3 #include <linux/wait.h>
4 #include <linux/ptrace.h>
7 #include <asm/spu_priv1.h>
9 #include <asm/unistd.h>
13 /* interrupt-level stop callback function. */
14 void spufs_stop_callback(struct spu *spu)
16 struct spu_context *ctx = spu->ctx;
18 wake_up_all(&ctx->stop_wq);
21 void spufs_dma_callback(struct spu *spu, int type)
23 struct spu_context *ctx = spu->ctx;
25 if (ctx->flags & SPU_CREATE_EVENTS_ENABLED) {
26 ctx->event_return |= type;
27 wake_up_all(&ctx->stop_wq);
30 case SPE_EVENT_DMA_ALIGNMENT:
31 case SPE_EVENT_SPE_DATA_STORAGE:
32 case SPE_EVENT_INVALID_DMA:
33 force_sig(SIGBUS, /* info, */ current);
35 case SPE_EVENT_SPE_ERROR:
36 force_sig(SIGILL, /* info */ current);
42 static inline int spu_stopped(struct spu_context *ctx, u32 * stat)
47 *stat = ctx->ops->status_read(ctx);
48 if (ctx->state != SPU_STATE_RUNNABLE)
51 pte_fault = spu->dsisr &
52 (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED);
53 return (!(*stat & 0x1) || pte_fault || spu->class_0_pending) ? 1 : 0;
56 static int spu_setup_isolated(struct spu_context *ctx)
59 u64 __iomem *mfc_cntl;
62 unsigned long timeout;
63 const u32 status_loading = SPU_STATUS_RUNNING
64 | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
69 ret = spu_acquire_exclusive(ctx);
73 mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
75 /* purge the MFC DMA queue to ensure no spurious accesses before we
76 * enter kernel mode */
77 timeout = jiffies + HZ;
78 out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
79 while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
80 != MFC_CNTL_PURGE_DMA_COMPLETE) {
81 if (time_after(jiffies, timeout)) {
82 printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
90 /* put the SPE in kernel mode to allow access to the loader */
91 sr1 = spu_mfc_sr1_get(ctx->spu);
92 sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
93 spu_mfc_sr1_set(ctx->spu, sr1);
95 /* start the loader */
96 ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
97 ctx->ops->signal2_write(ctx,
98 (unsigned long)isolated_loader & 0xffffffff);
100 ctx->ops->runcntl_write(ctx,
101 SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
104 timeout = jiffies + HZ;
105 while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
107 if (time_after(jiffies, timeout)) {
108 printk(KERN_ERR "%s: timeout waiting for loader\n",
116 if (!(status & SPU_STATUS_RUNNING)) {
117 /* If isolated LOAD has failed: run SPU, we will get a stop-and
119 pr_debug("%s: isolated LOAD failed\n", __FUNCTION__);
120 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
123 } else if (!(status & SPU_STATUS_ISOLATED_STATE)) {
124 /* This isn't allowed by the CBEA, but check anyway */
125 pr_debug("%s: SPU fell out of isolated mode?\n", __FUNCTION__);
126 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
131 /* Finished accessing the loader. Drop kernel mode */
132 sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
133 spu_mfc_sr1_set(ctx->spu, sr1);
141 static inline int spu_run_init(struct spu_context *ctx, u32 * npc)
144 unsigned long runcntl = SPU_RUNCNTL_RUNNABLE;
146 ret = spu_acquire_runnable(ctx, 0);
150 if (ctx->flags & SPU_CREATE_ISOLATE) {
151 if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
152 /* Need to release ctx, because spu_setup_isolated will
153 * acquire it exclusively.
156 ret = spu_setup_isolated(ctx);
158 ret = spu_acquire_runnable(ctx, 0);
161 /* if userspace has set the runcntrl register (eg, to issue an
162 * isolated exit), we need to re-set it here */
163 runcntl = ctx->ops->runcntl_read(ctx) &
164 (SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
166 runcntl = SPU_RUNCNTL_RUNNABLE;
169 ctx->ops->npc_write(ctx, *npc);
172 ctx->ops->runcntl_write(ctx, runcntl);
176 static inline int spu_run_fini(struct spu_context *ctx, u32 * npc,
182 *status = ctx->ops->status_read(ctx);
183 *npc = ctx->ops->npc_read(ctx);
186 if (signal_pending(current))
192 static inline int spu_reacquire_runnable(struct spu_context *ctx, u32 *npc,
197 if ((ret = spu_run_fini(ctx, npc, status)) != 0)
199 if (*status & (SPU_STATUS_STOPPED_BY_STOP |
200 SPU_STATUS_STOPPED_BY_HALT)) {
203 if ((ret = spu_run_init(ctx, npc)) != 0)
209 * SPU syscall restarting is tricky because we violate the basic
210 * assumption that the signal handler is running on the interrupted
211 * thread. Here instead, the handler runs on PowerPC user space code,
212 * while the syscall was called from the SPU.
213 * This means we can only do a very rough approximation of POSIX
216 int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
223 case -ERESTARTNOINTR:
225 * Enter the regular syscall restarting for
226 * sys_spu_run, then restart the SPU syscall
232 case -ERESTARTNOHAND:
233 case -ERESTART_RESTARTBLOCK:
235 * Restart block is too hard for now, just return -EINTR
237 * ERESTARTNOHAND comes from sys_pause, we also return
239 * Assume that we need to be restarted ourselves though.
245 printk(KERN_WARNING "%s: unexpected return code %ld\n",
246 __FUNCTION__, *spu_ret);
252 int spu_process_callback(struct spu_context *ctx)
254 struct spu_syscall_block s;
260 /* get syscall block from local store */
261 npc = ctx->ops->npc_read(ctx);
262 ls = ctx->ops->get_ls(ctx);
263 ls_pointer = *(u32*)(ls + npc);
264 if (ls_pointer > (LS_SIZE - sizeof(s)))
266 memcpy(&s, ls + ls_pointer, sizeof (s));
268 /* do actual syscall without pinning the spu */
273 if (s.nr_ret < __NR_syscalls) {
275 /* do actual system call from here */
276 spu_ret = spu_sys_callback(&s);
277 if (spu_ret <= -ERESTARTSYS) {
278 ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
281 if (ret == -ERESTARTSYS)
285 /* write result, jump over indirect pointer */
286 memcpy(ls + ls_pointer, &spu_ret, sizeof (spu_ret));
287 ctx->ops->npc_write(ctx, npc);
288 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
292 static inline int spu_process_events(struct spu_context *ctx)
294 struct spu *spu = ctx->spu;
295 u64 pte_fault = MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED;
298 if (spu->dsisr & pte_fault)
299 ret = spu_irq_class_1_bottom(spu);
300 if (spu->class_0_pending)
301 ret = spu_irq_class_0_bottom(spu);
302 if (!ret && signal_pending(current))
307 long spufs_run_spu(struct file *file, struct spu_context *ctx,
308 u32 *npc, u32 *event)
313 if (down_interruptible(&ctx->run_sema))
316 ctx->ops->master_start(ctx);
317 ctx->event_return = 0;
318 ret = spu_run_init(ctx, npc);
323 ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
326 if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
327 (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
328 ret = spu_process_callback(ctx);
331 status &= ~SPU_STATUS_STOPPED_BY_STOP;
333 if (unlikely(ctx->state != SPU_STATE_RUNNABLE)) {
334 ret = spu_reacquire_runnable(ctx, npc, &status);
341 ret = spu_process_events(ctx);
343 } while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
344 SPU_STATUS_STOPPED_BY_HALT)));
346 ctx->ops->master_stop(ctx);
347 ret = spu_run_fini(ctx, npc, &status);
352 ((ret == -ERESTARTSYS) &&
353 ((status & SPU_STATUS_STOPPED_BY_HALT) ||
354 ((status & SPU_STATUS_STOPPED_BY_STOP) &&
355 (status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
358 if ((status & SPU_STATUS_STOPPED_BY_STOP)
359 && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff) {
360 force_sig(SIGTRAP, current);
365 *event = ctx->event_return;