2 * linux/arch/i386/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1996-05-03 Ingo Molnar
14 * fixed time warps in do_[slow|fast]_gettimeoffset()
15 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
16 * "A Kernel Model for Precision Timekeeping" by Dave Mills
17 * 1998-09-05 (Various)
18 * More robust do_fast_gettimeoffset() algorithm implemented
19 * (works with APM, Cyrix 6x86MX and Centaur C6),
20 * monotonic gettimeofday() with fast_get_timeoffset(),
21 * drift-proof precision TSC calibration on boot
22 * (C. Scott Ananian <cananian@alumni.princeton.edu>, Andrew D.
23 * Balsa <andrebalsa@altern.org>, Philip Gladstone <philip@raptor.com>;
24 * ported from 2.0.35 Jumbo-9 by Michael Krause <m.krause@tu-harburg.de>).
25 * 1998-12-16 Andrea Arcangeli
26 * Fixed Jumbo-9 code in 2.1.131: do_gettimeofday was missing 1 jiffy
27 * because was not accounting lost_ticks.
28 * 1998-12-24 Copyright (C) 1998 Andrea Arcangeli
29 * Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
30 * serialize accesses to xtime/lost_ticks).
33 #include <linux/errno.h>
34 #include <linux/sched.h>
35 #include <linux/kernel.h>
36 #include <linux/param.h>
37 #include <linux/string.h>
39 #include <linux/interrupt.h>
40 #include <linux/time.h>
41 #include <linux/delay.h>
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/module.h>
45 #include <linux/sysdev.h>
46 #include <linux/bcd.h>
47 #include <linux/efi.h>
48 #include <linux/mca.h>
54 #include <asm/delay.h>
55 #include <asm/mpspec.h>
56 #include <asm/uaccess.h>
57 #include <asm/processor.h>
58 #include <asm/timer.h>
60 #include "mach_time.h"
62 #include <linux/timex.h>
63 #include <linux/config.h>
67 #include <asm/arch_hooks.h>
71 #include <asm/i8259.h>
73 int pit_latch_buggy; /* extern */
77 u64 jiffies_64 = INITIAL_JIFFIES;
79 EXPORT_SYMBOL(jiffies_64);
81 unsigned int cpu_khz; /* Detected as we calibrate the TSC */
82 EXPORT_SYMBOL(cpu_khz);
84 extern unsigned long wall_jiffies;
86 DEFINE_SPINLOCK(rtc_lock);
87 EXPORT_SYMBOL(rtc_lock);
89 #include <asm/i8253.h>
91 DEFINE_SPINLOCK(i8253_lock);
92 EXPORT_SYMBOL(i8253_lock);
94 struct timer_opts *cur_timer __read_mostly = &timer_none;
97 * This is a special lock that is owned by the CPU and holds the index
98 * register we are working with. It is required for NMI access to the
99 * CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details.
101 volatile unsigned long cmos_lock = 0;
102 EXPORT_SYMBOL(cmos_lock);
104 /* Routines for accessing the CMOS RAM/RTC. */
105 unsigned char rtc_cmos_read(unsigned char addr)
108 lock_cmos_prefix(addr);
109 outb_p(addr, RTC_PORT(0));
110 val = inb_p(RTC_PORT(1));
111 lock_cmos_suffix(addr);
114 EXPORT_SYMBOL(rtc_cmos_read);
116 void rtc_cmos_write(unsigned char val, unsigned char addr)
118 lock_cmos_prefix(addr);
119 outb_p(addr, RTC_PORT(0));
120 outb_p(val, RTC_PORT(1));
121 lock_cmos_suffix(addr);
123 EXPORT_SYMBOL(rtc_cmos_write);
126 * This version of gettimeofday has microsecond resolution
127 * and better than microsecond precision on fast x86 machines with TSC.
129 void do_gettimeofday(struct timeval *tv)
132 unsigned long usec, sec;
133 unsigned long max_ntp_tick;
138 seq = read_seqbegin(&xtime_lock);
140 usec = cur_timer->get_offset();
141 lost = jiffies - wall_jiffies;
144 * If time_adjust is negative then NTP is slowing the clock
145 * so make sure not to go into next possible interval.
146 * Better to lose some accuracy than have time go backwards..
148 if (unlikely(time_adjust < 0)) {
149 max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
150 usec = min(usec, max_ntp_tick);
153 usec += lost * max_ntp_tick;
155 else if (unlikely(lost))
156 usec += lost * (USEC_PER_SEC / HZ);
159 usec += (xtime.tv_nsec / 1000);
160 } while (read_seqretry(&xtime_lock, seq));
162 while (usec >= 1000000) {
171 EXPORT_SYMBOL(do_gettimeofday);
173 int do_settimeofday(struct timespec *tv)
175 time_t wtm_sec, sec = tv->tv_sec;
176 long wtm_nsec, nsec = tv->tv_nsec;
178 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
181 write_seqlock_irq(&xtime_lock);
183 * This is revolting. We need to set "xtime" correctly. However, the
184 * value in this location is the value at the most recent update of
185 * wall time. Discover what correction gettimeofday() would have
186 * made, and then undo it!
188 nsec -= cur_timer->get_offset() * NSEC_PER_USEC;
189 nsec -= (jiffies - wall_jiffies) * TICK_NSEC;
191 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
192 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
194 set_normalized_timespec(&xtime, sec, nsec);
195 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
198 write_sequnlock_irq(&xtime_lock);
203 EXPORT_SYMBOL(do_settimeofday);
205 static int set_rtc_mmss(unsigned long nowtime)
209 WARN_ON(irqs_disabled());
211 /* gets recalled with irq locally disabled */
212 spin_lock_irq(&rtc_lock);
214 retval = efi_set_rtc_mmss(nowtime);
216 retval = mach_set_rtc_mmss(nowtime);
217 spin_unlock_irq(&rtc_lock);
225 /* monotonic_clock(): returns # of nanoseconds passed since time_init()
226 * Note: This function is required to return accurate
227 * time even in the absence of multiple timer ticks.
229 unsigned long long monotonic_clock(void)
231 return cur_timer->monotonic_clock();
233 EXPORT_SYMBOL(monotonic_clock);
235 #if defined(CONFIG_SMP) && defined(CONFIG_FRAME_POINTER)
236 unsigned long profile_pc(struct pt_regs *regs)
238 unsigned long pc = instruction_pointer(regs);
240 if (in_lock_functions(pc))
241 return *(unsigned long *)(regs->ebp + 4);
245 EXPORT_SYMBOL(profile_pc);
249 * timer_interrupt() needs to keep up the real-time clock,
250 * as well as call the "do_timer()" routine every clocktick
252 static inline void do_timer_interrupt(int irq, struct pt_regs *regs)
254 #ifdef CONFIG_X86_IO_APIC
257 * Subtle, when I/O APICs are used we have to ack timer IRQ
258 * manually to reset the IRR bit for do_slow_gettimeoffset().
259 * This will also deassert NMI lines for the watchdog if run
260 * on an 82489DX-based system.
262 spin_lock(&i8259A_lock);
263 outb(0x0c, PIC_MASTER_OCW3);
264 /* Ack the IRQ; AEOI will end it automatically. */
265 inb(PIC_MASTER_POLL);
266 spin_unlock(&i8259A_lock);
270 do_timer_interrupt_hook(regs);
274 /* The PS/2 uses level-triggered interrupts. You can't
275 turn them off, nor would you want to (any attempt to
276 enable edge-triggered interrupts usually gets intercepted by a
277 special hardware circuit). Hence we have to acknowledge
278 the timer interrupt. Through some incredibly stupid
279 design idea, the reset for IRQ 0 is done by setting the
280 high bit of the PPI port B (0x61). Note that some PS/2s,
281 notably the 55SX, work fine if this is removed. */
283 irq = inb_p( 0x61 ); /* read the current state */
284 outb_p( irq|0x80, 0x61 ); /* reset the IRQ */
289 * This is the same as the above, except we _also_ save the current
290 * Time Stamp Counter value at the time of the timer interrupt, so that
291 * we later on can estimate the time of day more exactly.
293 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
296 * Here we are in the timer irq handler. We just have irqs locally
297 * disabled but we don't know if the timer_bh is running on the other
298 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
299 * the irq version of write_lock because as just said we have irq
300 * locally disabled. -arca
302 write_seqlock(&xtime_lock);
304 cur_timer->mark_offset();
306 do_timer_interrupt(irq, regs);
308 write_sequnlock(&xtime_lock);
312 /* not static: needed by APM */
313 unsigned long get_cmos_time(void)
315 unsigned long retval;
317 spin_lock(&rtc_lock);
320 retval = efi_get_time();
322 retval = mach_get_cmos_time();
324 spin_unlock(&rtc_lock);
328 EXPORT_SYMBOL(get_cmos_time);
330 static void sync_cmos_clock(unsigned long dummy);
332 static struct timer_list sync_cmos_timer =
333 TIMER_INITIALIZER(sync_cmos_clock, 0, 0);
335 static void sync_cmos_clock(unsigned long dummy)
337 struct timeval now, next;
341 * If we have an externally synchronized Linux clock, then update
342 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
343 * called as close as possible to 500 ms before the new second starts.
344 * This code is run on a timer. If the clock is set, that timer
345 * may not expire at the correct time. Thus, we adjust...
349 * Not synced, exit, do not restart a timer (if one is
350 * running, let it run out).
354 do_gettimeofday(&now);
355 if (now.tv_usec >= USEC_AFTER - ((unsigned) TICK_SIZE) / 2 &&
356 now.tv_usec <= USEC_BEFORE + ((unsigned) TICK_SIZE) / 2)
357 fail = set_rtc_mmss(now.tv_sec);
359 next.tv_usec = USEC_AFTER - now.tv_usec;
360 if (next.tv_usec <= 0)
361 next.tv_usec += USEC_PER_SEC;
368 if (next.tv_usec >= USEC_PER_SEC) {
370 next.tv_usec -= USEC_PER_SEC;
372 mod_timer(&sync_cmos_timer, jiffies + timeval_to_jiffies(&next));
375 void notify_arch_cmos_timer(void)
377 mod_timer(&sync_cmos_timer, jiffies + 1);
380 static long clock_cmos_diff, sleep_start;
382 static struct timer_opts *last_timer;
383 static int timer_suspend(struct sys_device *dev, pm_message_t state)
386 * Estimate time zone so that set_time can update the clock
388 clock_cmos_diff = -get_cmos_time();
389 clock_cmos_diff += get_seconds();
390 sleep_start = get_cmos_time();
391 last_timer = cur_timer;
392 cur_timer = &timer_none;
393 if (last_timer->suspend)
394 last_timer->suspend(state);
398 static int timer_resume(struct sys_device *dev)
402 unsigned long sleep_length;
404 #ifdef CONFIG_HPET_TIMER
405 if (is_hpet_enabled())
409 sec = get_cmos_time() + clock_cmos_diff;
410 sleep_length = (get_cmos_time() - sleep_start) * HZ;
411 write_seqlock_irqsave(&xtime_lock, flags);
414 write_sequnlock_irqrestore(&xtime_lock, flags);
415 jiffies += sleep_length;
416 wall_jiffies += sleep_length;
417 if (last_timer->resume)
418 last_timer->resume();
419 cur_timer = last_timer;
421 touch_softlockup_watchdog();
425 static struct sysdev_class timer_sysclass = {
426 .resume = timer_resume,
427 .suspend = timer_suspend,
428 set_kset_name("timer"),
432 /* XXX this driverfs stuff should probably go elsewhere later -john */
433 static struct sys_device device_timer = {
435 .cls = &timer_sysclass,
438 static int time_init_device(void)
440 int error = sysdev_class_register(&timer_sysclass);
442 error = sysdev_register(&device_timer);
446 device_initcall(time_init_device);
448 #ifdef CONFIG_HPET_TIMER
449 extern void (*late_time_init)(void);
450 /* Duplicate of time_init() below, with hpet_enable part added */
451 static void __init hpet_time_init(void)
453 xtime.tv_sec = get_cmos_time();
454 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
455 set_normalized_timespec(&wall_to_monotonic,
456 -xtime.tv_sec, -xtime.tv_nsec);
458 if ((hpet_enable() >= 0) && hpet_use_timer) {
459 printk("Using HPET for base-timer\n");
462 cur_timer = select_timer();
463 printk(KERN_INFO "Using %s for high-res timesource\n",cur_timer->name);
469 void __init time_init(void)
471 #ifdef CONFIG_HPET_TIMER
472 if (is_hpet_capable()) {
474 * HPET initialization needs to do memory-mapped io. So, let
475 * us do a late initialization after mem_init().
477 late_time_init = hpet_time_init;
481 xtime.tv_sec = get_cmos_time();
482 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
483 set_normalized_timespec(&wall_to_monotonic,
484 -xtime.tv_sec, -xtime.tv_nsec);
486 cur_timer = select_timer();
487 printk(KERN_INFO "Using %s for high-res timesource\n",cur_timer->name);