1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
46 #include <linux/dca.h>
50 #define DRV_VERSION "1.2.45-k2"
51 char igb_driver_name[] = "igb";
52 char igb_driver_version[] = DRV_VERSION;
53 static const char igb_driver_string[] =
54 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
57 static const struct e1000_info *igb_info_tbl[] = {
58 [board_82575] = &e1000_82575_info,
61 static struct pci_device_id igb_pci_tbl[] = {
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
68 /* required last entry */
72 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74 void igb_reset(struct igb_adapter *);
75 static int igb_setup_all_tx_resources(struct igb_adapter *);
76 static int igb_setup_all_rx_resources(struct igb_adapter *);
77 static void igb_free_all_tx_resources(struct igb_adapter *);
78 static void igb_free_all_rx_resources(struct igb_adapter *);
79 void igb_update_stats(struct igb_adapter *);
80 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
81 static void __devexit igb_remove(struct pci_dev *pdev);
82 static int igb_sw_init(struct igb_adapter *);
83 static int igb_open(struct net_device *);
84 static int igb_close(struct net_device *);
85 static void igb_configure_tx(struct igb_adapter *);
86 static void igb_configure_rx(struct igb_adapter *);
87 static void igb_setup_rctl(struct igb_adapter *);
88 static void igb_clean_all_tx_rings(struct igb_adapter *);
89 static void igb_clean_all_rx_rings(struct igb_adapter *);
90 static void igb_clean_tx_ring(struct igb_ring *);
91 static void igb_clean_rx_ring(struct igb_ring *);
92 static void igb_set_multi(struct net_device *);
93 static void igb_update_phy_info(unsigned long);
94 static void igb_watchdog(unsigned long);
95 static void igb_watchdog_task(struct work_struct *);
96 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
99 static struct net_device_stats *igb_get_stats(struct net_device *);
100 static int igb_change_mtu(struct net_device *, int);
101 static int igb_set_mac(struct net_device *, void *);
102 static irqreturn_t igb_intr(int irq, void *);
103 static irqreturn_t igb_intr_msi(int irq, void *);
104 static irqreturn_t igb_msix_other(int irq, void *);
105 static irqreturn_t igb_msix_rx(int irq, void *);
106 static irqreturn_t igb_msix_tx(int irq, void *);
107 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
108 #ifdef CONFIG_IGB_DCA
109 static void igb_update_rx_dca(struct igb_ring *);
110 static void igb_update_tx_dca(struct igb_ring *);
111 static void igb_setup_dca(struct igb_adapter *);
112 #endif /* CONFIG_IGB_DCA */
113 static bool igb_clean_tx_irq(struct igb_ring *);
114 static int igb_poll(struct napi_struct *, int);
115 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
116 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
117 #ifdef CONFIG_IGB_LRO
118 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
120 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121 static void igb_tx_timeout(struct net_device *);
122 static void igb_reset_task(struct work_struct *);
123 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124 static void igb_vlan_rx_add_vid(struct net_device *, u16);
125 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126 static void igb_restore_vlan(struct igb_adapter *);
128 static int igb_suspend(struct pci_dev *, pm_message_t);
130 static int igb_resume(struct pci_dev *);
132 static void igb_shutdown(struct pci_dev *);
133 #ifdef CONFIG_IGB_DCA
134 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
135 static struct notifier_block dca_notifier = {
136 .notifier_call = igb_notify_dca,
142 #ifdef CONFIG_NET_POLL_CONTROLLER
143 /* for netdump / net console */
144 static void igb_netpoll(struct net_device *);
147 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
148 pci_channel_state_t);
149 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
150 static void igb_io_resume(struct pci_dev *);
152 static struct pci_error_handlers igb_err_handler = {
153 .error_detected = igb_io_error_detected,
154 .slot_reset = igb_io_slot_reset,
155 .resume = igb_io_resume,
159 static struct pci_driver igb_driver = {
160 .name = igb_driver_name,
161 .id_table = igb_pci_tbl,
163 .remove = __devexit_p(igb_remove),
165 /* Power Managment Hooks */
166 .suspend = igb_suspend,
167 .resume = igb_resume,
169 .shutdown = igb_shutdown,
170 .err_handler = &igb_err_handler
173 static int global_quad_port_a; /* global quad port a indication */
175 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
176 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
177 MODULE_LICENSE("GPL");
178 MODULE_VERSION(DRV_VERSION);
182 * igb_get_hw_dev_name - return device name string
183 * used by hardware layer to print debugging information
185 char *igb_get_hw_dev_name(struct e1000_hw *hw)
187 struct igb_adapter *adapter = hw->back;
188 return adapter->netdev->name;
193 * igb_init_module - Driver Registration Routine
195 * igb_init_module is the first routine called when the driver is
196 * loaded. All it does is register with the PCI subsystem.
198 static int __init igb_init_module(void)
201 printk(KERN_INFO "%s - version %s\n",
202 igb_driver_string, igb_driver_version);
204 printk(KERN_INFO "%s\n", igb_copyright);
206 global_quad_port_a = 0;
208 ret = pci_register_driver(&igb_driver);
209 #ifdef CONFIG_IGB_DCA
210 dca_register_notify(&dca_notifier);
215 module_init(igb_init_module);
218 * igb_exit_module - Driver Exit Cleanup Routine
220 * igb_exit_module is called just before the driver is removed
223 static void __exit igb_exit_module(void)
225 #ifdef CONFIG_IGB_DCA
226 dca_unregister_notify(&dca_notifier);
228 pci_unregister_driver(&igb_driver);
231 module_exit(igb_exit_module);
234 * igb_alloc_queues - Allocate memory for all rings
235 * @adapter: board private structure to initialize
237 * We allocate one ring per queue at run-time since we don't know the
238 * number of queues at compile-time.
240 static int igb_alloc_queues(struct igb_adapter *adapter)
244 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
245 sizeof(struct igb_ring), GFP_KERNEL);
246 if (!adapter->tx_ring)
249 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
250 sizeof(struct igb_ring), GFP_KERNEL);
251 if (!adapter->rx_ring) {
252 kfree(adapter->tx_ring);
256 adapter->rx_ring->buddy = adapter->tx_ring;
258 for (i = 0; i < adapter->num_tx_queues; i++) {
259 struct igb_ring *ring = &(adapter->tx_ring[i]);
260 ring->count = adapter->tx_ring_count;
261 ring->adapter = adapter;
262 ring->queue_index = i;
264 for (i = 0; i < adapter->num_rx_queues; i++) {
265 struct igb_ring *ring = &(adapter->rx_ring[i]);
266 ring->count = adapter->rx_ring_count;
267 ring->adapter = adapter;
268 ring->queue_index = i;
269 ring->itr_register = E1000_ITR;
271 /* set a default napi handler for each rx_ring */
272 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
277 static void igb_free_queues(struct igb_adapter *adapter)
281 for (i = 0; i < adapter->num_rx_queues; i++)
282 netif_napi_del(&adapter->rx_ring[i].napi);
284 kfree(adapter->tx_ring);
285 kfree(adapter->rx_ring);
288 #define IGB_N0_QUEUE -1
289 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
290 int tx_queue, int msix_vector)
293 struct e1000_hw *hw = &adapter->hw;
296 switch (hw->mac.type) {
298 /* The 82575 assigns vectors using a bitmask, which matches the
299 bitmask for the EICR/EIMS/EIMC registers. To assign one
300 or more queues to a vector, we write the appropriate bits
301 into the MSIXBM register for that vector. */
302 if (rx_queue > IGB_N0_QUEUE) {
303 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
304 adapter->rx_ring[rx_queue].eims_value = msixbm;
306 if (tx_queue > IGB_N0_QUEUE) {
307 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
308 adapter->tx_ring[tx_queue].eims_value =
309 E1000_EICR_TX_QUEUE0 << tx_queue;
311 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
314 /* The 82576 uses a table-based method for assigning vectors.
315 Each queue has a single entry in the table to which we write
316 a vector number along with a "valid" bit. Sadly, the layout
317 of the table is somewhat counterintuitive. */
318 if (rx_queue > IGB_N0_QUEUE) {
319 index = (rx_queue & 0x7);
320 ivar = array_rd32(E1000_IVAR0, index);
322 /* vector goes into low byte of register */
323 ivar = ivar & 0xFFFFFF00;
324 ivar |= msix_vector | E1000_IVAR_VALID;
326 /* vector goes into third byte of register */
327 ivar = ivar & 0xFF00FFFF;
328 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
330 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
331 array_wr32(E1000_IVAR0, index, ivar);
333 if (tx_queue > IGB_N0_QUEUE) {
334 index = (tx_queue & 0x7);
335 ivar = array_rd32(E1000_IVAR0, index);
337 /* vector goes into second byte of register */
338 ivar = ivar & 0xFFFF00FF;
339 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
341 /* vector goes into high byte of register */
342 ivar = ivar & 0x00FFFFFF;
343 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
345 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
346 array_wr32(E1000_IVAR0, index, ivar);
356 * igb_configure_msix - Configure MSI-X hardware
358 * igb_configure_msix sets up the hardware to properly
359 * generate MSI-X interrupts.
361 static void igb_configure_msix(struct igb_adapter *adapter)
365 struct e1000_hw *hw = &adapter->hw;
367 adapter->eims_enable_mask = 0;
368 if (hw->mac.type == e1000_82576)
369 /* Turn on MSI-X capability first, or our settings
370 * won't stick. And it will take days to debug. */
371 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
372 E1000_GPIE_PBA | E1000_GPIE_EIAME |
375 for (i = 0; i < adapter->num_tx_queues; i++) {
376 struct igb_ring *tx_ring = &adapter->tx_ring[i];
377 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
378 adapter->eims_enable_mask |= tx_ring->eims_value;
379 if (tx_ring->itr_val)
380 writel(tx_ring->itr_val,
381 hw->hw_addr + tx_ring->itr_register);
383 writel(1, hw->hw_addr + tx_ring->itr_register);
386 for (i = 0; i < adapter->num_rx_queues; i++) {
387 struct igb_ring *rx_ring = &adapter->rx_ring[i];
388 rx_ring->buddy = NULL;
389 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
390 adapter->eims_enable_mask |= rx_ring->eims_value;
391 if (rx_ring->itr_val)
392 writel(rx_ring->itr_val,
393 hw->hw_addr + rx_ring->itr_register);
395 writel(1, hw->hw_addr + rx_ring->itr_register);
399 /* set vector for other causes, i.e. link changes */
400 switch (hw->mac.type) {
402 array_wr32(E1000_MSIXBM(0), vector++,
405 tmp = rd32(E1000_CTRL_EXT);
406 /* enable MSI-X PBA support*/
407 tmp |= E1000_CTRL_EXT_PBA_CLR;
409 /* Auto-Mask interrupts upon ICR read. */
410 tmp |= E1000_CTRL_EXT_EIAME;
411 tmp |= E1000_CTRL_EXT_IRCA;
413 wr32(E1000_CTRL_EXT, tmp);
414 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
415 adapter->eims_other = E1000_EIMS_OTHER;
420 tmp = (vector++ | E1000_IVAR_VALID) << 8;
421 wr32(E1000_IVAR_MISC, tmp);
423 adapter->eims_enable_mask = (1 << (vector)) - 1;
424 adapter->eims_other = 1 << (vector - 1);
427 /* do nothing, since nothing else supports MSI-X */
429 } /* switch (hw->mac.type) */
434 * igb_request_msix - Initialize MSI-X interrupts
436 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
439 static int igb_request_msix(struct igb_adapter *adapter)
441 struct net_device *netdev = adapter->netdev;
442 int i, err = 0, vector = 0;
446 for (i = 0; i < adapter->num_tx_queues; i++) {
447 struct igb_ring *ring = &(adapter->tx_ring[i]);
448 sprintf(ring->name, "%s-tx%d", netdev->name, i);
449 err = request_irq(adapter->msix_entries[vector].vector,
450 &igb_msix_tx, 0, ring->name,
451 &(adapter->tx_ring[i]));
454 ring->itr_register = E1000_EITR(0) + (vector << 2);
455 ring->itr_val = 976; /* ~4000 ints/sec */
458 for (i = 0; i < adapter->num_rx_queues; i++) {
459 struct igb_ring *ring = &(adapter->rx_ring[i]);
460 if (strlen(netdev->name) < (IFNAMSIZ - 5))
461 sprintf(ring->name, "%s-rx%d", netdev->name, i);
463 memcpy(ring->name, netdev->name, IFNAMSIZ);
464 err = request_irq(adapter->msix_entries[vector].vector,
465 &igb_msix_rx, 0, ring->name,
466 &(adapter->rx_ring[i]));
469 ring->itr_register = E1000_EITR(0) + (vector << 2);
470 ring->itr_val = adapter->itr;
471 /* overwrite the poll routine for MSIX, we've already done
473 ring->napi.poll = &igb_clean_rx_ring_msix;
477 err = request_irq(adapter->msix_entries[vector].vector,
478 &igb_msix_other, 0, netdev->name, netdev);
482 igb_configure_msix(adapter);
488 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
490 if (adapter->msix_entries) {
491 pci_disable_msix(adapter->pdev);
492 kfree(adapter->msix_entries);
493 adapter->msix_entries = NULL;
494 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
495 pci_disable_msi(adapter->pdev);
501 * igb_set_interrupt_capability - set MSI or MSI-X if supported
503 * Attempt to configure interrupts using the best available
504 * capabilities of the hardware and kernel.
506 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
511 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
512 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
514 if (!adapter->msix_entries)
517 for (i = 0; i < numvecs; i++)
518 adapter->msix_entries[i].entry = i;
520 err = pci_enable_msix(adapter->pdev,
521 adapter->msix_entries,
526 igb_reset_interrupt_capability(adapter);
528 /* If we can't do MSI-X, try MSI */
530 adapter->num_rx_queues = 1;
531 adapter->num_tx_queues = 1;
532 if (!pci_enable_msi(adapter->pdev))
533 adapter->flags |= IGB_FLAG_HAS_MSI;
535 /* Notify the stack of the (possibly) reduced Tx Queue count. */
536 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
541 * igb_request_irq - initialize interrupts
543 * Attempts to configure interrupts using the best available
544 * capabilities of the hardware and kernel.
546 static int igb_request_irq(struct igb_adapter *adapter)
548 struct net_device *netdev = adapter->netdev;
549 struct e1000_hw *hw = &adapter->hw;
552 if (adapter->msix_entries) {
553 err = igb_request_msix(adapter);
556 /* fall back to MSI */
557 igb_reset_interrupt_capability(adapter);
558 if (!pci_enable_msi(adapter->pdev))
559 adapter->flags |= IGB_FLAG_HAS_MSI;
560 igb_free_all_tx_resources(adapter);
561 igb_free_all_rx_resources(adapter);
562 adapter->num_rx_queues = 1;
563 igb_alloc_queues(adapter);
565 switch (hw->mac.type) {
567 wr32(E1000_MSIXBM(0),
568 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
571 wr32(E1000_IVAR0, E1000_IVAR_VALID);
578 if (adapter->flags & IGB_FLAG_HAS_MSI) {
579 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
580 netdev->name, netdev);
583 /* fall back to legacy interrupts */
584 igb_reset_interrupt_capability(adapter);
585 adapter->flags &= ~IGB_FLAG_HAS_MSI;
588 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
589 netdev->name, netdev);
592 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
599 static void igb_free_irq(struct igb_adapter *adapter)
601 struct net_device *netdev = adapter->netdev;
603 if (adapter->msix_entries) {
606 for (i = 0; i < adapter->num_tx_queues; i++)
607 free_irq(adapter->msix_entries[vector++].vector,
608 &(adapter->tx_ring[i]));
609 for (i = 0; i < adapter->num_rx_queues; i++)
610 free_irq(adapter->msix_entries[vector++].vector,
611 &(adapter->rx_ring[i]));
613 free_irq(adapter->msix_entries[vector++].vector, netdev);
617 free_irq(adapter->pdev->irq, netdev);
621 * igb_irq_disable - Mask off interrupt generation on the NIC
622 * @adapter: board private structure
624 static void igb_irq_disable(struct igb_adapter *adapter)
626 struct e1000_hw *hw = &adapter->hw;
628 if (adapter->msix_entries) {
630 wr32(E1000_EIMC, ~0);
637 synchronize_irq(adapter->pdev->irq);
641 * igb_irq_enable - Enable default interrupt generation settings
642 * @adapter: board private structure
644 static void igb_irq_enable(struct igb_adapter *adapter)
646 struct e1000_hw *hw = &adapter->hw;
648 if (adapter->msix_entries) {
649 wr32(E1000_EIAC, adapter->eims_enable_mask);
650 wr32(E1000_EIAM, adapter->eims_enable_mask);
651 wr32(E1000_EIMS, adapter->eims_enable_mask);
652 wr32(E1000_IMS, E1000_IMS_LSC);
654 wr32(E1000_IMS, IMS_ENABLE_MASK);
655 wr32(E1000_IAM, IMS_ENABLE_MASK);
659 static void igb_update_mng_vlan(struct igb_adapter *adapter)
661 struct net_device *netdev = adapter->netdev;
662 u16 vid = adapter->hw.mng_cookie.vlan_id;
663 u16 old_vid = adapter->mng_vlan_id;
664 if (adapter->vlgrp) {
665 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
666 if (adapter->hw.mng_cookie.status &
667 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
668 igb_vlan_rx_add_vid(netdev, vid);
669 adapter->mng_vlan_id = vid;
671 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
673 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
675 !vlan_group_get_device(adapter->vlgrp, old_vid))
676 igb_vlan_rx_kill_vid(netdev, old_vid);
678 adapter->mng_vlan_id = vid;
683 * igb_release_hw_control - release control of the h/w to f/w
684 * @adapter: address of board private structure
686 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
687 * For ASF and Pass Through versions of f/w this means that the
688 * driver is no longer loaded.
691 static void igb_release_hw_control(struct igb_adapter *adapter)
693 struct e1000_hw *hw = &adapter->hw;
696 /* Let firmware take over control of h/w */
697 ctrl_ext = rd32(E1000_CTRL_EXT);
699 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
704 * igb_get_hw_control - get control of the h/w from f/w
705 * @adapter: address of board private structure
707 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
708 * For ASF and Pass Through versions of f/w this means that
709 * the driver is loaded.
712 static void igb_get_hw_control(struct igb_adapter *adapter)
714 struct e1000_hw *hw = &adapter->hw;
717 /* Let firmware know the driver has taken over */
718 ctrl_ext = rd32(E1000_CTRL_EXT);
720 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
724 * igb_configure - configure the hardware for RX and TX
725 * @adapter: private board structure
727 static void igb_configure(struct igb_adapter *adapter)
729 struct net_device *netdev = adapter->netdev;
732 igb_get_hw_control(adapter);
733 igb_set_multi(netdev);
735 igb_restore_vlan(adapter);
737 igb_configure_tx(adapter);
738 igb_setup_rctl(adapter);
739 igb_configure_rx(adapter);
741 igb_rx_fifo_flush_82575(&adapter->hw);
743 /* call IGB_DESC_UNUSED which always leaves
744 * at least 1 descriptor unused to make sure
745 * next_to_use != next_to_clean */
746 for (i = 0; i < adapter->num_rx_queues; i++) {
747 struct igb_ring *ring = &adapter->rx_ring[i];
748 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
752 adapter->tx_queue_len = netdev->tx_queue_len;
757 * igb_up - Open the interface and prepare it to handle traffic
758 * @adapter: board private structure
761 int igb_up(struct igb_adapter *adapter)
763 struct e1000_hw *hw = &adapter->hw;
766 /* hardware has been reset, we need to reload some things */
767 igb_configure(adapter);
769 clear_bit(__IGB_DOWN, &adapter->state);
771 for (i = 0; i < adapter->num_rx_queues; i++)
772 napi_enable(&adapter->rx_ring[i].napi);
773 if (adapter->msix_entries)
774 igb_configure_msix(adapter);
776 /* Clear any pending interrupts. */
778 igb_irq_enable(adapter);
780 /* Fire a link change interrupt to start the watchdog. */
781 wr32(E1000_ICS, E1000_ICS_LSC);
785 void igb_down(struct igb_adapter *adapter)
787 struct e1000_hw *hw = &adapter->hw;
788 struct net_device *netdev = adapter->netdev;
792 /* signal that we're down so the interrupt handler does not
793 * reschedule our watchdog timer */
794 set_bit(__IGB_DOWN, &adapter->state);
796 /* disable receives in the hardware */
797 rctl = rd32(E1000_RCTL);
798 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
799 /* flush and sleep below */
801 netif_tx_stop_all_queues(netdev);
803 /* disable transmits in the hardware */
804 tctl = rd32(E1000_TCTL);
805 tctl &= ~E1000_TCTL_EN;
806 wr32(E1000_TCTL, tctl);
807 /* flush both disables and wait for them to finish */
811 for (i = 0; i < adapter->num_rx_queues; i++)
812 napi_disable(&adapter->rx_ring[i].napi);
814 igb_irq_disable(adapter);
816 del_timer_sync(&adapter->watchdog_timer);
817 del_timer_sync(&adapter->phy_info_timer);
819 netdev->tx_queue_len = adapter->tx_queue_len;
820 netif_carrier_off(netdev);
821 adapter->link_speed = 0;
822 adapter->link_duplex = 0;
824 if (!pci_channel_offline(adapter->pdev))
826 igb_clean_all_tx_rings(adapter);
827 igb_clean_all_rx_rings(adapter);
830 void igb_reinit_locked(struct igb_adapter *adapter)
832 WARN_ON(in_interrupt());
833 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
837 clear_bit(__IGB_RESETTING, &adapter->state);
840 void igb_reset(struct igb_adapter *adapter)
842 struct e1000_hw *hw = &adapter->hw;
843 struct e1000_mac_info *mac = &hw->mac;
844 struct e1000_fc_info *fc = &hw->fc;
845 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
848 /* Repartition Pba for greater than 9k mtu
849 * To take effect CTRL.RST is required.
851 if (mac->type != e1000_82576) {
858 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
859 (mac->type < e1000_82576)) {
860 /* adjust PBA for jumbo frames */
861 wr32(E1000_PBA, pba);
863 /* To maintain wire speed transmits, the Tx FIFO should be
864 * large enough to accommodate two full transmit packets,
865 * rounded up to the next 1KB and expressed in KB. Likewise,
866 * the Rx FIFO should be large enough to accommodate at least
867 * one full receive packet and is similarly rounded up and
868 * expressed in KB. */
869 pba = rd32(E1000_PBA);
870 /* upper 16 bits has Tx packet buffer allocation size in KB */
871 tx_space = pba >> 16;
872 /* lower 16 bits has Rx packet buffer allocation size in KB */
874 /* the tx fifo also stores 16 bytes of information about the tx
875 * but don't include ethernet FCS because hardware appends it */
876 min_tx_space = (adapter->max_frame_size +
877 sizeof(struct e1000_tx_desc) -
879 min_tx_space = ALIGN(min_tx_space, 1024);
881 /* software strips receive CRC, so leave room for it */
882 min_rx_space = adapter->max_frame_size;
883 min_rx_space = ALIGN(min_rx_space, 1024);
886 /* If current Tx allocation is less than the min Tx FIFO size,
887 * and the min Tx FIFO size is less than the current Rx FIFO
888 * allocation, take space away from current Rx allocation */
889 if (tx_space < min_tx_space &&
890 ((min_tx_space - tx_space) < pba)) {
891 pba = pba - (min_tx_space - tx_space);
893 /* if short on rx space, rx wins and must trump tx
895 if (pba < min_rx_space)
898 wr32(E1000_PBA, pba);
901 /* flow control settings */
902 /* The high water mark must be low enough to fit one full frame
903 * (or the size used for early receive) above it in the Rx FIFO.
904 * Set it to the lower of:
905 * - 90% of the Rx FIFO size, or
906 * - the full Rx FIFO size minus one full frame */
907 hwm = min(((pba << 10) * 9 / 10),
908 ((pba << 10) - 2 * adapter->max_frame_size));
910 if (mac->type < e1000_82576) {
911 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
912 fc->low_water = fc->high_water - 8;
914 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
915 fc->low_water = fc->high_water - 16;
917 fc->pause_time = 0xFFFF;
919 fc->type = fc->original_type;
921 /* Allow time for pending master requests to run */
922 adapter->hw.mac.ops.reset_hw(&adapter->hw);
925 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
926 dev_err(&adapter->pdev->dev, "Hardware Error\n");
928 igb_update_mng_vlan(adapter);
930 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
931 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
933 igb_reset_adaptive(&adapter->hw);
934 igb_get_phy_info(&adapter->hw);
938 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
939 * @pdev: PCI device information struct
941 * Returns true if an adapter needs ioport resources
943 static int igb_is_need_ioport(struct pci_dev *pdev)
945 switch (pdev->device) {
946 /* Currently there are no adapters that need ioport resources */
952 static const struct net_device_ops igb_netdev_ops = {
953 .ndo_open = igb_open,
954 .ndo_stop = igb_close,
955 .ndo_start_xmit = igb_xmit_frame_adv,
956 .ndo_get_stats = igb_get_stats,
957 .ndo_set_multicast_list = igb_set_multi,
958 .ndo_set_mac_address = igb_set_mac,
959 .ndo_change_mtu = igb_change_mtu,
960 .ndo_do_ioctl = igb_ioctl,
961 .ndo_tx_timeout = igb_tx_timeout,
962 .ndo_validate_addr = eth_validate_addr,
963 .ndo_vlan_rx_register = igb_vlan_rx_register,
964 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
965 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
966 #ifdef CONFIG_NET_POLL_CONTROLLER
967 .ndo_poll_controller = igb_netpoll,
972 * igb_probe - Device Initialization Routine
973 * @pdev: PCI device information struct
974 * @ent: entry in igb_pci_tbl
976 * Returns 0 on success, negative on failure
978 * igb_probe initializes an adapter identified by a pci_dev structure.
979 * The OS initialization, configuring of the adapter private structure,
980 * and a hardware reset occur.
982 static int __devinit igb_probe(struct pci_dev *pdev,
983 const struct pci_device_id *ent)
985 struct net_device *netdev;
986 struct igb_adapter *adapter;
988 struct pci_dev *us_dev;
989 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
990 unsigned long mmio_start, mmio_len;
991 int i, err, pci_using_dac, pos;
992 u16 eeprom_data = 0, state = 0;
993 u16 eeprom_apme_mask = IGB_EEPROM_APME;
995 int bars, need_ioport;
997 /* do not allocate ioport bars when not needed */
998 need_ioport = igb_is_need_ioport(pdev);
1000 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1001 err = pci_enable_device(pdev);
1003 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1004 err = pci_enable_device_mem(pdev);
1010 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1012 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1016 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1018 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1020 dev_err(&pdev->dev, "No usable DMA "
1021 "configuration, aborting\n");
1027 /* 82575 requires that the pci-e link partner disable the L0s state */
1028 switch (pdev->device) {
1029 case E1000_DEV_ID_82575EB_COPPER:
1030 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1031 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1032 us_dev = pdev->bus->self;
1033 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1035 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1037 state &= ~PCIE_LINK_STATE_L0S;
1038 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1040 dev_info(&pdev->dev,
1041 "Disabling ASPM L0s upstream switch port %s\n",
1048 err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1052 pci_set_master(pdev);
1053 pci_save_state(pdev);
1056 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1058 goto err_alloc_etherdev;
1060 SET_NETDEV_DEV(netdev, &pdev->dev);
1062 pci_set_drvdata(pdev, netdev);
1063 adapter = netdev_priv(netdev);
1064 adapter->netdev = netdev;
1065 adapter->pdev = pdev;
1068 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1069 adapter->bars = bars;
1070 adapter->need_ioport = need_ioport;
1072 mmio_start = pci_resource_start(pdev, 0);
1073 mmio_len = pci_resource_len(pdev, 0);
1076 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1077 if (!adapter->hw.hw_addr)
1080 netdev->netdev_ops = &igb_netdev_ops;
1081 igb_set_ethtool_ops(netdev);
1082 netdev->watchdog_timeo = 5 * HZ;
1084 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1086 netdev->mem_start = mmio_start;
1087 netdev->mem_end = mmio_start + mmio_len;
1089 /* PCI config space info */
1090 hw->vendor_id = pdev->vendor;
1091 hw->device_id = pdev->device;
1092 hw->revision_id = pdev->revision;
1093 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1094 hw->subsystem_device_id = pdev->subsystem_device;
1096 /* setup the private structure */
1098 /* Copy the default MAC, PHY and NVM function pointers */
1099 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1100 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1101 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1102 /* Initialize skew-specific constants */
1103 err = ei->get_invariants(hw);
1107 err = igb_sw_init(adapter);
1111 igb_get_bus_info_pcie(hw);
1114 switch (hw->mac.type) {
1117 adapter->flags |= IGB_FLAG_HAS_DCA;
1118 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1124 hw->phy.autoneg_wait_to_complete = false;
1125 hw->mac.adaptive_ifs = true;
1127 /* Copper options */
1128 if (hw->phy.media_type == e1000_media_type_copper) {
1129 hw->phy.mdix = AUTO_ALL_MODES;
1130 hw->phy.disable_polarity_correction = false;
1131 hw->phy.ms_type = e1000_ms_hw_default;
1134 if (igb_check_reset_block(hw))
1135 dev_info(&pdev->dev,
1136 "PHY reset is blocked due to SOL/IDER session.\n");
1138 netdev->features = NETIF_F_SG |
1140 NETIF_F_HW_VLAN_TX |
1141 NETIF_F_HW_VLAN_RX |
1142 NETIF_F_HW_VLAN_FILTER;
1144 netdev->features |= NETIF_F_TSO;
1145 netdev->features |= NETIF_F_TSO6;
1147 #ifdef CONFIG_IGB_LRO
1148 netdev->features |= NETIF_F_LRO;
1151 netdev->vlan_features |= NETIF_F_TSO;
1152 netdev->vlan_features |= NETIF_F_TSO6;
1153 netdev->vlan_features |= NETIF_F_HW_CSUM;
1154 netdev->vlan_features |= NETIF_F_SG;
1157 netdev->features |= NETIF_F_HIGHDMA;
1159 netdev->features |= NETIF_F_LLTX;
1160 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1162 /* before reading the NVM, reset the controller to put the device in a
1163 * known good starting state */
1164 hw->mac.ops.reset_hw(hw);
1166 /* make sure the NVM is good */
1167 if (igb_validate_nvm_checksum(hw) < 0) {
1168 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1173 /* copy the MAC address out of the NVM */
1174 if (hw->mac.ops.read_mac_addr(hw))
1175 dev_err(&pdev->dev, "NVM Read Error\n");
1177 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1178 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1180 if (!is_valid_ether_addr(netdev->perm_addr)) {
1181 dev_err(&pdev->dev, "Invalid MAC Address\n");
1186 init_timer(&adapter->watchdog_timer);
1187 adapter->watchdog_timer.function = &igb_watchdog;
1188 adapter->watchdog_timer.data = (unsigned long) adapter;
1190 init_timer(&adapter->phy_info_timer);
1191 adapter->phy_info_timer.function = &igb_update_phy_info;
1192 adapter->phy_info_timer.data = (unsigned long) adapter;
1194 INIT_WORK(&adapter->reset_task, igb_reset_task);
1195 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1197 /* Initialize link & ring properties that are user-changeable */
1198 adapter->tx_ring->count = 256;
1199 for (i = 0; i < adapter->num_tx_queues; i++)
1200 adapter->tx_ring[i].count = adapter->tx_ring->count;
1201 adapter->rx_ring->count = 256;
1202 for (i = 0; i < adapter->num_rx_queues; i++)
1203 adapter->rx_ring[i].count = adapter->rx_ring->count;
1205 adapter->fc_autoneg = true;
1206 hw->mac.autoneg = true;
1207 hw->phy.autoneg_advertised = 0x2f;
1209 hw->fc.original_type = e1000_fc_default;
1210 hw->fc.type = e1000_fc_default;
1212 adapter->itr_setting = 3;
1213 adapter->itr = IGB_START_ITR;
1215 igb_validate_mdi_setting(hw);
1217 adapter->rx_csum = 1;
1219 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1220 * enable the ACPI Magic Packet filter
1223 if (hw->bus.func == 0 ||
1224 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1225 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1228 if (eeprom_data & eeprom_apme_mask)
1229 adapter->eeprom_wol |= E1000_WUFC_MAG;
1231 /* now that we have the eeprom settings, apply the special cases where
1232 * the eeprom may be wrong or the board simply won't support wake on
1233 * lan on a particular port */
1234 switch (pdev->device) {
1235 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1236 adapter->eeprom_wol = 0;
1238 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1239 case E1000_DEV_ID_82576_FIBER:
1240 case E1000_DEV_ID_82576_SERDES:
1241 /* Wake events only supported on port A for dual fiber
1242 * regardless of eeprom setting */
1243 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1244 adapter->eeprom_wol = 0;
1248 /* initialize the wol settings based on the eeprom settings */
1249 adapter->wol = adapter->eeprom_wol;
1250 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1252 /* reset the hardware with the new settings */
1255 /* let the f/w know that the h/w is now under the control of the
1257 igb_get_hw_control(adapter);
1259 /* tell the stack to leave us alone until igb_open() is called */
1260 netif_carrier_off(netdev);
1261 netif_tx_stop_all_queues(netdev);
1263 strcpy(netdev->name, "eth%d");
1264 err = register_netdev(netdev);
1268 #ifdef CONFIG_IGB_DCA
1269 if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1270 (dca_add_requester(&pdev->dev) == 0)) {
1271 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1272 dev_info(&pdev->dev, "DCA enabled\n");
1273 /* Always use CB2 mode, difference is masked
1274 * in the CB driver. */
1275 wr32(E1000_DCA_CTRL, 2);
1276 igb_setup_dca(adapter);
1280 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1281 /* print bus type/speed/width info */
1282 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1284 ((hw->bus.speed == e1000_bus_speed_2500)
1285 ? "2.5Gb/s" : "unknown"),
1286 ((hw->bus.width == e1000_bus_width_pcie_x4)
1287 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1288 ? "Width x1" : "unknown"),
1291 igb_read_part_num(hw, &part_num);
1292 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1293 (part_num >> 8), (part_num & 0xff));
1295 dev_info(&pdev->dev,
1296 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1297 adapter->msix_entries ? "MSI-X" :
1298 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1299 adapter->num_rx_queues, adapter->num_tx_queues);
1304 igb_release_hw_control(adapter);
1306 if (!igb_check_reset_block(hw))
1309 if (hw->flash_address)
1310 iounmap(hw->flash_address);
1312 igb_remove_device(hw);
1313 igb_free_queues(adapter);
1316 iounmap(hw->hw_addr);
1318 free_netdev(netdev);
1320 pci_release_selected_regions(pdev, bars);
1323 pci_disable_device(pdev);
1328 * igb_remove - Device Removal Routine
1329 * @pdev: PCI device information struct
1331 * igb_remove is called by the PCI subsystem to alert the driver
1332 * that it should release a PCI device. The could be caused by a
1333 * Hot-Plug event, or because the driver is going to be removed from
1336 static void __devexit igb_remove(struct pci_dev *pdev)
1338 struct net_device *netdev = pci_get_drvdata(pdev);
1339 struct igb_adapter *adapter = netdev_priv(netdev);
1340 #ifdef CONFIG_IGB_DCA
1341 struct e1000_hw *hw = &adapter->hw;
1344 /* flush_scheduled work may reschedule our watchdog task, so
1345 * explicitly disable watchdog tasks from being rescheduled */
1346 set_bit(__IGB_DOWN, &adapter->state);
1347 del_timer_sync(&adapter->watchdog_timer);
1348 del_timer_sync(&adapter->phy_info_timer);
1350 flush_scheduled_work();
1352 #ifdef CONFIG_IGB_DCA
1353 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1354 dev_info(&pdev->dev, "DCA disabled\n");
1355 dca_remove_requester(&pdev->dev);
1356 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1357 wr32(E1000_DCA_CTRL, 1);
1361 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1362 * would have already happened in close and is redundant. */
1363 igb_release_hw_control(adapter);
1365 unregister_netdev(netdev);
1367 if (!igb_check_reset_block(&adapter->hw))
1368 igb_reset_phy(&adapter->hw);
1370 igb_remove_device(&adapter->hw);
1371 igb_reset_interrupt_capability(adapter);
1373 igb_free_queues(adapter);
1375 iounmap(adapter->hw.hw_addr);
1376 if (adapter->hw.flash_address)
1377 iounmap(adapter->hw.flash_address);
1378 pci_release_selected_regions(pdev, adapter->bars);
1380 free_netdev(netdev);
1382 pci_disable_device(pdev);
1386 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1387 * @adapter: board private structure to initialize
1389 * igb_sw_init initializes the Adapter private data structure.
1390 * Fields are initialized based on PCI device information and
1391 * OS network device settings (MTU size).
1393 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1395 struct e1000_hw *hw = &adapter->hw;
1396 struct net_device *netdev = adapter->netdev;
1397 struct pci_dev *pdev = adapter->pdev;
1399 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1401 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1402 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1403 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1404 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1405 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1406 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1408 /* Number of supported queues. */
1409 /* Having more queues than CPUs doesn't make sense. */
1410 adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1411 adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1413 /* This call may decrease the number of queues depending on
1414 * interrupt mode. */
1415 igb_set_interrupt_capability(adapter);
1417 if (igb_alloc_queues(adapter)) {
1418 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1422 /* Explicitly disable IRQ since the NIC can be in any state. */
1423 igb_irq_disable(adapter);
1425 set_bit(__IGB_DOWN, &adapter->state);
1430 * igb_open - Called when a network interface is made active
1431 * @netdev: network interface device structure
1433 * Returns 0 on success, negative value on failure
1435 * The open entry point is called when a network interface is made
1436 * active by the system (IFF_UP). At this point all resources needed
1437 * for transmit and receive operations are allocated, the interrupt
1438 * handler is registered with the OS, the watchdog timer is started,
1439 * and the stack is notified that the interface is ready.
1441 static int igb_open(struct net_device *netdev)
1443 struct igb_adapter *adapter = netdev_priv(netdev);
1444 struct e1000_hw *hw = &adapter->hw;
1448 /* disallow open during test */
1449 if (test_bit(__IGB_TESTING, &adapter->state))
1452 /* allocate transmit descriptors */
1453 err = igb_setup_all_tx_resources(adapter);
1457 /* allocate receive descriptors */
1458 err = igb_setup_all_rx_resources(adapter);
1462 /* e1000_power_up_phy(adapter); */
1464 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1465 if ((adapter->hw.mng_cookie.status &
1466 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1467 igb_update_mng_vlan(adapter);
1469 /* before we allocate an interrupt, we must be ready to handle it.
1470 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1471 * as soon as we call pci_request_irq, so we have to setup our
1472 * clean_rx handler before we do so. */
1473 igb_configure(adapter);
1475 err = igb_request_irq(adapter);
1479 /* From here on the code is the same as igb_up() */
1480 clear_bit(__IGB_DOWN, &adapter->state);
1482 for (i = 0; i < adapter->num_rx_queues; i++)
1483 napi_enable(&adapter->rx_ring[i].napi);
1485 /* Clear any pending interrupts. */
1488 igb_irq_enable(adapter);
1490 netif_tx_start_all_queues(netdev);
1492 /* Fire a link status change interrupt to start the watchdog. */
1493 wr32(E1000_ICS, E1000_ICS_LSC);
1498 igb_release_hw_control(adapter);
1499 /* e1000_power_down_phy(adapter); */
1500 igb_free_all_rx_resources(adapter);
1502 igb_free_all_tx_resources(adapter);
1510 * igb_close - Disables a network interface
1511 * @netdev: network interface device structure
1513 * Returns 0, this is not allowed to fail
1515 * The close entry point is called when an interface is de-activated
1516 * by the OS. The hardware is still under the driver's control, but
1517 * needs to be disabled. A global MAC reset is issued to stop the
1518 * hardware, and all transmit and receive resources are freed.
1520 static int igb_close(struct net_device *netdev)
1522 struct igb_adapter *adapter = netdev_priv(netdev);
1524 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1527 igb_free_irq(adapter);
1529 igb_free_all_tx_resources(adapter);
1530 igb_free_all_rx_resources(adapter);
1532 /* kill manageability vlan ID if supported, but not if a vlan with
1533 * the same ID is registered on the host OS (let 8021q kill it) */
1534 if ((adapter->hw.mng_cookie.status &
1535 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1537 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1538 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1544 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1545 * @adapter: board private structure
1546 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1548 * Return 0 on success, negative on failure
1551 int igb_setup_tx_resources(struct igb_adapter *adapter,
1552 struct igb_ring *tx_ring)
1554 struct pci_dev *pdev = adapter->pdev;
1557 size = sizeof(struct igb_buffer) * tx_ring->count;
1558 tx_ring->buffer_info = vmalloc(size);
1559 if (!tx_ring->buffer_info)
1561 memset(tx_ring->buffer_info, 0, size);
1563 /* round up to nearest 4K */
1564 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1566 tx_ring->size = ALIGN(tx_ring->size, 4096);
1568 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1574 tx_ring->adapter = adapter;
1575 tx_ring->next_to_use = 0;
1576 tx_ring->next_to_clean = 0;
1580 vfree(tx_ring->buffer_info);
1581 dev_err(&adapter->pdev->dev,
1582 "Unable to allocate memory for the transmit descriptor ring\n");
1587 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1588 * (Descriptors) for all queues
1589 * @adapter: board private structure
1591 * Return 0 on success, negative on failure
1593 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1598 for (i = 0; i < adapter->num_tx_queues; i++) {
1599 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1601 dev_err(&adapter->pdev->dev,
1602 "Allocation for Tx Queue %u failed\n", i);
1603 for (i--; i >= 0; i--)
1604 igb_free_tx_resources(&adapter->tx_ring[i]);
1609 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1610 r_idx = i % adapter->num_tx_queues;
1611 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1617 * igb_configure_tx - Configure transmit Unit after Reset
1618 * @adapter: board private structure
1620 * Configure the Tx unit of the MAC after a reset.
1622 static void igb_configure_tx(struct igb_adapter *adapter)
1625 struct e1000_hw *hw = &adapter->hw;
1630 for (i = 0; i < adapter->num_tx_queues; i++) {
1631 struct igb_ring *ring = &(adapter->tx_ring[i]);
1633 wr32(E1000_TDLEN(i),
1634 ring->count * sizeof(struct e1000_tx_desc));
1636 wr32(E1000_TDBAL(i),
1637 tdba & 0x00000000ffffffffULL);
1638 wr32(E1000_TDBAH(i), tdba >> 32);
1640 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1641 tdwba |= 1; /* enable head wb */
1642 wr32(E1000_TDWBAL(i),
1643 tdwba & 0x00000000ffffffffULL);
1644 wr32(E1000_TDWBAH(i), tdwba >> 32);
1646 ring->head = E1000_TDH(i);
1647 ring->tail = E1000_TDT(i);
1648 writel(0, hw->hw_addr + ring->tail);
1649 writel(0, hw->hw_addr + ring->head);
1650 txdctl = rd32(E1000_TXDCTL(i));
1651 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1652 wr32(E1000_TXDCTL(i), txdctl);
1654 /* Turn off Relaxed Ordering on head write-backs. The
1655 * writebacks MUST be delivered in order or it will
1656 * completely screw up our bookeeping.
1658 txctrl = rd32(E1000_DCA_TXCTRL(i));
1659 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1660 wr32(E1000_DCA_TXCTRL(i), txctrl);
1665 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1667 /* Program the Transmit Control Register */
1669 tctl = rd32(E1000_TCTL);
1670 tctl &= ~E1000_TCTL_CT;
1671 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1672 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1674 igb_config_collision_dist(hw);
1676 /* Setup Transmit Descriptor Settings for eop descriptor */
1677 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1679 /* Enable transmits */
1680 tctl |= E1000_TCTL_EN;
1682 wr32(E1000_TCTL, tctl);
1686 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1690 * Returns 0 on success, negative on failure
1693 int igb_setup_rx_resources(struct igb_adapter *adapter,
1694 struct igb_ring *rx_ring)
1696 struct pci_dev *pdev = adapter->pdev;
1699 #ifdef CONFIG_IGB_LRO
1700 size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1701 rx_ring->lro_mgr.lro_arr = vmalloc(size);
1702 if (!rx_ring->lro_mgr.lro_arr)
1704 memset(rx_ring->lro_mgr.lro_arr, 0, size);
1707 size = sizeof(struct igb_buffer) * rx_ring->count;
1708 rx_ring->buffer_info = vmalloc(size);
1709 if (!rx_ring->buffer_info)
1711 memset(rx_ring->buffer_info, 0, size);
1713 desc_len = sizeof(union e1000_adv_rx_desc);
1715 /* Round up to nearest 4K */
1716 rx_ring->size = rx_ring->count * desc_len;
1717 rx_ring->size = ALIGN(rx_ring->size, 4096);
1719 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1725 rx_ring->next_to_clean = 0;
1726 rx_ring->next_to_use = 0;
1728 rx_ring->adapter = adapter;
1733 #ifdef CONFIG_IGB_LRO
1734 vfree(rx_ring->lro_mgr.lro_arr);
1735 rx_ring->lro_mgr.lro_arr = NULL;
1737 vfree(rx_ring->buffer_info);
1738 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1739 "the receive descriptor ring\n");
1744 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1745 * (Descriptors) for all queues
1746 * @adapter: board private structure
1748 * Return 0 on success, negative on failure
1750 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1754 for (i = 0; i < adapter->num_rx_queues; i++) {
1755 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1757 dev_err(&adapter->pdev->dev,
1758 "Allocation for Rx Queue %u failed\n", i);
1759 for (i--; i >= 0; i--)
1760 igb_free_rx_resources(&adapter->rx_ring[i]);
1769 * igb_setup_rctl - configure the receive control registers
1770 * @adapter: Board private structure
1772 static void igb_setup_rctl(struct igb_adapter *adapter)
1774 struct e1000_hw *hw = &adapter->hw;
1779 rctl = rd32(E1000_RCTL);
1781 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1783 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1784 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1785 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1788 * enable stripping of CRC. It's unlikely this will break BMC
1789 * redirection as it did with e1000. Newer features require
1790 * that the HW strips the CRC.
1792 rctl |= E1000_RCTL_SECRC;
1794 rctl &= ~E1000_RCTL_SBP;
1796 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1797 rctl &= ~E1000_RCTL_LPE;
1799 rctl |= E1000_RCTL_LPE;
1800 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1801 /* Setup buffer sizes */
1802 rctl &= ~E1000_RCTL_SZ_4096;
1803 rctl |= E1000_RCTL_BSEX;
1804 switch (adapter->rx_buffer_len) {
1805 case IGB_RXBUFFER_256:
1806 rctl |= E1000_RCTL_SZ_256;
1807 rctl &= ~E1000_RCTL_BSEX;
1809 case IGB_RXBUFFER_512:
1810 rctl |= E1000_RCTL_SZ_512;
1811 rctl &= ~E1000_RCTL_BSEX;
1813 case IGB_RXBUFFER_1024:
1814 rctl |= E1000_RCTL_SZ_1024;
1815 rctl &= ~E1000_RCTL_BSEX;
1817 case IGB_RXBUFFER_2048:
1819 rctl |= E1000_RCTL_SZ_2048;
1820 rctl &= ~E1000_RCTL_BSEX;
1824 rctl &= ~E1000_RCTL_BSEX;
1825 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1828 /* 82575 and greater support packet-split where the protocol
1829 * header is placed in skb->data and the packet data is
1830 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1831 * In the case of a non-split, skb->data is linearly filled,
1832 * followed by the page buffers. Therefore, skb->data is
1833 * sized to hold the largest protocol header.
1835 /* allocations using alloc_page take too long for regular MTU
1836 * so only enable packet split for jumbo frames */
1837 if (rctl & E1000_RCTL_LPE) {
1838 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1839 srrctl |= adapter->rx_ps_hdr_size <<
1840 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1841 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1843 adapter->rx_ps_hdr_size = 0;
1844 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1847 for (i = 0; i < adapter->num_rx_queues; i++)
1848 wr32(E1000_SRRCTL(i), srrctl);
1850 wr32(E1000_RCTL, rctl);
1854 * igb_configure_rx - Configure receive Unit after Reset
1855 * @adapter: board private structure
1857 * Configure the Rx unit of the MAC after a reset.
1859 static void igb_configure_rx(struct igb_adapter *adapter)
1862 struct e1000_hw *hw = &adapter->hw;
1867 /* disable receives while setting up the descriptors */
1868 rctl = rd32(E1000_RCTL);
1869 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1873 if (adapter->itr_setting > 3)
1874 wr32(E1000_ITR, adapter->itr);
1876 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1877 * the Base and Length of the Rx Descriptor Ring */
1878 for (i = 0; i < adapter->num_rx_queues; i++) {
1879 struct igb_ring *ring = &(adapter->rx_ring[i]);
1881 wr32(E1000_RDBAL(i),
1882 rdba & 0x00000000ffffffffULL);
1883 wr32(E1000_RDBAH(i), rdba >> 32);
1884 wr32(E1000_RDLEN(i),
1885 ring->count * sizeof(union e1000_adv_rx_desc));
1887 ring->head = E1000_RDH(i);
1888 ring->tail = E1000_RDT(i);
1889 writel(0, hw->hw_addr + ring->tail);
1890 writel(0, hw->hw_addr + ring->head);
1892 rxdctl = rd32(E1000_RXDCTL(i));
1893 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1894 rxdctl &= 0xFFF00000;
1895 rxdctl |= IGB_RX_PTHRESH;
1896 rxdctl |= IGB_RX_HTHRESH << 8;
1897 rxdctl |= IGB_RX_WTHRESH << 16;
1898 wr32(E1000_RXDCTL(i), rxdctl);
1899 #ifdef CONFIG_IGB_LRO
1900 /* Intitial LRO Settings */
1901 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1902 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1903 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1904 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1905 ring->lro_mgr.dev = adapter->netdev;
1906 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1907 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1911 if (adapter->num_rx_queues > 1) {
1920 get_random_bytes(&random[0], 40);
1922 if (hw->mac.type >= e1000_82576)
1926 for (j = 0; j < (32 * 4); j++) {
1928 (j % adapter->num_rx_queues) << shift;
1931 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1933 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1935 /* Fill out hash function seeds */
1936 for (j = 0; j < 10; j++)
1937 array_wr32(E1000_RSSRK(0), j, random[j]);
1939 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1940 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1941 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1942 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1943 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1944 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1945 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1946 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1949 wr32(E1000_MRQC, mrqc);
1951 /* Multiqueue and raw packet checksumming are mutually
1952 * exclusive. Note that this not the same as TCP/IP
1953 * checksumming, which works fine. */
1954 rxcsum = rd32(E1000_RXCSUM);
1955 rxcsum |= E1000_RXCSUM_PCSD;
1956 wr32(E1000_RXCSUM, rxcsum);
1958 /* Enable Receive Checksum Offload for TCP and UDP */
1959 rxcsum = rd32(E1000_RXCSUM);
1960 if (adapter->rx_csum) {
1961 rxcsum |= E1000_RXCSUM_TUOFL;
1963 /* Enable IPv4 payload checksum for UDP fragments
1964 * Must be used in conjunction with packet-split. */
1965 if (adapter->rx_ps_hdr_size)
1966 rxcsum |= E1000_RXCSUM_IPPCSE;
1968 rxcsum &= ~E1000_RXCSUM_TUOFL;
1969 /* don't need to clear IPPCSE as it defaults to 0 */
1971 wr32(E1000_RXCSUM, rxcsum);
1976 adapter->max_frame_size + VLAN_TAG_SIZE);
1978 wr32(E1000_RLPML, adapter->max_frame_size);
1980 /* Enable Receives */
1981 wr32(E1000_RCTL, rctl);
1985 * igb_free_tx_resources - Free Tx Resources per Queue
1986 * @adapter: board private structure
1987 * @tx_ring: Tx descriptor ring for a specific queue
1989 * Free all transmit software resources
1991 void igb_free_tx_resources(struct igb_ring *tx_ring)
1993 struct pci_dev *pdev = tx_ring->adapter->pdev;
1995 igb_clean_tx_ring(tx_ring);
1997 vfree(tx_ring->buffer_info);
1998 tx_ring->buffer_info = NULL;
2000 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2002 tx_ring->desc = NULL;
2006 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2007 * @adapter: board private structure
2009 * Free all transmit software resources
2011 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2015 for (i = 0; i < adapter->num_tx_queues; i++)
2016 igb_free_tx_resources(&adapter->tx_ring[i]);
2019 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2020 struct igb_buffer *buffer_info)
2022 if (buffer_info->dma) {
2023 pci_unmap_page(adapter->pdev,
2025 buffer_info->length,
2027 buffer_info->dma = 0;
2029 if (buffer_info->skb) {
2030 dev_kfree_skb_any(buffer_info->skb);
2031 buffer_info->skb = NULL;
2033 buffer_info->time_stamp = 0;
2034 /* buffer_info must be completely set up in the transmit path */
2038 * igb_clean_tx_ring - Free Tx Buffers
2039 * @adapter: board private structure
2040 * @tx_ring: ring to be cleaned
2042 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2044 struct igb_adapter *adapter = tx_ring->adapter;
2045 struct igb_buffer *buffer_info;
2049 if (!tx_ring->buffer_info)
2051 /* Free all the Tx ring sk_buffs */
2053 for (i = 0; i < tx_ring->count; i++) {
2054 buffer_info = &tx_ring->buffer_info[i];
2055 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2058 size = sizeof(struct igb_buffer) * tx_ring->count;
2059 memset(tx_ring->buffer_info, 0, size);
2061 /* Zero out the descriptor ring */
2063 memset(tx_ring->desc, 0, tx_ring->size);
2065 tx_ring->next_to_use = 0;
2066 tx_ring->next_to_clean = 0;
2068 writel(0, adapter->hw.hw_addr + tx_ring->head);
2069 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2073 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2074 * @adapter: board private structure
2076 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2080 for (i = 0; i < adapter->num_tx_queues; i++)
2081 igb_clean_tx_ring(&adapter->tx_ring[i]);
2085 * igb_free_rx_resources - Free Rx Resources
2086 * @adapter: board private structure
2087 * @rx_ring: ring to clean the resources from
2089 * Free all receive software resources
2091 void igb_free_rx_resources(struct igb_ring *rx_ring)
2093 struct pci_dev *pdev = rx_ring->adapter->pdev;
2095 igb_clean_rx_ring(rx_ring);
2097 vfree(rx_ring->buffer_info);
2098 rx_ring->buffer_info = NULL;
2100 #ifdef CONFIG_IGB_LRO
2101 vfree(rx_ring->lro_mgr.lro_arr);
2102 rx_ring->lro_mgr.lro_arr = NULL;
2105 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2107 rx_ring->desc = NULL;
2111 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2112 * @adapter: board private structure
2114 * Free all receive software resources
2116 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2120 for (i = 0; i < adapter->num_rx_queues; i++)
2121 igb_free_rx_resources(&adapter->rx_ring[i]);
2125 * igb_clean_rx_ring - Free Rx Buffers per Queue
2126 * @adapter: board private structure
2127 * @rx_ring: ring to free buffers from
2129 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2131 struct igb_adapter *adapter = rx_ring->adapter;
2132 struct igb_buffer *buffer_info;
2133 struct pci_dev *pdev = adapter->pdev;
2137 if (!rx_ring->buffer_info)
2139 /* Free all the Rx ring sk_buffs */
2140 for (i = 0; i < rx_ring->count; i++) {
2141 buffer_info = &rx_ring->buffer_info[i];
2142 if (buffer_info->dma) {
2143 if (adapter->rx_ps_hdr_size)
2144 pci_unmap_single(pdev, buffer_info->dma,
2145 adapter->rx_ps_hdr_size,
2146 PCI_DMA_FROMDEVICE);
2148 pci_unmap_single(pdev, buffer_info->dma,
2149 adapter->rx_buffer_len,
2150 PCI_DMA_FROMDEVICE);
2151 buffer_info->dma = 0;
2154 if (buffer_info->skb) {
2155 dev_kfree_skb(buffer_info->skb);
2156 buffer_info->skb = NULL;
2158 if (buffer_info->page) {
2159 if (buffer_info->page_dma)
2160 pci_unmap_page(pdev, buffer_info->page_dma,
2162 PCI_DMA_FROMDEVICE);
2163 put_page(buffer_info->page);
2164 buffer_info->page = NULL;
2165 buffer_info->page_dma = 0;
2166 buffer_info->page_offset = 0;
2170 size = sizeof(struct igb_buffer) * rx_ring->count;
2171 memset(rx_ring->buffer_info, 0, size);
2173 /* Zero out the descriptor ring */
2174 memset(rx_ring->desc, 0, rx_ring->size);
2176 rx_ring->next_to_clean = 0;
2177 rx_ring->next_to_use = 0;
2179 writel(0, adapter->hw.hw_addr + rx_ring->head);
2180 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2184 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2185 * @adapter: board private structure
2187 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2191 for (i = 0; i < adapter->num_rx_queues; i++)
2192 igb_clean_rx_ring(&adapter->rx_ring[i]);
2196 * igb_set_mac - Change the Ethernet Address of the NIC
2197 * @netdev: network interface device structure
2198 * @p: pointer to an address structure
2200 * Returns 0 on success, negative on failure
2202 static int igb_set_mac(struct net_device *netdev, void *p)
2204 struct igb_adapter *adapter = netdev_priv(netdev);
2205 struct sockaddr *addr = p;
2207 if (!is_valid_ether_addr(addr->sa_data))
2208 return -EADDRNOTAVAIL;
2210 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2211 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2213 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2219 * igb_set_multi - Multicast and Promiscuous mode set
2220 * @netdev: network interface device structure
2222 * The set_multi entry point is called whenever the multicast address
2223 * list or the network interface flags are updated. This routine is
2224 * responsible for configuring the hardware for proper multicast,
2225 * promiscuous mode, and all-multi behavior.
2227 static void igb_set_multi(struct net_device *netdev)
2229 struct igb_adapter *adapter = netdev_priv(netdev);
2230 struct e1000_hw *hw = &adapter->hw;
2231 struct e1000_mac_info *mac = &hw->mac;
2232 struct dev_mc_list *mc_ptr;
2237 /* Check for Promiscuous and All Multicast modes */
2239 rctl = rd32(E1000_RCTL);
2241 if (netdev->flags & IFF_PROMISC) {
2242 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2243 rctl &= ~E1000_RCTL_VFE;
2245 if (netdev->flags & IFF_ALLMULTI) {
2246 rctl |= E1000_RCTL_MPE;
2247 rctl &= ~E1000_RCTL_UPE;
2249 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2250 rctl |= E1000_RCTL_VFE;
2252 wr32(E1000_RCTL, rctl);
2254 if (!netdev->mc_count) {
2255 /* nothing to program, so clear mc list */
2256 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2257 mac->rar_entry_count);
2261 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2265 /* The shared function expects a packed array of only addresses. */
2266 mc_ptr = netdev->mc_list;
2268 for (i = 0; i < netdev->mc_count; i++) {
2271 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2272 mc_ptr = mc_ptr->next;
2274 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2275 mac->rar_entry_count);
2279 /* Need to wait a few seconds after link up to get diagnostic information from
2281 static void igb_update_phy_info(unsigned long data)
2283 struct igb_adapter *adapter = (struct igb_adapter *) data;
2284 igb_get_phy_info(&adapter->hw);
2288 * igb_watchdog - Timer Call-back
2289 * @data: pointer to adapter cast into an unsigned long
2291 static void igb_watchdog(unsigned long data)
2293 struct igb_adapter *adapter = (struct igb_adapter *)data;
2294 /* Do the rest outside of interrupt context */
2295 schedule_work(&adapter->watchdog_task);
2298 static void igb_watchdog_task(struct work_struct *work)
2300 struct igb_adapter *adapter = container_of(work,
2301 struct igb_adapter, watchdog_task);
2302 struct e1000_hw *hw = &adapter->hw;
2304 struct net_device *netdev = adapter->netdev;
2305 struct igb_ring *tx_ring = adapter->tx_ring;
2306 struct e1000_mac_info *mac = &adapter->hw.mac;
2312 if ((netif_carrier_ok(netdev)) &&
2313 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2316 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2317 if ((ret_val == E1000_ERR_PHY) &&
2318 (hw->phy.type == e1000_phy_igp_3) &&
2320 E1000_PHY_CTRL_GBE_DISABLE))
2321 dev_info(&adapter->pdev->dev,
2322 "Gigabit has been disabled, downgrading speed\n");
2324 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2325 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2326 link = mac->serdes_has_link;
2328 link = rd32(E1000_STATUS) &
2332 if (!netif_carrier_ok(netdev)) {
2334 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2335 &adapter->link_speed,
2336 &adapter->link_duplex);
2338 ctrl = rd32(E1000_CTRL);
2339 dev_info(&adapter->pdev->dev,
2340 "NIC Link is Up %d Mbps %s, "
2341 "Flow Control: %s\n",
2342 adapter->link_speed,
2343 adapter->link_duplex == FULL_DUPLEX ?
2344 "Full Duplex" : "Half Duplex",
2345 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2346 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2347 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2348 E1000_CTRL_TFCE) ? "TX" : "None")));
2350 /* tweak tx_queue_len according to speed/duplex and
2351 * adjust the timeout factor */
2352 netdev->tx_queue_len = adapter->tx_queue_len;
2353 adapter->tx_timeout_factor = 1;
2354 switch (adapter->link_speed) {
2356 netdev->tx_queue_len = 10;
2357 adapter->tx_timeout_factor = 14;
2360 netdev->tx_queue_len = 100;
2361 /* maybe add some timeout factor ? */
2365 netif_carrier_on(netdev);
2366 netif_tx_wake_all_queues(netdev);
2368 if (!test_bit(__IGB_DOWN, &adapter->state))
2369 mod_timer(&adapter->phy_info_timer,
2370 round_jiffies(jiffies + 2 * HZ));
2373 if (netif_carrier_ok(netdev)) {
2374 adapter->link_speed = 0;
2375 adapter->link_duplex = 0;
2376 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2377 netif_carrier_off(netdev);
2378 netif_tx_stop_all_queues(netdev);
2379 if (!test_bit(__IGB_DOWN, &adapter->state))
2380 mod_timer(&adapter->phy_info_timer,
2381 round_jiffies(jiffies + 2 * HZ));
2386 igb_update_stats(adapter);
2388 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2389 adapter->tpt_old = adapter->stats.tpt;
2390 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2391 adapter->colc_old = adapter->stats.colc;
2393 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2394 adapter->gorc_old = adapter->stats.gorc;
2395 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2396 adapter->gotc_old = adapter->stats.gotc;
2398 igb_update_adaptive(&adapter->hw);
2400 if (!netif_carrier_ok(netdev)) {
2401 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2402 /* We've lost link, so the controller stops DMA,
2403 * but we've got queued Tx work that's never going
2404 * to get done, so reset controller to flush Tx.
2405 * (Do the reset outside of interrupt context). */
2406 adapter->tx_timeout_count++;
2407 schedule_work(&adapter->reset_task);
2411 /* Cause software interrupt to ensure rx ring is cleaned */
2412 if (adapter->msix_entries) {
2413 for (i = 0; i < adapter->num_rx_queues; i++)
2414 eics |= adapter->rx_ring[i].eims_value;
2415 wr32(E1000_EICS, eics);
2417 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2420 /* Force detection of hung controller every watchdog period */
2421 tx_ring->detect_tx_hung = true;
2423 /* Reset the timer */
2424 if (!test_bit(__IGB_DOWN, &adapter->state))
2425 mod_timer(&adapter->watchdog_timer,
2426 round_jiffies(jiffies + 2 * HZ));
2429 enum latency_range {
2433 latency_invalid = 255
2438 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2440 * Stores a new ITR value based on strictly on packet size. This
2441 * algorithm is less sophisticated than that used in igb_update_itr,
2442 * due to the difficulty of synchronizing statistics across multiple
2443 * receive rings. The divisors and thresholds used by this fuction
2444 * were determined based on theoretical maximum wire speed and testing
2445 * data, in order to minimize response time while increasing bulk
2447 * This functionality is controlled by the InterruptThrottleRate module
2448 * parameter (see igb_param.c)
2449 * NOTE: This function is called only when operating in a multiqueue
2450 * receive environment.
2451 * @rx_ring: pointer to ring
2453 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2455 int new_val = rx_ring->itr_val;
2456 int avg_wire_size = 0;
2457 struct igb_adapter *adapter = rx_ring->adapter;
2459 if (!rx_ring->total_packets)
2460 goto clear_counts; /* no packets, so don't do anything */
2462 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2463 * ints/sec - ITR timer value of 120 ticks.
2465 if (adapter->link_speed != SPEED_1000) {
2469 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2471 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2472 avg_wire_size += 24;
2474 /* Don't starve jumbo frames */
2475 avg_wire_size = min(avg_wire_size, 3000);
2477 /* Give a little boost to mid-size frames */
2478 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2479 new_val = avg_wire_size / 3;
2481 new_val = avg_wire_size / 2;
2484 if (new_val != rx_ring->itr_val) {
2485 rx_ring->itr_val = new_val;
2486 rx_ring->set_itr = 1;
2489 rx_ring->total_bytes = 0;
2490 rx_ring->total_packets = 0;
2494 * igb_update_itr - update the dynamic ITR value based on statistics
2495 * Stores a new ITR value based on packets and byte
2496 * counts during the last interrupt. The advantage of per interrupt
2497 * computation is faster updates and more accurate ITR for the current
2498 * traffic pattern. Constants in this function were computed
2499 * based on theoretical maximum wire speed and thresholds were set based
2500 * on testing data as well as attempting to minimize response time
2501 * while increasing bulk throughput.
2502 * this functionality is controlled by the InterruptThrottleRate module
2503 * parameter (see igb_param.c)
2504 * NOTE: These calculations are only valid when operating in a single-
2505 * queue environment.
2506 * @adapter: pointer to adapter
2507 * @itr_setting: current adapter->itr
2508 * @packets: the number of packets during this measurement interval
2509 * @bytes: the number of bytes during this measurement interval
2511 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2512 int packets, int bytes)
2514 unsigned int retval = itr_setting;
2517 goto update_itr_done;
2519 switch (itr_setting) {
2520 case lowest_latency:
2521 /* handle TSO and jumbo frames */
2522 if (bytes/packets > 8000)
2523 retval = bulk_latency;
2524 else if ((packets < 5) && (bytes > 512))
2525 retval = low_latency;
2527 case low_latency: /* 50 usec aka 20000 ints/s */
2528 if (bytes > 10000) {
2529 /* this if handles the TSO accounting */
2530 if (bytes/packets > 8000) {
2531 retval = bulk_latency;
2532 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2533 retval = bulk_latency;
2534 } else if ((packets > 35)) {
2535 retval = lowest_latency;
2537 } else if (bytes/packets > 2000) {
2538 retval = bulk_latency;
2539 } else if (packets <= 2 && bytes < 512) {
2540 retval = lowest_latency;
2543 case bulk_latency: /* 250 usec aka 4000 ints/s */
2544 if (bytes > 25000) {
2546 retval = low_latency;
2547 } else if (bytes < 6000) {
2548 retval = low_latency;
2557 static void igb_set_itr(struct igb_adapter *adapter)
2560 u32 new_itr = adapter->itr;
2562 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2563 if (adapter->link_speed != SPEED_1000) {
2569 adapter->rx_itr = igb_update_itr(adapter,
2571 adapter->rx_ring->total_packets,
2572 adapter->rx_ring->total_bytes);
2574 if (adapter->rx_ring->buddy) {
2575 adapter->tx_itr = igb_update_itr(adapter,
2577 adapter->tx_ring->total_packets,
2578 adapter->tx_ring->total_bytes);
2580 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2582 current_itr = adapter->rx_itr;
2585 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2586 if (adapter->itr_setting == 3 &&
2587 current_itr == lowest_latency)
2588 current_itr = low_latency;
2590 switch (current_itr) {
2591 /* counts and packets in update_itr are dependent on these numbers */
2592 case lowest_latency:
2596 new_itr = 20000; /* aka hwitr = ~200 */
2606 adapter->rx_ring->total_bytes = 0;
2607 adapter->rx_ring->total_packets = 0;
2608 if (adapter->rx_ring->buddy) {
2609 adapter->rx_ring->buddy->total_bytes = 0;
2610 adapter->rx_ring->buddy->total_packets = 0;
2613 if (new_itr != adapter->itr) {
2614 /* this attempts to bias the interrupt rate towards Bulk
2615 * by adding intermediate steps when interrupt rate is
2617 new_itr = new_itr > adapter->itr ?
2618 min(adapter->itr + (new_itr >> 2), new_itr) :
2620 /* Don't write the value here; it resets the adapter's
2621 * internal timer, and causes us to delay far longer than
2622 * we should between interrupts. Instead, we write the ITR
2623 * value at the beginning of the next interrupt so the timing
2624 * ends up being correct.
2626 adapter->itr = new_itr;
2627 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2628 adapter->rx_ring->set_itr = 1;
2635 #define IGB_TX_FLAGS_CSUM 0x00000001
2636 #define IGB_TX_FLAGS_VLAN 0x00000002
2637 #define IGB_TX_FLAGS_TSO 0x00000004
2638 #define IGB_TX_FLAGS_IPV4 0x00000008
2639 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2640 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2642 static inline int igb_tso_adv(struct igb_adapter *adapter,
2643 struct igb_ring *tx_ring,
2644 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2646 struct e1000_adv_tx_context_desc *context_desc;
2649 struct igb_buffer *buffer_info;
2650 u32 info = 0, tu_cmd = 0;
2651 u32 mss_l4len_idx, l4len;
2654 if (skb_header_cloned(skb)) {
2655 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2660 l4len = tcp_hdrlen(skb);
2663 if (skb->protocol == htons(ETH_P_IP)) {
2664 struct iphdr *iph = ip_hdr(skb);
2667 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2671 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2672 ipv6_hdr(skb)->payload_len = 0;
2673 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2674 &ipv6_hdr(skb)->daddr,
2678 i = tx_ring->next_to_use;
2680 buffer_info = &tx_ring->buffer_info[i];
2681 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2682 /* VLAN MACLEN IPLEN */
2683 if (tx_flags & IGB_TX_FLAGS_VLAN)
2684 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2685 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2686 *hdr_len += skb_network_offset(skb);
2687 info |= skb_network_header_len(skb);
2688 *hdr_len += skb_network_header_len(skb);
2689 context_desc->vlan_macip_lens = cpu_to_le32(info);
2691 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2692 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2694 if (skb->protocol == htons(ETH_P_IP))
2695 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2696 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2698 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2701 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2702 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2704 /* Context index must be unique per ring. */
2705 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2706 mss_l4len_idx |= tx_ring->queue_index << 4;
2708 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2709 context_desc->seqnum_seed = 0;
2711 buffer_info->time_stamp = jiffies;
2712 buffer_info->dma = 0;
2714 if (i == tx_ring->count)
2717 tx_ring->next_to_use = i;
2722 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2723 struct igb_ring *tx_ring,
2724 struct sk_buff *skb, u32 tx_flags)
2726 struct e1000_adv_tx_context_desc *context_desc;
2728 struct igb_buffer *buffer_info;
2729 u32 info = 0, tu_cmd = 0;
2731 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2732 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2733 i = tx_ring->next_to_use;
2734 buffer_info = &tx_ring->buffer_info[i];
2735 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2737 if (tx_flags & IGB_TX_FLAGS_VLAN)
2738 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2739 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2740 if (skb->ip_summed == CHECKSUM_PARTIAL)
2741 info |= skb_network_header_len(skb);
2743 context_desc->vlan_macip_lens = cpu_to_le32(info);
2745 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2747 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2748 switch (skb->protocol) {
2749 case __constant_htons(ETH_P_IP):
2750 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2751 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2752 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2754 case __constant_htons(ETH_P_IPV6):
2755 /* XXX what about other V6 headers?? */
2756 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2757 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2760 if (unlikely(net_ratelimit()))
2761 dev_warn(&adapter->pdev->dev,
2762 "partial checksum but proto=%x!\n",
2768 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2769 context_desc->seqnum_seed = 0;
2770 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2771 context_desc->mss_l4len_idx =
2772 cpu_to_le32(tx_ring->queue_index << 4);
2774 buffer_info->time_stamp = jiffies;
2775 buffer_info->dma = 0;
2778 if (i == tx_ring->count)
2780 tx_ring->next_to_use = i;
2789 #define IGB_MAX_TXD_PWR 16
2790 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2792 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2793 struct igb_ring *tx_ring,
2794 struct sk_buff *skb)
2796 struct igb_buffer *buffer_info;
2797 unsigned int len = skb_headlen(skb);
2798 unsigned int count = 0, i;
2801 i = tx_ring->next_to_use;
2803 buffer_info = &tx_ring->buffer_info[i];
2804 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2805 buffer_info->length = len;
2806 /* set time_stamp *before* dma to help avoid a possible race */
2807 buffer_info->time_stamp = jiffies;
2808 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2812 if (i == tx_ring->count)
2815 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2816 struct skb_frag_struct *frag;
2818 frag = &skb_shinfo(skb)->frags[f];
2821 buffer_info = &tx_ring->buffer_info[i];
2822 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2823 buffer_info->length = len;
2824 buffer_info->time_stamp = jiffies;
2825 buffer_info->dma = pci_map_page(adapter->pdev,
2833 if (i == tx_ring->count)
2837 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2838 tx_ring->buffer_info[i].skb = skb;
2843 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2844 struct igb_ring *tx_ring,
2845 int tx_flags, int count, u32 paylen,
2848 union e1000_adv_tx_desc *tx_desc = NULL;
2849 struct igb_buffer *buffer_info;
2850 u32 olinfo_status = 0, cmd_type_len;
2853 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2854 E1000_ADVTXD_DCMD_DEXT);
2856 if (tx_flags & IGB_TX_FLAGS_VLAN)
2857 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2859 if (tx_flags & IGB_TX_FLAGS_TSO) {
2860 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2862 /* insert tcp checksum */
2863 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2865 /* insert ip checksum */
2866 if (tx_flags & IGB_TX_FLAGS_IPV4)
2867 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2869 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2870 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2873 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2874 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2875 IGB_TX_FLAGS_VLAN)))
2876 olinfo_status |= tx_ring->queue_index << 4;
2878 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2880 i = tx_ring->next_to_use;
2882 buffer_info = &tx_ring->buffer_info[i];
2883 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2884 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2885 tx_desc->read.cmd_type_len =
2886 cpu_to_le32(cmd_type_len | buffer_info->length);
2887 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2889 if (i == tx_ring->count)
2893 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2894 /* Force memory writes to complete before letting h/w
2895 * know there are new descriptors to fetch. (Only
2896 * applicable for weak-ordered memory model archs,
2897 * such as IA-64). */
2900 tx_ring->next_to_use = i;
2901 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2902 /* we need this if more than one processor can write to our tail
2903 * at a time, it syncronizes IO on IA64/Altix systems */
2907 static int __igb_maybe_stop_tx(struct net_device *netdev,
2908 struct igb_ring *tx_ring, int size)
2910 struct igb_adapter *adapter = netdev_priv(netdev);
2912 netif_stop_subqueue(netdev, tx_ring->queue_index);
2914 /* Herbert's original patch had:
2915 * smp_mb__after_netif_stop_queue();
2916 * but since that doesn't exist yet, just open code it. */
2919 /* We need to check again in a case another CPU has just
2920 * made room available. */
2921 if (IGB_DESC_UNUSED(tx_ring) < size)
2925 netif_wake_subqueue(netdev, tx_ring->queue_index);
2926 ++adapter->restart_queue;
2930 static int igb_maybe_stop_tx(struct net_device *netdev,
2931 struct igb_ring *tx_ring, int size)
2933 if (IGB_DESC_UNUSED(tx_ring) >= size)
2935 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2938 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2940 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2941 struct net_device *netdev,
2942 struct igb_ring *tx_ring)
2944 struct igb_adapter *adapter = netdev_priv(netdev);
2945 unsigned int tx_flags = 0;
2950 len = skb_headlen(skb);
2952 if (test_bit(__IGB_DOWN, &adapter->state)) {
2953 dev_kfree_skb_any(skb);
2954 return NETDEV_TX_OK;
2957 if (skb->len <= 0) {
2958 dev_kfree_skb_any(skb);
2959 return NETDEV_TX_OK;
2962 /* need: 1 descriptor per page,
2963 * + 2 desc gap to keep tail from touching head,
2964 * + 1 desc for skb->data,
2965 * + 1 desc for context descriptor,
2966 * otherwise try next time */
2967 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2968 /* this is a hard error */
2969 return NETDEV_TX_BUSY;
2973 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2974 tx_flags |= IGB_TX_FLAGS_VLAN;
2975 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2978 if (skb->protocol == htons(ETH_P_IP))
2979 tx_flags |= IGB_TX_FLAGS_IPV4;
2981 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2985 dev_kfree_skb_any(skb);
2986 return NETDEV_TX_OK;
2990 tx_flags |= IGB_TX_FLAGS_TSO;
2991 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2992 if (skb->ip_summed == CHECKSUM_PARTIAL)
2993 tx_flags |= IGB_TX_FLAGS_CSUM;
2995 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2996 igb_tx_map_adv(adapter, tx_ring, skb),
2999 netdev->trans_start = jiffies;
3001 /* Make sure there is space in the ring for the next send. */
3002 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3004 return NETDEV_TX_OK;
3007 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3009 struct igb_adapter *adapter = netdev_priv(netdev);
3010 struct igb_ring *tx_ring;
3013 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3014 tx_ring = adapter->multi_tx_table[r_idx];
3016 /* This goes back to the question of how to logically map a tx queue
3017 * to a flow. Right now, performance is impacted slightly negatively
3018 * if using multiple tx queues. If the stack breaks away from a
3019 * single qdisc implementation, we can look at this again. */
3020 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3024 * igb_tx_timeout - Respond to a Tx Hang
3025 * @netdev: network interface device structure
3027 static void igb_tx_timeout(struct net_device *netdev)
3029 struct igb_adapter *adapter = netdev_priv(netdev);
3030 struct e1000_hw *hw = &adapter->hw;
3032 /* Do the reset outside of interrupt context */
3033 adapter->tx_timeout_count++;
3034 schedule_work(&adapter->reset_task);
3035 wr32(E1000_EICS, adapter->eims_enable_mask &
3036 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3039 static void igb_reset_task(struct work_struct *work)
3041 struct igb_adapter *adapter;
3042 adapter = container_of(work, struct igb_adapter, reset_task);
3044 igb_reinit_locked(adapter);
3048 * igb_get_stats - Get System Network Statistics
3049 * @netdev: network interface device structure
3051 * Returns the address of the device statistics structure.
3052 * The statistics are actually updated from the timer callback.
3054 static struct net_device_stats *
3055 igb_get_stats(struct net_device *netdev)
3057 struct igb_adapter *adapter = netdev_priv(netdev);
3059 /* only return the current stats */
3060 return &adapter->net_stats;
3064 * igb_change_mtu - Change the Maximum Transfer Unit
3065 * @netdev: network interface device structure
3066 * @new_mtu: new value for maximum frame size
3068 * Returns 0 on success, negative on failure
3070 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3072 struct igb_adapter *adapter = netdev_priv(netdev);
3073 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3075 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3076 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3077 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3081 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3082 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3083 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3087 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3089 /* igb_down has a dependency on max_frame_size */
3090 adapter->max_frame_size = max_frame;
3091 if (netif_running(netdev))
3094 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3095 * means we reserve 2 more, this pushes us to allocate from the next
3097 * i.e. RXBUFFER_2048 --> size-4096 slab
3100 if (max_frame <= IGB_RXBUFFER_256)
3101 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3102 else if (max_frame <= IGB_RXBUFFER_512)
3103 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3104 else if (max_frame <= IGB_RXBUFFER_1024)
3105 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3106 else if (max_frame <= IGB_RXBUFFER_2048)
3107 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3109 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3110 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3112 adapter->rx_buffer_len = PAGE_SIZE / 2;
3114 /* adjust allocation if LPE protects us, and we aren't using SBP */
3115 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3116 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3117 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3119 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3120 netdev->mtu, new_mtu);
3121 netdev->mtu = new_mtu;
3123 if (netif_running(netdev))
3128 clear_bit(__IGB_RESETTING, &adapter->state);
3134 * igb_update_stats - Update the board statistics counters
3135 * @adapter: board private structure
3138 void igb_update_stats(struct igb_adapter *adapter)
3140 struct e1000_hw *hw = &adapter->hw;
3141 struct pci_dev *pdev = adapter->pdev;
3144 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3147 * Prevent stats update while adapter is being reset, or if the pci
3148 * connection is down.
3150 if (adapter->link_speed == 0)
3152 if (pci_channel_offline(pdev))
3155 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3156 adapter->stats.gprc += rd32(E1000_GPRC);
3157 adapter->stats.gorc += rd32(E1000_GORCL);
3158 rd32(E1000_GORCH); /* clear GORCL */
3159 adapter->stats.bprc += rd32(E1000_BPRC);
3160 adapter->stats.mprc += rd32(E1000_MPRC);
3161 adapter->stats.roc += rd32(E1000_ROC);
3163 adapter->stats.prc64 += rd32(E1000_PRC64);
3164 adapter->stats.prc127 += rd32(E1000_PRC127);
3165 adapter->stats.prc255 += rd32(E1000_PRC255);
3166 adapter->stats.prc511 += rd32(E1000_PRC511);
3167 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3168 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3169 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3170 adapter->stats.sec += rd32(E1000_SEC);
3172 adapter->stats.mpc += rd32(E1000_MPC);
3173 adapter->stats.scc += rd32(E1000_SCC);
3174 adapter->stats.ecol += rd32(E1000_ECOL);
3175 adapter->stats.mcc += rd32(E1000_MCC);
3176 adapter->stats.latecol += rd32(E1000_LATECOL);
3177 adapter->stats.dc += rd32(E1000_DC);
3178 adapter->stats.rlec += rd32(E1000_RLEC);
3179 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3180 adapter->stats.xontxc += rd32(E1000_XONTXC);
3181 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3182 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3183 adapter->stats.fcruc += rd32(E1000_FCRUC);
3184 adapter->stats.gptc += rd32(E1000_GPTC);
3185 adapter->stats.gotc += rd32(E1000_GOTCL);
3186 rd32(E1000_GOTCH); /* clear GOTCL */
3187 adapter->stats.rnbc += rd32(E1000_RNBC);
3188 adapter->stats.ruc += rd32(E1000_RUC);
3189 adapter->stats.rfc += rd32(E1000_RFC);
3190 adapter->stats.rjc += rd32(E1000_RJC);
3191 adapter->stats.tor += rd32(E1000_TORH);
3192 adapter->stats.tot += rd32(E1000_TOTH);
3193 adapter->stats.tpr += rd32(E1000_TPR);
3195 adapter->stats.ptc64 += rd32(E1000_PTC64);
3196 adapter->stats.ptc127 += rd32(E1000_PTC127);
3197 adapter->stats.ptc255 += rd32(E1000_PTC255);
3198 adapter->stats.ptc511 += rd32(E1000_PTC511);
3199 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3200 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3202 adapter->stats.mptc += rd32(E1000_MPTC);
3203 adapter->stats.bptc += rd32(E1000_BPTC);
3205 /* used for adaptive IFS */
3207 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3208 adapter->stats.tpt += hw->mac.tx_packet_delta;
3209 hw->mac.collision_delta = rd32(E1000_COLC);
3210 adapter->stats.colc += hw->mac.collision_delta;
3212 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3213 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3214 adapter->stats.tncrs += rd32(E1000_TNCRS);
3215 adapter->stats.tsctc += rd32(E1000_TSCTC);
3216 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3218 adapter->stats.iac += rd32(E1000_IAC);
3219 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3220 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3221 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3222 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3223 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3224 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3225 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3226 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3228 /* Fill out the OS statistics structure */
3229 adapter->net_stats.multicast = adapter->stats.mprc;
3230 adapter->net_stats.collisions = adapter->stats.colc;
3234 /* RLEC on some newer hardware can be incorrect so build
3235 * our own version based on RUC and ROC */
3236 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3237 adapter->stats.crcerrs + adapter->stats.algnerrc +
3238 adapter->stats.ruc + adapter->stats.roc +
3239 adapter->stats.cexterr;
3240 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3242 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3243 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3244 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3247 adapter->net_stats.tx_errors = adapter->stats.ecol +
3248 adapter->stats.latecol;
3249 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3250 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3251 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3253 /* Tx Dropped needs to be maintained elsewhere */
3256 if (hw->phy.media_type == e1000_media_type_copper) {
3257 if ((adapter->link_speed == SPEED_1000) &&
3258 (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3260 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3261 adapter->phy_stats.idle_errors += phy_tmp;
3265 /* Management Stats */
3266 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3267 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3268 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3272 static irqreturn_t igb_msix_other(int irq, void *data)
3274 struct net_device *netdev = data;
3275 struct igb_adapter *adapter = netdev_priv(netdev);
3276 struct e1000_hw *hw = &adapter->hw;
3277 u32 icr = rd32(E1000_ICR);
3279 /* reading ICR causes bit 31 of EICR to be cleared */
3280 if (!(icr & E1000_ICR_LSC))
3281 goto no_link_interrupt;
3282 hw->mac.get_link_status = 1;
3283 /* guard against interrupt when we're going down */
3284 if (!test_bit(__IGB_DOWN, &adapter->state))
3285 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3288 wr32(E1000_IMS, E1000_IMS_LSC);
3289 wr32(E1000_EIMS, adapter->eims_other);
3294 static irqreturn_t igb_msix_tx(int irq, void *data)
3296 struct igb_ring *tx_ring = data;
3297 struct igb_adapter *adapter = tx_ring->adapter;
3298 struct e1000_hw *hw = &adapter->hw;
3300 #ifdef CONFIG_IGB_DCA
3301 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3302 igb_update_tx_dca(tx_ring);
3304 tx_ring->total_bytes = 0;
3305 tx_ring->total_packets = 0;
3307 /* auto mask will automatically reenable the interrupt when we write
3309 if (!igb_clean_tx_irq(tx_ring))
3310 /* Ring was not completely cleaned, so fire another interrupt */
3311 wr32(E1000_EICS, tx_ring->eims_value);
3313 wr32(E1000_EIMS, tx_ring->eims_value);
3318 static void igb_write_itr(struct igb_ring *ring)
3320 struct e1000_hw *hw = &ring->adapter->hw;
3321 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3322 switch (hw->mac.type) {
3324 wr32(ring->itr_register,
3329 wr32(ring->itr_register,
3331 (ring->itr_val << 16));
3338 static irqreturn_t igb_msix_rx(int irq, void *data)
3340 struct igb_ring *rx_ring = data;
3341 struct igb_adapter *adapter = rx_ring->adapter;
3343 /* Write the ITR value calculated at the end of the
3344 * previous interrupt.
3347 igb_write_itr(rx_ring);
3349 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3350 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3352 #ifdef CONFIG_IGB_DCA
3353 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3354 igb_update_rx_dca(rx_ring);
3359 #ifdef CONFIG_IGB_DCA
3360 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3363 struct igb_adapter *adapter = rx_ring->adapter;
3364 struct e1000_hw *hw = &adapter->hw;
3365 int cpu = get_cpu();
3366 int q = rx_ring - adapter->rx_ring;
3368 if (rx_ring->cpu != cpu) {
3369 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3370 if (hw->mac.type == e1000_82576) {
3371 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3372 dca_rxctrl |= dca_get_tag(cpu) <<
3373 E1000_DCA_RXCTRL_CPUID_SHIFT;
3375 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3376 dca_rxctrl |= dca_get_tag(cpu);
3378 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3379 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3380 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3381 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3387 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3390 struct igb_adapter *adapter = tx_ring->adapter;
3391 struct e1000_hw *hw = &adapter->hw;
3392 int cpu = get_cpu();
3393 int q = tx_ring - adapter->tx_ring;
3395 if (tx_ring->cpu != cpu) {
3396 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3397 if (hw->mac.type == e1000_82576) {
3398 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3399 dca_txctrl |= dca_get_tag(cpu) <<
3400 E1000_DCA_TXCTRL_CPUID_SHIFT;
3402 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3403 dca_txctrl |= dca_get_tag(cpu);
3405 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3406 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3412 static void igb_setup_dca(struct igb_adapter *adapter)
3416 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3419 for (i = 0; i < adapter->num_tx_queues; i++) {
3420 adapter->tx_ring[i].cpu = -1;
3421 igb_update_tx_dca(&adapter->tx_ring[i]);
3423 for (i = 0; i < adapter->num_rx_queues; i++) {
3424 adapter->rx_ring[i].cpu = -1;
3425 igb_update_rx_dca(&adapter->rx_ring[i]);
3429 static int __igb_notify_dca(struct device *dev, void *data)
3431 struct net_device *netdev = dev_get_drvdata(dev);
3432 struct igb_adapter *adapter = netdev_priv(netdev);
3433 struct e1000_hw *hw = &adapter->hw;
3434 unsigned long event = *(unsigned long *)data;
3436 if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3440 case DCA_PROVIDER_ADD:
3441 /* if already enabled, don't do it again */
3442 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3444 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3445 /* Always use CB2 mode, difference is masked
3446 * in the CB driver. */
3447 wr32(E1000_DCA_CTRL, 2);
3448 if (dca_add_requester(dev) == 0) {
3449 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3450 igb_setup_dca(adapter);
3453 /* Fall Through since DCA is disabled. */
3454 case DCA_PROVIDER_REMOVE:
3455 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3456 /* without this a class_device is left
3457 * hanging around in the sysfs model */
3458 dca_remove_requester(dev);
3459 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3460 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3461 wr32(E1000_DCA_CTRL, 1);
3469 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3474 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3477 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3479 #endif /* CONFIG_IGB_DCA */
3482 * igb_intr_msi - Interrupt Handler
3483 * @irq: interrupt number
3484 * @data: pointer to a network interface device structure
3486 static irqreturn_t igb_intr_msi(int irq, void *data)
3488 struct net_device *netdev = data;
3489 struct igb_adapter *adapter = netdev_priv(netdev);
3490 struct e1000_hw *hw = &adapter->hw;
3491 /* read ICR disables interrupts using IAM */
3492 u32 icr = rd32(E1000_ICR);
3494 igb_write_itr(adapter->rx_ring);
3496 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3497 hw->mac.get_link_status = 1;
3498 if (!test_bit(__IGB_DOWN, &adapter->state))
3499 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3502 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3508 * igb_intr - Interrupt Handler
3509 * @irq: interrupt number
3510 * @data: pointer to a network interface device structure
3512 static irqreturn_t igb_intr(int irq, void *data)
3514 struct net_device *netdev = data;
3515 struct igb_adapter *adapter = netdev_priv(netdev);
3516 struct e1000_hw *hw = &adapter->hw;
3517 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3518 * need for the IMC write */
3519 u32 icr = rd32(E1000_ICR);
3522 return IRQ_NONE; /* Not our interrupt */
3524 igb_write_itr(adapter->rx_ring);
3526 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3527 * not set, then the adapter didn't send an interrupt */
3528 if (!(icr & E1000_ICR_INT_ASSERTED))
3531 eicr = rd32(E1000_EICR);
3533 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3534 hw->mac.get_link_status = 1;
3535 /* guard against interrupt when we're going down */
3536 if (!test_bit(__IGB_DOWN, &adapter->state))
3537 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3540 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3546 * igb_poll - NAPI Rx polling callback
3547 * @napi: napi polling structure
3548 * @budget: count of how many packets we should handle
3550 static int igb_poll(struct napi_struct *napi, int budget)
3552 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3553 struct igb_adapter *adapter = rx_ring->adapter;
3554 struct net_device *netdev = adapter->netdev;
3555 int tx_clean_complete, work_done = 0;
3557 /* this poll routine only supports one tx and one rx queue */
3558 #ifdef CONFIG_IGB_DCA
3559 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3560 igb_update_tx_dca(&adapter->tx_ring[0]);
3562 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3564 #ifdef CONFIG_IGB_DCA
3565 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3566 igb_update_rx_dca(&adapter->rx_ring[0]);
3568 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3570 /* If no Tx and not enough Rx work done, exit the polling mode */
3571 if ((tx_clean_complete && (work_done < budget)) ||
3572 !netif_running(netdev)) {
3573 if (adapter->itr_setting & 3)
3574 igb_set_itr(adapter);
3575 netif_rx_complete(netdev, napi);
3576 if (!test_bit(__IGB_DOWN, &adapter->state))
3577 igb_irq_enable(adapter);
3584 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3586 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3587 struct igb_adapter *adapter = rx_ring->adapter;
3588 struct e1000_hw *hw = &adapter->hw;
3589 struct net_device *netdev = adapter->netdev;
3592 #ifdef CONFIG_IGB_DCA
3593 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3594 igb_update_rx_dca(rx_ring);
3596 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3599 /* If not enough Rx work done, exit the polling mode */
3600 if ((work_done == 0) || !netif_running(netdev)) {
3601 netif_rx_complete(netdev, napi);
3603 if (adapter->itr_setting & 3) {
3604 if (adapter->num_rx_queues == 1)
3605 igb_set_itr(adapter);
3607 igb_update_ring_itr(rx_ring);
3610 if (!test_bit(__IGB_DOWN, &adapter->state))
3611 wr32(E1000_EIMS, rx_ring->eims_value);
3619 static inline u32 get_head(struct igb_ring *tx_ring)
3621 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3622 return le32_to_cpu(*(volatile __le32 *)end);
3626 * igb_clean_tx_irq - Reclaim resources after transmit completes
3627 * @adapter: board private structure
3628 * returns true if ring is completely cleaned
3630 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3632 struct igb_adapter *adapter = tx_ring->adapter;
3633 struct e1000_hw *hw = &adapter->hw;
3634 struct net_device *netdev = adapter->netdev;
3635 struct e1000_tx_desc *tx_desc;
3636 struct igb_buffer *buffer_info;
3637 struct sk_buff *skb;
3640 unsigned int count = 0;
3641 unsigned int total_bytes = 0, total_packets = 0;
3645 head = get_head(tx_ring);
3646 i = tx_ring->next_to_clean;
3649 tx_desc = E1000_TX_DESC(*tx_ring, i);
3650 buffer_info = &tx_ring->buffer_info[i];
3651 skb = buffer_info->skb;
3654 unsigned int segs, bytecount;
3655 /* gso_segs is currently only valid for tcp */
3656 segs = skb_shinfo(skb)->gso_segs ?: 1;
3657 /* multiply data chunks by size of headers */
3658 bytecount = ((segs - 1) * skb_headlen(skb)) +
3660 total_packets += segs;
3661 total_bytes += bytecount;
3664 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3667 if (i == tx_ring->count)
3671 if (count == IGB_MAX_TX_CLEAN) {
3678 head = get_head(tx_ring);
3679 if (head == oldhead)
3684 tx_ring->next_to_clean = i;
3686 if (unlikely(count &&
3687 netif_carrier_ok(netdev) &&
3688 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3689 /* Make sure that anybody stopping the queue after this
3690 * sees the new next_to_clean.
3693 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3694 !(test_bit(__IGB_DOWN, &adapter->state))) {
3695 netif_wake_subqueue(netdev, tx_ring->queue_index);
3696 ++adapter->restart_queue;
3700 if (tx_ring->detect_tx_hung) {
3701 /* Detect a transmit hang in hardware, this serializes the
3702 * check with the clearing of time_stamp and movement of i */
3703 tx_ring->detect_tx_hung = false;
3704 if (tx_ring->buffer_info[i].time_stamp &&
3705 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3706 (adapter->tx_timeout_factor * HZ))
3707 && !(rd32(E1000_STATUS) &
3708 E1000_STATUS_TXOFF)) {
3710 tx_desc = E1000_TX_DESC(*tx_ring, i);
3711 /* detected Tx unit hang */
3712 dev_err(&adapter->pdev->dev,
3713 "Detected Tx Unit Hang\n"
3717 " next_to_use <%x>\n"
3718 " next_to_clean <%x>\n"
3720 "buffer_info[next_to_clean]\n"
3721 " time_stamp <%lx>\n"
3723 " desc.status <%x>\n",
3724 tx_ring->queue_index,
3725 readl(adapter->hw.hw_addr + tx_ring->head),
3726 readl(adapter->hw.hw_addr + tx_ring->tail),
3727 tx_ring->next_to_use,
3728 tx_ring->next_to_clean,
3730 tx_ring->buffer_info[i].time_stamp,
3732 tx_desc->upper.fields.status);
3733 netif_stop_subqueue(netdev, tx_ring->queue_index);
3736 tx_ring->total_bytes += total_bytes;
3737 tx_ring->total_packets += total_packets;
3738 tx_ring->tx_stats.bytes += total_bytes;
3739 tx_ring->tx_stats.packets += total_packets;
3740 adapter->net_stats.tx_bytes += total_bytes;
3741 adapter->net_stats.tx_packets += total_packets;
3745 #ifdef CONFIG_IGB_LRO
3747 * igb_get_skb_hdr - helper function for LRO header processing
3748 * @skb: pointer to sk_buff to be added to LRO packet
3749 * @iphdr: pointer to ip header structure
3750 * @tcph: pointer to tcp header structure
3751 * @hdr_flags: pointer to header flags
3752 * @priv: pointer to the receive descriptor for the current sk_buff
3754 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3755 u64 *hdr_flags, void *priv)
3757 union e1000_adv_rx_desc *rx_desc = priv;
3758 u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3759 (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3761 /* Verify that this is a valid IPv4 TCP packet */
3762 if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3763 E1000_RXDADV_PKTTYPE_TCP))
3766 /* Set network headers */
3767 skb_reset_network_header(skb);
3768 skb_set_transport_header(skb, ip_hdrlen(skb));
3769 *iphdr = ip_hdr(skb);
3770 *tcph = tcp_hdr(skb);
3771 *hdr_flags = LRO_IPV4 | LRO_TCP;
3776 #endif /* CONFIG_IGB_LRO */
3779 * igb_receive_skb - helper function to handle rx indications
3780 * @ring: pointer to receive ring receving this packet
3781 * @status: descriptor status field as written by hardware
3782 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3783 * @skb: pointer to sk_buff to be indicated to stack
3785 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3786 union e1000_adv_rx_desc * rx_desc,
3787 struct sk_buff *skb)
3789 struct igb_adapter * adapter = ring->adapter;
3790 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3792 #ifdef CONFIG_IGB_LRO
3793 if (adapter->netdev->features & NETIF_F_LRO &&
3794 skb->ip_summed == CHECKSUM_UNNECESSARY) {
3796 lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3798 le16_to_cpu(rx_desc->wb.upper.vlan),
3801 lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3806 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3807 le16_to_cpu(rx_desc->wb.upper.vlan));
3810 netif_receive_skb(skb);
3811 #ifdef CONFIG_IGB_LRO
3817 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3818 u32 status_err, struct sk_buff *skb)
3820 skb->ip_summed = CHECKSUM_NONE;
3822 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3823 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3825 /* TCP/UDP checksum error bit is set */
3827 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3828 /* let the stack verify checksum errors */
3829 adapter->hw_csum_err++;
3832 /* It must be a TCP or UDP packet with a valid checksum */
3833 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3834 skb->ip_summed = CHECKSUM_UNNECESSARY;
3836 adapter->hw_csum_good++;
3839 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3840 int *work_done, int budget)
3842 struct igb_adapter *adapter = rx_ring->adapter;
3843 struct net_device *netdev = adapter->netdev;
3844 struct pci_dev *pdev = adapter->pdev;
3845 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3846 struct igb_buffer *buffer_info , *next_buffer;
3847 struct sk_buff *skb;
3849 u32 length, hlen, staterr;
3850 bool cleaned = false;
3851 int cleaned_count = 0;
3852 unsigned int total_bytes = 0, total_packets = 0;
3854 i = rx_ring->next_to_clean;
3855 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3856 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3858 while (staterr & E1000_RXD_STAT_DD) {
3859 if (*work_done >= budget)
3862 buffer_info = &rx_ring->buffer_info[i];
3864 /* HW will not DMA in data larger than the given buffer, even
3865 * if it parses the (NFS, of course) header to be larger. In
3866 * that case, it fills the header buffer and spills the rest
3869 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3870 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3871 if (hlen > adapter->rx_ps_hdr_size)
3872 hlen = adapter->rx_ps_hdr_size;
3874 length = le16_to_cpu(rx_desc->wb.upper.length);
3878 skb = buffer_info->skb;
3879 prefetch(skb->data - NET_IP_ALIGN);
3880 buffer_info->skb = NULL;
3881 if (!adapter->rx_ps_hdr_size) {
3882 pci_unmap_single(pdev, buffer_info->dma,
3883 adapter->rx_buffer_len +
3885 PCI_DMA_FROMDEVICE);
3886 skb_put(skb, length);
3890 if (!skb_shinfo(skb)->nr_frags) {
3891 pci_unmap_single(pdev, buffer_info->dma,
3892 adapter->rx_ps_hdr_size +
3894 PCI_DMA_FROMDEVICE);
3899 pci_unmap_page(pdev, buffer_info->page_dma,
3900 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3901 buffer_info->page_dma = 0;
3903 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3905 buffer_info->page_offset,
3908 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3909 (page_count(buffer_info->page) != 1))
3910 buffer_info->page = NULL;
3912 get_page(buffer_info->page);
3915 skb->data_len += length;
3917 skb->truesize += length;
3921 if (i == rx_ring->count)
3923 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3925 next_buffer = &rx_ring->buffer_info[i];
3927 if (!(staterr & E1000_RXD_STAT_EOP)) {
3928 buffer_info->skb = next_buffer->skb;
3929 buffer_info->dma = next_buffer->dma;
3930 next_buffer->skb = skb;
3931 next_buffer->dma = 0;
3935 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3936 dev_kfree_skb_irq(skb);
3940 total_bytes += skb->len;
3943 igb_rx_checksum_adv(adapter, staterr, skb);
3945 skb->protocol = eth_type_trans(skb, netdev);
3947 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3950 rx_desc->wb.upper.status_error = 0;
3952 /* return some buffers to hardware, one at a time is too slow */
3953 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3954 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3958 /* use prefetched values */
3960 buffer_info = next_buffer;
3962 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3965 rx_ring->next_to_clean = i;
3966 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3968 #ifdef CONFIG_IGB_LRO
3969 if (rx_ring->lro_used) {
3970 lro_flush_all(&rx_ring->lro_mgr);
3971 rx_ring->lro_used = 0;
3976 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3978 rx_ring->total_packets += total_packets;
3979 rx_ring->total_bytes += total_bytes;
3980 rx_ring->rx_stats.packets += total_packets;
3981 rx_ring->rx_stats.bytes += total_bytes;
3982 adapter->net_stats.rx_bytes += total_bytes;
3983 adapter->net_stats.rx_packets += total_packets;
3989 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3990 * @adapter: address of board private structure
3992 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3995 struct igb_adapter *adapter = rx_ring->adapter;
3996 struct net_device *netdev = adapter->netdev;
3997 struct pci_dev *pdev = adapter->pdev;
3998 union e1000_adv_rx_desc *rx_desc;
3999 struct igb_buffer *buffer_info;
4000 struct sk_buff *skb;
4003 i = rx_ring->next_to_use;
4004 buffer_info = &rx_ring->buffer_info[i];
4006 while (cleaned_count--) {
4007 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4009 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4010 if (!buffer_info->page) {
4011 buffer_info->page = alloc_page(GFP_ATOMIC);
4012 if (!buffer_info->page) {
4013 adapter->alloc_rx_buff_failed++;
4016 buffer_info->page_offset = 0;
4018 buffer_info->page_offset ^= PAGE_SIZE / 2;
4020 buffer_info->page_dma =
4023 buffer_info->page_offset,
4025 PCI_DMA_FROMDEVICE);
4028 if (!buffer_info->skb) {
4031 if (adapter->rx_ps_hdr_size)
4032 bufsz = adapter->rx_ps_hdr_size;
4034 bufsz = adapter->rx_buffer_len;
4035 bufsz += NET_IP_ALIGN;
4036 skb = netdev_alloc_skb(netdev, bufsz);
4039 adapter->alloc_rx_buff_failed++;
4043 /* Make buffer alignment 2 beyond a 16 byte boundary
4044 * this will result in a 16 byte aligned IP header after
4045 * the 14 byte MAC header is removed
4047 skb_reserve(skb, NET_IP_ALIGN);
4049 buffer_info->skb = skb;
4050 buffer_info->dma = pci_map_single(pdev, skb->data,
4052 PCI_DMA_FROMDEVICE);
4055 /* Refresh the desc even if buffer_addrs didn't change because
4056 * each write-back erases this info. */
4057 if (adapter->rx_ps_hdr_size) {
4058 rx_desc->read.pkt_addr =
4059 cpu_to_le64(buffer_info->page_dma);
4060 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4062 rx_desc->read.pkt_addr =
4063 cpu_to_le64(buffer_info->dma);
4064 rx_desc->read.hdr_addr = 0;
4068 if (i == rx_ring->count)
4070 buffer_info = &rx_ring->buffer_info[i];
4074 if (rx_ring->next_to_use != i) {
4075 rx_ring->next_to_use = i;
4077 i = (rx_ring->count - 1);
4081 /* Force memory writes to complete before letting h/w
4082 * know there are new descriptors to fetch. (Only
4083 * applicable for weak-ordered memory model archs,
4084 * such as IA-64). */
4086 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4096 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4098 struct igb_adapter *adapter = netdev_priv(netdev);
4099 struct mii_ioctl_data *data = if_mii(ifr);
4101 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4106 data->phy_id = adapter->hw.phy.addr;
4109 if (!capable(CAP_NET_ADMIN))
4111 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4128 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4134 return igb_mii_ioctl(netdev, ifr, cmd);
4140 static void igb_vlan_rx_register(struct net_device *netdev,
4141 struct vlan_group *grp)
4143 struct igb_adapter *adapter = netdev_priv(netdev);
4144 struct e1000_hw *hw = &adapter->hw;
4147 igb_irq_disable(adapter);
4148 adapter->vlgrp = grp;
4151 /* enable VLAN tag insert/strip */
4152 ctrl = rd32(E1000_CTRL);
4153 ctrl |= E1000_CTRL_VME;
4154 wr32(E1000_CTRL, ctrl);
4156 /* enable VLAN receive filtering */
4157 rctl = rd32(E1000_RCTL);
4158 rctl &= ~E1000_RCTL_CFIEN;
4159 wr32(E1000_RCTL, rctl);
4160 igb_update_mng_vlan(adapter);
4162 adapter->max_frame_size + VLAN_TAG_SIZE);
4164 /* disable VLAN tag insert/strip */
4165 ctrl = rd32(E1000_CTRL);
4166 ctrl &= ~E1000_CTRL_VME;
4167 wr32(E1000_CTRL, ctrl);
4169 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4170 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4171 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4174 adapter->max_frame_size);
4177 if (!test_bit(__IGB_DOWN, &adapter->state))
4178 igb_irq_enable(adapter);
4181 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4183 struct igb_adapter *adapter = netdev_priv(netdev);
4184 struct e1000_hw *hw = &adapter->hw;
4187 if ((adapter->hw.mng_cookie.status &
4188 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4189 (vid == adapter->mng_vlan_id))
4191 /* add VID to filter table */
4192 index = (vid >> 5) & 0x7F;
4193 vfta = array_rd32(E1000_VFTA, index);
4194 vfta |= (1 << (vid & 0x1F));
4195 igb_write_vfta(&adapter->hw, index, vfta);
4198 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4200 struct igb_adapter *adapter = netdev_priv(netdev);
4201 struct e1000_hw *hw = &adapter->hw;
4204 igb_irq_disable(adapter);
4205 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4207 if (!test_bit(__IGB_DOWN, &adapter->state))
4208 igb_irq_enable(adapter);
4210 if ((adapter->hw.mng_cookie.status &
4211 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4212 (vid == adapter->mng_vlan_id)) {
4213 /* release control to f/w */
4214 igb_release_hw_control(adapter);
4218 /* remove VID from filter table */
4219 index = (vid >> 5) & 0x7F;
4220 vfta = array_rd32(E1000_VFTA, index);
4221 vfta &= ~(1 << (vid & 0x1F));
4222 igb_write_vfta(&adapter->hw, index, vfta);
4225 static void igb_restore_vlan(struct igb_adapter *adapter)
4227 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4229 if (adapter->vlgrp) {
4231 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4232 if (!vlan_group_get_device(adapter->vlgrp, vid))
4234 igb_vlan_rx_add_vid(adapter->netdev, vid);
4239 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4241 struct e1000_mac_info *mac = &adapter->hw.mac;
4245 /* Fiber NICs only allow 1000 gbps Full duplex */
4246 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4247 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4248 dev_err(&adapter->pdev->dev,
4249 "Unsupported Speed/Duplex configuration\n");
4254 case SPEED_10 + DUPLEX_HALF:
4255 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4257 case SPEED_10 + DUPLEX_FULL:
4258 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4260 case SPEED_100 + DUPLEX_HALF:
4261 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4263 case SPEED_100 + DUPLEX_FULL:
4264 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4266 case SPEED_1000 + DUPLEX_FULL:
4268 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4270 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4272 dev_err(&adapter->pdev->dev,
4273 "Unsupported Speed/Duplex configuration\n");
4280 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4282 struct net_device *netdev = pci_get_drvdata(pdev);
4283 struct igb_adapter *adapter = netdev_priv(netdev);
4284 struct e1000_hw *hw = &adapter->hw;
4285 u32 ctrl, rctl, status;
4286 u32 wufc = adapter->wol;
4291 netif_device_detach(netdev);
4293 if (netif_running(netdev))
4296 igb_reset_interrupt_capability(adapter);
4298 igb_free_queues(adapter);
4301 retval = pci_save_state(pdev);
4306 status = rd32(E1000_STATUS);
4307 if (status & E1000_STATUS_LU)
4308 wufc &= ~E1000_WUFC_LNKC;
4311 igb_setup_rctl(adapter);
4312 igb_set_multi(netdev);
4314 /* turn on all-multi mode if wake on multicast is enabled */
4315 if (wufc & E1000_WUFC_MC) {
4316 rctl = rd32(E1000_RCTL);
4317 rctl |= E1000_RCTL_MPE;
4318 wr32(E1000_RCTL, rctl);
4321 ctrl = rd32(E1000_CTRL);
4322 /* advertise wake from D3Cold */
4323 #define E1000_CTRL_ADVD3WUC 0x00100000
4324 /* phy power management enable */
4325 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4326 ctrl |= E1000_CTRL_ADVD3WUC;
4327 wr32(E1000_CTRL, ctrl);
4329 /* Allow time for pending master requests to run */
4330 igb_disable_pcie_master(&adapter->hw);
4332 wr32(E1000_WUC, E1000_WUC_PME_EN);
4333 wr32(E1000_WUFC, wufc);
4336 wr32(E1000_WUFC, 0);
4339 /* make sure adapter isn't asleep if manageability/wol is enabled */
4340 if (wufc || adapter->en_mng_pt) {
4341 pci_enable_wake(pdev, PCI_D3hot, 1);
4342 pci_enable_wake(pdev, PCI_D3cold, 1);
4344 igb_shutdown_fiber_serdes_link_82575(hw);
4345 pci_enable_wake(pdev, PCI_D3hot, 0);
4346 pci_enable_wake(pdev, PCI_D3cold, 0);
4349 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4350 * would have already happened in close and is redundant. */
4351 igb_release_hw_control(adapter);
4353 pci_disable_device(pdev);
4355 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4361 static int igb_resume(struct pci_dev *pdev)
4363 struct net_device *netdev = pci_get_drvdata(pdev);
4364 struct igb_adapter *adapter = netdev_priv(netdev);
4365 struct e1000_hw *hw = &adapter->hw;
4368 pci_set_power_state(pdev, PCI_D0);
4369 pci_restore_state(pdev);
4371 if (adapter->need_ioport)
4372 err = pci_enable_device(pdev);
4374 err = pci_enable_device_mem(pdev);
4377 "igb: Cannot enable PCI device from suspend\n");
4380 pci_set_master(pdev);
4382 pci_enable_wake(pdev, PCI_D3hot, 0);
4383 pci_enable_wake(pdev, PCI_D3cold, 0);
4385 igb_set_interrupt_capability(adapter);
4387 if (igb_alloc_queues(adapter)) {
4388 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4392 /* e1000_power_up_phy(adapter); */
4395 wr32(E1000_WUS, ~0);
4397 if (netif_running(netdev)) {
4398 err = igb_open(netdev);
4403 netif_device_attach(netdev);
4405 /* let the f/w know that the h/w is now under the control of the
4407 igb_get_hw_control(adapter);
4413 static void igb_shutdown(struct pci_dev *pdev)
4415 igb_suspend(pdev, PMSG_SUSPEND);
4418 #ifdef CONFIG_NET_POLL_CONTROLLER
4420 * Polling 'interrupt' - used by things like netconsole to send skbs
4421 * without having to re-enable interrupts. It's not called while
4422 * the interrupt routine is executing.
4424 static void igb_netpoll(struct net_device *netdev)
4426 struct igb_adapter *adapter = netdev_priv(netdev);
4430 igb_irq_disable(adapter);
4431 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4433 for (i = 0; i < adapter->num_tx_queues; i++)
4434 igb_clean_tx_irq(&adapter->tx_ring[i]);
4436 for (i = 0; i < adapter->num_rx_queues; i++)
4437 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4439 adapter->rx_ring[i].napi.weight);
4441 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4442 igb_irq_enable(adapter);
4444 #endif /* CONFIG_NET_POLL_CONTROLLER */
4447 * igb_io_error_detected - called when PCI error is detected
4448 * @pdev: Pointer to PCI device
4449 * @state: The current pci connection state
4451 * This function is called after a PCI bus error affecting
4452 * this device has been detected.
4454 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4455 pci_channel_state_t state)
4457 struct net_device *netdev = pci_get_drvdata(pdev);
4458 struct igb_adapter *adapter = netdev_priv(netdev);
4460 netif_device_detach(netdev);
4462 if (netif_running(netdev))
4464 pci_disable_device(pdev);
4466 /* Request a slot slot reset. */
4467 return PCI_ERS_RESULT_NEED_RESET;
4471 * igb_io_slot_reset - called after the pci bus has been reset.
4472 * @pdev: Pointer to PCI device
4474 * Restart the card from scratch, as if from a cold-boot. Implementation
4475 * resembles the first-half of the igb_resume routine.
4477 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4479 struct net_device *netdev = pci_get_drvdata(pdev);
4480 struct igb_adapter *adapter = netdev_priv(netdev);
4481 struct e1000_hw *hw = &adapter->hw;
4484 if (adapter->need_ioport)
4485 err = pci_enable_device(pdev);
4487 err = pci_enable_device_mem(pdev);
4490 "Cannot re-enable PCI device after reset.\n");
4491 return PCI_ERS_RESULT_DISCONNECT;
4493 pci_set_master(pdev);
4494 pci_restore_state(pdev);
4496 pci_enable_wake(pdev, PCI_D3hot, 0);
4497 pci_enable_wake(pdev, PCI_D3cold, 0);
4500 wr32(E1000_WUS, ~0);
4502 return PCI_ERS_RESULT_RECOVERED;
4506 * igb_io_resume - called when traffic can start flowing again.
4507 * @pdev: Pointer to PCI device
4509 * This callback is called when the error recovery driver tells us that
4510 * its OK to resume normal operation. Implementation resembles the
4511 * second-half of the igb_resume routine.
4513 static void igb_io_resume(struct pci_dev *pdev)
4515 struct net_device *netdev = pci_get_drvdata(pdev);
4516 struct igb_adapter *adapter = netdev_priv(netdev);
4518 if (netif_running(netdev)) {
4519 if (igb_up(adapter)) {
4520 dev_err(&pdev->dev, "igb_up failed after reset\n");
4525 netif_device_attach(netdev);
4527 /* let the f/w know that the h/w is now under the control of the
4529 igb_get_hw_control(adapter);