4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
53 #include <asm/byteorder.h>
55 #include <asm/uaccess.h>
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
65 error = uptodate ? uptodate : -EIO;
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
74 if (!blk_fs_request(rq) && error && !rq->errors)
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
87 if (!blk_end_request(rq, error, nr_bytes))
90 if (ret == 0 && dequeue)
91 drive->hwif->hwgroup->rq = NULL;
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
100 * @nr_sectors: number of sectors completed
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
109 unsigned int nr_bytes = nr_sectors << 9;
110 struct request *rq = drive->hwif->hwgroup->rq;
113 if (blk_pc_request(rq))
114 nr_bytes = rq->data_len;
116 nr_bytes = rq->hard_cur_sectors << 9;
119 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
121 EXPORT_SYMBOL(ide_end_request);
123 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq)
125 struct request_pm_state *pm = rq->data;
128 printk(KERN_INFO "%s: complete_power_step(step: %d)\n",
129 drive->name, pm->pm_step);
131 if (drive->media != ide_disk)
134 switch (pm->pm_step) {
135 case IDE_PM_FLUSH_CACHE: /* Suspend step 1 (flush cache) */
136 if (pm->pm_state == PM_EVENT_FREEZE)
137 pm->pm_step = IDE_PM_COMPLETED;
139 pm->pm_step = IDE_PM_STANDBY;
141 case IDE_PM_STANDBY: /* Suspend step 2 (standby) */
142 pm->pm_step = IDE_PM_COMPLETED;
144 case IDE_PM_RESTORE_PIO: /* Resume step 1 (restore PIO) */
145 pm->pm_step = IDE_PM_IDLE;
147 case IDE_PM_IDLE: /* Resume step 2 (idle)*/
148 pm->pm_step = IDE_PM_RESTORE_DMA;
153 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
155 struct request_pm_state *pm = rq->data;
156 ide_task_t *args = rq->special;
158 memset(args, 0, sizeof(*args));
160 switch (pm->pm_step) {
161 case IDE_PM_FLUSH_CACHE: /* Suspend step 1 (flush cache) */
162 if (drive->media != ide_disk)
164 /* Not supported? Switch to next step now. */
165 if (ata_id_flush_enabled(drive->id) == 0 ||
166 (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
167 ide_complete_power_step(drive, rq);
170 if (ata_id_flush_ext_enabled(drive->id))
171 args->tf.command = ATA_CMD_FLUSH_EXT;
173 args->tf.command = ATA_CMD_FLUSH;
175 case IDE_PM_STANDBY: /* Suspend step 2 (standby) */
176 args->tf.command = ATA_CMD_STANDBYNOW1;
178 case IDE_PM_RESTORE_PIO: /* Resume step 1 (restore PIO) */
179 ide_set_max_pio(drive);
181 * skip IDE_PM_IDLE for ATAPI devices
183 if (drive->media != ide_disk)
184 pm->pm_step = IDE_PM_RESTORE_DMA;
186 ide_complete_power_step(drive, rq);
188 case IDE_PM_IDLE: /* Resume step 2 (idle) */
189 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
191 case IDE_PM_RESTORE_DMA: /* Resume step 3 (restore DMA) */
193 * Right now, all we do is call ide_set_dma(drive),
194 * we could be smarter and check for current xfer_speed
195 * in struct drive etc...
197 if (drive->hwif->dma_ops == NULL)
200 * TODO: respect IDE_DFLAG_USING_DMA
206 pm->pm_step = IDE_PM_COMPLETED;
210 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
211 args->data_phase = TASKFILE_NO_DATA;
212 return do_rw_taskfile(drive, args);
216 * ide_end_dequeued_request - complete an IDE I/O
217 * @drive: IDE device for the I/O
219 * @nr_sectors: number of sectors completed
221 * Complete an I/O that is no longer on the request queue. This
222 * typically occurs when we pull the request and issue a REQUEST_SENSE.
223 * We must still finish the old request but we must not tamper with the
224 * queue in the meantime.
226 * NOTE: This path does not handle barrier, but barrier is not supported
230 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
231 int uptodate, int nr_sectors)
233 BUG_ON(!blk_rq_started(rq));
235 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
237 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
241 * ide_complete_pm_request - end the current Power Management request
242 * @drive: target drive
245 * This function cleans up the current PM request and stops the queue
248 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
250 struct request_queue *q = drive->queue;
254 printk("%s: completing PM request, %s\n", drive->name,
255 blk_pm_suspend_request(rq) ? "suspend" : "resume");
257 spin_lock_irqsave(q->queue_lock, flags);
258 if (blk_pm_suspend_request(rq)) {
261 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
264 spin_unlock_irqrestore(q->queue_lock, flags);
266 drive->hwif->hwgroup->rq = NULL;
268 if (blk_end_request(rq, 0, 0))
273 * ide_end_drive_cmd - end an explicit drive command
278 * Clean up after success/failure of an explicit drive command.
279 * These get thrown onto the queue so they are synchronized with
280 * real I/O operations on the drive.
282 * In LBA48 mode we have to read the register set twice to get
283 * all the extra information out.
286 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
288 ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
289 struct request *rq = hwgroup->rq;
291 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
292 ide_task_t *task = (ide_task_t *)rq->special;
295 rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
298 struct ide_taskfile *tf = &task->tf;
303 drive->hwif->tp_ops->tf_read(drive, task);
305 if (task->tf_flags & IDE_TFLAG_DYN)
308 } else if (blk_pm_request(rq)) {
309 struct request_pm_state *pm = rq->data;
311 ide_complete_power_step(drive, rq);
312 if (pm->pm_step == IDE_PM_COMPLETED)
313 ide_complete_pm_request(drive, rq);
321 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
325 EXPORT_SYMBOL(ide_end_drive_cmd);
327 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
332 drv = *(ide_driver_t **)rq->rq_disk->private_data;
333 drv->end_request(drive, 0, 0);
335 ide_end_request(drive, 0, 0);
338 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
340 ide_hwif_t *hwif = drive->hwif;
342 if ((stat & ATA_BUSY) ||
343 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
344 /* other bits are useless when BUSY */
345 rq->errors |= ERROR_RESET;
346 } else if (stat & ATA_ERR) {
347 /* err has different meaning on cdrom and tape */
348 if (err == ATA_ABORTED) {
349 if ((drive->dev_flags & IDE_DFLAG_LBA) &&
350 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
351 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
353 } else if ((err & BAD_CRC) == BAD_CRC) {
354 /* UDMA crc error, just retry the operation */
356 } else if (err & (ATA_BBK | ATA_UNC)) {
357 /* retries won't help these */
358 rq->errors = ERROR_MAX;
359 } else if (err & ATA_TRK0NF) {
360 /* help it find track zero */
361 rq->errors |= ERROR_RECAL;
365 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
366 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
367 int nsect = drive->mult_count ? drive->mult_count : 1;
369 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
372 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
373 ide_kill_rq(drive, rq);
377 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
378 rq->errors |= ERROR_RESET;
380 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
382 return ide_do_reset(drive);
385 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
386 drive->special.b.recalibrate = 1;
393 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
395 ide_hwif_t *hwif = drive->hwif;
397 if ((stat & ATA_BUSY) ||
398 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
399 /* other bits are useless when BUSY */
400 rq->errors |= ERROR_RESET;
402 /* add decoding error stuff */
405 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
407 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
409 if (rq->errors >= ERROR_MAX) {
410 ide_kill_rq(drive, rq);
412 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
414 return ide_do_reset(drive);
423 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
425 if (drive->media == ide_disk)
426 return ide_ata_error(drive, rq, stat, err);
427 return ide_atapi_error(drive, rq, stat, err);
430 EXPORT_SYMBOL_GPL(__ide_error);
433 * ide_error - handle an error on the IDE
434 * @drive: drive the error occurred on
435 * @msg: message to report
438 * ide_error() takes action based on the error returned by the drive.
439 * For normal I/O that may well include retries. We deal with
440 * both new-style (taskfile) and old style command handling here.
441 * In the case of taskfile command handling there is work left to
445 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
450 err = ide_dump_status(drive, msg, stat);
452 if ((rq = HWGROUP(drive)->rq) == NULL)
455 /* retry only "normal" I/O: */
456 if (!blk_fs_request(rq)) {
458 ide_end_drive_cmd(drive, stat, err);
465 drv = *(ide_driver_t **)rq->rq_disk->private_data;
466 return drv->error(drive, rq, stat, err);
468 return __ide_error(drive, rq, stat, err);
471 EXPORT_SYMBOL_GPL(ide_error);
473 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
475 tf->nsect = drive->sect;
476 tf->lbal = drive->sect;
477 tf->lbam = drive->cyl;
478 tf->lbah = drive->cyl >> 8;
479 tf->device = (drive->head - 1) | drive->select;
480 tf->command = ATA_CMD_INIT_DEV_PARAMS;
483 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
485 tf->nsect = drive->sect;
486 tf->command = ATA_CMD_RESTORE;
489 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
491 tf->nsect = drive->mult_req;
492 tf->command = ATA_CMD_SET_MULTI;
495 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
497 special_t *s = &drive->special;
500 memset(&args, 0, sizeof(ide_task_t));
501 args.data_phase = TASKFILE_NO_DATA;
503 if (s->b.set_geometry) {
504 s->b.set_geometry = 0;
505 ide_tf_set_specify_cmd(drive, &args.tf);
506 } else if (s->b.recalibrate) {
507 s->b.recalibrate = 0;
508 ide_tf_set_restore_cmd(drive, &args.tf);
509 } else if (s->b.set_multmode) {
510 s->b.set_multmode = 0;
511 ide_tf_set_setmult_cmd(drive, &args.tf);
513 int special = s->all;
515 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
519 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
520 IDE_TFLAG_CUSTOM_HANDLER;
522 do_rw_taskfile(drive, &args);
528 * do_special - issue some special commands
529 * @drive: drive the command is for
531 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
532 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
534 * It used to do much more, but has been scaled back.
537 static ide_startstop_t do_special (ide_drive_t *drive)
539 special_t *s = &drive->special;
542 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
544 if (drive->media == ide_disk)
545 return ide_disk_special(drive);
552 void ide_map_sg(ide_drive_t *drive, struct request *rq)
554 ide_hwif_t *hwif = drive->hwif;
555 struct scatterlist *sg = hwif->sg_table;
557 if (hwif->sg_mapped) /* needed by ide-scsi */
560 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
561 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
563 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
568 EXPORT_SYMBOL_GPL(ide_map_sg);
570 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
572 ide_hwif_t *hwif = drive->hwif;
574 hwif->nsect = hwif->nleft = rq->nr_sectors;
579 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
582 * execute_drive_command - issue special drive command
583 * @drive: the drive to issue the command on
584 * @rq: the request structure holding the command
586 * execute_drive_cmd() issues a special drive command, usually
587 * initiated by ioctl() from the external hdparm program. The
588 * command can be a drive command, drive task or taskfile
589 * operation. Weirdly you can call it with NULL to wait for
590 * all commands to finish. Don't do this as that is due to change
593 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
596 ide_hwif_t *hwif = HWIF(drive);
597 ide_task_t *task = rq->special;
600 hwif->data_phase = task->data_phase;
602 switch (hwif->data_phase) {
603 case TASKFILE_MULTI_OUT:
605 case TASKFILE_MULTI_IN:
607 ide_init_sg_cmd(drive, rq);
608 ide_map_sg(drive, rq);
613 return do_rw_taskfile(drive, task);
617 * NULL is actually a valid way of waiting for
618 * all current requests to be flushed from the queue.
621 printk("%s: DRIVE_CMD (null)\n", drive->name);
623 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
624 ide_read_error(drive));
629 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
632 struct request_queue *q = drive->queue;
636 if (!(setting->flags & DS_SYNC))
637 return setting->set(drive, arg);
639 rq = blk_get_request(q, READ, __GFP_WAIT);
640 rq->cmd_type = REQ_TYPE_SPECIAL;
642 rq->cmd[0] = REQ_DEVSET_EXEC;
643 *(int *)&rq->cmd[1] = arg;
644 rq->special = setting->set;
646 if (blk_execute_rq(q, NULL, rq, 0))
652 EXPORT_SYMBOL_GPL(ide_devset_execute);
654 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
658 if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
660 struct ide_taskfile *tf = &task.tf;
662 memset(&task, 0, sizeof(task));
663 if (cmd == REQ_PARK_HEADS) {
664 drive->sleep = *(unsigned long *)rq->special;
665 drive->dev_flags |= IDE_DFLAG_SLEEPING;
666 tf->command = ATA_CMD_IDLEIMMEDIATE;
671 task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
672 } else /* cmd == REQ_UNPARK_HEADS */
673 tf->command = ATA_CMD_CHK_POWER;
675 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
677 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
678 return do_rw_taskfile(drive, &task);
682 case REQ_DEVSET_EXEC:
684 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
686 err = setfunc(drive, *(int *)&rq->cmd[1]);
691 ide_end_request(drive, err, 0);
694 case REQ_DRIVE_RESET:
695 return ide_do_reset(drive);
697 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
698 ide_end_request(drive, 0, 0);
703 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
705 struct request_pm_state *pm = rq->data;
707 if (blk_pm_suspend_request(rq) &&
708 pm->pm_step == IDE_PM_START_SUSPEND)
709 /* Mark drive blocked when starting the suspend sequence. */
710 drive->dev_flags |= IDE_DFLAG_BLOCKED;
711 else if (blk_pm_resume_request(rq) &&
712 pm->pm_step == IDE_PM_START_RESUME) {
714 * The first thing we do on wakeup is to wait for BSY bit to
715 * go away (with a looong timeout) as a drive on this hwif may
716 * just be POSTing itself.
717 * We do that before even selecting as the "other" device on
718 * the bus may be broken enough to walk on our toes at this
721 ide_hwif_t *hwif = drive->hwif;
724 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
726 rc = ide_wait_not_busy(hwif, 35000);
728 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
730 hwif->tp_ops->set_irq(hwif, 1);
731 rc = ide_wait_not_busy(hwif, 100000);
733 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
738 * start_request - start of I/O and command issuing for IDE
740 * start_request() initiates handling of a new I/O request. It
741 * accepts commands and I/O (read/write) requests.
743 * FIXME: this function needs a rename
746 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
748 ide_startstop_t startstop;
750 BUG_ON(!blk_rq_started(rq));
753 printk("%s: start_request: current=0x%08lx\n",
754 HWIF(drive)->name, (unsigned long) rq);
757 /* bail early if we've exceeded max_failures */
758 if (drive->max_failures && (drive->failures > drive->max_failures)) {
759 rq->cmd_flags |= REQ_FAILED;
763 if (blk_pm_request(rq))
764 ide_check_pm_state(drive, rq);
767 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
768 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
769 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
772 if (!drive->special.all) {
776 * We reset the drive so we need to issue a SETFEATURES.
777 * Do it _after_ do_special() restored device parameters.
779 if (drive->current_speed == 0xff)
780 ide_config_drive_speed(drive, drive->desired_speed);
782 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
783 return execute_drive_cmd(drive, rq);
784 else if (blk_pm_request(rq)) {
785 struct request_pm_state *pm = rq->data;
787 printk("%s: start_power_step(step: %d)\n",
788 drive->name, pm->pm_step);
790 startstop = ide_start_power_step(drive, rq);
791 if (startstop == ide_stopped &&
792 pm->pm_step == IDE_PM_COMPLETED)
793 ide_complete_pm_request(drive, rq);
795 } else if (!rq->rq_disk && blk_special_request(rq))
797 * TODO: Once all ULDs have been modified to
798 * check for specific op codes rather than
799 * blindly accepting any special request, the
800 * check for ->rq_disk above may be replaced
801 * by a more suitable mechanism or even
804 return ide_special_rq(drive, rq);
806 drv = *(ide_driver_t **)rq->rq_disk->private_data;
808 return drv->do_request(drive, rq, rq->sector);
810 return do_special(drive);
812 ide_kill_rq(drive, rq);
817 * ide_stall_queue - pause an IDE device
818 * @drive: drive to stall
819 * @timeout: time to stall for (jiffies)
821 * ide_stall_queue() can be used by a drive to give excess bandwidth back
822 * to the hwgroup by sleeping for timeout jiffies.
825 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
827 if (timeout > WAIT_WORSTCASE)
828 timeout = WAIT_WORSTCASE;
829 drive->sleep = timeout + jiffies;
830 drive->dev_flags |= IDE_DFLAG_SLEEPING;
833 EXPORT_SYMBOL(ide_stall_queue);
835 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
838 * choose_drive - select a drive to service
839 * @hwgroup: hardware group to select on
841 * choose_drive() selects the next drive which will be serviced.
842 * This is necessary because the IDE layer can't issue commands
843 * to both drives on the same cable, unlike SCSI.
846 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
848 ide_drive_t *drive, *best;
852 drive = hwgroup->drive;
855 * drive is doing pre-flush, ordered write, post-flush sequence. even
856 * though that is 3 requests, it must be seen as a single transaction.
857 * we must not preempt this drive until that is complete
859 if (blk_queue_flushing(drive->queue)) {
861 * small race where queue could get replugged during
862 * the 3-request flush cycle, just yank the plug since
863 * we want it to finish asap
865 blk_remove_plug(drive->queue);
870 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
871 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
873 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
874 !elv_queue_empty(drive->queue)) {
876 (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
877 (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
878 if (!blk_queue_plugged(drive->queue))
882 } while ((drive = drive->next) != hwgroup->drive);
884 if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
885 (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
886 best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
887 long t = (signed long)(WAKEUP(best) - jiffies);
888 if (t >= WAIT_MIN_SLEEP) {
890 * We *may* have some time to spare, but first let's see if
891 * someone can potentially benefit from our nice mood today..
895 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
896 && time_before(jiffies - best->service_time, WAKEUP(drive))
897 && time_before(WAKEUP(drive), jiffies + t))
899 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
902 } while ((drive = drive->next) != best);
909 * Issue a new request to a drive from hwgroup
910 * Caller must have already done spin_lock_irqsave(&hwgroup->lock, ..);
912 * A hwgroup is a serialized group of IDE interfaces. Usually there is
913 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
914 * may have both interfaces in a single hwgroup to "serialize" access.
915 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
916 * together into one hwgroup for serialized access.
918 * Note also that several hwgroups can end up sharing a single IRQ,
919 * possibly along with many other devices. This is especially common in
920 * PCI-based systems with off-board IDE controller cards.
922 * The IDE driver uses a per-hwgroup spinlock to protect
923 * access to the request queues, and to protect the hwgroup->busy flag.
925 * The first thread into the driver for a particular hwgroup sets the
926 * hwgroup->busy flag to indicate that this hwgroup is now active,
927 * and then initiates processing of the top request from the request queue.
929 * Other threads attempting entry notice the busy setting, and will simply
930 * queue their new requests and exit immediately. Note that hwgroup->busy
931 * remains set even when the driver is merely awaiting the next interrupt.
932 * Thus, the meaning is "this hwgroup is busy processing a request".
934 * When processing of a request completes, the completing thread or IRQ-handler
935 * will start the next request from the queue. If no more work remains,
936 * the driver will clear the hwgroup->busy flag and exit.
938 * The per-hwgroup spinlock is used to protect all access to the
939 * hwgroup->busy flag, but is otherwise not needed for most processing in
940 * the driver. This makes the driver much more friendlier to shared IRQs
941 * than previous designs, while remaining 100% (?) SMP safe and capable.
943 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
948 ide_startstop_t startstop;
951 /* caller must own hwgroup->lock */
952 BUG_ON(!irqs_disabled());
954 while (!hwgroup->busy) {
957 ide_get_lock(ide_intr, hwgroup);
958 drive = choose_drive(hwgroup);
961 unsigned long sleep = 0; /* shut up, gcc */
963 drive = hwgroup->drive;
965 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
967 time_before(drive->sleep, sleep))) {
969 sleep = drive->sleep;
971 } while ((drive = drive->next) != hwgroup->drive);
974 * Take a short snooze, and then wake up this hwgroup again.
975 * This gives other hwgroups on the same a chance to
976 * play fairly with us, just in case there are big differences
977 * in relative throughputs.. don't want to hog the cpu too much.
979 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
980 sleep = jiffies + WAIT_MIN_SLEEP;
982 if (timer_pending(&hwgroup->timer))
983 printk(KERN_CRIT "ide_set_handler: timer already active\n");
985 /* so that ide_timer_expiry knows what to do */
986 hwgroup->sleeping = 1;
987 hwgroup->req_gen_timer = hwgroup->req_gen;
988 mod_timer(&hwgroup->timer, sleep);
989 /* we purposely leave hwgroup->busy==1
992 /* Ugly, but how can we sleep for the lock
993 * otherwise? perhaps from tq_disk?
1001 /* no more work for this hwgroup (for now) */
1006 if (hwif != hwgroup->hwif) {
1008 * set nIEN for previous hwif, drives in the
1009 * quirk_list may not like intr setups/cleanups
1011 if (drive->quirk_list == 0)
1012 hwif->tp_ops->set_irq(hwif, 0);
1014 hwgroup->hwif = hwif;
1015 hwgroup->drive = drive;
1016 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
1017 drive->service_start = jiffies;
1020 * we know that the queue isn't empty, but this can happen
1021 * if the q->prep_rq_fn() decides to kill a request
1023 rq = elv_next_request(drive->queue);
1030 * Sanity: don't accept a request that isn't a PM request
1031 * if we are currently power managed. This is very important as
1032 * blk_stop_queue() doesn't prevent the elv_next_request()
1033 * above to return us whatever is in the queue. Since we call
1034 * ide_do_request() ourselves, we end up taking requests while
1035 * the queue is blocked...
1037 * We let requests forced at head of queue with ide-preempt
1038 * though. I hope that doesn't happen too much, hopefully not
1039 * unless the subdriver triggers such a thing in its own PM
1042 * We count how many times we loop here to make sure we service
1043 * all drives in the hwgroup without looping for ever
1045 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1046 blk_pm_request(rq) == 0 &&
1047 (rq->cmd_flags & REQ_PREEMPT) == 0) {
1048 drive = drive->next ? drive->next : hwgroup->drive;
1049 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1051 /* We clear busy, there should be no pending ATA command at this point. */
1059 * Some systems have trouble with IDE IRQs arriving while
1060 * the driver is still setting things up. So, here we disable
1061 * the IRQ used by this interface while the request is being started.
1062 * This may look bad at first, but pretty much the same thing
1063 * happens anyway when any interrupt comes in, IDE or otherwise
1064 * -- the kernel masks the IRQ while it is being handled.
1066 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1067 disable_irq_nosync(hwif->irq);
1068 spin_unlock(&hwgroup->lock);
1069 local_irq_enable_in_hardirq();
1070 /* allow other IRQs while we start this request */
1071 startstop = start_request(drive, rq);
1072 spin_lock_irq(&hwgroup->lock);
1073 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1074 enable_irq(hwif->irq);
1075 if (startstop == ide_stopped)
1081 * Passes the stuff to ide_do_request
1083 void do_ide_request(struct request_queue *q)
1085 ide_drive_t *drive = q->queuedata;
1087 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1091 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1092 * retry the current request in pio mode instead of risking tossing it
1095 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1097 ide_hwif_t *hwif = HWIF(drive);
1099 ide_startstop_t ret = ide_stopped;
1102 * end current dma transaction
1106 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1107 (void)hwif->dma_ops->dma_end(drive);
1108 ret = ide_error(drive, "dma timeout error",
1109 hwif->tp_ops->read_status(hwif));
1111 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1112 hwif->dma_ops->dma_timeout(drive);
1116 * disable dma for now, but remember that we did so because of
1117 * a timeout -- we'll reenable after we finish this next request
1118 * (or rather the first chunk of it) in pio.
1120 drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1122 ide_dma_off_quietly(drive);
1125 * un-busy drive etc (hwgroup->busy is cleared on return) and
1126 * make sure request is sane
1128 rq = HWGROUP(drive)->rq;
1133 HWGROUP(drive)->rq = NULL;
1140 rq->sector = rq->bio->bi_sector;
1141 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1142 rq->hard_cur_sectors = rq->current_nr_sectors;
1143 rq->buffer = bio_data(rq->bio);
1149 * ide_timer_expiry - handle lack of an IDE interrupt
1150 * @data: timer callback magic (hwgroup)
1152 * An IDE command has timed out before the expected drive return
1153 * occurred. At this point we attempt to clean up the current
1154 * mess. If the current handler includes an expiry handler then
1155 * we invoke the expiry handler, and providing it is happy the
1156 * work is done. If that fails we apply generic recovery rules
1157 * invoking the handler and checking the drive DMA status. We
1158 * have an excessively incestuous relationship with the DMA
1159 * logic that wants cleaning up.
1162 void ide_timer_expiry (unsigned long data)
1164 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1165 ide_handler_t *handler;
1166 ide_expiry_t *expiry;
1167 unsigned long flags;
1168 unsigned long wait = -1;
1170 spin_lock_irqsave(&hwgroup->lock, flags);
1172 if (((handler = hwgroup->handler) == NULL) ||
1173 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1175 * Either a marginal timeout occurred
1176 * (got the interrupt just as timer expired),
1177 * or we were "sleeping" to give other devices a chance.
1178 * Either way, we don't really want to complain about anything.
1180 if (hwgroup->sleeping) {
1181 hwgroup->sleeping = 0;
1185 ide_drive_t *drive = hwgroup->drive;
1187 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1188 hwgroup->handler = NULL;
1191 ide_startstop_t startstop = ide_stopped;
1192 if (!hwgroup->busy) {
1193 hwgroup->busy = 1; /* paranoia */
1194 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1196 if ((expiry = hwgroup->expiry) != NULL) {
1198 if ((wait = expiry(drive)) > 0) {
1200 hwgroup->timer.expires = jiffies + wait;
1201 hwgroup->req_gen_timer = hwgroup->req_gen;
1202 add_timer(&hwgroup->timer);
1203 spin_unlock_irqrestore(&hwgroup->lock, flags);
1207 hwgroup->handler = NULL;
1209 * We need to simulate a real interrupt when invoking
1210 * the handler() function, which means we need to
1211 * globally mask the specific IRQ:
1213 spin_unlock(&hwgroup->lock);
1215 /* disable_irq_nosync ?? */
1216 disable_irq(hwif->irq);
1218 * as if we were handling an interrupt */
1219 local_irq_disable();
1220 if (hwgroup->polling) {
1221 startstop = handler(drive);
1222 } else if (drive_is_ready(drive)) {
1223 if (drive->waiting_for_dma)
1224 hwif->dma_ops->dma_lost_irq(drive);
1225 (void)ide_ack_intr(hwif);
1226 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1227 startstop = handler(drive);
1229 if (drive->waiting_for_dma) {
1230 startstop = ide_dma_timeout_retry(drive, wait);
1233 ide_error(drive, "irq timeout",
1234 hwif->tp_ops->read_status(hwif));
1236 drive->service_time = jiffies - drive->service_start;
1237 spin_lock_irq(&hwgroup->lock);
1238 enable_irq(hwif->irq);
1239 if (startstop == ide_stopped)
1243 ide_do_request(hwgroup, IDE_NO_IRQ);
1244 spin_unlock_irqrestore(&hwgroup->lock, flags);
1248 * unexpected_intr - handle an unexpected IDE interrupt
1249 * @irq: interrupt line
1250 * @hwgroup: hwgroup being processed
1252 * There's nothing really useful we can do with an unexpected interrupt,
1253 * other than reading the status register (to clear it), and logging it.
1254 * There should be no way that an irq can happen before we're ready for it,
1255 * so we needn't worry much about losing an "important" interrupt here.
1257 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1258 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1259 * looks "good", we just ignore the interrupt completely.
1261 * This routine assumes __cli() is in effect when called.
1263 * If an unexpected interrupt happens on irq15 while we are handling irq14
1264 * and if the two interfaces are "serialized" (CMD640), then it looks like
1265 * we could screw up by interfering with a new request being set up for
1268 * In reality, this is a non-issue. The new command is not sent unless
1269 * the drive is ready to accept one, in which case we know the drive is
1270 * not trying to interrupt us. And ide_set_handler() is always invoked
1271 * before completing the issuance of any new drive command, so we will not
1272 * be accidentally invoked as a result of any valid command completion
1275 * Note that we must walk the entire hwgroup here. We know which hwif
1276 * is doing the current command, but we don't know which hwif burped
1280 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1283 ide_hwif_t *hwif = hwgroup->hwif;
1286 * handle the unexpected interrupt
1289 if (hwif->irq == irq) {
1290 stat = hwif->tp_ops->read_status(hwif);
1292 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1293 /* Try to not flood the console with msgs */
1294 static unsigned long last_msgtime, count;
1296 if (time_after(jiffies, last_msgtime + HZ)) {
1297 last_msgtime = jiffies;
1298 printk(KERN_ERR "%s%s: unexpected interrupt, "
1299 "status=0x%02x, count=%ld\n",
1301 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1305 } while ((hwif = hwif->next) != hwgroup->hwif);
1309 * ide_intr - default IDE interrupt handler
1310 * @irq: interrupt number
1311 * @dev_id: hwif group
1312 * @regs: unused weirdness from the kernel irq layer
1314 * This is the default IRQ handler for the IDE layer. You should
1315 * not need to override it. If you do be aware it is subtle in
1318 * hwgroup->hwif is the interface in the group currently performing
1319 * a command. hwgroup->drive is the drive and hwgroup->handler is
1320 * the IRQ handler to call. As we issue a command the handlers
1321 * step through multiple states, reassigning the handler to the
1322 * next step in the process. Unlike a smart SCSI controller IDE
1323 * expects the main processor to sequence the various transfer
1324 * stages. We also manage a poll timer to catch up with most
1325 * timeout situations. There are still a few where the handlers
1326 * don't ever decide to give up.
1328 * The handler eventually returns ide_stopped to indicate the
1329 * request completed. At this point we issue the next request
1330 * on the hwgroup and the process begins again.
1333 irqreturn_t ide_intr (int irq, void *dev_id)
1335 unsigned long flags;
1336 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1337 ide_hwif_t *hwif = hwgroup->hwif;
1339 ide_handler_t *handler;
1340 ide_startstop_t startstop;
1341 irqreturn_t irq_ret = IRQ_NONE;
1343 spin_lock_irqsave(&hwgroup->lock, flags);
1345 if (!ide_ack_intr(hwif))
1348 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1350 * Not expecting an interrupt from this drive.
1351 * That means this could be:
1352 * (1) an interrupt from another PCI device
1353 * sharing the same PCI INT# as us.
1354 * or (2) a drive just entered sleep or standby mode,
1355 * and is interrupting to let us know.
1356 * or (3) a spurious interrupt of unknown origin.
1358 * For PCI, we cannot tell the difference,
1359 * so in that case we just ignore it and hope it goes away.
1361 * FIXME: unexpected_intr should be hwif-> then we can
1362 * remove all the ifdef PCI crap
1364 #ifdef CONFIG_BLK_DEV_IDEPCI
1365 if (hwif->chipset != ide_pci)
1366 #endif /* CONFIG_BLK_DEV_IDEPCI */
1369 * Probably not a shared PCI interrupt,
1370 * so we can safely try to do something about it:
1372 unexpected_intr(irq, hwgroup);
1373 #ifdef CONFIG_BLK_DEV_IDEPCI
1376 * Whack the status register, just in case
1377 * we have a leftover pending IRQ.
1379 (void)hwif->tp_ops->read_status(hwif);
1380 #endif /* CONFIG_BLK_DEV_IDEPCI */
1385 drive = hwgroup->drive;
1388 * This should NEVER happen, and there isn't much
1389 * we could do about it here.
1391 * [Note - this can occur if the drive is hot unplugged]
1396 if (!drive_is_ready(drive))
1398 * This happens regularly when we share a PCI IRQ with
1399 * another device. Unfortunately, it can also happen
1400 * with some buggy drives that trigger the IRQ before
1401 * their status register is up to date. Hopefully we have
1402 * enough advance overhead that the latter isn't a problem.
1406 if (!hwgroup->busy) {
1407 hwgroup->busy = 1; /* paranoia */
1408 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1410 hwgroup->handler = NULL;
1412 del_timer(&hwgroup->timer);
1413 spin_unlock(&hwgroup->lock);
1415 if (hwif->port_ops && hwif->port_ops->clear_irq)
1416 hwif->port_ops->clear_irq(drive);
1418 if (drive->dev_flags & IDE_DFLAG_UNMASK)
1419 local_irq_enable_in_hardirq();
1421 /* service this interrupt, may set handler for next interrupt */
1422 startstop = handler(drive);
1424 spin_lock_irq(&hwgroup->lock);
1426 * Note that handler() may have set things up for another
1427 * interrupt to occur soon, but it cannot happen until
1428 * we exit from this routine, because it will be the
1429 * same irq as is currently being serviced here, and Linux
1430 * won't allow another of the same (on any CPU) until we return.
1432 drive->service_time = jiffies - drive->service_start;
1433 if (startstop == ide_stopped) {
1434 if (hwgroup->handler == NULL) { /* paranoia */
1436 ide_do_request(hwgroup, hwif->irq);
1438 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1439 "on exit\n", drive->name);
1443 irq_ret = IRQ_HANDLED;
1445 spin_unlock_irqrestore(&hwgroup->lock, flags);
1450 * ide_do_drive_cmd - issue IDE special command
1451 * @drive: device to issue command
1452 * @rq: request to issue
1454 * This function issues a special IDE device request
1455 * onto the request queue.
1457 * the rq is queued at the head of the request queue, displacing
1458 * the currently-being-processed request and this function
1459 * returns immediately without waiting for the new rq to be
1460 * completed. This is VERY DANGEROUS, and is intended for
1461 * careful use by the ATAPI tape/cdrom driver code.
1464 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1466 ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
1467 struct request_queue *q = drive->queue;
1468 unsigned long flags;
1472 spin_lock_irqsave(q->queue_lock, flags);
1473 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
1474 blk_start_queueing(q);
1475 spin_unlock_irqrestore(q->queue_lock, flags);
1477 EXPORT_SYMBOL(ide_do_drive_cmd);
1479 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1481 ide_hwif_t *hwif = drive->hwif;
1484 memset(&task, 0, sizeof(task));
1485 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1486 IDE_TFLAG_OUT_FEATURE | tf_flags;
1487 task.tf.feature = dma; /* Use PIO/DMA */
1488 task.tf.lbam = bcount & 0xff;
1489 task.tf.lbah = (bcount >> 8) & 0xff;
1491 ide_tf_dump(drive->name, &task.tf);
1492 hwif->tp_ops->set_irq(hwif, 1);
1493 SELECT_MASK(drive, 0);
1494 hwif->tp_ops->tf_load(drive, &task);
1497 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1499 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1501 ide_hwif_t *hwif = drive->hwif;
1506 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1508 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1512 EXPORT_SYMBOL_GPL(ide_pad_transfer);