaddr7;
383                 priv->hash_regs[8] = &priv->regs->gaddr0;
384                 priv->hash_regs[9] = &priv->regs->gaddr1;
385                 priv->hash_regs[10] = &priv->regs->gaddr2;
386                 priv->hash_regs[11] = &priv->regs->gaddr3;
387                 priv->hash_regs[12] = &priv->regs->gaddr4;
388                 priv->hash_regs[13] = &priv->regs->gaddr5;
389                 priv->hash_regs[14] = &priv->regs->gaddr6;
390                 priv->hash_regs[15] = &priv->regs->gaddr7;
391
392         } else {
393                 priv->extended_hash = 0;
394                 priv->hash_width = 8;
395
396                 priv->hash_regs[0] = &priv->regs->gaddr0;
397                 priv->hash_regs[1] = &priv->regs->gaddr1;
398                 priv->hash_regs[2] = &priv->regs->gaddr2;
399                 priv->hash_regs[3] = &priv->regs->gaddr3;
400                 priv->hash_regs[4] = &priv->regs->gaddr4;
401                 priv->hash_regs[5] = &priv->regs->gaddr5;
402                 priv->hash_regs[6] = &priv->regs->gaddr6;
403                 priv->hash_regs[7] = &priv->regs->gaddr7;
404         }
405
406         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
407                 priv->padding = DEFAULT_PADDING;
408         else
409                 priv->padding = 0;
410
411         if (dev->features & NETIF_F_IP_CSUM)
412                 dev->hard_header_len += GMAC_FCB_LEN;
413
414         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
415         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
416         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
417         priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
418
419         priv->txcoalescing = DEFAULT_TX_COALESCE;
420         priv->txic = DEFAULT_TXIC;
421         priv->rxcoalescing = DEFAULT_RX_COALESCE;
422         priv->rxic = DEFAULT_RXIC;
423
424         /* Enable most messages by default */
425         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
426
427         /* Carrier starts down, phylib will bring it up */
428         netif_carrier_off(dev);
429
430         err = register_netdev(dev);
431
432         if (err) {
433                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
434                                 dev->name);
435                 goto register_fail;
436         }
437
438         device_init_wakeup(&dev->dev,
439                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
440
441         /* fill out IRQ number and name fields */
442         len_devname = strlen(dev->name);
443         strncpy(&priv->int_name_tx[0], dev->name, len_devname);
444         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
445                 strncpy(&priv->int_name_tx[len_devname],
446                         "_tx", sizeof("_tx") + 1);
447
448                 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
449                 strncpy(&priv->int_name_rx[len_devname],
450                         "_rx", sizeof("_rx") + 1);
451
452                 strncpy(&priv->int_name_er[0], dev->name, len_devname);
453                 strncpy(&priv->int_name_er[len_devname],
454                         "_er", sizeof("_er") + 1);
455         } else
456                 priv->int_name_tx[len_devname] = '\0';
457
458         /* Create all the sysfs files */
459         gfar_init_sysfs(dev);
460
461         /* Print out the device info */
462         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
463
464         /* Even more device info helps when determining which kernel */
465         /* provided which set of benchmarks. */
466         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
467         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
468                dev->name, priv->rx_ring_size, priv->tx_ring_size);
469
470         return 0;
471
472 register_fail:
473         iounmap(priv->regs);
474 regs_fail:
475         if (priv->phy_node)
476                 of_node_put(priv->phy_node);
477         if (priv->tbi_node)
478                 of_node_put(priv->tbi_node);
479         free_netdev(dev);
480         return err;
481 }
482
483 static int gfar_remove(struct of_device *ofdev)
484 {
485         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
486
487         if (priv->phy_node)
488                 of_node_put(priv->phy_node);
489         if (priv->tbi_node)
490                 of_node_put(priv->tbi_node);
491
492         dev_set_drvdata(&ofdev->dev, NULL);
493
494         iounmap(priv->regs);
495         free_netdev(priv->ndev);
496
497         return 0;
498 }
499
500 #ifdef CONFIG_PM
501 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
502 {
503         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
504         struct net_device *dev = priv->ndev;
505         unsigned long flags;
506         u32 tempval;
507
508         int magic_packet = priv->wol_en &&
509                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
510
511         netif_device_detach(dev);
512
513         if (netif_running(dev)) {
514                 spin_lock_irqsave(&priv->txlock, flags);
515                 spin_lock(&priv->rxlock);
516
517                 gfar_halt_nodisable(dev);
518
519                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
520                 tempval = gfar_read(&priv->regs->maccfg1);
521
522                 tempval &= ~MACCFG1_TX_EN;
523
524                 if (!magic_packet)
525                         tempval &= ~MACCFG1_RX_EN;
526
527                 gfar_write(&priv->regs->maccfg1, tempval);
528
529                 spin_unlock(&priv->rxlock);
530                 spin_unlock_irqrestore(&priv->txlock, flags);
531
532                 napi_disable(&priv->napi);
533
534                 if (magic_packet) {
535                         /* Enable interrupt on Magic Packet */
536                         gfar_write(&priv->regs->imask, IMASK_MAG);
537
538                         /* Enable Magic Packet mode */
539                         tempval = gfar_read(&priv->regs->maccfg2);
540                         tempval |= MACCFG2_MPEN;
541                         gfar_write(&priv->regs->maccfg2, tempval);
542                 } else {
543                         phy_stop(priv->phydev);
544                 }
545         }
546
547         return 0;
548 }
549
550 static int gfar_resume(struct of_device *ofdev)
551 {
552         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
553         struct net_device *dev = priv->ndev;
554         unsigned long flags;
555         u32 tempval;
556         int magic_packet = priv->wol_en &&
557                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
558
559         if (!netif_running(dev)) {
560                 netif_device_attach(dev);
561                 return 0;
562         }
563
564         if (!magic_packet && priv->phydev)
565                 phy_start(priv->phydev);
566
567         /* Disable Magic Packet mode, in case something
568          * else woke us up.
569          */
570
571         spin_lock_irqsave(&priv->txlock, flags);
572         spin_lock(&priv->rxlock);
573
574         tempval = gfar_read(&priv->regs->maccfg2);
575         tempval &= ~MACCFG2_MPEN;
576         gfar_write(&priv->regs->maccfg2, tempval);
577
578         gfar_start(dev);
579
580         spin_unlock(&priv->rxlock);
581         spin_unlock_irqrestore(&priv->txlock, flags);
582
583         netif_device_attach(dev);
584
585         napi_enable(&priv->napi);
586
587         return 0;
588 }
589 #else
590 #define gfar_suspend NULL
591 #define gfar_resume NULL
592 #endif
593
594 /* Reads the controller's registers to determine what interface
595  * connects it to the PHY.
596  */
597 static phy_interface_t gfar_get_interface(struct net_device *dev)
598 {
599         struct gfar_private *priv = netdev_priv(dev);
600         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
601
602         if (ecntrl & ECNTRL_SGMII_MODE)
603                 return PHY_INTERFACE_MODE_SGMII;
604
605         if (ecntrl & ECNTRL_TBI_MODE) {
606                 if (ecntrl & ECNTRL_REDUCED_MODE)
607                         return PHY_INTERFACE_MODE_RTBI;
608                 else
609                         return PHY_INTERFACE_MODE_TBI;
610         }
611
612         if (ecntrl & ECNTRL_REDUCED_MODE) {
613                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
614                         return PHY_INTERFACE_MODE_RMII;
615                 else {
616                         phy_interface_t interface = priv->interface;
617
618                         /*
619                          * This isn't autodetected right now, so it must
620                          * be set by the device tree or platform code.
621                          */
622                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
623                                 return PHY_INTERFACE_MODE_RGMII_ID;
624
625                         return PHY_INTERFACE_MODE_RGMII;
626                 }
627         }
628
629         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
630                 return PHY_INTERFACE_MODE_GMII;
631
632         return PHY_INTERFACE_MODE_MII;
633 }
634
635
636 /* Initializes driver's PHY state, and attaches to the PHY.
637  * Returns 0 on success.
638  */
639 static int init_phy(struct net_device *dev)
640 {
641         struct gfar_private *priv = netdev_priv(dev);
642         uint gigabit_support =
643                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
644                 SUPPORTED_1000baseT_Full : 0;
645         phy_interface_t interface;
646
647         priv->oldlink = 0;
648         priv->oldspeed = 0;
649         priv->oldduplex = -1;
650
651         interface = gfar_get_interface(dev);
652
653         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
654                                       interface);
655         if (!priv->phydev)
656                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
657                                                          interface);
658         if (!priv->phydev) {
659                 dev_err(&dev->dev, "could not attach to PHY\n");
660                 return -ENODEV;
661         }
662
663         if (interface == PHY_INTERFACE_MODE_SGMII)
664                 gfar_configure_serdes(dev);
665
666         /* Remove any features not supported by the controller */
667         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
668         priv->phydev->advertising = priv->phydev->supported;
669
670         return 0;
671 }
672
673 /*
674  * Initialize TBI PHY interface for communicating with the
675  * SERDES lynx PHY on the chip.  We communicate with this PHY
676  * through the MDIO bus on each controller, treating it as a
677  * "normal" PHY at the address found in the TBIPA register.  We assume
678  * that the TBIPA register is valid.  Either the MDIO bus code will set
679  * it to a value that doesn't conflict with other PHYs on the bus, or the
680  * value doesn't matter, as there are no other PHYs on the bus.
681  */
682 static void gfar_configure_serdes(struct net_device *dev)
683 {
684         struct gfar_private *priv = netdev_priv(dev);
685         struct phy_device *tbiphy;
686
687         if (!priv->tbi_node) {
688                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
689                                     "device tree specify a tbi-handle\n");
690                 return;
691         }
692
693         tbiphy = of_phy_find_device(priv->tbi_node);
694         if (!tbiphy) {
695                 dev_err(&dev->dev, "error: Could not get TBI device\n");
696                 return;
697         }
698
699         /*
700          * If the link is already up, we must already be ok, and don't need to
701          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
702          * everything for us?  Resetting it takes the link down and requires
703          * several seconds for it to come back.
704          */
705         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
706                 return;
707
708         /* Single clk mode, mii mode off(for serdes communication) */
709         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
710
711         phy_write(tbiphy, MII_ADVERTISE,
712                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
713                         ADVERTISE_1000XPSE_ASYM);
714
715         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
716                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
717 }
718
719 static void init_registers(struct net_device *dev)
720 {
721         struct gfar_private *priv = netdev_priv(dev);
722
723         /* Clear IEVENT */
724         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
725
726         /* Initialize IMASK */
727         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
728
729         /* Init hash registers to zero */
730         gfar_write(&priv->regs->igaddr0, 0);
731         gfar_write(&priv->regs->igaddr1, 0);
732         gfar_write(&priv->regs->igaddr2, 0);
733         gfar_write(&priv->regs->igaddr3, 0);
734         gfar_write(&priv->regs->igaddr4, 0);
735         gfar_write(&priv->regs->igaddr5, 0);
736         gfar_write(&priv->regs->igaddr6, 0);
737         gfar_write(&priv->regs->igaddr7, 0);
738
739         gfar_write(&priv->regs->gaddr0, 0);
740         gfar_write(&priv->regs->gaddr1, 0);
741         gfar_write(&priv->regs->gaddr2, 0);
742         gfar_write(&priv->regs->gaddr3, 0);
743         gfar_write(&priv->regs->gaddr4, 0);
744         gfar_write(&priv->regs->gaddr5, 0);
745         gfar_write(&priv->regs->gaddr6, 0);
746         gfar_write(&priv->regs->gaddr7, 0);
747
748         /* Zero out the rmon mib registers if it has them */
749         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
750                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
751
752                 /* Mask off the CAM interrupts */
753                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
754                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
755         }
756
757         /* Initialize the max receive buffer length */
758         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
759
760         /* Initialize the Minimum Frame Length Register */
761         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
762 }
763
764
765 /* Halt the receive and transmit queues */
766 static void gfar_halt_nodisable(struct net_device *dev)
767 {
768         struct gfar_private *priv = netdev_priv(dev);
769         struct gfar __iomem *regs = priv->regs;
770         u32 tempval;
771
772         /* Mask all interrupts */
773         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
774
775         /* Clear all interrupts */
776         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
777
778         /* Stop the DMA, and wait for it to stop */
779         tempval = gfar_read(&priv->regs->dmactrl);
780         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
781             != (DMACTRL_GRS | DMACTRL_GTS)) {
782                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
783                 gfar_write(&priv->regs->dmactrl, tempval);
784
785                 while (!(gfar_read(&priv->regs->ievent) &
786                          (IEVENT_GRSC | IEVENT_GTSC)))
787                         cpu_relax();
788         }
789 }
790
791 /* Halt the receive and transmit queues */
792 void gfar_halt(struct net_device *dev)
793 {
794         struct gfar_private *priv = netdev_priv(dev);
795         struct gfar __iomem *regs = priv->regs;
796         u32 tempval;
797
798         gfar_halt_nodisable(dev);
799
800         /* Disable Rx and Tx */
801         tempval = gfar_read(&regs->maccfg1);
802         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
803         gfar_write(&regs->maccfg1, tempval);
804 }
805
806 void stop_gfar(struct net_device *dev)
807 {
808         struct gfar_private *priv = netdev_priv(dev);
809         struct gfar __iomem *regs = priv->regs;
810         unsigned long flags;
811
812         phy_stop(priv->phydev);
813
814         /* Lock it down */
815         spin_lock_irqsave(&priv->txlock, flags);
816         spin_lock(&priv->rxlock);
817
818         gfar_halt(dev);
819
820         spin_unlock(&priv->rxlock);
821         spin_unlock_irqrestore(&priv->txlock, flags);
822
823         /* Free the IRQs */
824         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
825                 free_irq(priv->interruptError, dev);
826                 free_irq(priv->interruptTransmit, dev);
827                 free_irq(priv->interruptReceive, dev);
828         } else {
829                 free_irq(priv->interruptTransmit, dev);
830         }
831
832         free_skb_resources(priv);
833
834         dma_free_coherent(&priv->ofdev->dev,
835                         sizeof(struct txbd8)*priv->tx_ring_size
836                         + sizeof(struct rxbd8)*priv->rx_ring_size,
837                         priv->tx_bd_base,
838                         gfar_read(&regs->tbase0));
839 }
840
841 /* If there are any tx skbs or rx skbs still around, free them.
842  * Then free tx_skbuff and rx_skbuff */
843 static void free_skb_resources(struct gfar_private *priv)
844 {
845         struct rxbd8 *rxbdp;
846         struct txbd8 *txbdp;
847         int i, j;
848
849         /* Go through all the buffer descriptors and free their data buffers */
850         txbdp = priv->tx_bd_base;
851
852         for (i = 0; i < priv->tx_ring_size; i++) {
853                 if (!priv->tx_skbuff[i])
854                         continue;
855
856                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
857                                 txbdp->length, DMA_TO_DEVICE);
858                 txbdp->lstatus = 0;
859                 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
860                         txbdp++;
861                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
862                                         txbdp->length, DMA_TO_DEVICE);
863                 }
864                 txbdp++;
865                 dev_kfree_skb_any(priv->tx_skbuff[i]);
866                 priv->tx_skbuff[i] = NULL;
867         }
868
869         kfree(priv->tx_skbuff);
870
871         rxbdp = priv->rx_bd_base;
872
873         /* rx_skbuff is not guaranteed to be allocated, so only
874          * free it and its contents if it is allocated */
875         if(priv->rx_skbuff != NULL) {
876                 for (i = 0; i < priv->rx_ring_size; i++) {
877                         if (priv->rx_skbuff[i]) {
878                                 dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr,
879                                                 priv->rx_buffer_size,
880                                                 DMA_FROM_DEVICE);
881
882                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
883                                 priv->rx_skbuff[i] = NULL;
884                         }
885
886                         rxbdp->lstatus = 0;
887                         rxbdp->bufPtr = 0;
888
889                         rxbdp++;
890                 }
891
892                 kfree(priv->rx_skbuff);
893         }
894 }
895
896 void gfar_start(struct net_device *dev)
897 {
898         struct gfar_private *priv = netdev_priv(dev);
899         struct gfar __iomem *regs = priv->regs;
900         u32 tempval;
901
902         /* Enable Rx and Tx in MACCFG1 */
903         tempval = gfar_read(&regs->maccfg1);
904         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
905         gfar_write(&regs->maccfg1, tempval);
906
907         /* Initialize DMACTRL to have WWR and WOP */
908         tempval = gfar_read(&priv->regs->dmactrl);
909         tempval |= DMACTRL_INIT_SETTINGS;
910         gfar_write(&priv->regs->dmactrl, tempval);
911
912         /* Make sure we aren't stopped */
913         tempval = gfar_read(&priv->regs->dmactrl);
914         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
915         gfar_write(&priv->regs->dmactrl, tempval);
916
917         /* Clear THLT/RHLT, so that the DMA starts polling now */
918         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
919         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
920
921         /* Unmask the interrupts we look for */
922         gfar_write(&regs->imask, IMASK_DEFAULT);
923
924         dev->trans_start = jiffies;
925 }
926
927 /* Bring the controller up and running */
928 int startup_gfar(struct net_device *dev)
929 {
930         struct txbd8 *txbdp;
931         struct rxbd8 *rxbdp;
932         dma_addr_t addr = 0;
933         unsigned long vaddr;
934         int i;
935         struct gfar_private *priv = netdev_priv(dev);
936         struct gfar __iomem *regs = priv->regs;
937         int err = 0;
938         u32 rctrl = 0;
939         u32 attrs = 0;
940
941         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
942
943         /* Allocate memory for the buffer descriptors */
944         vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev,
945                         sizeof (struct txbd8) * priv->tx_ring_size +
946                         sizeof (struct rxbd8) * priv->rx_ring_size,
947                         &addr, GFP_KERNEL);
948
949         if (vaddr == 0) {
950                 if (netif_msg_ifup(priv))
951                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
952                                         dev->name);
953                 return -ENOMEM;
954         }
955
956         priv->tx_bd_base = (struct txbd8 *) vaddr;
957
958         /* enet DMA only understands physical addresses */
959         gfar_write(&regs->tbase0, addr);
960
961         /* Start the rx descriptor ring where the tx ring leaves off */
962         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
963         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
964         priv->rx_bd_base = (struct rxbd8 *) vaddr;
965         gfar_write(&regs->rbase0, addr);
966
967         /* Setup the skbuff rings */
968         priv->tx_skbuff =
969             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
970                                         priv->tx_ring_size, GFP_KERNEL);
971
972         if (NULL == priv->tx_skbuff) {
973                 if (netif_msg_ifup(priv))
974                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
975                                         dev->name);
976                 err = -ENOMEM;
977                 goto tx_skb_fail;
978         }
979
980         for (i = 0; i < priv->tx_ring_size; i++)
981                 priv->tx_skbuff[i] = NULL;
982
983         priv->rx_skbuff =
984             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
985                                         priv->rx_ring_size, GFP_KERNEL);
986
987         if (NULL == priv->rx_skbuff) {
988                 if (netif_msg_ifup(priv))
989                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
990                                         dev->name);
991                 err = -ENOMEM;
992                 goto rx_skb_fail;
993         }
994
995         for (i = 0; i < priv->rx_ring_size; i++)
996                 priv->rx_skbuff[i] = NULL;
997
998         /* Initialize some variables in our dev structure */
999         priv->num_txbdfree = priv->tx_ring_size;
1000         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1001         priv->cur_rx = priv->rx_bd_base;
1002         priv->skb_curtx = priv->skb_dirtytx = 0;
1003         priv->skb_currx = 0;
1004
1005         /* Initialize Transmit Descriptor Ring */
1006         txbdp = priv->tx_bd_base;
1007         for (i = 0; i < priv->tx_ring_size; i++) {
1008                 txbdp->lstatus = 0;
1009                 txbdp->bufPtr = 0;
1010                 txbdp++;
1011         }
1012
1013         /* Set the last descriptor in the ring to indicate wrap */
1014         txbdp--;
1015         txbdp->status |= TXBD_WRAP;
1016
1017         rxbdp = priv->rx_bd_base;
1018         for (i = 0; i < priv->rx_ring_size; i++) {
1019                 struct sk_buff *skb;
1020
1021                 skb = gfar_new_skb(dev);
1022
1023                 if (!skb) {
1024                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1025                                         dev->name);
1026
1027                         goto err_rxalloc_fail;
1028                 }
1029
1030                 priv->rx_skbuff[i] = skb;
1031
1032                 gfar_new_rxbdp(dev, rxbdp, skb);
1033
1034                 rxbdp++;
1035         }
1036
1037         /* Set the last descriptor in the ring to wrap */
1038         rxbdp--;
1039         rxbdp->status |= RXBD_WRAP;
1040
1041         /* If the device has multiple interrupts, register for
1042          * them.  Otherwise, only register for the one */
1043         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1044                 /* Install our interrupt handlers for Error,
1045                  * Transmit, and Receive */
1046                 if (request_irq(priv->interruptError, gfar_error,
1047                                 0, priv->int_name_er, dev) < 0) {
1048                         if (netif_msg_intr(priv))
1049                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1050                                         dev->name, priv->interruptError);
1051
1052                         err = -1;
1053                         goto err_irq_fail;
1054                 }
1055
1056                 if (request_irq(priv->interruptTransmit, gfar_transmit,
1057                                 0, priv->int_name_tx, dev) < 0) {
1058                         if (netif_msg_intr(priv))
1059                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1060                                         dev->name, priv->interruptTransmit);
1061
1062                         err = -1;
1063
1064                         goto tx_irq_fail;
1065                 }
1066
1067                 if (request_irq(priv->interruptReceive, gfar_receive,
1068                                 0, priv->int_name_rx, dev) < 0) {
1069                         if (netif_msg_intr(priv))
1070                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1071                                                 dev->name, priv->interruptReceive);
1072
1073                         err = -1;
1074                         goto rx_irq_fail;
1075                 }
1076         } else {
1077                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1078                                 0, priv->int_name_tx, dev) < 0) {
1079                         if (netif_msg_intr(priv))
1080                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1081                                         dev->name, priv->interruptTransmit);
1082
1083                         err = -1;
1084                         goto err_irq_fail;
1085                 }
1086         }
1087
1088         phy_start(priv->phydev);
1089
1090         /* Configure the coalescing support */
1091         gfar_write(&regs->txic, 0);
1092         if (priv->txcoalescing)
1093                 gfar_write(&regs->txic, priv->txic);
1094
1095         gfar_write(&regs->rxic, 0);
1096         if (priv->rxcoalescing)
1097                 gfar_write(&regs->rxic, priv->rxic);
1098
1099         if (priv->rx_csum_enable)
1100                 rctrl |= RCTRL_CHECKSUMMING;
1101
1102         if (priv->extended_hash) {
1103                 rctrl |= RCTRL_EXTHASH;
1104
1105                 gfar_clear_exact_match(dev);
1106                 rctrl |= RCTRL_EMEN;
1107         }
1108
1109         if (priv->padding) {
1110                 rctrl &= ~RCTRL_PAL_MASK;
1111                 rctrl |= RCTRL_PADDING(priv->padding);
1112         }
1113
1114         /* Init rctrl based on our settings */
1115         gfar_write(&priv->regs->rctrl, rctrl);
1116
1117         if (dev->features & NETIF_F_IP_CSUM)
1118                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1119
1120         /* Set the extraction length and index */
1121         attrs = ATTRELI_EL(priv->rx_stash_size) |
1122                 ATTRELI_EI(priv->rx_stash_index);
1123
1124         gfar_write(&priv->regs->attreli, attrs);
1125
1126         /* Start with defaults, and add stashing or locking
1127          * depending on the approprate variables */
1128         attrs = ATTR_INIT_SETTINGS;
1129
1130         if (priv->bd_stash_en)
1131                 attrs |= ATTR_BDSTASH;
1132
1133         if (priv->rx_stash_size != 0)
1134                 attrs |= ATTR_BUFSTASH;
1135
1136         gfar_write(&priv->regs->attr, attrs);
1137
1138         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1139         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1140         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1141
1142         /* Start the controller */
1143         gfar_start(dev);
1144
1145         return 0;
1146
1147 rx_irq_fail:
1148         free_irq(priv->interruptTransmit, dev);
1149 tx_irq_fail:
1150         free_irq(priv->interruptError, dev);
1151 err_irq_fail:
1152 err_rxalloc_fail:
1153 rx_skb_fail:
1154         free_skb_resources(priv);
1155 tx_skb_fail:
1156         dma_free_coherent(&priv->ofdev->dev,
1157                         sizeof(struct txbd8)*priv->tx_ring_size
1158                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1159                         priv->tx_bd_base,
1160                         gfar_read(&regs->tbase0));
1161
1162         return err;
1163 }
1164
1165 /* Called when something needs to use the ethernet device */
1166 /* Returns 0 for success. */
1167 static int gfar_enet_open(struct net_device *dev)
1168 {
1169         struct gfar_private *priv = netdev_priv(dev);
1170         int err;
1171
1172         napi_enable(&priv->napi);
1173
1174         skb_queue_head_init(&priv->rx_recycle);
1175
1176         /* Initialize a bunch of registers */
1177         init_registers(dev);
1178
1179         gfar_set_mac_address(dev);
1180
1181         err = init_phy(dev);
1182
1183         if(err) {
1184                 napi_disable(&priv->napi);
1185                 return err;
1186         }
1187
1188         err = startup_gfar(dev);
1189         if (err) {
1190                 napi_disable(&priv->napi);
1191                 return err;
1192         }
1193
1194         netif_start_queue(dev);
1195
1196         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1197
1198         return err;
1199 }
1200
1201 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1202 {
1203         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1204
1205         memset(fcb, 0, GMAC_FCB_LEN);
1206
1207         return fcb;
1208 }
1209
1210 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1211 {
1212         u8 flags = 0;
1213
1214         /* If we're here, it's a IP packet with a TCP or UDP
1215          * payload.  We set it to checksum, using a pseudo-header
1216          * we provide
1217          */
1218         flags = TXFCB_DEFAULT;
1219
1220         /* Tell the controller what the protocol is */
1221         /* And provide the already calculated phcs */
1222         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1223                 flags |= TXFCB_UDP;
1224                 fcb->phcs = udp_hdr(skb)->check;
1225         } else
1226                 fcb->phcs = tcp_hdr(skb)->check;
1227
1228         /* l3os is the distance between the start of the
1229          * frame (skb->data) and the start of the IP hdr.
1230          * l4os is the distance between the start of the
1231          * l3 hdr and the l4 hdr */
1232         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1233         fcb->l4os = skb_network_header_len(skb);
1234
1235         fcb->flags = flags;
1236 }
1237
1238 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1239 {
1240         fcb->flags |= TXFCB_VLN;
1241         fcb->vlctl = vlan_tx_tag_get(skb);
1242 }
1243
1244 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1245                                struct txbd8 *base, int ring_size)
1246 {
1247         struct txbd8 *new_bd = bdp + stride;
1248
1249         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1250 }
1251
1252 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1253                 int ring_size)
1254 {
1255         return skip_txbd(bdp, 1, base, ring_size);
1256 }
1257
1258 /* This is called by the kernel when a frame is ready for transmission. */
1259 /* It is pointed to by the dev->hard_start_xmit function pointer */
1260 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1261 {
1262         struct gfar_private *priv = netdev_priv(dev);
1263         struct txfcb *fcb = NULL;
1264         struct txbd8 *txbdp, *txbdp_start, *base;
1265         u32 lstatus;
1266         int i;
1267         u32 bufaddr;
1268         unsigned long flags;
1269         unsigned int nr_frags, length;
1270
1271         base = priv->tx_bd_base;
1272
1273         /* make space for additional header when fcb is needed */
1274         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1275                         (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1276                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
1277                 struct sk_buff *skb_new;
1278
1279                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1280                 if (!skb_new) {
1281                         dev->stats.tx_errors++;
1282                         kfree_skb(skb);
1283                         return NETDEV_TX_OK;
1284                 }
1285                 kfree_skb(skb);
1286                 skb = skb_new;
1287         }
1288
1289         /* total number of fragments in the SKB */
1290         nr_frags = skb_shinfo(skb)->nr_frags;
1291
1292         spin_lock_irqsave(&priv->txlock, flags);
1293
1294         /* check if there is space to queue this packet */
1295         if ((nr_frags+1) > priv->num_txbdfree) {
1296                 /* no space, stop the queue */
1297                 netif_stop_queue(dev);
1298                 dev->stats.tx_fifo_errors++;
1299                 spin_unlock_irqrestore(&priv->txlock, flags);
1300                 return NETDEV_TX_BUSY;
1301         }
1302
1303         /* Update transmit stats */
1304         dev->stats.tx_bytes += skb->len;
1305
1306         txbdp = txbdp_start = priv->cur_tx;
1307
1308         if (nr_frags == 0) {
1309                 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1310         } else {
1311                 /* Place the fragment addresses and lengths into the TxBDs */
1312                 for (i = 0; i < nr_frags; i++) {
1313                         /* Point at the next BD, wrapping as needed */
1314                         txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1315
1316                         length = skb_shinfo(skb)->frags[i].size;
1317
1318                         lstatus = txbdp->lstatus | length |
1319                                 BD_LFLAG(TXBD_READY);
1320
1321                         /* Handle the last BD specially */
1322                         if (i == nr_frags - 1)
1323                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1324
1325                         bufaddr = dma_map_page(&priv->ofdev->dev,
1326                                         skb_shinfo(skb)->frags[i].page,
1327                                         skb_shinfo(skb)->frags[i].page_offset,
1328                                         length,
1329                                         DMA_TO_DEVICE);
1330
1331                         /* set the TxBD length and buffer pointer */
1332                         txbdp->bufPtr = bufaddr;
1333                         txbdp->lstatus = lstatus;
1334                 }
1335
1336                 lstatus = txbdp_start->lstatus;
1337         }
1338
1339         /* Set up checksumming */
1340         if (CHECKSUM_PARTIAL == skb->ip_summed) {
1341                 fcb = gfar_add_fcb(skb);
1342                 lstatus |= BD_LFLAG(TXBD_TOE);
1343                 gfar_tx_checksum(skb, fcb);
1344         }
1345
1346         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1347                 if (unlikely(NULL == fcb)) {
1348                         fcb = gfar_add_fcb(skb);
1349                         lstatus |= BD_LFLAG(TXBD_TOE);
1350                 }
1351
1352                 gfar_tx_vlan(skb, fcb);
1353         }
1354
1355         /* setup the TxBD length and buffer pointer for the first BD */
1356         priv->tx_skbuff[priv->skb_curtx] = skb;
1357         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1358                         skb_headlen(skb), DMA_TO_DEVICE);
1359
1360         lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1361
1362         /*
1363          * The powerpc-specific eieio() is used, as wmb() has too strong
1364          * semantics (it requires synchronization between cacheable and
1365          * uncacheable mappings, which eieio doesn't provide and which we
1366          * don't need), thus requiring a more expensive sync instruction.  At
1367          * some point, the set of architecture-independent barrier functions
1368          * should be expanded to include weaker barriers.
1369          */
1370         eieio();
1371
1372         txbdp_start->lstatus = lstatus;
1373
1374         /* Update the current skb pointer to the next entry we will use
1375          * (wrapping if necessary) */
1376         priv->skb_curtx = (priv->skb_curtx + 1) &
1377                 TX_RING_MOD_MASK(priv->tx_ring_size);
1378
1379         priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1380
1381         /* reduce TxBD free count */
1382         priv->num_txbdfree -= (nr_frags + 1);
1383
1384         dev->trans_start = jiffies;
1385
1386         /* If the next BD still needs to be cleaned up, then the bds
1387            are full.  We need to tell the kernel to stop sending us stuff. */
1388         if (!priv->num_txbdfree) {
1389                 netif_stop_queue(dev);
1390
1391                 dev->stats.tx_fifo_errors++;
1392         }
1393
1394         /* Tell the DMA to go go go */
1395         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1396
1397         /* Unlock priv */
1398         spin_unlock_irqrestore(&priv->txlock, flags);
1399
1400         return NETDEV_TX_OK;
1401 }
1402
1403 /* Stops the kernel queue, and halts the controller */
1404 static int gfar_close(struct net_device *dev)
1405 {
1406         struct gfar_private *priv = netdev_priv(dev);
1407
1408         napi_disable(&priv->napi);
1409
1410         skb_queue_purge(&priv->rx_recycle);
1411         cancel_work_sync(&priv->reset_task);
1412         stop_gfar(dev);
1413
1414         /* Disconnect from the PHY */
1415         phy_disconnect(priv->phydev);
1416         priv->phydev = NULL;
1417
1418         netif_stop_queue(dev);
1419
1420         return 0;
1421 }
1422
1423 /* Changes the mac address if the controller is not running. */
1424 static int gfar_set_mac_address(struct net_device *dev)
1425 {
1426         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1427
1428         return 0;
1429 }
1430
1431
1432 /* Enables and disables VLAN insertion/extraction */
1433 static void gfar_vlan_rx_register(struct net_device *dev,
1434                 struct vlan_group *grp)
1435 {
1436         struct gfar_private *priv = netdev_priv(dev);
1437         unsigned long flags;
1438         u32 tempval;
1439
1440         spin_lock_irqsave(&priv->rxlock, flags);
1441
1442         priv->vlgrp = grp;
1443
1444         if (grp) {
1445                 /* Enable VLAN tag insertion */
1446                 tempval = gfar_read(&priv->regs->tctrl);
1447                 tempval |= TCTRL_VLINS;
1448
1449                 gfar_write(&priv->regs->tctrl, tempval);
1450
1451                 /* Enable VLAN tag extraction */
1452                 tempval = gfar_read(&priv->regs->rctrl);
1453                 tempval |= RCTRL_VLEX;
1454                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1455                 gfar_write(&priv->regs->rctrl, tempval);
1456         } else {
1457                 /* Disable VLAN tag insertion */
1458                 tempval = gfar_read(&priv->regs->tctrl);
1459                 tempval &= ~TCTRL_VLINS;
1460                 gfar_write(&priv->regs->tctrl, tempval);
1461
1462                 /* Disable VLAN tag extraction */
1463                 tempval = gfar_read(&priv->regs->rctrl);
1464                 tempval &= ~RCTRL_VLEX;
1465                 /* If parse is no longer required, then disable parser */
1466                 if (tempval & RCTRL_REQ_PARSER)
1467                         tempval |= RCTRL_PRSDEP_INIT;
1468                 else
1469                         tempval &= ~RCTRL_PRSDEP_INIT;
1470                 gfar_write(&priv->regs->rctrl, tempval);
1471         }
1472
1473         gfar_change_mtu(dev, dev->mtu);
1474
1475         spin_unlock_irqrestore(&priv->rxlock, flags);
1476 }
1477
1478 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1479 {
1480         int tempsize, tempval;
1481         struct gfar_private *priv = netdev_priv(dev);
1482         int oldsize = priv->rx_buffer_size;
1483         int frame_size = new_mtu + ETH_HLEN;
1484
1485         if (priv->vlgrp)
1486                 frame_size += VLAN_HLEN;
1487
1488         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1489                 if (netif_msg_drv(priv))
1490                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1491                                         dev->name);
1492                 return -EINVAL;
1493         }
1494
1495         if (gfar_uses_fcb(priv))
1496                 frame_size += GMAC_FCB_LEN;
1497
1498         frame_size += priv->padding;
1499
1500         tempsize =
1501             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1502             INCREMENTAL_BUFFER_SIZE;
1503
1504         /* Only stop and start the controller if it isn't already
1505          * stopped, and we changed something */
1506         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1507                 stop_gfar(dev);
1508
1509         priv->rx_buffer_size = tempsize;
1510
1511         dev->mtu = new_mtu;
1512
1513         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1514         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1515
1516         /* If the mtu is larger than the max size for standard
1517          * ethernet frames (ie, a jumbo frame), then set maccfg2
1518          * to allow huge frames, and to check the length */
1519         tempval = gfar_read(&priv->regs->maccfg2);
1520
1521         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1522                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1523         else
1524                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1525
1526         gfar_write(&priv->regs->maccfg2, tempval);
1527
1528         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1529                 startup_gfar(dev);
1530
1531         return 0;
1532 }
1533
1534 /* gfar_reset_task gets scheduled when a packet has not been
1535  * transmitted after a set amount of time.
1536  * For now, assume that clearing out all the structures, and
1537  * starting over will fix the problem.
1538  */
1539 static void gfar_reset_task(struct work_struct *work)
1540 {
1541         struct gfar_private *priv = container_of(work, struct gfar_private,
1542                         reset_task);
1543         struct net_device *dev = priv->ndev;
1544
1545         if (dev->flags & IFF_UP) {
1546                 netif_stop_queue(dev);
1547                 stop_gfar(dev);
1548                 startup_gfar(dev);
1549                 netif_start_queue(dev);
1550         }
1551
1552         netif_tx_schedule_all(dev);
1553 }
1554
1555 static void gfar_timeout(struct net_device *dev)
1556 {
1557         struct gfar_private *priv = netdev_priv(dev);
1558
1559         dev->stats.tx_errors++;
1560         schedule_work(&priv->reset_task);
1561 }
1562
1563 /* Interrupt Handler for Transmit complete */
1564 static int gfar_clean_tx_ring(struct net_device *dev)
1565 {
1566         struct gfar_private *priv = netdev_priv(dev);
1567         struct txbd8 *bdp;
1568         struct txbd8 *lbdp = NULL;
1569         struct txbd8 *base = priv->tx_bd_base;
1570         struct sk_buff *skb;
1571         int skb_dirtytx;
1572         int tx_ring_size = priv->tx_ring_size;
1573         int frags = 0;
1574         int i;
1575         int howmany = 0;
1576         u32 lstatus;
1577
1578         bdp = priv->dirty_tx;
1579         skb_dirtytx = priv->skb_dirtytx;
1580
1581         while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1582                 frags = skb_shinfo(skb)->nr_frags;
1583                 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1584
1585                 lstatus = lbdp->lstatus;
1586
1587                 /* Only clean completed frames */
1588                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1589                                 (lstatus & BD_LENGTH_MASK))
1590                         break;
1591
1592                 dma_unmap_single(&priv->ofdev->dev,
1593                                 bdp->bufPtr,
1594                                 bdp->length,
1595                                 DMA_TO_DEVICE);
1596
1597                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1598                 bdp = next_txbd(bdp, base, tx_ring_size);
1599
1600                 for (i = 0; i < frags; i++) {
1601                         dma_unmap_page(&priv->ofdev->dev,
1602                                         bdp->bufPtr,
1603                                         bdp->length,
1604                                         DMA_TO_DEVICE);
1605                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1606                         bdp = next_txbd(bdp, base, tx_ring_size);
1607                 }
1608
1609                 /*
1610                  * If there's room in the queue (limit it to rx_buffer_size)
1611                  * we add this skb back into the pool, if it's the right size
1612                  */
1613                 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
1614                                 skb_recycle_check(skb, priv->rx_buffer_size +
1615                                         RXBUF_ALIGNMENT))
1616                         __skb_queue_head(&priv->rx_recycle, skb);
1617                 else
1618                         dev_kfree_skb_any(skb);
1619
1620                 priv->tx_skbuff[skb_dirtytx] = NULL;
1621
1622                 skb_dirtytx = (skb_dirtytx + 1) &
1623                         TX_RING_MOD_MASK(tx_ring_size);
1624
1625                 howmany++;
1626                 priv->num_txbdfree += frags + 1;
1627         }
1628
1629         /* If we freed a buffer, we can restart transmission, if necessary */
1630         if (netif_queue_stopped(dev) && priv->num_txbdfree)
1631                 netif_wake_queue(dev);
1632
1633         /* Update dirty indicators */
1634         priv->skb_dirtytx = skb_dirtytx;
1635         priv->dirty_tx = bdp;
1636
1637         dev->stats.tx_packets += howmany;
1638
1639         return howmany;
1640 }
1641
1642 static void gfar_schedule_cleanup(struct net_device *dev)
1643 {
1644         struct gfar_private *priv = netdev_priv(dev);
1645         unsigned long flags;
1646
1647         spin_lock_irqsave(&priv->txlock, flags);
1648         spin_lock(&priv->rxlock);
1649
1650         if (napi_schedule_prep(&priv->napi)) {
1651                 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1652                 __napi_schedule(&priv->napi);
1653         } else {
1654                 /*
1655                  * Clear IEVENT, so interrupts aren't called again
1656                  * because of the packets that have already arrived.
1657                  */
1658                 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1659         }
1660
1661         spin_unlock(&priv->rxlock);
1662         spin_unlock_irqrestore(&priv->txlock, flags);
1663 }
1664
1665 /* Interrupt Handler for Transmit complete */
1666 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1667 {
1668         gfar_schedule_cleanup((struct net_device *)dev_id);
1669         return IRQ_HANDLED;
1670 }
1671
1672 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1673                 struct sk_buff *skb)
1674 {
1675         struct gfar_private *priv = netdev_priv(dev);
1676         u32 lstatus;
1677
1678         bdp->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1679                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1680
1681         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1682
1683         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1684                 lstatus |= BD_LFLAG(RXBD_WRAP);
1685
1686         eieio();
1687
1688         bdp->lstatus = lstatus;
1689 }
1690
1691
1692 struct sk_buff * gfar_new_skb(struct net_device *dev)
1693 {
1694         unsigned int alignamount;
1695         struct gfar_private *priv = netdev_priv(dev);
1696         struct sk_buff *skb = NULL;
1697
1698         skb = __skb_dequeue(&priv->rx_recycle);
1699         if (!skb)
1700                 skb = netdev_alloc_skb(dev,
1701                                 priv->rx_buffer_size + RXBUF_ALIGNMENT);
1702
1703         if (!skb)
1704                 return NULL;
1705
1706         alignamount = RXBUF_ALIGNMENT -
1707                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1708
1709         /* We need the data buffer to be aligned properly.  We will reserve
1710          * as many bytes as needed to align the data properly
1711          */
1712         skb_reserve(skb, alignamount);
1713
1714         return skb;
1715 }
1716
1717 static inline void count_errors(unsigned short status, struct net_device *dev)
1718 {
1719         struct gfar_private *priv = netdev_priv(dev);
1720         struct net_device_stats *stats = &dev->stats;
1721         struct gfar_extra_stats *estats = &priv->extra_stats;
1722
1723         /* If the packet was truncated, none of the other errors
1724          * matter */
1725         if (status & RXBD_TRUNCATED) {
1726                 stats->rx_length_errors++;
1727
1728                 estats->rx_trunc++;
1729
1730                 return;
1731         }
1732         /* Count the errors, if there were any */
1733         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1734                 stats->rx_length_errors++;
1735
1736                 if (status & RXBD_LARGE)
1737                         estats->rx_large++;
1738                 else
1739                         estats->rx_short++;
1740         }
1741         if (status & RXBD_NONOCTET) {
1742                 stats->rx_frame_errors++;
1743                 estats->rx_nonoctet++;
1744         }
1745         if (status & RXBD_CRCERR) {
1746                 estats->rx_crcerr++;
1747                 stats->rx_crc_errors++;
1748         }
1749         if (status & RXBD_OVERRUN) {
1750                 estats->rx_overrun++;
1751                 stats->rx_crc_errors++;
1752         }
1753 }
1754
1755 irqreturn_t gfar_receive(int irq, void *dev_id)
1756 {
1757         gfar_schedule_cleanup((struct net_device *)dev_id);
1758         return IRQ_HANDLED;
1759 }
1760
1761 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1762 {
1763         /* If valid headers were found, and valid sums
1764          * were verified, then we tell the kernel that no
1765          * checksumming is necessary.  Otherwise, it is */
1766         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1767                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1768         else
1769                 skb->ip_summed = CHECKSUM_NONE;
1770 }
1771
1772
1773 /* gfar_process_frame() -- handle one incoming packet if skb
1774  * isn't NULL.  */
1775 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1776                               int amount_pull)
1777 {
1778         struct gfar_private *priv = netdev_priv(dev);
1779         struct rxfcb *fcb = NULL;
1780
1781         int ret;
1782
1783         /* fcb is at the beginning if exists */
1784         fcb = (struct rxfcb *)skb->data;
1785
1786         /* Remove the FCB from the skb */
1787         /* Remove the padded bytes, if there are any */
1788         if (amount_pull)
1789                 skb_pull(skb, amount_pull);
1790
1791         if (priv->rx_csum_enable)
1792                 gfar_rx_checksum(skb, fcb);
1793
1794         /* Tell the skb what kind of packet this is */
1795         skb->protocol = eth_type_trans(skb, dev);
1796
1797         /* Send the packet up the stack */
1798         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1799                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1800         else
1801                 ret = netif_receive_skb(skb);
1802
1803         if (NET_RX_DROP == ret)
1804                 priv->extra_stats.kernel_dropped++;
1805
1806         return 0;
1807 }
1808
1809 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1810  *   until the budget/quota has been reached. Returns the number
1811  *   of frames handled
1812  */
1813 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1814 {
1815         struct rxbd8 *bdp, *base;
1816         struct sk_buff *skb;
1817         int pkt_len;
1818         int amount_pull;
1819         int howmany = 0;
1820         struct gfar_private *priv = netdev_priv(dev);
1821
1822         /* Get the first full descriptor */
1823         bdp = priv->cur_rx;
1824         base = priv->rx_bd_base;
1825
1826         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1827                 priv->padding;
1828
1829         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1830                 struct sk_buff *newskb;
1831                 rmb();
1832
1833                 /* Add another skb for the future */
1834                 newskb = gfar_new_skb(dev);
1835
1836                 skb = priv->rx_skbuff[priv->skb_currx];
1837
1838                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
1839                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
1840
1841                 /* We drop the frame if we failed to allocate a new buffer */
1842                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1843                                  bdp->status & RXBD_ERR)) {
1844                         count_errors(bdp->status, dev);
1845
1846                         if (unlikely(!newskb))
1847                                 newskb = skb;
1848                         else if (skb) {
1849                                 /*
1850                                  * We need to reset ->data to what it
1851                                  * was before gfar_new_skb() re-aligned
1852                                  * it to an RXBUF_ALIGNMENT boundary
1853                                  * before we put the skb back on the
1854                                  * recycle list.
1855                                  */
1856                                 skb->data = skb->head + NET_SKB_PAD;
1857                                 __skb_queue_head(&priv->rx_recycle, skb);
1858                         }
1859                 } else {
1860                         /* Increment the number of packets */
1861                         dev->stats.rx_packets++;
1862                         howmany++;
1863
1864                         if (likely(skb)) {
1865                                 pkt_len = bdp->length - ETH_FCS_LEN;
1866                                 /* Remove the FCS from the packet length */
1867                                 skb_put(skb, pkt_len);
1868                                 dev->stats.rx_bytes += pkt_len;
1869
1870                                 if (in_irq() || irqs_disabled())
1871                                         printk("Interrupt problem!\n");
1872                                 gfar_process_frame(dev, skb, amount_pull);
1873
1874                         } else {
1875                                 if (netif_msg_rx_err(priv))
1876                                         printk(KERN_WARNING
1877                                                "%s: Missing skb!\n", dev->name);
1878                                 dev->stats.rx_dropped++;
1879                                 priv->extra_stats.rx_skbmissing++;
1880                         }
1881
1882                 }
1883
1884                 priv->rx_skbuff[priv->skb_currx] = newskb;
1885
1886                 /* Setup the new bdp */
1887                 gfar_new_rxbdp(dev, bdp, newskb);
1888
1889                 /* Update to the next pointer */
1890                 bdp = next_bd(bdp, base, priv->rx_ring_size);
1891
1892                 /* update to point at the next skb */
1893                 priv->skb_currx =
1894                     (priv->skb_currx + 1) &
1895                     RX_RING_MOD_MASK(priv->rx_ring_size);
1896         }
1897
1898         /* Update the current rxbd pointer to be the next one */
1899         priv->cur_rx = bdp;
1900
1901         return howmany;
1902 }
1903
1904 static int gfar_poll(struct napi_struct *napi, int budget)
1905 {
1906         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1907         struct net_device *dev = priv->ndev;
1908         int tx_cleaned = 0;
1909         int rx_cleaned = 0;
1910         unsigned long flags;
1911
1912         /* Clear IEVENT, so interrupts aren't called again
1913          * because of the packets that have already arrived */
1914         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1915
1916         /* If we fail to get the lock, don't bother with the TX BDs */
1917         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1918                 tx_cleaned = gfar_clean_tx_ring(dev);
1919                 spin_unlock_irqrestore(&priv->txlock, flags);
1920         }
1921
1922         rx_cleaned = gfar_clean_rx_ring(dev, budget);
1923
1924         if (tx_cleaned)
1925                 return budget;
1926
1927         if (rx_cleaned < budget) {
1928                 napi_complete(napi);
1929
1930                 /* Clear the halt bit in RSTAT */
1931                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1932
1933                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1934
1935                 /* If we are coalescing interrupts, update the timer */
1936                 /* Otherwise, clear it */
1937                 if (likely(priv->rxcoalescing)) {
1938                         gfar_write(&priv->regs->rxic, 0);
1939                         gfar_write(&priv->regs->rxic, priv->rxic);
1940                 }
1941                 if (likely(priv->txcoalescing)) {
1942                         gfar_write(&priv->regs->txic, 0);
1943                         gfar_write(&priv->regs->txic, priv->txic);
1944                 }
1945         }
1946
1947         return rx_cleaned;
1948 }
1949
1950 #ifdef CONFIG_NET_POLL_CONTROLLER
1951 /*
1952  * Polling 'interrupt' - used by things like netconsole to send skbs
1953  * without having to re-enable interrupts. It's not called while
1954  * the interrupt routine is executing.
1955  */
1956 static void gfar_netpoll(struct net_device *dev)
1957 {
1958         struct gfar_private *priv = netdev_priv(dev);
1959
1960         /* If the device has multiple interrupts, run tx/rx */
1961         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1962                 disable_irq(priv->interruptTransmit);
1963                 disable_irq(priv->interruptReceive);
1964                 disable_irq(priv->interruptError);
1965                 gfar_interrupt(priv->interruptTransmit, dev);
1966                 enable_irq(priv->interruptError);
1967                 enable_irq(priv->interruptReceive);
1968                 enable_irq(priv->interruptTransmit);
1969         } else {
1970                 disable_irq(priv->interruptTransmit);
1971                 gfar_interrupt(priv->interruptTransmit, dev);
1972                 enable_irq(priv->interruptTransmit);
1973         }
1974 }
1975 #endif
1976
1977 /* The interrupt handler for devices with one interrupt */
1978 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1979 {
1980         struct net_device *dev = dev_id;
1981         struct gfar_private *priv = netdev_priv(dev);
1982
1983         /* Save ievent for future reference */
1984         u32 events = gfar_read(&priv->regs->ievent);
1985
1986         /* Check for reception */
1987         if (events & IEVENT_RX_MASK)
1988                 gfar_receive(irq, dev_id);
1989
1990         /* Check for transmit completion */
1991         if (events & IEVENT_TX_MASK)
1992                 gfar_transmit(irq, dev_id);
1993
1994         /* Check for errors */
1995         if (events & IEVENT_ERR_MASK)
1996                 gfar_error(irq, dev_id);
1997
1998         return IRQ_HANDLED;
1999 }
2000
2001 /* Called every time the controller might need to be made
2002  * aware of new link state.  The PHY code conveys this
2003  * information through variables in the phydev structure, and this
2004  * function converts those variables into the appropriate
2005  * register values, and can bring down the device if needed.
2006  */
2007 static void adjust_link(struct net_device *dev)
2008 {
2009         struct gfar_private *priv = netdev_priv(dev);
2010         struct gfar __iomem *regs = priv->regs;
2011         unsigned long flags;
2012         struct phy_device *phydev = priv->phydev;
2013         int new_state = 0;
2014
2015         spin_lock_irqsave(&priv->txlock, flags);
2016         if (phydev->link) {
2017                 u32 tempval = gfar_read(&regs->maccfg2);
2018                 u32 ecntrl = gfar_read(&regs->ecntrl);
2019
2020                 /* Now we make sure that we can be in full duplex mode.
2021                  * If not, we operate in half-duplex mode. */
2022                 if (phydev->duplex != priv->oldduplex) {
2023                         new_state = 1;
2024                         if (!(phydev->duplex))
2025                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2026                         else
2027                                 tempval |= MACCFG2_FULL_DUPLEX;
2028
2029                         priv->oldduplex = phydev->duplex;
2030                 }
2031
2032                 if (phydev->speed != priv->oldspeed) {
2033                         new_state = 1;
2034                         switch (phydev->speed) {
2035                         case 1000:
2036                                 tempval =
2037                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2038
2039                                 ecntrl &= ~(ECNTRL_R100);
2040                                 break;
2041                         case 100:
2042                         case 10:
2043                                 tempval =
2044                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2045
2046                                 /* Reduced mode distinguishes
2047                                  * between 10 and 100 */
2048                                 if (phydev->speed == SPEED_100)
2049                                         ecntrl |= ECNTRL_R100;
2050                                 else
2051                                         ecntrl &= ~(ECNTRL_R100);
2052                                 break;
2053                         default:
2054                                 if (netif_msg_link(priv))
2055                                         printk(KERN_WARNING
2056                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2057                                                 dev->name, phydev->speed);
2058                                 break;
2059                         }
2060
2061                         priv->oldspeed = phydev->speed;
2062                 }
2063
2064                 gfar_write(&regs->maccfg2, tempval);
2065                 gfar_write(&regs->ecntrl, ecntrl);
2066
2067                 if (!priv->oldlink) {
2068                         new_state = 1;
2069                         priv->oldlink = 1;
2070                 }
2071         } else if (priv->oldlink) {
2072                 new_state = 1;
2073                 priv->oldlink = 0;
2074                 priv->oldspeed = 0;
2075                 priv->oldduplex = -1;
2076         }
2077
2078         if (new_state && netif_msg_link(priv))
2079                 phy_print_status(phydev);
2080
2081         spin_unlock_irqrestore(&priv->txlock, flags);
2082 }
2083
2084 /* Update the hash table based on the current list of multicast
2085  * addresses we subscribe to.  Also, change the promiscuity of
2086  * the device based on the flags (this function is called
2087  * whenever dev->flags is changed */
2088 static void gfar_set_multi(struct net_device *dev)
2089 {
2090         struct dev_mc_list *mc_ptr;
2091         struct gfar_private *priv = netdev_priv(dev);
2092         struct gfar __iomem *regs = priv->regs;
2093         u32 tempval;
2094
2095         if(dev->flags & IFF_PROMISC) {
2096                 /* Set RCTRL to PROM */
2097                 tempval = gfar_read(&regs->rctrl);
2098                 tempval |= RCTRL_PROM;
2099                 gfar_write(&regs->rctrl, tempval);
2100         } else {
2101                 /* Set RCTRL to not PROM */
2102                 tempval = gfar_read(&regs->rctrl);
2103                 tempval &= ~(RCTRL_PROM);
2104                 gfar_write(&regs->rctrl, tempval);
2105         }
2106
2107         if(dev->flags & IFF_ALLMULTI) {
2108                 /* Set the hash to rx all multicast frames */
2109                 gfar_write(&regs->igaddr0, 0xffffffff);
2110                 gfar_write(&regs->igaddr1, 0xffffffff);
2111                 gfar_write(&regs->igaddr2, 0xffffffff);
2112                 gfar_write(&regs->igaddr3, 0xffffffff);
2113                 gfar_write(&regs->igaddr4, 0xffffffff);
2114                 gfar_write(&regs->igaddr5, 0xffffffff);
2115                 gfar_write(&regs->igaddr6, 0xffffffff);
2116                 gfar_write(&regs->igaddr7, 0xffffffff);
2117                 gfar_write(&regs->gaddr0, 0xffffffff);
2118                 gfar_write(&regs->gaddr1, 0xffffffff);
2119                 gfar_write(&regs->gaddr2, 0xffffffff);
2120                 gfar_write(&regs->gaddr3, 0xffffffff);
2121                 gfar_write(&regs->gaddr4, 0xffffffff);
2122                 gfar_write(&regs->gaddr5, 0xffffffff);
2123                 gfar_write(&regs->gaddr6, 0xffffffff);
2124                 gfar_write(&regs->gaddr7, 0xffffffff);
2125         } else {
2126                 int em_num;
2127                 int idx;
2128
2129                 /* zero out the hash */
2130                 gfar_write(&regs->igaddr0, 0x0);
2131                 gfar_write(&regs->igaddr1, 0x0);
2132                 gfar_write(&regs->igaddr2, 0x0);
2133                 gfar_write(&regs->igaddr3, 0x0);
2134                 gfar_write(&regs->igaddr4, 0x0);
2135                 gfar_write(&regs->igaddr5, 0x0);
2136                 gfar_write(&regs->igaddr6, 0x0);
2137                 gfar_write(&regs->igaddr7, 0x0);
2138                 gfar_write(&regs->gaddr0, 0x0);
2139                 gfar_write(&regs->gaddr1, 0x0);
2140                 gfar_write(&regs->gaddr2, 0x0);
2141                 gfar_write(&regs->gaddr3, 0x0);
2142                 gfar_write(&regs->gaddr4, 0x0);
2143                 gfar_write(&regs->gaddr5, 0x0);
2144                 gfar_write(&regs->gaddr6, 0x0);
2145                 gfar_write(&regs->gaddr7, 0x0);
2146
2147                 /* If we have extended hash tables, we need to
2148                  * clear the exact match registers to prepare for
2149                  * setting them */
2150                 if (priv->extended_hash) {
2151                         em_num = GFAR_EM_NUM + 1;
2152                         gfar_clear_exact_match(dev);
2153                         idx = 1;
2154                 } else {
2155                         idx = 0;
2156                         em_num = 0;
2157                 }
2158
2159                 if(dev->mc_count == 0)
2160                         return;
2161
2162                 /* Parse the list, and set the appropriate bits */
2163                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2164                         if (idx < em_num) {
2165                                 gfar_set_mac_for_addr(dev, idx,
2166                                                 mc_ptr->dmi_addr);
2167                                 idx++;
2168                         } else
2169                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2170                 }
2171         }
2172
2173         return;
2174 }
2175
2176
2177 /* Clears each of the exact match registers to zero, so they
2178  * don't interfere with normal reception */
2179 static void gfar_clear_exact_match(struct net_device *dev)
2180 {
2181         int idx;
2182         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2183
2184         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2185                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2186 }
2187
2188 /* Set the appropriate hash bit for the given addr */
2189 /* The algorithm works like so:
2190  * 1) Take the Destination Address (ie the multicast address), and
2191  * do a CRC on it (little endian), and reverse the bits of the
2192  * result.
2193  * 2) Use the 8 most significant bits as a hash into a 256-entry
2194  * table.  The table is controlled through 8 32-bit registers:
2195  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2196  * gaddr7.  This means that the 3 most significant bits in the
2197  * hash index which gaddr register to use, and the 5 other bits
2198  * indicate which bit (assuming an IBM numbering scheme, which
2199  * for PowerPC (tm) is usually the case) in the register holds
2200  * the entry. */
2201 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2202 {
2203         u32 tempval;
2204         struct gfar_private *priv = netdev_priv(dev);
2205         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2206         int width = priv->hash_width;
2207         u8 whichbit = (result >> (32 - width)) & 0x1f;
2208         u8 whichreg = result >> (32 - width + 5);
2209         u32 value = (1 << (31-whichbit));
2210
2211         tempval = gfar_read(priv->hash_regs[whichreg]);
2212         tempval |= value;
2213         gfar_write(priv->hash_regs[whichreg], tempval);
2214
2215         return;
2216 }
2217
2218
2219 /* There are multiple MAC Address register pairs on some controllers
2220  * This function sets the numth pair to a given address
2221  */
2222 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2223 {
2224         struct gfar_private *priv = netdev_priv(dev);
2225         int idx;
2226         char tmpbuf[MAC_ADDR_LEN];
2227         u32 tempval;
2228         u32 __iomem *macptr = &priv->regs->macstnaddr1;
2229
2230         macptr += num*2;
2231
2232         /* Now copy it into the mac registers backwards, cuz */
2233         /* little endian is silly */
2234         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2235                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2236
2237         gfar_write(macptr, *((u32 *) (tmpbuf)));
2238
2239         tempval = *((u32 *) (tmpbuf + 4));
2240
2241         gfar_write(macptr+1, tempval);
2242 }
2243
2244 /* GFAR error interrupt handler */
2245 static irqreturn_t gfar_error(int irq, void *dev_id)
2246 {
2247         struct net_device *dev = dev_id;
2248         struct gfar_private *priv = netdev_priv(dev);
2249
2250         /* Save ievent for future reference */
2251         u32 events = gfar_read(&priv->regs->ievent);
2252
2253         /* Clear IEVENT */
2254         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2255
2256         /* Magic Packet is not an error. */
2257         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2258             (events & IEVENT_MAG))
2259                 events &= ~IEVENT_MAG;
2260
2261         /* Hmm... */
2262         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2263                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2264                        dev->name, events, gfar_read(&priv->regs->imask));
2265
2266         /* Update the error counters */
2267         if (events & IEVENT_TXE) {
2268                 dev->stats.tx_errors++;
2269
2270                 if (events & IEVENT_LC)
2271                         dev->stats.tx_window_errors++;
2272                 if (events & IEVENT_CRL)
2273                         dev->stats.tx_aborted_errors++;
2274                 if (events & IEVENT_XFUN) {
2275                         if (netif_msg_tx_err(priv))
2276                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2277                                        "packet dropped.\n", dev->name);
2278                         dev->stats.tx_dropped++;
2279                         priv->extra_stats.tx_underrun++;
2280
2281                         /* Reactivate the Tx Queues */
2282                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2283                 }
2284                 if (netif_msg_tx_err(priv))
2285                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2286         }
2287         if (events & IEVENT_BSY) {
2288                 dev->stats.rx_errors++;
2289                 priv->extra_stats.rx_bsy++;
2290
2291                 gfar_receive(irq, dev_id);
2292
2293                 if (netif_msg_rx_err(priv))
2294                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2295                                dev->name, gfar_read(&priv->regs->rstat));
2296         }
2297         if (events & IEVENT_BABR) {
2298                 dev->stats.rx_errors++;
2299                 priv->extra_stats.rx_babr++;
2300
2301                 if (netif_msg_rx_err(priv))
2302                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2303         }
2304         if (events & IEVENT_EBERR) {
2305                 priv->extra_stats.eberr++;
2306                 if (netif_msg_rx_err(priv))
2307                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2308         }
2309         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2310                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2311
2312         if (events & IEVENT_BABT) {
2313                 priv->extra_stats.tx_babt++;
2314                 if (netif_msg_tx_err(priv))
2315                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2316         }
2317         return IRQ_HANDLED;
2318 }
2319
2320 /* work with hotplug and coldplug */
2321 MODULE_ALIAS("platform:fsl-gianfar");
2322
2323 static struct of_device_id gfar_match[] =
2324 {
2325         {
2326                 .type = "network",
2327                 .compatible = "gianfar",
2328         },
2329         {},
2330 };
2331
2332 /* Structure for a device driver */
2333 static struct of_platform_driver gfar_driver = {
2334         .name = "fsl-gianfar",
2335         .match_table = gfar_match,
2336
2337         .probe = gfar_probe,
2338         .remove = gfar_remove,
2339         .suspend = gfar_suspend,
2340         .resume = gfar_resume,
2341 };
2342
2343 static int __init gfar_init(void)
2344 {
2345         return of_register_platform_driver(&gfar_driver);
2346 }
2347
2348 static void __exit gfar_exit(void)
2349 {
2350         of_unregister_platform_driver(&gfar_driver);
2351 }
2352
2353 module_init(gfar_init);
2354 module_exit(gfar_exit);
2355