2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
19 #include <linux/cache.h>
20 #include <linux/dma-mapping.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/ctype.h>
30 #include <asm/scatterlist.h>
32 #include <linux/init.h>
33 #include <linux/bootmem.h>
35 #define OFFSET(val,align) ((unsigned long) \
36 ( (val) & ( (align) - 1)))
38 #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
39 #define SG_ENT_PHYS_ADDRESS(sg) virt_to_bus(SG_ENT_VIRT_ADDRESS(sg))
42 * Maximum allowable number of contiguous slabs to map,
43 * must be a power of 2. What is the appropriate value ?
44 * The complexity of {map,unmap}_single is linearly dependent on this value.
46 #define IO_TLB_SEGSIZE 128
49 * log of the size of each IO TLB slab. The number of slabs is command line
52 #define IO_TLB_SHIFT 11
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
57 * Minimum IO TLB size to bother booting with. Systems with mainly
58 * 64bit capable cards will only lightly use the swiotlb. If we can't
59 * allocate a contiguous 1MB, we're probably in trouble anyway.
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
64 * Enumeration for sync targets
66 enum dma_sync_target {
74 * Used to do a quick range check in swiotlb_unmap_single and
75 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
78 static char *io_tlb_start, *io_tlb_end;
81 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
82 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
84 static unsigned long io_tlb_nslabs;
87 * When the IOMMU overflows we return a fallback buffer. This sets the size.
89 static unsigned long io_tlb_overflow = 32*1024;
91 void *io_tlb_overflow_buffer;
94 * This is a free list describing the number of free entries available from
97 static unsigned int *io_tlb_list;
98 static unsigned int io_tlb_index;
101 * We need to save away the original address corresponding to a mapped entry
102 * for the sync operations.
104 static unsigned char **io_tlb_orig_addr;
107 * Protect the above data structures in the map and unmap calls
109 static DEFINE_SPINLOCK(io_tlb_lock);
112 setup_io_tlb_npages(char *str)
115 io_tlb_nslabs = simple_strtoul(str, &str, 0);
116 /* avoid tail segment of size < IO_TLB_SEGSIZE */
117 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
121 if (!strcmp(str, "force"))
125 __setup("swiotlb=", setup_io_tlb_npages);
126 /* make io_tlb_overflow tunable too? */
129 * Statically reserve bounce buffer space and initialize bounce buffer data
130 * structures for the software IO TLB used to implement the DMA API.
133 swiotlb_init_with_default_size(size_t default_size)
135 unsigned long i, bytes;
137 if (!io_tlb_nslabs) {
138 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
139 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
142 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
145 * Get IO TLB memory from the low pages
147 io_tlb_start = alloc_bootmem_low_pages(bytes);
149 panic("Cannot allocate SWIOTLB buffer");
150 io_tlb_end = io_tlb_start + bytes;
153 * Allocate and initialize the free list array. This array is used
154 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
155 * between io_tlb_start and io_tlb_end.
157 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
158 for (i = 0; i < io_tlb_nslabs; i++)
159 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
161 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
164 * Get the overflow emergency buffer
166 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
167 if (!io_tlb_overflow_buffer)
168 panic("Cannot allocate SWIOTLB overflow buffer!\n");
170 printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
171 virt_to_bus(io_tlb_start), virt_to_bus(io_tlb_end));
177 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
181 * Systems with larger DMA zones (those that don't support ISA) can
182 * initialize the swiotlb later using the slab allocator if needed.
183 * This should be just like above, but with some error catching.
186 swiotlb_late_init_with_default_size(size_t default_size)
188 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
191 if (!io_tlb_nslabs) {
192 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
193 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
197 * Get IO TLB memory from the low pages
199 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
200 io_tlb_nslabs = SLABS_PER_PAGE << order;
201 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
203 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
204 io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
214 if (order != get_order(bytes)) {
215 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
216 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
217 io_tlb_nslabs = SLABS_PER_PAGE << order;
218 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
220 io_tlb_end = io_tlb_start + bytes;
221 memset(io_tlb_start, 0, bytes);
224 * Allocate and initialize the free list array. This array is used
225 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
226 * between io_tlb_start and io_tlb_end.
228 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
229 get_order(io_tlb_nslabs * sizeof(int)));
233 for (i = 0; i < io_tlb_nslabs; i++)
234 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
237 io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL,
238 get_order(io_tlb_nslabs * sizeof(char *)));
239 if (!io_tlb_orig_addr)
242 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *));
245 * Get the overflow emergency buffer
247 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
248 get_order(io_tlb_overflow));
249 if (!io_tlb_overflow_buffer)
252 printk(KERN_INFO "Placing %luMB software IO TLB between 0x%lx - "
253 "0x%lx\n", bytes >> 20,
254 virt_to_bus(io_tlb_start), virt_to_bus(io_tlb_end));
259 free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
261 io_tlb_orig_addr = NULL;
263 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
268 free_pages((unsigned long)io_tlb_start, order);
271 io_tlb_nslabs = req_nslabs;
276 address_needs_mapping(struct device *hwdev, dma_addr_t addr)
278 dma_addr_t mask = 0xffffffff;
279 /* If the device has a mask, use it, otherwise default to 32 bits */
280 if (hwdev && hwdev->dma_mask)
281 mask = *hwdev->dma_mask;
282 return (addr & ~mask) != 0;
286 * Allocates bounce buffer and returns its kernel virtual address.
289 map_single(struct device *hwdev, char *buffer, size_t size, int dir)
293 unsigned int nslots, stride, index, wrap;
297 * For mappings greater than a page, we limit the stride (and
298 * hence alignment) to a page size.
300 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
301 if (size > PAGE_SIZE)
302 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
309 * Find suitable number of IO TLB entries size that will fit this
310 * request and allocate a buffer from that IO TLB pool.
312 spin_lock_irqsave(&io_tlb_lock, flags);
314 wrap = index = ALIGN(io_tlb_index, stride);
316 if (index >= io_tlb_nslabs)
321 * If we find a slot that indicates we have 'nslots'
322 * number of contiguous buffers, we allocate the
323 * buffers from that slot and mark the entries as '0'
324 * indicating unavailable.
326 if (io_tlb_list[index] >= nslots) {
329 for (i = index; i < (int) (index + nslots); i++)
331 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
332 io_tlb_list[i] = ++count;
333 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
336 * Update the indices to avoid searching in
339 io_tlb_index = ((index + nslots) < io_tlb_nslabs
340 ? (index + nslots) : 0);
345 if (index >= io_tlb_nslabs)
347 } while (index != wrap);
349 spin_unlock_irqrestore(&io_tlb_lock, flags);
353 spin_unlock_irqrestore(&io_tlb_lock, flags);
356 * Save away the mapping from the original address to the DMA address.
357 * This is needed when we sync the memory. Then we sync the buffer if
360 for (i = 0; i < nslots; i++)
361 io_tlb_orig_addr[index+i] = buffer + (i << IO_TLB_SHIFT);
362 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
363 memcpy(dma_addr, buffer, size);
369 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
372 unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
375 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
376 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
377 char *buffer = io_tlb_orig_addr[index];
380 * First, sync the memory before unmapping the entry
382 if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
384 * bounce... copy the data back into the original buffer * and
385 * delete the bounce buffer.
387 memcpy(buffer, dma_addr, size);
390 * Return the buffer to the free list by setting the corresponding
391 * entries to indicate the number of contigous entries available.
392 * While returning the entries to the free list, we merge the entries
393 * with slots below and above the pool being returned.
395 spin_lock_irqsave(&io_tlb_lock, flags);
397 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
398 io_tlb_list[index + nslots] : 0);
400 * Step 1: return the slots to the free list, merging the
401 * slots with superceeding slots
403 for (i = index + nslots - 1; i >= index; i--)
404 io_tlb_list[i] = ++count;
406 * Step 2: merge the returned slots with the preceding slots,
407 * if available (non zero)
409 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
410 io_tlb_list[i] = ++count;
412 spin_unlock_irqrestore(&io_tlb_lock, flags);
416 sync_single(struct device *hwdev, char *dma_addr, size_t size,
419 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
420 char *buffer = io_tlb_orig_addr[index];
422 buffer += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
426 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
427 memcpy(buffer, dma_addr, size);
429 BUG_ON(dir != DMA_TO_DEVICE);
431 case SYNC_FOR_DEVICE:
432 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
433 memcpy(dma_addr, buffer, size);
435 BUG_ON(dir != DMA_FROM_DEVICE);
443 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
444 dma_addr_t *dma_handle, gfp_t flags)
448 int order = get_order(size);
451 * XXX fix me: the DMA API should pass us an explicit DMA mask
452 * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
453 * bit range instead of a 16MB one).
457 ret = (void *)__get_free_pages(flags, order);
458 if (ret && address_needs_mapping(hwdev, virt_to_bus(ret))) {
460 * The allocated memory isn't reachable by the device.
461 * Fall back on swiotlb_map_single().
463 free_pages((unsigned long) ret, order);
468 * We are either out of memory or the device can't DMA
469 * to GFP_DMA memory; fall back on
470 * swiotlb_map_single(), which will grab memory from
471 * the lowest available address range.
474 handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
475 if (swiotlb_dma_mapping_error(handle))
478 ret = bus_to_virt(handle);
481 memset(ret, 0, size);
482 dev_addr = virt_to_bus(ret);
484 /* Confirm address can be DMA'd by device */
485 if (address_needs_mapping(hwdev, dev_addr)) {
486 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
487 (unsigned long long)*hwdev->dma_mask,
488 (unsigned long long)dev_addr);
489 panic("swiotlb_alloc_coherent: allocated memory is out of "
492 *dma_handle = dev_addr;
497 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
498 dma_addr_t dma_handle)
500 WARN_ON(irqs_disabled());
501 if (!(vaddr >= (void *)io_tlb_start
502 && vaddr < (void *)io_tlb_end))
503 free_pages((unsigned long) vaddr, get_order(size));
505 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
506 swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE);
510 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
513 * Ran out of IOMMU space for this operation. This is very bad.
514 * Unfortunately the drivers cannot handle this operation properly.
515 * unless they check for dma_mapping_error (most don't)
516 * When the mapping is small enough return a static buffer to limit
517 * the damage, or panic when the transfer is too big.
519 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
520 "device %s\n", size, dev ? dev->bus_id : "?");
522 if (size > io_tlb_overflow && do_panic) {
523 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
524 panic("DMA: Memory would be corrupted\n");
525 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
526 panic("DMA: Random memory would be DMAed\n");
531 * Map a single buffer of the indicated size for DMA in streaming mode. The
532 * physical address to use is returned.
534 * Once the device is given the dma address, the device owns this memory until
535 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
538 swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
540 dma_addr_t dev_addr = virt_to_bus(ptr);
543 BUG_ON(dir == DMA_NONE);
545 * If the pointer passed in happens to be in the device's DMA window,
546 * we can safely return the device addr and not worry about bounce
549 if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force)
553 * Oh well, have to allocate and map a bounce buffer.
555 map = map_single(hwdev, ptr, size, dir);
557 swiotlb_full(hwdev, size, dir, 1);
558 map = io_tlb_overflow_buffer;
561 dev_addr = virt_to_bus(map);
564 * Ensure that the address returned is DMA'ble
566 if (address_needs_mapping(hwdev, dev_addr))
567 panic("map_single: bounce buffer is not DMA'ble");
573 * Unmap a single streaming mode DMA translation. The dma_addr and size must
574 * match what was provided for in a previous swiotlb_map_single call. All
575 * other usages are undefined.
577 * After this call, reads by the cpu to the buffer are guaranteed to see
578 * whatever the device wrote there.
581 swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
584 char *dma_addr = bus_to_virt(dev_addr);
586 BUG_ON(dir == DMA_NONE);
587 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
588 unmap_single(hwdev, dma_addr, size, dir);
589 else if (dir == DMA_FROM_DEVICE)
590 dma_mark_clean(dma_addr, size);
594 * Make physical memory consistent for a single streaming mode DMA translation
597 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
598 * using the cpu, yet do not wish to teardown the dma mapping, you must
599 * call this function before doing so. At the next point you give the dma
600 * address back to the card, you must first perform a
601 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
604 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
605 size_t size, int dir, int target)
607 char *dma_addr = bus_to_virt(dev_addr);
609 BUG_ON(dir == DMA_NONE);
610 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
611 sync_single(hwdev, dma_addr, size, dir, target);
612 else if (dir == DMA_FROM_DEVICE)
613 dma_mark_clean(dma_addr, size);
617 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
618 size_t size, int dir)
620 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
624 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
625 size_t size, int dir)
627 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
631 * Same as above, but for a sub-range of the mapping.
634 swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
635 unsigned long offset, size_t size,
638 char *dma_addr = bus_to_virt(dev_addr) + offset;
640 BUG_ON(dir == DMA_NONE);
641 if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
642 sync_single(hwdev, dma_addr, size, dir, target);
643 else if (dir == DMA_FROM_DEVICE)
644 dma_mark_clean(dma_addr, size);
648 swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
649 unsigned long offset, size_t size, int dir)
651 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
656 swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
657 unsigned long offset, size_t size, int dir)
659 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
664 * Map a set of buffers described by scatterlist in streaming mode for DMA.
665 * This is the scatter-gather version of the above swiotlb_map_single
666 * interface. Here the scatter gather list elements are each tagged with the
667 * appropriate dma address and length. They are obtained via
668 * sg_dma_{address,length}(SG).
670 * NOTE: An implementation may be able to use a smaller number of
671 * DMA address/length pairs than there are SG table elements.
672 * (for example via virtual mapping capabilities)
673 * The routine returns the number of addr/length pairs actually
674 * used, at most nents.
676 * Device ownership issues as mentioned above for swiotlb_map_single are the
680 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
687 BUG_ON(dir == DMA_NONE);
689 for (i = 0; i < nelems; i++, sg++) {
690 addr = SG_ENT_VIRT_ADDRESS(sg);
691 dev_addr = virt_to_bus(addr);
692 if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) {
693 void *map = map_single(hwdev, addr, sg->length, dir);
695 /* Don't panic here, we expect map_sg users
696 to do proper error handling. */
697 swiotlb_full(hwdev, sg->length, dir, 0);
698 swiotlb_unmap_sg(hwdev, sg - i, i, dir);
699 sg[0].dma_length = 0;
702 sg->dma_address = virt_to_bus(map);
704 sg->dma_address = dev_addr;
705 sg->dma_length = sg->length;
711 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
712 * concerning calls here are the same as for swiotlb_unmap_single() above.
715 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
720 BUG_ON(dir == DMA_NONE);
722 for (i = 0; i < nelems; i++, sg++)
723 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
724 unmap_single(hwdev, bus_to_virt(sg->dma_address),
725 sg->dma_length, dir);
726 else if (dir == DMA_FROM_DEVICE)
727 dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
731 * Make physical memory consistent for a set of streaming mode DMA translations
734 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
738 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sg,
739 int nelems, int dir, int target)
743 BUG_ON(dir == DMA_NONE);
745 for (i = 0; i < nelems; i++, sg++)
746 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
747 sync_single(hwdev, bus_to_virt(sg->dma_address),
748 sg->dma_length, dir, target);
749 else if (dir == DMA_FROM_DEVICE)
750 dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
754 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
757 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
761 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
764 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
768 swiotlb_dma_mapping_error(dma_addr_t dma_addr)
770 return (dma_addr == virt_to_bus(io_tlb_overflow_buffer));
774 * Return whether the given device DMA address mask can be supported
775 * properly. For example, if your device can only drive the low 24-bits
776 * during bus mastering, then you would pass 0x00ffffff as the mask to
780 swiotlb_dma_supported(struct device *hwdev, u64 mask)
782 return virt_to_bus(io_tlb_end - 1) <= mask;
785 EXPORT_SYMBOL(swiotlb_map_single);
786 EXPORT_SYMBOL(swiotlb_unmap_single);
787 EXPORT_SYMBOL(swiotlb_map_sg);
788 EXPORT_SYMBOL(swiotlb_unmap_sg);
789 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
790 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
791 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
792 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
793 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
794 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
795 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
796 EXPORT_SYMBOL(swiotlb_alloc_coherent);
797 EXPORT_SYMBOL(swiotlb_free_coherent);
798 EXPORT_SYMBOL(swiotlb_dma_supported);