2 * This file contains the light-weight system call handlers (fsyscall-handlers).
4 * Copyright (C) 2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * 25-Sep-03 davidm Implement fsys_rt_sigprocmask().
8 * 18-Feb-03 louisk Implement fsys_gettimeofday().
9 * 28-Feb-03 davidm Fixed several bugs in fsys_gettimeofday(). Tuned it some more,
10 * probably broke it along the way... ;-)
11 * 13-Jul-04 clameter Implement fsys_clock_gettime and revise fsys_gettimeofday to make
12 * it capable of using memory based clocks without falling back to C code.
13 * 08-Feb-07 Fenghua Yu Implement fsys_getcpu.
17 #include <asm/asmmacro.h>
18 #include <asm/errno.h>
19 #include <asm/asm-offsets.h>
20 #include <asm/percpu.h>
21 #include <asm/thread_info.h>
23 #include <asm/signal.h>
24 #include <asm/system.h>
25 #include <asm/unistd.h>
30 * See Documentation/ia64/fsys.txt for details on fsyscalls.
32 * On entry to an fsyscall handler:
33 * r10 = 0 (i.e., defaults to "successful syscall return")
34 * r11 = saved ar.pfs (a user-level value)
35 * r15 = system call number
36 * r16 = "current" task pointer (in normal kernel-mode, this is in r13)
37 * r32-r39 = system call arguments
38 * b6 = return address (a user-level value)
39 * ar.pfs = previous frame-state (a user-level value)
40 * PSR.be = cleared to zero (i.e., little-endian byte order is in effect)
41 * all other registers may contain values passed in from user-mode
43 * On return from an fsyscall handler:
44 * r11 = saved ar.pfs (as passed into the fsyscall handler)
45 * r15 = system call number (as passed into the fsyscall handler)
46 * r32-r39 = system call arguments (as passed into the fsyscall handler)
47 * b6 = return address (as passed into the fsyscall handler)
48 * ar.pfs = previous frame-state (as passed into the fsyscall handler)
51 ENTRY(fsys_ni_syscall)
64 add r9=TI_FLAGS+IA64_TASK_SIZE,r16
67 add r8=IA64_TASK_TGID_OFFSET,r16
69 and r9=TIF_ALLWORK_MASK,r9
70 ld4 r8=[r8] // r8 = current->tgid
73 (p8) br.spnt.many fsys_fallback_syscall
81 add r17=IA64_TASK_GROUP_LEADER_OFFSET,r16
83 ld8 r17=[r17] // r17 = current->group_leader
84 add r9=TI_FLAGS+IA64_TASK_SIZE,r16
88 add r17=IA64_TASK_REAL_PARENT_OFFSET,r17 // r17 = ¤t->group_leader->real_parent
90 and r9=TIF_ALLWORK_MASK,r9
92 1: ld8 r18=[r17] // r18 = current->group_leader->real_parent
95 add r8=IA64_TASK_TGID_OFFSET,r18 // r8 = ¤t->group_leader->real_parent->tgid
99 * The .acq is needed to ensure that the read of tgid has returned its data before
100 * we re-check "real_parent".
102 ld4.acq r8=[r8] // r8 = current->group_leader->real_parent->tgid
105 * Re-read current->group_leader->real_parent.
107 ld8 r19=[r17] // r19 = current->group_leader->real_parent
108 (p8) br.spnt.many fsys_fallback_syscall
110 cmp.ne p6,p0=r18,r19 // did real_parent change?
111 mov r19=0 // i must not leak kernel bits...
112 (p6) br.cond.spnt.few 1b // yes -> redo the read of tgid and the check
114 mov r17=0 // i must not leak kernel bits...
115 mov r18=0 // i must not leak kernel bits...
117 mov r17=0 // i must not leak kernel bits...
118 mov r18=0 // i must not leak kernel bits...
119 mov r19=0 // i must not leak kernel bits...
124 ENTRY(fsys_set_tid_address)
128 add r9=TI_FLAGS+IA64_TASK_SIZE,r16
131 tnat.z p6,p7=r32 // check argument register for being NaT
133 and r9=TIF_ALLWORK_MASK,r9
134 add r8=IA64_TASK_PID_OFFSET,r16
135 add r18=IA64_TASK_CLEAR_CHILD_TID_OFFSET,r16
143 (p8) br.spnt.many fsys_fallback_syscall
145 mov r17=0 // i must not leak kernel bits...
146 mov r18=0 // i must not leak kernel bits...
148 END(fsys_set_tid_address)
151 * Ensure that the time interpolator structure is compatible with the asm code
153 #if IA64_TIME_INTERPOLATOR_SOURCE_OFFSET !=0 || IA64_TIME_INTERPOLATOR_SHIFT_OFFSET != 2 \
154 || IA64_TIME_INTERPOLATOR_JITTER_OFFSET != 3 || IA64_TIME_INTERPOLATOR_NSEC_OFFSET != 4
155 #error fsys_gettimeofday incompatible with changes to struct time_interpolator
157 #define CLOCK_REALTIME 0
158 #define CLOCK_MONOTONIC 1
159 #define CLOCK_DIVIDE_BY_1000 0x4000
160 #define CLOCK_ADD_MONOTONIC 0x8000
162 ENTRY(fsys_gettimeofday)
167 tnat.nz p6,p0 = r33 // guard against NaT argument
168 (p6) br.cond.spnt.few .fail_einval
169 mov r30 = CLOCK_DIVIDE_BY_1000
173 // Incoming r31 = pointer to address where to place result
174 // r30 = flags determining how time is processed
175 // r2,r3 = temp r4-r7 preserved
176 // r8 = result nanoseconds
177 // r9 = result seconds
178 // r10 = temporary storage for clock difference
179 // r11 = preserved: saved ar.pfs
180 // r12 = preserved: memory stack
181 // r13 = preserved: thread pointer
182 // r14 = address of mask / mask
183 // r15 = preserved: system call number
184 // r16 = preserved: current task pointer
185 // r17 = wall to monotonic use
186 // r18 = time_interpolator->offset
187 // r19 = address of wall_to_monotonic
188 // r20 = pointer to struct time_interpolator / pointer to time_interpolator->address
189 // r21 = shift factor
190 // r22 = address of time interpolator->last_counter
191 // r23 = address of time_interpolator->last_cycle
192 // r24 = adress of time_interpolator->offset
193 // r25 = last_cycle value
194 // r26 = last_counter value
195 // r27 = pointer to xtime
196 // r28 = sequence number at the beginning of critcal section
197 // r29 = address of seqlock
198 // r30 = time processing flags / memory address
199 // r31 = pointer to result
201 // p6,p7 short term use
202 // p8 = timesource ar.itc
203 // p9 = timesource mmio64
204 // p10 = timesource mmio32
205 // p11 = timesource not to be handled by asm code
206 // p12 = memory time source ( = p9 | p10)
207 // p13 = do cmpxchg with time_interpolator_last_cycle
208 // p14 = Divide by 1000
209 // p15 = Add monotonic
211 // Note that instructions are optimized for McKinley. McKinley can process two
212 // bundles simultaneously and therefore we continuously try to feed the CPU
213 // two bundles and then a stop.
214 tnat.nz p6,p0 = r31 // branch deferred since it does not fit into bundle structure
215 mov pr = r30,0xc000 // Set predicates according to function
216 add r2 = TI_FLAGS+IA64_TASK_SIZE,r16
217 movl r20 = time_interpolator
219 ld8 r20 = [r20] // get pointer to time_interpolator structure
220 movl r29 = xtime_lock
221 ld4 r2 = [r2] // process work pending flags
223 ;; // only one bundle here
224 ld8 r21 = [r20] // first quad with control information
225 and r2 = TIF_ALLWORK_MASK,r2
226 (p6) br.cond.spnt.few .fail_einval // deferred branch
228 add r10 = IA64_TIME_INTERPOLATOR_ADDRESS_OFFSET,r20
229 extr r3 = r21,32,32 // time_interpolator->nsec_per_cyc
230 extr r8 = r21,0,16 // time_interpolator->source
231 cmp.ne p6, p0 = 0, r2 // Fallback if work is scheduled
232 (p6) br.cond.spnt.many fsys_fallback_syscall
234 cmp.eq p8,p12 = 0,r8 // Check for cpu timer
235 cmp.eq p9,p0 = 1,r8 // MMIO64 ?
236 extr r2 = r21,24,8 // time_interpolator->jitter
237 cmp.eq p10,p0 = 2,r8 // MMIO32 ?
238 cmp.ltu p11,p0 = 2,r8 // function or other clock
239 (p11) br.cond.spnt.many fsys_fallback_syscall
241 setf.sig f7 = r3 // Setup for scaling of counter
242 (p15) movl r19 = wall_to_monotonic
243 (p12) ld8 r30 = [r10]
244 cmp.ne p13,p0 = r2,r0 // need jitter compensation?
245 extr r21 = r21,16,8 // shift factor
248 .pred.rel.mutex p8,p9,p10
249 ld4.acq r28 = [r29] // xtime_lock.sequence. Must come first for locking purposes
250 (p8) mov r2 = ar.itc // CPU_TIMER. 36 clocks latency!!!
251 add r22 = IA64_TIME_INTERPOLATOR_LAST_COUNTER_OFFSET,r20
252 (p9) ld8 r2 = [r30] // readq(ti->address). Could also have latency issues..
253 (p10) ld4 r2 = [r30] // readw(ti->address)
254 (p13) add r23 = IA64_TIME_INTERPOLATOR_LAST_CYCLE_OFFSET,r20
255 ;; // could be removed by moving the last add upward
256 ld8 r26 = [r22] // time_interpolator->last_counter
257 (p13) ld8 r25 = [r23] // time interpolator->last_cycle
258 add r24 = IA64_TIME_INTERPOLATOR_OFFSET_OFFSET,r20
259 (p15) ld8 r17 = [r19],IA64_TIMESPEC_TV_NSEC_OFFSET
260 ld8 r9 = [r27],IA64_TIMESPEC_TV_NSEC_OFFSET
261 add r14 = IA64_TIME_INTERPOLATOR_MASK_OFFSET, r20
263 ld8 r18 = [r24] // time_interpolator->offset
264 ld8 r8 = [r27],-IA64_TIMESPEC_TV_NSEC_OFFSET // xtime.tv_nsec
265 (p13) sub r3 = r25,r2 // Diff needed before comparison (thanks davidm)
267 ld8 r14 = [r14] // time_interpolator->mask
268 (p13) cmp.gt.unc p6,p7 = r3,r0 // check if it is less than last. p6,p7 cleared
269 sub r10 = r2,r26 // current_counter - last_counter
271 (p6) sub r10 = r25,r26 // time we got was less than last_cycle
272 (p7) mov ar.ccv = r25 // more than last_cycle. Prep for cmpxchg
274 and r10 = r10,r14 // Apply mask
279 (p7) cmpxchg8.rel r3 = [r23],r2,ar.ccv
280 EX(.fail_efault, probe.w.fault r31, 3) // This takes 5 cycles and we have spare time
281 xmpy.l f8 = f8,f7 // nsec_per_cyc*(counter-last_counter)
282 (p15) add r9 = r9,r17 // Add wall to monotonic.secs to result secs
284 (p15) ld8 r17 = [r19],-IA64_TIMESPEC_TV_NSEC_OFFSET
285 (p7) cmp.ne p7,p0 = r25,r3 // if cmpxchg not successful redo
286 // simulate tbit.nz.or p7,p0 = r28,0
287 and r28 = ~1,r28 // Make sequence even to force retry if odd
290 add r8 = r8,r18 // Add time interpolator offset
292 ld4 r10 = [r29] // xtime_lock.sequence
293 (p15) add r8 = r8, r17 // Add monotonic.nsecs to nsecs
295 ;; // overloaded 3 bundles!
296 // End critical section.
297 add r8 = r8,r2 // Add xtime.nsecs
298 cmp4.ne.or p7,p0 = r28,r10
299 (p7) br.cond.dpnt.few .time_redo // sequence number changed ?
300 // Now r8=tv->tv_nsec and r9=tv->tv_sec
303 add r23 = IA64_TIMESPEC_TV_NSEC_OFFSET, r31
304 (p14) movl r3 = 2361183241434822607 // Prep for / 1000 hack
309 (p14) shr.u r20 = r8, 3 // We can repeat this if necessary just wasting some time
311 (p14) setf.sig f8 = r20
313 (p6) add r9 = 1,r9 // two nops before the branch.
314 (p14) setf.sig f7 = r3 // Chances for repeats are 1 in 10000 for gettod
315 (p6) br.cond.dpnt.few .time_normalize
317 // Divided by 8 though shift. Now divide by 125
318 // The compiler was able to do that with a multiply
319 // and a shift and we do the same
320 EX(.fail_efault, probe.w.fault r23, 3) // This also costs 5 cycles
321 (p14) xmpy.hu f8 = f8, f7 // xmpy has 5 cycles latency so use it...
324 (p14) getf.sig r2 = f8
326 (p14) shr.u r21 = r2, 4
328 EX(.fail_efault, st8 [r31] = r9)
329 EX(.fail_efault, st8 [r23] = r21)
339 END(fsys_gettimeofday)
341 ENTRY(fsys_clock_gettime)
345 cmp4.ltu p6, p0 = CLOCK_MONOTONIC, r32
346 // Fallback if this is not CLOCK_REALTIME or CLOCK_MONOTONIC
347 (p6) br.spnt.few fsys_fallback_syscall
351 END(fsys_clock_gettime)
354 * long fsys_rt_sigprocmask (int how, sigset_t *set, sigset_t *oset, size_t sigsetsize).
357 # error Sorry, fsys_rt_sigprocmask() needs to be updated for _NSIG_WORDS != 1.
359 ENTRY(fsys_rt_sigprocmask)
364 add r2=IA64_TASK_BLOCKED_OFFSET,r16
365 add r9=TI_FLAGS+IA64_TASK_SIZE,r16
366 cmp4.ltu p6,p0=SIG_SETMASK,r32
368 cmp.ne p15,p0=r0,r34 // oset != NULL?
370 add r31=IA64_TASK_SIGHAND_OFFSET,r16
372 ld8 r3=[r2] // read/prefetch current->blocked
376 cmp.ne.or p6,p0=_NSIG_WORDS*8,r35
378 (p6) br.spnt.few .fail_einval // fail with EINVAL
381 ld8 r31=[r31] // r31 <- current->sighand
383 and r9=TIF_ALLWORK_MASK,r9
387 cmp.eq p6,p0=r0,r33 // set == NULL?
388 add r31=IA64_SIGHAND_SIGLOCK_OFFSET,r31 // r31 <- current->sighand->siglock
389 (p8) br.spnt.few .fail_efault // fail with EFAULT
390 (p7) br.spnt.many fsys_fallback_syscall // got pending kernel work...
391 (p6) br.dpnt.many .store_mask // -> short-circuit to just reading the signal mask
393 /* Argh, we actually have to do some work and _update_ the signal mask: */
395 EX(.fail_efault, probe.r.fault r33, 3) // verify user has read-access to *set
396 EX(.fail_efault, ld8 r14=[r33]) // r14 <- *set
397 mov r17=(1 << (SIGKILL - 1)) | (1 << (SIGSTOP - 1))
400 rsm psr.i // mask interrupt delivery
402 andcm r14=r14,r17 // filter out SIGKILL & SIGSTOP
407 cmpxchg4.acq r18=[r31],r17,ar.ccv // try to acquire the lock
408 mov r8=EINVAL // default to EINVAL
410 ld8 r3=[r2] // re-read current->blocked now that we hold the lock
412 (p6) br.cond.spnt.many .lock_contention
415 ld8 r3=[r2] // re-read current->blocked now that we hold the lock
416 mov r8=EINVAL // default to EINVAL
418 add r18=IA64_TASK_PENDING_OFFSET+IA64_SIGPENDING_SIGNAL_OFFSET,r16
419 add r19=IA64_TASK_SIGNAL_OFFSET,r16
420 cmp4.eq p6,p0=SIG_BLOCK,r32
422 ld8 r19=[r19] // r19 <- current->signal
423 cmp4.eq p7,p0=SIG_UNBLOCK,r32
424 cmp4.eq p8,p0=SIG_SETMASK,r32
426 ld8 r18=[r18] // r18 <- current->pending.signal
427 .pred.rel.mutex p6,p7,p8
428 (p6) or r14=r3,r14 // SIG_BLOCK
429 (p7) andcm r14=r3,r14 // SIG_UNBLOCK
431 (p8) mov r14=r14 // SIG_SETMASK
432 (p6) mov r8=0 // clear error code
433 // recalc_sigpending()
434 add r17=IA64_SIGNAL_GROUP_STOP_COUNT_OFFSET,r19
436 add r19=IA64_SIGNAL_SHARED_PENDING_OFFSET+IA64_SIGPENDING_SIGNAL_OFFSET,r19
438 ld4 r17=[r17] // r17 <- current->signal->group_stop_count
439 (p7) mov r8=0 // clear error code
441 ld8 r19=[r19] // r19 <- current->signal->shared_pending
443 cmp4.gt p6,p7=r17,r0 // p6/p7 <- (current->signal->group_stop_count > 0)?
444 (p8) mov r8=0 // clear error code
446 or r18=r18,r19 // r18 <- current->pending | current->signal->shared_pending
448 // r18 <- (current->pending | current->signal->shared_pending) & ~current->blocked:
450 add r9=TI_FLAGS+IA64_TASK_SIZE,r16
453 (p7) cmp.ne.or.andcm p6,p7=r18,r0 // p6/p7 <- signal pending
454 mov r19=0 // i must not leak kernel bits...
455 (p6) br.cond.dpnt.many .sig_pending
458 1: ld4 r17=[r9] // r17 <- current->thread_info->flags
461 and r18=~_TIF_SIGPENDING,r17 // r18 <- r17 & ~(1 << TIF_SIGPENDING)
464 st8 [r2]=r14 // update current->blocked with new mask
465 cmpxchg4.acq r8=[r9],r18,ar.ccv // current->thread_info->flags <- r18
467 cmp.ne p6,p0=r17,r8 // update failed?
468 (p6) br.cond.spnt.few 1b // yes -> retry
471 st4.rel [r31]=r0 // release the lock
476 srlz.d // ensure psr.i is set again
477 mov r18=0 // i must not leak kernel bits...
480 EX(.fail_efault, (p15) probe.w.fault r34, 3) // verify user has write-access to *oset
481 EX(.fail_efault, (p15) st8 [r34]=r3)
482 mov r2=0 // i must not leak kernel bits...
483 mov r3=0 // i must not leak kernel bits...
485 mov r9=0 // i must not leak kernel bits...
486 mov r14=0 // i must not leak kernel bits...
487 mov r17=0 // i must not leak kernel bits...
488 mov r31=0 // i must not leak kernel bits...
493 st4.rel [r31]=r0 // release the lock
498 br.sptk.many fsys_fallback_syscall // with signal pending, do the heavy-weight syscall
502 /* Rather than spinning here, fall back on doing a heavy-weight syscall. */
506 br.sptk.many fsys_fallback_syscall
508 END(fsys_rt_sigprocmask)
511 * fsys_getcpu doesn't use the third parameter in this implementation. It reads
512 * current_thread_info()->cpu and corresponding node in cpu_to_node_map.
519 add r2=TI_FLAGS+IA64_TASK_SIZE,r16
520 tnat.nz p6,p0 = r32 // guard against NaT argument
521 add r3=TI_CPU+IA64_TASK_SIZE,r16
523 ld4 r3=[r3] // M r3 = thread_info->cpu
524 ld4 r2=[r2] // M r2 = thread_info->flags
525 (p6) br.cond.spnt.few .fail_einval // B
527 tnat.nz p7,p0 = r33 // I guard against NaT argument
528 (p7) br.cond.spnt.few .fail_einval // B
530 movl r17=cpu_to_node_map
532 EX(.fail_efault, probe.w.fault r32, 3) // M This takes 5 cycles
533 EX(.fail_efault, probe.w.fault r33, 3) // M This takes 5 cycles
536 ld2 r20=[r18] // r20 = cpu_to_node_map[cpu]
537 and r2 = TIF_ALLWORK_MASK,r2
540 (p8) br.spnt.many fsys_fallback_syscall
543 EX(.fail_efault, st4 [r32] = r3)
544 EX(.fail_efault, st2 [r33] = r20)
548 EX(.fail_efault, probe.w.fault r32, 3) // M This takes 5 cycles
549 EX(.fail_efault, probe.w.fault r33, 3) // M This takes 5 cycles
550 and r2 = TIF_ALLWORK_MASK,r2
553 (p8) br.spnt.many fsys_fallback_syscall
555 EX(.fail_efault, st4 [r32] = r3)
556 EX(.fail_efault, st2 [r33] = r0)
563 ENTRY(fsys_fallback_syscall)
568 * We only get here from light-weight syscall handlers. Thus, we already
569 * know that r15 contains a valid syscall number. No need to re-check.
572 movl r14=sys_call_table
577 ld8 r18=[r18] // load normal (heavy-weight) syscall entry-point
578 mov r29=psr // read psr (12 cyc load latency)
582 END(fsys_fallback_syscall)
584 GLOBAL_ENTRY(fsys_bubble_down)
589 * We get here for syscalls that don't have a lightweight
590 * handler. For those, we need to bubble down into the kernel
591 * and that requires setting up a minimal pt_regs structure,
592 * and initializing the CPU state more or less as if an
593 * interruption had occurred. To make syscall-restarts work,
594 * we setup pt_regs such that cr_iip points to the second
595 * instruction in syscall_via_break. Decrementing the IP
596 * hence will restart the syscall via break and not
597 * decrementing IP will return us to the caller, as usual.
598 * Note that we preserve the value of psr.pp rather than
599 * initializing it from dcr.pp. This makes it possible to
600 * distinguish fsyscall execution from other privileged
604 * - normal fsyscall handler register usage, except
606 * - r18: address of syscall entry point
612 * We used to clear some PSR bits here but that requires slow
613 * serialization. Fortuntely, that isn't really necessary.
614 * The rationale is as follows: we used to clear bits
615 * ~PSR_PRESERVED_BITS in PSR.L. Since
616 * PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we
617 * ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}.
620 * PSR.BE : already is turned off in __kernel_syscall_via_epc()
621 * PSR.AC : don't care (kernel normally turns PSR.AC on)
622 * PSR.I : already turned off by the time fsys_bubble_down gets
624 * PSR.DFL: always 0 (kernel never turns it on)
625 * PSR.DFH: don't care --- kernel never touches f32-f127 on its own
627 * PSR.DI : always 0 (kernel never turns it on)
628 * PSR.SI : always 0 (kernel never turns it on)
629 * PSR.DB : don't care --- kernel never enables kernel-level
631 * PSR.TB : must be 0 already; if it wasn't zero on entry to
632 * __kernel_syscall_via_epc, the branch to fsys_bubble_down
633 * will trigger a taken branch; the taken-trap-handler then
634 * converts the syscall into a break-based system-call.
637 * Reading psr.l gives us only bits 0-31, psr.it, and psr.mc.
638 * The rest we have to synthesize.
640 # define PSR_ONE_BITS ((3 << IA64_PSR_CPL0_BIT) \
641 | (0x1 << IA64_PSR_RI_BIT) \
642 | IA64_PSR_BN | IA64_PSR_I)
645 movl r14=ia64_ret_from_syscall // X
648 movl r28=__kernel_syscall_via_break // X create cr.iip
651 mov r2=r16 // A get task addr to addl-addressable register
652 adds r16=IA64_TASK_THREAD_ON_USTACK_OFFSET,r16 // A
653 mov r31=pr // I0 save pr (2 cyc)
655 st1 [r16]=r0 // M2|3 clear current->thread.on_ustack flag
656 addl r22=IA64_RBS_OFFSET,r2 // A compute base of RBS
657 add r3=TI_FLAGS+IA64_TASK_SIZE,r2 // A
659 ld4 r3=[r3] // M0|1 r3 = current_thread_info()->flags
660 lfetch.fault.excl.nt1 [r22] // M0|1 prefetch register backing-store
663 mov ar.rsc=0 // M2 set enforced lazy mode, pl 0, LE, loadrs=0
667 mov r23=ar.bspstore // M2 (12 cyc) save ar.bspstore
668 mov.m r24=ar.rnat // M2 (5 cyc) read ar.rnat (dual-issues!)
671 mov ar.bspstore=r22 // M2 (6 cyc) switch to kernel RBS
672 movl r8=PSR_ONE_BITS // X
674 mov r25=ar.unat // M2 (5 cyc) save ar.unat
675 mov r19=b6 // I0 save b6 (2 cyc)
676 mov r20=r1 // A save caller's gp in r20
678 or r29=r8,r29 // A construct cr.ipsr value to save
679 mov b6=r18 // I0 copy syscall entry-point to b6 (7 cyc)
680 addl r1=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2 // A compute base of memory stack
682 mov r18=ar.bsp // M2 save (kernel) ar.bsp (12 cyc)
683 cmp.ne pKStk,pUStk=r0,r0 // A set pKStk <- 0, pUStk <- 1
684 br.call.sptk.many b7=ia64_syscall_setup // B
686 mov ar.rsc=0x3 // M2 set eager mode, pl 0, LE, loadrs=0
687 mov rp=r14 // I0 set the real return addr
688 and r3=_TIF_SYSCALL_TRACEAUDIT,r3 // A
690 ssm psr.i // M2 we're on kernel stacks now, reenable irqs
691 cmp.eq p8,p0=r3,r0 // A
692 (p10) br.cond.spnt.many ia64_ret_from_syscall // B return if bad call-frame or r15 is a NaT
695 (p8) br.call.sptk.many b6=b6 // B (ignore return address)
696 br.cond.spnt ia64_trace_syscall // B
697 END(fsys_bubble_down)
701 .globl fsyscall_table
703 data8 fsys_bubble_down
705 data8 fsys_ni_syscall
706 data8 0 // exit // 1025
711 data8 0 // creat // 1030
716 data8 0 // fchdir // 1035
721 data8 0 // lseek // 1040
722 data8 fsys_getpid // getpid
723 data8 fsys_getppid // getppid
726 data8 0 // setuid // 1045
731 data8 0 // sync // 1050
736 data8 0 // mkdir // 1055
741 data8 0 // brk // 1060
746 data8 0 // ioctl // 1065
751 data8 0 // dup2 // 1070
756 data8 0 // getresgid // 1075
761 data8 0 // setpgid // 1080
764 data8 0 // sethostname
766 data8 0 // getrlimit // 1085
768 data8 fsys_gettimeofday // gettimeofday
769 data8 0 // settimeofday
771 data8 0 // poll // 1090
776 data8 0 // swapoff // 1095
781 data8 0 // fchown // 1100
782 data8 0 // getpriority
783 data8 0 // setpriority
786 data8 0 // gettid // 1105
791 data8 0 // msgsnd // 1110
796 data8 0 // shmdt // 1115
806 data8 0 // remap_file_pages // 1125
810 data8 0 // setdomainname
811 data8 0 // newuname // 1130
814 data8 0 // init_module
815 data8 0 // delete_module
821 data8 0 // personality // 1140
822 data8 0 // afs_syscall
826 data8 0 // flock // 1145
831 data8 0 // sysctl // 1150
836 data8 0 // mprotect // 1155
840 data8 0 // munlockall
841 data8 0 // sched_getparam // 1160
842 data8 0 // sched_setparam
843 data8 0 // sched_getscheduler
844 data8 0 // sched_setscheduler
845 data8 0 // sched_yield
846 data8 0 // sched_get_priority_max // 1165
847 data8 0 // sched_get_priority_min
848 data8 0 // sched_rr_get_interval
850 data8 0 // nfsservctl
851 data8 0 // prctl // 1170
852 data8 0 // getpagesize
854 data8 0 // pciconfig_read
855 data8 0 // pciconfig_write
856 data8 0 // perfmonctl // 1175
857 data8 0 // sigaltstack
858 data8 0 // rt_sigaction
859 data8 0 // rt_sigpending
860 data8 fsys_rt_sigprocmask // rt_sigprocmask
861 data8 0 // rt_sigqueueinfo // 1180
862 data8 0 // rt_sigreturn
863 data8 0 // rt_sigsuspend
864 data8 0 // rt_sigtimedwait
866 data8 0 // capget // 1185
871 data8 0 // socket // 1190
876 data8 0 // getsockname // 1195
877 data8 0 // getpeername
878 data8 0 // socketpair
881 data8 0 // recv // 1200
884 data8 0 // setsockopt
885 data8 0 // getsockopt
886 data8 0 // sendmsg // 1205
888 data8 0 // pivot_root
891 data8 0 // newstat // 1210
895 data8 0 // getdents64
896 data8 0 // getunwind // 1215
901 data8 0 // getxattr // 1220
905 data8 0 // llistxattr
906 data8 0 // flistxattr // 1225
907 data8 0 // removexattr
908 data8 0 // lremovexattr
909 data8 0 // fremovexattr
911 data8 0 // futex // 1230
912 data8 0 // sched_setaffinity
913 data8 0 // sched_getaffinity
914 data8 fsys_set_tid_address // set_tid_address
915 data8 0 // fadvise64_64
916 data8 0 // tgkill // 1235
917 data8 0 // exit_group
918 data8 0 // lookup_dcookie
920 data8 0 // io_destroy
921 data8 0 // io_getevents // 1240
924 data8 0 // epoll_create
926 data8 0 // epoll_wait // 1245
927 data8 0 // restart_syscall
928 data8 0 // semtimedop
929 data8 0 // timer_create
930 data8 0 // timer_settime
931 data8 0 // timer_gettime // 1250
932 data8 0 // timer_getoverrun
933 data8 0 // timer_delete
934 data8 0 // clock_settime
935 data8 fsys_clock_gettime // clock_gettime
936 data8 0 // clock_getres // 1255
937 data8 0 // clock_nanosleep
941 data8 0 // get_mempolicy // 1260
942 data8 0 // set_mempolicy
945 data8 0 // mq_timedsend
946 data8 0 // mq_timedreceive // 1265
948 data8 0 // mq_getsetattr
949 data8 0 // kexec_load
951 data8 0 // waitid // 1270
953 data8 0 // request_key
955 data8 0 // ioprio_set
956 data8 0 // ioprio_get // 1275
957 data8 0 // move_pages
958 data8 0 // inotify_init
959 data8 0 // inotify_add_watch
960 data8 0 // inotify_rm_watch
961 data8 0 // migrate_pages // 1280
966 data8 0 // futimesat // 1285
967 data8 0 // newfstatat
971 data8 0 // symlinkat // 1290
972 data8 0 // readlinkat
979 data8 0 // set_robust_list
980 data8 0 // get_robust_list
981 data8 0 // sync_file_range // 1300
985 data8 fsys_getcpu // getcpu // 1304
987 // fill in zeros for the remaining entries
989 .space fsyscall_table + 8*NR_syscalls - .zero, 0