ide: always set nIEN on idle devices
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61         int ret = 1;
62         int error = 0;
63
64         if (uptodate <= 0)
65                 error = uptodate ? uptodate : -EIO;
66
67         /*
68          * if failfast is set on a request, override number of sectors and
69          * complete the whole request right now
70          */
71         if (blk_noretry_request(rq) && error)
72                 nr_bytes = rq->hard_nr_sectors << 9;
73
74         if (!blk_fs_request(rq) && error && !rq->errors)
75                 rq->errors = -EIO;
76
77         /*
78          * decide whether to reenable DMA -- 3 is a random magic for now,
79          * if we DMA timeout more than 3 times, just stay in PIO
80          */
81         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82             drive->retry_pio <= 3) {
83                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84                 ide_dma_on(drive);
85         }
86
87         if (!blk_end_request(rq, error, nr_bytes))
88                 ret = 0;
89
90         if (ret == 0 && dequeue)
91                 drive->hwif->hwgroup->rq = NULL;
92
93         return ret;
94 }
95
96 /**
97  *      ide_end_request         -       complete an IDE I/O
98  *      @drive: IDE device for the I/O
99  *      @uptodate:
100  *      @nr_sectors: number of sectors completed
101  *
102  *      This is our end_request wrapper function. We complete the I/O
103  *      update random number input and dequeue the request, which if
104  *      it was tagged may be out of order.
105  */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109         unsigned int nr_bytes = nr_sectors << 9;
110         struct request *rq = drive->hwif->hwgroup->rq;
111
112         if (!nr_bytes) {
113                 if (blk_pc_request(rq))
114                         nr_bytes = rq->data_len;
115                 else
116                         nr_bytes = rq->hard_cur_sectors << 9;
117         }
118
119         return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120 }
121 EXPORT_SYMBOL(ide_end_request);
122
123 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq)
124 {
125         struct request_pm_state *pm = rq->data;
126
127 #ifdef DEBUG_PM
128         printk(KERN_INFO "%s: complete_power_step(step: %d)\n",
129                 drive->name, pm->pm_step);
130 #endif
131         if (drive->media != ide_disk)
132                 return;
133
134         switch (pm->pm_step) {
135         case IDE_PM_FLUSH_CACHE:        /* Suspend step 1 (flush cache) */
136                 if (pm->pm_state == PM_EVENT_FREEZE)
137                         pm->pm_step = IDE_PM_COMPLETED;
138                 else
139                         pm->pm_step = IDE_PM_STANDBY;
140                 break;
141         case IDE_PM_STANDBY:            /* Suspend step 2 (standby) */
142                 pm->pm_step = IDE_PM_COMPLETED;
143                 break;
144         case IDE_PM_RESTORE_PIO:        /* Resume step 1 (restore PIO) */
145                 pm->pm_step = IDE_PM_IDLE;
146                 break;
147         case IDE_PM_IDLE:               /* Resume step 2 (idle)*/
148                 pm->pm_step = IDE_PM_RESTORE_DMA;
149                 break;
150         }
151 }
152
153 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
154 {
155         struct request_pm_state *pm = rq->data;
156         ide_task_t *args = rq->special;
157
158         memset(args, 0, sizeof(*args));
159
160         switch (pm->pm_step) {
161         case IDE_PM_FLUSH_CACHE:        /* Suspend step 1 (flush cache) */
162                 if (drive->media != ide_disk)
163                         break;
164                 /* Not supported? Switch to next step now. */
165                 if (ata_id_flush_enabled(drive->id) == 0 ||
166                     (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
167                         ide_complete_power_step(drive, rq);
168                         return ide_stopped;
169                 }
170                 if (ata_id_flush_ext_enabled(drive->id))
171                         args->tf.command = ATA_CMD_FLUSH_EXT;
172                 else
173                         args->tf.command = ATA_CMD_FLUSH;
174                 goto out_do_tf;
175         case IDE_PM_STANDBY:            /* Suspend step 2 (standby) */
176                 args->tf.command = ATA_CMD_STANDBYNOW1;
177                 goto out_do_tf;
178         case IDE_PM_RESTORE_PIO:        /* Resume step 1 (restore PIO) */
179                 ide_set_max_pio(drive);
180                 /*
181                  * skip IDE_PM_IDLE for ATAPI devices
182                  */
183                 if (drive->media != ide_disk)
184                         pm->pm_step = IDE_PM_RESTORE_DMA;
185                 else
186                         ide_complete_power_step(drive, rq);
187                 return ide_stopped;
188         case IDE_PM_IDLE:               /* Resume step 2 (idle) */
189                 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
190                 goto out_do_tf;
191         case IDE_PM_RESTORE_DMA:        /* Resume step 3 (restore DMA) */
192                 /*
193                  * Right now, all we do is call ide_set_dma(drive),
194                  * we could be smarter and check for current xfer_speed
195                  * in struct drive etc...
196                  */
197                 if (drive->hwif->dma_ops == NULL)
198                         break;
199                 /*
200                  * TODO: respect IDE_DFLAG_USING_DMA
201                  */
202                 ide_set_dma(drive);
203                 break;
204         }
205
206         pm->pm_step = IDE_PM_COMPLETED;
207         return ide_stopped;
208
209 out_do_tf:
210         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
211         args->data_phase = TASKFILE_NO_DATA;
212         return do_rw_taskfile(drive, args);
213 }
214
215 /**
216  *      ide_end_dequeued_request        -       complete an IDE I/O
217  *      @drive: IDE device for the I/O
218  *      @uptodate:
219  *      @nr_sectors: number of sectors completed
220  *
221  *      Complete an I/O that is no longer on the request queue. This
222  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
223  *      We must still finish the old request but we must not tamper with the
224  *      queue in the meantime.
225  *
226  *      NOTE: This path does not handle barrier, but barrier is not supported
227  *      on ide-cd anyway.
228  */
229
230 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
231                              int uptodate, int nr_sectors)
232 {
233         BUG_ON(!blk_rq_started(rq));
234
235         return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
236 }
237 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
238
239
240 /**
241  *      ide_complete_pm_request - end the current Power Management request
242  *      @drive: target drive
243  *      @rq: request
244  *
245  *      This function cleans up the current PM request and stops the queue
246  *      if necessary.
247  */
248 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
249 {
250         struct request_queue *q = drive->queue;
251         unsigned long flags;
252
253 #ifdef DEBUG_PM
254         printk("%s: completing PM request, %s\n", drive->name,
255                blk_pm_suspend_request(rq) ? "suspend" : "resume");
256 #endif
257         spin_lock_irqsave(q->queue_lock, flags);
258         if (blk_pm_suspend_request(rq)) {
259                 blk_stop_queue(q);
260         } else {
261                 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
262                 blk_start_queue(q);
263         }
264         spin_unlock_irqrestore(q->queue_lock, flags);
265
266         drive->hwif->hwgroup->rq = NULL;
267
268         if (blk_end_request(rq, 0, 0))
269                 BUG();
270 }
271
272 /**
273  *      ide_end_drive_cmd       -       end an explicit drive command
274  *      @drive: command 
275  *      @stat: status bits
276  *      @err: error bits
277  *
278  *      Clean up after success/failure of an explicit drive command.
279  *      These get thrown onto the queue so they are synchronized with
280  *      real I/O operations on the drive.
281  *
282  *      In LBA48 mode we have to read the register set twice to get
283  *      all the extra information out.
284  */
285  
286 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
287 {
288         ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
289         struct request *rq = hwgroup->rq;
290
291         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
292                 ide_task_t *task = (ide_task_t *)rq->special;
293
294                 if (rq->errors == 0)
295                         rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
296
297                 if (task) {
298                         struct ide_taskfile *tf = &task->tf;
299
300                         tf->error = err;
301                         tf->status = stat;
302
303                         drive->hwif->tp_ops->tf_read(drive, task);
304
305                         if (task->tf_flags & IDE_TFLAG_DYN)
306                                 kfree(task);
307                 }
308         } else if (blk_pm_request(rq)) {
309                 struct request_pm_state *pm = rq->data;
310
311                 ide_complete_power_step(drive, rq);
312                 if (pm->pm_step == IDE_PM_COMPLETED)
313                         ide_complete_pm_request(drive, rq);
314                 return;
315         }
316
317         hwgroup->rq = NULL;
318
319         rq->errors = err;
320
321         if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
322                                      blk_rq_bytes(rq))))
323                 BUG();
324 }
325 EXPORT_SYMBOL(ide_end_drive_cmd);
326
327 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
328 {
329         if (rq->rq_disk) {
330                 ide_driver_t *drv;
331
332                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
333                 drv->end_request(drive, 0, 0);
334         } else
335                 ide_end_request(drive, 0, 0);
336 }
337
338 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
339 {
340         ide_hwif_t *hwif = drive->hwif;
341
342         if ((stat & ATA_BUSY) ||
343             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
344                 /* other bits are useless when BUSY */
345                 rq->errors |= ERROR_RESET;
346         } else if (stat & ATA_ERR) {
347                 /* err has different meaning on cdrom and tape */
348                 if (err == ATA_ABORTED) {
349                         if ((drive->dev_flags & IDE_DFLAG_LBA) &&
350                             /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
351                             hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
352                                 return ide_stopped;
353                 } else if ((err & BAD_CRC) == BAD_CRC) {
354                         /* UDMA crc error, just retry the operation */
355                         drive->crc_count++;
356                 } else if (err & (ATA_BBK | ATA_UNC)) {
357                         /* retries won't help these */
358                         rq->errors = ERROR_MAX;
359                 } else if (err & ATA_TRK0NF) {
360                         /* help it find track zero */
361                         rq->errors |= ERROR_RECAL;
362                 }
363         }
364
365         if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
366             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
367                 int nsect = drive->mult_count ? drive->mult_count : 1;
368
369                 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
370         }
371
372         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
373                 ide_kill_rq(drive, rq);
374                 return ide_stopped;
375         }
376
377         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
378                 rq->errors |= ERROR_RESET;
379
380         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
381                 ++rq->errors;
382                 return ide_do_reset(drive);
383         }
384
385         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
386                 drive->special.b.recalibrate = 1;
387
388         ++rq->errors;
389
390         return ide_stopped;
391 }
392
393 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
394 {
395         ide_hwif_t *hwif = drive->hwif;
396
397         if ((stat & ATA_BUSY) ||
398             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
399                 /* other bits are useless when BUSY */
400                 rq->errors |= ERROR_RESET;
401         } else {
402                 /* add decoding error stuff */
403         }
404
405         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
406                 /* force an abort */
407                 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
408
409         if (rq->errors >= ERROR_MAX) {
410                 ide_kill_rq(drive, rq);
411         } else {
412                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
413                         ++rq->errors;
414                         return ide_do_reset(drive);
415                 }
416                 ++rq->errors;
417         }
418
419         return ide_stopped;
420 }
421
422 ide_startstop_t
423 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
424 {
425         if (drive->media == ide_disk)
426                 return ide_ata_error(drive, rq, stat, err);
427         return ide_atapi_error(drive, rq, stat, err);
428 }
429
430 EXPORT_SYMBOL_GPL(__ide_error);
431
432 /**
433  *      ide_error       -       handle an error on the IDE
434  *      @drive: drive the error occurred on
435  *      @msg: message to report
436  *      @stat: status bits
437  *
438  *      ide_error() takes action based on the error returned by the drive.
439  *      For normal I/O that may well include retries. We deal with
440  *      both new-style (taskfile) and old style command handling here.
441  *      In the case of taskfile command handling there is work left to
442  *      do
443  */
444  
445 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
446 {
447         struct request *rq;
448         u8 err;
449
450         err = ide_dump_status(drive, msg, stat);
451
452         if ((rq = HWGROUP(drive)->rq) == NULL)
453                 return ide_stopped;
454
455         /* retry only "normal" I/O: */
456         if (!blk_fs_request(rq)) {
457                 rq->errors = 1;
458                 ide_end_drive_cmd(drive, stat, err);
459                 return ide_stopped;
460         }
461
462         if (rq->rq_disk) {
463                 ide_driver_t *drv;
464
465                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
466                 return drv->error(drive, rq, stat, err);
467         } else
468                 return __ide_error(drive, rq, stat, err);
469 }
470
471 EXPORT_SYMBOL_GPL(ide_error);
472
473 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
474 {
475         tf->nsect   = drive->sect;
476         tf->lbal    = drive->sect;
477         tf->lbam    = drive->cyl;
478         tf->lbah    = drive->cyl >> 8;
479         tf->device  = (drive->head - 1) | drive->select;
480         tf->command = ATA_CMD_INIT_DEV_PARAMS;
481 }
482
483 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
484 {
485         tf->nsect   = drive->sect;
486         tf->command = ATA_CMD_RESTORE;
487 }
488
489 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
490 {
491         tf->nsect   = drive->mult_req;
492         tf->command = ATA_CMD_SET_MULTI;
493 }
494
495 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
496 {
497         special_t *s = &drive->special;
498         ide_task_t args;
499
500         memset(&args, 0, sizeof(ide_task_t));
501         args.data_phase = TASKFILE_NO_DATA;
502
503         if (s->b.set_geometry) {
504                 s->b.set_geometry = 0;
505                 ide_tf_set_specify_cmd(drive, &args.tf);
506         } else if (s->b.recalibrate) {
507                 s->b.recalibrate = 0;
508                 ide_tf_set_restore_cmd(drive, &args.tf);
509         } else if (s->b.set_multmode) {
510                 s->b.set_multmode = 0;
511                 ide_tf_set_setmult_cmd(drive, &args.tf);
512         } else if (s->all) {
513                 int special = s->all;
514                 s->all = 0;
515                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
516                 return ide_stopped;
517         }
518
519         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
520                         IDE_TFLAG_CUSTOM_HANDLER;
521
522         do_rw_taskfile(drive, &args);
523
524         return ide_started;
525 }
526
527 /**
528  *      do_special              -       issue some special commands
529  *      @drive: drive the command is for
530  *
531  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
532  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
533  *
534  *      It used to do much more, but has been scaled back.
535  */
536
537 static ide_startstop_t do_special (ide_drive_t *drive)
538 {
539         special_t *s = &drive->special;
540
541 #ifdef DEBUG
542         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
543 #endif
544         if (drive->media == ide_disk)
545                 return ide_disk_special(drive);
546
547         s->all = 0;
548         drive->mult_req = 0;
549         return ide_stopped;
550 }
551
552 void ide_map_sg(ide_drive_t *drive, struct request *rq)
553 {
554         ide_hwif_t *hwif = drive->hwif;
555         struct scatterlist *sg = hwif->sg_table;
556
557         if (hwif->sg_mapped)    /* needed by ide-scsi */
558                 return;
559
560         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
561                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
562         } else {
563                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
564                 hwif->sg_nents = 1;
565         }
566 }
567
568 EXPORT_SYMBOL_GPL(ide_map_sg);
569
570 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
571 {
572         ide_hwif_t *hwif = drive->hwif;
573
574         hwif->nsect = hwif->nleft = rq->nr_sectors;
575         hwif->cursg_ofs = 0;
576         hwif->cursg = NULL;
577 }
578
579 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
580
581 /**
582  *      execute_drive_command   -       issue special drive command
583  *      @drive: the drive to issue the command on
584  *      @rq: the request structure holding the command
585  *
586  *      execute_drive_cmd() issues a special drive command,  usually 
587  *      initiated by ioctl() from the external hdparm program. The
588  *      command can be a drive command, drive task or taskfile 
589  *      operation. Weirdly you can call it with NULL to wait for
590  *      all commands to finish. Don't do this as that is due to change
591  */
592
593 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
594                 struct request *rq)
595 {
596         ide_hwif_t *hwif = HWIF(drive);
597         ide_task_t *task = rq->special;
598
599         if (task) {
600                 hwif->data_phase = task->data_phase;
601
602                 switch (hwif->data_phase) {
603                 case TASKFILE_MULTI_OUT:
604                 case TASKFILE_OUT:
605                 case TASKFILE_MULTI_IN:
606                 case TASKFILE_IN:
607                         ide_init_sg_cmd(drive, rq);
608                         ide_map_sg(drive, rq);
609                 default:
610                         break;
611                 }
612
613                 return do_rw_taskfile(drive, task);
614         }
615
616         /*
617          * NULL is actually a valid way of waiting for
618          * all current requests to be flushed from the queue.
619          */
620 #ifdef DEBUG
621         printk("%s: DRIVE_CMD (null)\n", drive->name);
622 #endif
623         ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
624                           ide_read_error(drive));
625
626         return ide_stopped;
627 }
628
629 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
630                        int arg)
631 {
632         struct request_queue *q = drive->queue;
633         struct request *rq;
634         int ret = 0;
635
636         if (!(setting->flags & DS_SYNC))
637                 return setting->set(drive, arg);
638
639         rq = blk_get_request(q, READ, __GFP_WAIT);
640         rq->cmd_type = REQ_TYPE_SPECIAL;
641         rq->cmd_len = 5;
642         rq->cmd[0] = REQ_DEVSET_EXEC;
643         *(int *)&rq->cmd[1] = arg;
644         rq->special = setting->set;
645
646         if (blk_execute_rq(q, NULL, rq, 0))
647                 ret = rq->errors;
648         blk_put_request(rq);
649
650         return ret;
651 }
652 EXPORT_SYMBOL_GPL(ide_devset_execute);
653
654 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
655 {
656         u8 cmd = rq->cmd[0];
657
658         if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
659                 ide_task_t task;
660                 struct ide_taskfile *tf = &task.tf;
661
662                 memset(&task, 0, sizeof(task));
663                 if (cmd == REQ_PARK_HEADS) {
664                         drive->sleep = *(unsigned long *)rq->special;
665                         drive->dev_flags |= IDE_DFLAG_SLEEPING;
666                         tf->command = ATA_CMD_IDLEIMMEDIATE;
667                         tf->feature = 0x44;
668                         tf->lbal = 0x4c;
669                         tf->lbam = 0x4e;
670                         tf->lbah = 0x55;
671                         task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
672                 } else          /* cmd == REQ_UNPARK_HEADS */
673                         tf->command = ATA_CMD_CHK_POWER;
674
675                 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
676                 task.rq = rq;
677                 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
678                 return do_rw_taskfile(drive, &task);
679         }
680
681         switch (cmd) {
682         case REQ_DEVSET_EXEC:
683         {
684                 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
685
686                 err = setfunc(drive, *(int *)&rq->cmd[1]);
687                 if (err)
688                         rq->errors = err;
689                 else
690                         err = 1;
691                 ide_end_request(drive, err, 0);
692                 return ide_stopped;
693         }
694         case REQ_DRIVE_RESET:
695                 return ide_do_reset(drive);
696         default:
697                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
698                 ide_end_request(drive, 0, 0);
699                 return ide_stopped;
700         }
701 }
702
703 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
704 {
705         struct request_pm_state *pm = rq->data;
706
707         if (blk_pm_suspend_request(rq) &&
708             pm->pm_step == IDE_PM_START_SUSPEND)
709                 /* Mark drive blocked when starting the suspend sequence. */
710                 drive->dev_flags |= IDE_DFLAG_BLOCKED;
711         else if (blk_pm_resume_request(rq) &&
712                  pm->pm_step == IDE_PM_START_RESUME) {
713                 /* 
714                  * The first thing we do on wakeup is to wait for BSY bit to
715                  * go away (with a looong timeout) as a drive on this hwif may
716                  * just be POSTing itself.
717                  * We do that before even selecting as the "other" device on
718                  * the bus may be broken enough to walk on our toes at this
719                  * point.
720                  */
721                 ide_hwif_t *hwif = drive->hwif;
722                 int rc;
723 #ifdef DEBUG_PM
724                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
725 #endif
726                 rc = ide_wait_not_busy(hwif, 35000);
727                 if (rc)
728                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
729                 SELECT_DRIVE(drive);
730                 hwif->tp_ops->set_irq(hwif, 1);
731                 rc = ide_wait_not_busy(hwif, 100000);
732                 if (rc)
733                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
734         }
735 }
736
737 /**
738  *      start_request   -       start of I/O and command issuing for IDE
739  *
740  *      start_request() initiates handling of a new I/O request. It
741  *      accepts commands and I/O (read/write) requests.
742  *
743  *      FIXME: this function needs a rename
744  */
745  
746 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
747 {
748         ide_startstop_t startstop;
749
750         BUG_ON(!blk_rq_started(rq));
751
752 #ifdef DEBUG
753         printk("%s: start_request: current=0x%08lx\n",
754                 HWIF(drive)->name, (unsigned long) rq);
755 #endif
756
757         /* bail early if we've exceeded max_failures */
758         if (drive->max_failures && (drive->failures > drive->max_failures)) {
759                 rq->cmd_flags |= REQ_FAILED;
760                 goto kill_rq;
761         }
762
763         if (blk_pm_request(rq))
764                 ide_check_pm_state(drive, rq);
765
766         SELECT_DRIVE(drive);
767         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
768                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
769                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
770                 return startstop;
771         }
772         if (!drive->special.all) {
773                 ide_driver_t *drv;
774
775                 /*
776                  * We reset the drive so we need to issue a SETFEATURES.
777                  * Do it _after_ do_special() restored device parameters.
778                  */
779                 if (drive->current_speed == 0xff)
780                         ide_config_drive_speed(drive, drive->desired_speed);
781
782                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
783                         return execute_drive_cmd(drive, rq);
784                 else if (blk_pm_request(rq)) {
785                         struct request_pm_state *pm = rq->data;
786 #ifdef DEBUG_PM
787                         printk("%s: start_power_step(step: %d)\n",
788                                 drive->name, pm->pm_step);
789 #endif
790                         startstop = ide_start_power_step(drive, rq);
791                         if (startstop == ide_stopped &&
792                             pm->pm_step == IDE_PM_COMPLETED)
793                                 ide_complete_pm_request(drive, rq);
794                         return startstop;
795                 } else if (!rq->rq_disk && blk_special_request(rq))
796                         /*
797                          * TODO: Once all ULDs have been modified to
798                          * check for specific op codes rather than
799                          * blindly accepting any special request, the
800                          * check for ->rq_disk above may be replaced
801                          * by a more suitable mechanism or even
802                          * dropped entirely.
803                          */
804                         return ide_special_rq(drive, rq);
805
806                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
807
808                 return drv->do_request(drive, rq, rq->sector);
809         }
810         return do_special(drive);
811 kill_rq:
812         ide_kill_rq(drive, rq);
813         return ide_stopped;
814 }
815
816 /**
817  *      ide_stall_queue         -       pause an IDE device
818  *      @drive: drive to stall
819  *      @timeout: time to stall for (jiffies)
820  *
821  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
822  *      to the hwgroup by sleeping for timeout jiffies.
823  */
824  
825 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
826 {
827         if (timeout > WAIT_WORSTCASE)
828                 timeout = WAIT_WORSTCASE;
829         drive->sleep = timeout + jiffies;
830         drive->dev_flags |= IDE_DFLAG_SLEEPING;
831 }
832
833 EXPORT_SYMBOL(ide_stall_queue);
834
835 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
836
837 /**
838  *      choose_drive            -       select a drive to service
839  *      @hwgroup: hardware group to select on
840  *
841  *      choose_drive() selects the next drive which will be serviced.
842  *      This is necessary because the IDE layer can't issue commands
843  *      to both drives on the same cable, unlike SCSI.
844  */
845  
846 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
847 {
848         ide_drive_t *drive, *best;
849
850 repeat: 
851         best = NULL;
852         drive = hwgroup->drive;
853
854         /*
855          * drive is doing pre-flush, ordered write, post-flush sequence. even
856          * though that is 3 requests, it must be seen as a single transaction.
857          * we must not preempt this drive until that is complete
858          */
859         if (blk_queue_flushing(drive->queue)) {
860                 /*
861                  * small race where queue could get replugged during
862                  * the 3-request flush cycle, just yank the plug since
863                  * we want it to finish asap
864                  */
865                 blk_remove_plug(drive->queue);
866                 return drive;
867         }
868
869         do {
870                 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
871                 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
872
873                 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
874                     !elv_queue_empty(drive->queue)) {
875                         if (best == NULL ||
876                             (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
877                             (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
878                                 if (!blk_queue_plugged(drive->queue))
879                                         best = drive;
880                         }
881                 }
882         } while ((drive = drive->next) != hwgroup->drive);
883
884         if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
885             (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
886             best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
887                 long t = (signed long)(WAKEUP(best) - jiffies);
888                 if (t >= WAIT_MIN_SLEEP) {
889                 /*
890                  * We *may* have some time to spare, but first let's see if
891                  * someone can potentially benefit from our nice mood today..
892                  */
893                         drive = best->next;
894                         do {
895                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
896                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
897                                  && time_before(WAKEUP(drive), jiffies + t))
898                                 {
899                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
900                                         goto repeat;
901                                 }
902                         } while ((drive = drive->next) != best);
903                 }
904         }
905         return best;
906 }
907
908 /*
909  * Issue a new request to a drive from hwgroup
910  * Caller must have already done spin_lock_irqsave(&hwgroup->lock, ..);
911  *
912  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
913  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
914  * may have both interfaces in a single hwgroup to "serialize" access.
915  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
916  * together into one hwgroup for serialized access.
917  *
918  * Note also that several hwgroups can end up sharing a single IRQ,
919  * possibly along with many other devices.  This is especially common in
920  * PCI-based systems with off-board IDE controller cards.
921  *
922  * The IDE driver uses a per-hwgroup spinlock to protect
923  * access to the request queues, and to protect the hwgroup->busy flag.
924  *
925  * The first thread into the driver for a particular hwgroup sets the
926  * hwgroup->busy flag to indicate that this hwgroup is now active,
927  * and then initiates processing of the top request from the request queue.
928  *
929  * Other threads attempting entry notice the busy setting, and will simply
930  * queue their new requests and exit immediately.  Note that hwgroup->busy
931  * remains set even when the driver is merely awaiting the next interrupt.
932  * Thus, the meaning is "this hwgroup is busy processing a request".
933  *
934  * When processing of a request completes, the completing thread or IRQ-handler
935  * will start the next request from the queue.  If no more work remains,
936  * the driver will clear the hwgroup->busy flag and exit.
937  *
938  * The per-hwgroup spinlock is used to protect all access to the
939  * hwgroup->busy flag, but is otherwise not needed for most processing in
940  * the driver.  This makes the driver much more friendlier to shared IRQs
941  * than previous designs, while remaining 100% (?) SMP safe and capable.
942  */
943 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
944 {
945         ide_drive_t     *drive;
946         ide_hwif_t      *hwif;
947         struct request  *rq;
948         ide_startstop_t startstop;
949         int             loops = 0;
950
951         /* caller must own hwgroup->lock */
952         BUG_ON(!irqs_disabled());
953
954         while (!hwgroup->busy) {
955                 hwgroup->busy = 1;
956                 /* for atari only */
957                 ide_get_lock(ide_intr, hwgroup);
958                 drive = choose_drive(hwgroup);
959                 if (drive == NULL) {
960                         int sleeping = 0;
961                         unsigned long sleep = 0; /* shut up, gcc */
962                         hwgroup->rq = NULL;
963                         drive = hwgroup->drive;
964                         do {
965                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
966                                     (sleeping == 0 ||
967                                      time_before(drive->sleep, sleep))) {
968                                         sleeping = 1;
969                                         sleep = drive->sleep;
970                                 }
971                         } while ((drive = drive->next) != hwgroup->drive);
972                         if (sleeping) {
973                 /*
974                  * Take a short snooze, and then wake up this hwgroup again.
975                  * This gives other hwgroups on the same a chance to
976                  * play fairly with us, just in case there are big differences
977                  * in relative throughputs.. don't want to hog the cpu too much.
978                  */
979                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
980                                         sleep = jiffies + WAIT_MIN_SLEEP;
981 #if 1
982                                 if (timer_pending(&hwgroup->timer))
983                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
984 #endif
985                                 /* so that ide_timer_expiry knows what to do */
986                                 hwgroup->sleeping = 1;
987                                 hwgroup->req_gen_timer = hwgroup->req_gen;
988                                 mod_timer(&hwgroup->timer, sleep);
989                                 /* we purposely leave hwgroup->busy==1
990                                  * while sleeping */
991                         } else {
992                                 /* Ugly, but how can we sleep for the lock
993                                  * otherwise? perhaps from tq_disk?
994                                  */
995
996                                 /* for atari only */
997                                 ide_release_lock();
998                                 hwgroup->busy = 0;
999                         }
1000
1001                         /* no more work for this hwgroup (for now) */
1002                         return;
1003                 }
1004         again:
1005                 hwif = HWIF(drive);
1006                 if (hwif != hwgroup->hwif) {
1007                         /*
1008                          * set nIEN for previous hwif, drives in the
1009                          * quirk_list may not like intr setups/cleanups
1010                          */
1011                         if (drive->quirk_list == 0)
1012                                 hwif->tp_ops->set_irq(hwif, 0);
1013                 }
1014                 hwgroup->hwif = hwif;
1015                 hwgroup->drive = drive;
1016                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
1017                 drive->service_start = jiffies;
1018
1019                 /*
1020                  * we know that the queue isn't empty, but this can happen
1021                  * if the q->prep_rq_fn() decides to kill a request
1022                  */
1023                 rq = elv_next_request(drive->queue);
1024                 if (!rq) {
1025                         hwgroup->busy = 0;
1026                         break;
1027                 }
1028
1029                 /*
1030                  * Sanity: don't accept a request that isn't a PM request
1031                  * if we are currently power managed. This is very important as
1032                  * blk_stop_queue() doesn't prevent the elv_next_request()
1033                  * above to return us whatever is in the queue. Since we call
1034                  * ide_do_request() ourselves, we end up taking requests while
1035                  * the queue is blocked...
1036                  * 
1037                  * We let requests forced at head of queue with ide-preempt
1038                  * though. I hope that doesn't happen too much, hopefully not
1039                  * unless the subdriver triggers such a thing in its own PM
1040                  * state machine.
1041                  *
1042                  * We count how many times we loop here to make sure we service
1043                  * all drives in the hwgroup without looping for ever
1044                  */
1045                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1046                     blk_pm_request(rq) == 0 &&
1047                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
1048                         drive = drive->next ? drive->next : hwgroup->drive;
1049                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1050                                 goto again;
1051                         /* We clear busy, there should be no pending ATA command at this point. */
1052                         hwgroup->busy = 0;
1053                         break;
1054                 }
1055
1056                 hwgroup->rq = rq;
1057
1058                 /*
1059                  * Some systems have trouble with IDE IRQs arriving while
1060                  * the driver is still setting things up.  So, here we disable
1061                  * the IRQ used by this interface while the request is being started.
1062                  * This may look bad at first, but pretty much the same thing
1063                  * happens anyway when any interrupt comes in, IDE or otherwise
1064                  *  -- the kernel masks the IRQ while it is being handled.
1065                  */
1066                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1067                         disable_irq_nosync(hwif->irq);
1068                 spin_unlock(&hwgroup->lock);
1069                 local_irq_enable_in_hardirq();
1070                         /* allow other IRQs while we start this request */
1071                 startstop = start_request(drive, rq);
1072                 spin_lock_irq(&hwgroup->lock);
1073                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1074                         enable_irq(hwif->irq);
1075                 if (startstop == ide_stopped)
1076                         hwgroup->busy = 0;
1077         }
1078 }
1079
1080 /*
1081  * Passes the stuff to ide_do_request
1082  */
1083 void do_ide_request(struct request_queue *q)
1084 {
1085         ide_drive_t *drive = q->queuedata;
1086
1087         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1088 }
1089
1090 /*
1091  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1092  * retry the current request in pio mode instead of risking tossing it
1093  * all away
1094  */
1095 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1096 {
1097         ide_hwif_t *hwif = HWIF(drive);
1098         struct request *rq;
1099         ide_startstop_t ret = ide_stopped;
1100
1101         /*
1102          * end current dma transaction
1103          */
1104
1105         if (error < 0) {
1106                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1107                 (void)hwif->dma_ops->dma_end(drive);
1108                 ret = ide_error(drive, "dma timeout error",
1109                                 hwif->tp_ops->read_status(hwif));
1110         } else {
1111                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1112                 hwif->dma_ops->dma_timeout(drive);
1113         }
1114
1115         /*
1116          * disable dma for now, but remember that we did so because of
1117          * a timeout -- we'll reenable after we finish this next request
1118          * (or rather the first chunk of it) in pio.
1119          */
1120         drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1121         drive->retry_pio++;
1122         ide_dma_off_quietly(drive);
1123
1124         /*
1125          * un-busy drive etc (hwgroup->busy is cleared on return) and
1126          * make sure request is sane
1127          */
1128         rq = HWGROUP(drive)->rq;
1129
1130         if (!rq)
1131                 goto out;
1132
1133         HWGROUP(drive)->rq = NULL;
1134
1135         rq->errors = 0;
1136
1137         if (!rq->bio)
1138                 goto out;
1139
1140         rq->sector = rq->bio->bi_sector;
1141         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1142         rq->hard_cur_sectors = rq->current_nr_sectors;
1143         rq->buffer = bio_data(rq->bio);
1144 out:
1145         return ret;
1146 }
1147
1148 /**
1149  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1150  *      @data: timer callback magic (hwgroup)
1151  *
1152  *      An IDE command has timed out before the expected drive return
1153  *      occurred. At this point we attempt to clean up the current
1154  *      mess. If the current handler includes an expiry handler then
1155  *      we invoke the expiry handler, and providing it is happy the
1156  *      work is done. If that fails we apply generic recovery rules
1157  *      invoking the handler and checking the drive DMA status. We
1158  *      have an excessively incestuous relationship with the DMA
1159  *      logic that wants cleaning up.
1160  */
1161  
1162 void ide_timer_expiry (unsigned long data)
1163 {
1164         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1165         ide_handler_t   *handler;
1166         ide_expiry_t    *expiry;
1167         unsigned long   flags;
1168         unsigned long   wait = -1;
1169
1170         spin_lock_irqsave(&hwgroup->lock, flags);
1171
1172         if (((handler = hwgroup->handler) == NULL) ||
1173             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1174                 /*
1175                  * Either a marginal timeout occurred
1176                  * (got the interrupt just as timer expired),
1177                  * or we were "sleeping" to give other devices a chance.
1178                  * Either way, we don't really want to complain about anything.
1179                  */
1180                 if (hwgroup->sleeping) {
1181                         hwgroup->sleeping = 0;
1182                         hwgroup->busy = 0;
1183                 }
1184         } else {
1185                 ide_drive_t *drive = hwgroup->drive;
1186                 if (!drive) {
1187                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1188                         hwgroup->handler = NULL;
1189                 } else {
1190                         ide_hwif_t *hwif;
1191                         ide_startstop_t startstop = ide_stopped;
1192                         if (!hwgroup->busy) {
1193                                 hwgroup->busy = 1;      /* paranoia */
1194                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1195                         }
1196                         if ((expiry = hwgroup->expiry) != NULL) {
1197                                 /* continue */
1198                                 if ((wait = expiry(drive)) > 0) {
1199                                         /* reset timer */
1200                                         hwgroup->timer.expires  = jiffies + wait;
1201                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1202                                         add_timer(&hwgroup->timer);
1203                                         spin_unlock_irqrestore(&hwgroup->lock, flags);
1204                                         return;
1205                                 }
1206                         }
1207                         hwgroup->handler = NULL;
1208                         /*
1209                          * We need to simulate a real interrupt when invoking
1210                          * the handler() function, which means we need to
1211                          * globally mask the specific IRQ:
1212                          */
1213                         spin_unlock(&hwgroup->lock);
1214                         hwif  = HWIF(drive);
1215                         /* disable_irq_nosync ?? */
1216                         disable_irq(hwif->irq);
1217                         /* local CPU only,
1218                          * as if we were handling an interrupt */
1219                         local_irq_disable();
1220                         if (hwgroup->polling) {
1221                                 startstop = handler(drive);
1222                         } else if (drive_is_ready(drive)) {
1223                                 if (drive->waiting_for_dma)
1224                                         hwif->dma_ops->dma_lost_irq(drive);
1225                                 (void)ide_ack_intr(hwif);
1226                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1227                                 startstop = handler(drive);
1228                         } else {
1229                                 if (drive->waiting_for_dma) {
1230                                         startstop = ide_dma_timeout_retry(drive, wait);
1231                                 } else
1232                                         startstop =
1233                                         ide_error(drive, "irq timeout",
1234                                                   hwif->tp_ops->read_status(hwif));
1235                         }
1236                         drive->service_time = jiffies - drive->service_start;
1237                         spin_lock_irq(&hwgroup->lock);
1238                         enable_irq(hwif->irq);
1239                         if (startstop == ide_stopped)
1240                                 hwgroup->busy = 0;
1241                 }
1242         }
1243         ide_do_request(hwgroup, IDE_NO_IRQ);
1244         spin_unlock_irqrestore(&hwgroup->lock, flags);
1245 }
1246
1247 /**
1248  *      unexpected_intr         -       handle an unexpected IDE interrupt
1249  *      @irq: interrupt line
1250  *      @hwgroup: hwgroup being processed
1251  *
1252  *      There's nothing really useful we can do with an unexpected interrupt,
1253  *      other than reading the status register (to clear it), and logging it.
1254  *      There should be no way that an irq can happen before we're ready for it,
1255  *      so we needn't worry much about losing an "important" interrupt here.
1256  *
1257  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1258  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1259  *      looks "good", we just ignore the interrupt completely.
1260  *
1261  *      This routine assumes __cli() is in effect when called.
1262  *
1263  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1264  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1265  *      we could screw up by interfering with a new request being set up for 
1266  *      irq15.
1267  *
1268  *      In reality, this is a non-issue.  The new command is not sent unless 
1269  *      the drive is ready to accept one, in which case we know the drive is
1270  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1271  *      before completing the issuance of any new drive command, so we will not
1272  *      be accidentally invoked as a result of any valid command completion
1273  *      interrupt.
1274  *
1275  *      Note that we must walk the entire hwgroup here. We know which hwif
1276  *      is doing the current command, but we don't know which hwif burped
1277  *      mysteriously.
1278  */
1279  
1280 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1281 {
1282         u8 stat;
1283         ide_hwif_t *hwif = hwgroup->hwif;
1284
1285         /*
1286          * handle the unexpected interrupt
1287          */
1288         do {
1289                 if (hwif->irq == irq) {
1290                         stat = hwif->tp_ops->read_status(hwif);
1291
1292                         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1293                                 /* Try to not flood the console with msgs */
1294                                 static unsigned long last_msgtime, count;
1295                                 ++count;
1296                                 if (time_after(jiffies, last_msgtime + HZ)) {
1297                                         last_msgtime = jiffies;
1298                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1299                                                 "status=0x%02x, count=%ld\n",
1300                                                 hwif->name,
1301                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1302                                 }
1303                         }
1304                 }
1305         } while ((hwif = hwif->next) != hwgroup->hwif);
1306 }
1307
1308 /**
1309  *      ide_intr        -       default IDE interrupt handler
1310  *      @irq: interrupt number
1311  *      @dev_id: hwif group
1312  *      @regs: unused weirdness from the kernel irq layer
1313  *
1314  *      This is the default IRQ handler for the IDE layer. You should
1315  *      not need to override it. If you do be aware it is subtle in
1316  *      places
1317  *
1318  *      hwgroup->hwif is the interface in the group currently performing
1319  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1320  *      the IRQ handler to call. As we issue a command the handlers
1321  *      step through multiple states, reassigning the handler to the
1322  *      next step in the process. Unlike a smart SCSI controller IDE
1323  *      expects the main processor to sequence the various transfer
1324  *      stages. We also manage a poll timer to catch up with most
1325  *      timeout situations. There are still a few where the handlers
1326  *      don't ever decide to give up.
1327  *
1328  *      The handler eventually returns ide_stopped to indicate the
1329  *      request completed. At this point we issue the next request
1330  *      on the hwgroup and the process begins again.
1331  */
1332  
1333 irqreturn_t ide_intr (int irq, void *dev_id)
1334 {
1335         unsigned long flags;
1336         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1337         ide_hwif_t *hwif = hwgroup->hwif;
1338         ide_drive_t *drive;
1339         ide_handler_t *handler;
1340         ide_startstop_t startstop;
1341         irqreturn_t irq_ret = IRQ_NONE;
1342
1343         spin_lock_irqsave(&hwgroup->lock, flags);
1344
1345         if (!ide_ack_intr(hwif))
1346                 goto out;
1347
1348         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1349                 /*
1350                  * Not expecting an interrupt from this drive.
1351                  * That means this could be:
1352                  *      (1) an interrupt from another PCI device
1353                  *      sharing the same PCI INT# as us.
1354                  * or   (2) a drive just entered sleep or standby mode,
1355                  *      and is interrupting to let us know.
1356                  * or   (3) a spurious interrupt of unknown origin.
1357                  *
1358                  * For PCI, we cannot tell the difference,
1359                  * so in that case we just ignore it and hope it goes away.
1360                  *
1361                  * FIXME: unexpected_intr should be hwif-> then we can
1362                  * remove all the ifdef PCI crap
1363                  */
1364 #ifdef CONFIG_BLK_DEV_IDEPCI
1365                 if (hwif->chipset != ide_pci)
1366 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1367                 {
1368                         /*
1369                          * Probably not a shared PCI interrupt,
1370                          * so we can safely try to do something about it:
1371                          */
1372                         unexpected_intr(irq, hwgroup);
1373 #ifdef CONFIG_BLK_DEV_IDEPCI
1374                 } else {
1375                         /*
1376                          * Whack the status register, just in case
1377                          * we have a leftover pending IRQ.
1378                          */
1379                         (void)hwif->tp_ops->read_status(hwif);
1380 #endif /* CONFIG_BLK_DEV_IDEPCI */
1381                 }
1382                 goto out;
1383         }
1384
1385         drive = hwgroup->drive;
1386         if (!drive) {
1387                 /*
1388                  * This should NEVER happen, and there isn't much
1389                  * we could do about it here.
1390                  *
1391                  * [Note - this can occur if the drive is hot unplugged]
1392                  */
1393                 goto out_handled;
1394         }
1395
1396         if (!drive_is_ready(drive))
1397                 /*
1398                  * This happens regularly when we share a PCI IRQ with
1399                  * another device.  Unfortunately, it can also happen
1400                  * with some buggy drives that trigger the IRQ before
1401                  * their status register is up to date.  Hopefully we have
1402                  * enough advance overhead that the latter isn't a problem.
1403                  */
1404                 goto out;
1405
1406         if (!hwgroup->busy) {
1407                 hwgroup->busy = 1;      /* paranoia */
1408                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1409         }
1410         hwgroup->handler = NULL;
1411         hwgroup->req_gen++;
1412         del_timer(&hwgroup->timer);
1413         spin_unlock(&hwgroup->lock);
1414
1415         if (hwif->port_ops && hwif->port_ops->clear_irq)
1416                 hwif->port_ops->clear_irq(drive);
1417
1418         if (drive->dev_flags & IDE_DFLAG_UNMASK)
1419                 local_irq_enable_in_hardirq();
1420
1421         /* service this interrupt, may set handler for next interrupt */
1422         startstop = handler(drive);
1423
1424         spin_lock_irq(&hwgroup->lock);
1425         /*
1426          * Note that handler() may have set things up for another
1427          * interrupt to occur soon, but it cannot happen until
1428          * we exit from this routine, because it will be the
1429          * same irq as is currently being serviced here, and Linux
1430          * won't allow another of the same (on any CPU) until we return.
1431          */
1432         drive->service_time = jiffies - drive->service_start;
1433         if (startstop == ide_stopped) {
1434                 if (hwgroup->handler == NULL) { /* paranoia */
1435                         hwgroup->busy = 0;
1436                         ide_do_request(hwgroup, hwif->irq);
1437                 } else {
1438                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1439                                 "on exit\n", drive->name);
1440                 }
1441         }
1442 out_handled:
1443         irq_ret = IRQ_HANDLED;
1444 out:
1445         spin_unlock_irqrestore(&hwgroup->lock, flags);
1446         return irq_ret;
1447 }
1448
1449 /**
1450  *      ide_do_drive_cmd        -       issue IDE special command
1451  *      @drive: device to issue command
1452  *      @rq: request to issue
1453  *
1454  *      This function issues a special IDE device request
1455  *      onto the request queue.
1456  *
1457  *      the rq is queued at the head of the request queue, displacing
1458  *      the currently-being-processed request and this function
1459  *      returns immediately without waiting for the new rq to be
1460  *      completed.  This is VERY DANGEROUS, and is intended for
1461  *      careful use by the ATAPI tape/cdrom driver code.
1462  */
1463
1464 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1465 {
1466         ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
1467         struct request_queue *q = drive->queue;
1468         unsigned long flags;
1469
1470         hwgroup->rq = NULL;
1471
1472         spin_lock_irqsave(q->queue_lock, flags);
1473         __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
1474         blk_start_queueing(q);
1475         spin_unlock_irqrestore(q->queue_lock, flags);
1476 }
1477 EXPORT_SYMBOL(ide_do_drive_cmd);
1478
1479 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1480 {
1481         ide_hwif_t *hwif = drive->hwif;
1482         ide_task_t task;
1483
1484         memset(&task, 0, sizeof(task));
1485         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1486                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1487         task.tf.feature = dma;          /* Use PIO/DMA */
1488         task.tf.lbam    = bcount & 0xff;
1489         task.tf.lbah    = (bcount >> 8) & 0xff;
1490
1491         ide_tf_dump(drive->name, &task.tf);
1492         hwif->tp_ops->set_irq(hwif, 1);
1493         SELECT_MASK(drive, 0);
1494         hwif->tp_ops->tf_load(drive, &task);
1495 }
1496
1497 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1498
1499 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1500 {
1501         ide_hwif_t *hwif = drive->hwif;
1502         u8 buf[4] = { 0 };
1503
1504         while (len > 0) {
1505                 if (write)
1506                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1507                 else
1508                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1509                 len -= 4;
1510         }
1511 }
1512 EXPORT_SYMBOL_GPL(ide_pad_transfer);