igb: do not use phy ops in ethtool test cleanup for non-copper parts
[linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #ifdef CONFIG_IGB_DCA
46 #include <linux/dca.h>
47 #endif
48 #include "igb.h"
49
50 #define DRV_VERSION "1.2.45-k2"
51 char igb_driver_name[] = "igb";
52 char igb_driver_version[] = DRV_VERSION;
53 static const char igb_driver_string[] =
54                                 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
56
57 static const struct e1000_info *igb_info_tbl[] = {
58         [board_82575] = &e1000_82575_info,
59 };
60
61 static struct pci_device_id igb_pci_tbl[] = {
62         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
68         /* required last entry */
69         {0, }
70 };
71
72 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
73
74 void igb_reset(struct igb_adapter *);
75 static int igb_setup_all_tx_resources(struct igb_adapter *);
76 static int igb_setup_all_rx_resources(struct igb_adapter *);
77 static void igb_free_all_tx_resources(struct igb_adapter *);
78 static void igb_free_all_rx_resources(struct igb_adapter *);
79 void igb_update_stats(struct igb_adapter *);
80 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
81 static void __devexit igb_remove(struct pci_dev *pdev);
82 static int igb_sw_init(struct igb_adapter *);
83 static int igb_open(struct net_device *);
84 static int igb_close(struct net_device *);
85 static void igb_configure_tx(struct igb_adapter *);
86 static void igb_configure_rx(struct igb_adapter *);
87 static void igb_setup_rctl(struct igb_adapter *);
88 static void igb_clean_all_tx_rings(struct igb_adapter *);
89 static void igb_clean_all_rx_rings(struct igb_adapter *);
90 static void igb_clean_tx_ring(struct igb_ring *);
91 static void igb_clean_rx_ring(struct igb_ring *);
92 static void igb_set_multi(struct net_device *);
93 static void igb_update_phy_info(unsigned long);
94 static void igb_watchdog(unsigned long);
95 static void igb_watchdog_task(struct work_struct *);
96 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
97                                   struct igb_ring *);
98 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
99 static struct net_device_stats *igb_get_stats(struct net_device *);
100 static int igb_change_mtu(struct net_device *, int);
101 static int igb_set_mac(struct net_device *, void *);
102 static irqreturn_t igb_intr(int irq, void *);
103 static irqreturn_t igb_intr_msi(int irq, void *);
104 static irqreturn_t igb_msix_other(int irq, void *);
105 static irqreturn_t igb_msix_rx(int irq, void *);
106 static irqreturn_t igb_msix_tx(int irq, void *);
107 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
108 #ifdef CONFIG_IGB_DCA
109 static void igb_update_rx_dca(struct igb_ring *);
110 static void igb_update_tx_dca(struct igb_ring *);
111 static void igb_setup_dca(struct igb_adapter *);
112 #endif /* CONFIG_IGB_DCA */
113 static bool igb_clean_tx_irq(struct igb_ring *);
114 static int igb_poll(struct napi_struct *, int);
115 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
116 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
117 #ifdef CONFIG_IGB_LRO
118 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
119 #endif
120 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121 static void igb_tx_timeout(struct net_device *);
122 static void igb_reset_task(struct work_struct *);
123 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124 static void igb_vlan_rx_add_vid(struct net_device *, u16);
125 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126 static void igb_restore_vlan(struct igb_adapter *);
127
128 static int igb_suspend(struct pci_dev *, pm_message_t);
129 #ifdef CONFIG_PM
130 static int igb_resume(struct pci_dev *);
131 #endif
132 static void igb_shutdown(struct pci_dev *);
133 #ifdef CONFIG_IGB_DCA
134 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
135 static struct notifier_block dca_notifier = {
136         .notifier_call  = igb_notify_dca,
137         .next           = NULL,
138         .priority       = 0
139 };
140 #endif
141
142 #ifdef CONFIG_NET_POLL_CONTROLLER
143 /* for netdump / net console */
144 static void igb_netpoll(struct net_device *);
145 #endif
146
147 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
148                      pci_channel_state_t);
149 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
150 static void igb_io_resume(struct pci_dev *);
151
152 static struct pci_error_handlers igb_err_handler = {
153         .error_detected = igb_io_error_detected,
154         .slot_reset = igb_io_slot_reset,
155         .resume = igb_io_resume,
156 };
157
158
159 static struct pci_driver igb_driver = {
160         .name     = igb_driver_name,
161         .id_table = igb_pci_tbl,
162         .probe    = igb_probe,
163         .remove   = __devexit_p(igb_remove),
164 #ifdef CONFIG_PM
165         /* Power Managment Hooks */
166         .suspend  = igb_suspend,
167         .resume   = igb_resume,
168 #endif
169         .shutdown = igb_shutdown,
170         .err_handler = &igb_err_handler
171 };
172
173 static int global_quad_port_a; /* global quad port a indication */
174
175 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
176 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
177 MODULE_LICENSE("GPL");
178 MODULE_VERSION(DRV_VERSION);
179
180 #ifdef DEBUG
181 /**
182  * igb_get_hw_dev_name - return device name string
183  * used by hardware layer to print debugging information
184  **/
185 char *igb_get_hw_dev_name(struct e1000_hw *hw)
186 {
187         struct igb_adapter *adapter = hw->back;
188         return adapter->netdev->name;
189 }
190 #endif
191
192 /**
193  * igb_init_module - Driver Registration Routine
194  *
195  * igb_init_module is the first routine called when the driver is
196  * loaded. All it does is register with the PCI subsystem.
197  **/
198 static int __init igb_init_module(void)
199 {
200         int ret;
201         printk(KERN_INFO "%s - version %s\n",
202                igb_driver_string, igb_driver_version);
203
204         printk(KERN_INFO "%s\n", igb_copyright);
205
206         global_quad_port_a = 0;
207
208         ret = pci_register_driver(&igb_driver);
209 #ifdef CONFIG_IGB_DCA
210         dca_register_notify(&dca_notifier);
211 #endif
212         return ret;
213 }
214
215 module_init(igb_init_module);
216
217 /**
218  * igb_exit_module - Driver Exit Cleanup Routine
219  *
220  * igb_exit_module is called just before the driver is removed
221  * from memory.
222  **/
223 static void __exit igb_exit_module(void)
224 {
225 #ifdef CONFIG_IGB_DCA
226         dca_unregister_notify(&dca_notifier);
227 #endif
228         pci_unregister_driver(&igb_driver);
229 }
230
231 module_exit(igb_exit_module);
232
233 /**
234  * igb_alloc_queues - Allocate memory for all rings
235  * @adapter: board private structure to initialize
236  *
237  * We allocate one ring per queue at run-time since we don't know the
238  * number of queues at compile-time.
239  **/
240 static int igb_alloc_queues(struct igb_adapter *adapter)
241 {
242         int i;
243
244         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
245                                    sizeof(struct igb_ring), GFP_KERNEL);
246         if (!adapter->tx_ring)
247                 return -ENOMEM;
248
249         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
250                                    sizeof(struct igb_ring), GFP_KERNEL);
251         if (!adapter->rx_ring) {
252                 kfree(adapter->tx_ring);
253                 return -ENOMEM;
254         }
255
256         adapter->rx_ring->buddy = adapter->tx_ring;
257
258         for (i = 0; i < adapter->num_tx_queues; i++) {
259                 struct igb_ring *ring = &(adapter->tx_ring[i]);
260                 ring->count = adapter->tx_ring_count;
261                 ring->adapter = adapter;
262                 ring->queue_index = i;
263         }
264         for (i = 0; i < adapter->num_rx_queues; i++) {
265                 struct igb_ring *ring = &(adapter->rx_ring[i]);
266                 ring->count = adapter->rx_ring_count;
267                 ring->adapter = adapter;
268                 ring->queue_index = i;
269                 ring->itr_register = E1000_ITR;
270
271                 /* set a default napi handler for each rx_ring */
272                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
273         }
274         return 0;
275 }
276
277 static void igb_free_queues(struct igb_adapter *adapter)
278 {
279         int i;
280
281         for (i = 0; i < adapter->num_rx_queues; i++)
282                 netif_napi_del(&adapter->rx_ring[i].napi);
283
284         kfree(adapter->tx_ring);
285         kfree(adapter->rx_ring);
286 }
287
288 #define IGB_N0_QUEUE -1
289 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
290                               int tx_queue, int msix_vector)
291 {
292         u32 msixbm = 0;
293         struct e1000_hw *hw = &adapter->hw;
294         u32 ivar, index;
295
296         switch (hw->mac.type) {
297         case e1000_82575:
298                 /* The 82575 assigns vectors using a bitmask, which matches the
299                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
300                    or more queues to a vector, we write the appropriate bits
301                    into the MSIXBM register for that vector. */
302                 if (rx_queue > IGB_N0_QUEUE) {
303                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
304                         adapter->rx_ring[rx_queue].eims_value = msixbm;
305                 }
306                 if (tx_queue > IGB_N0_QUEUE) {
307                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
308                         adapter->tx_ring[tx_queue].eims_value =
309                                   E1000_EICR_TX_QUEUE0 << tx_queue;
310                 }
311                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
312                 break;
313         case e1000_82576:
314                 /* The 82576 uses a table-based method for assigning vectors.
315                    Each queue has a single entry in the table to which we write
316                    a vector number along with a "valid" bit.  Sadly, the layout
317                    of the table is somewhat counterintuitive. */
318                 if (rx_queue > IGB_N0_QUEUE) {
319                         index = (rx_queue & 0x7);
320                         ivar = array_rd32(E1000_IVAR0, index);
321                         if (rx_queue < 8) {
322                                 /* vector goes into low byte of register */
323                                 ivar = ivar & 0xFFFFFF00;
324                                 ivar |= msix_vector | E1000_IVAR_VALID;
325                         } else {
326                                 /* vector goes into third byte of register */
327                                 ivar = ivar & 0xFF00FFFF;
328                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
329                         }
330                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
331                         array_wr32(E1000_IVAR0, index, ivar);
332                 }
333                 if (tx_queue > IGB_N0_QUEUE) {
334                         index = (tx_queue & 0x7);
335                         ivar = array_rd32(E1000_IVAR0, index);
336                         if (tx_queue < 8) {
337                                 /* vector goes into second byte of register */
338                                 ivar = ivar & 0xFFFF00FF;
339                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
340                         } else {
341                                 /* vector goes into high byte of register */
342                                 ivar = ivar & 0x00FFFFFF;
343                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
344                         }
345                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
346                         array_wr32(E1000_IVAR0, index, ivar);
347                 }
348                 break;
349         default:
350                 BUG();
351                 break;
352         }
353 }
354
355 /**
356  * igb_configure_msix - Configure MSI-X hardware
357  *
358  * igb_configure_msix sets up the hardware to properly
359  * generate MSI-X interrupts.
360  **/
361 static void igb_configure_msix(struct igb_adapter *adapter)
362 {
363         u32 tmp;
364         int i, vector = 0;
365         struct e1000_hw *hw = &adapter->hw;
366
367         adapter->eims_enable_mask = 0;
368         if (hw->mac.type == e1000_82576)
369                 /* Turn on MSI-X capability first, or our settings
370                  * won't stick.  And it will take days to debug. */
371                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
372                                    E1000_GPIE_PBA | E1000_GPIE_EIAME | 
373                                    E1000_GPIE_NSICR);
374
375         for (i = 0; i < adapter->num_tx_queues; i++) {
376                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
377                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
378                 adapter->eims_enable_mask |= tx_ring->eims_value;
379                 if (tx_ring->itr_val)
380                         writel(tx_ring->itr_val,
381                                hw->hw_addr + tx_ring->itr_register);
382                 else
383                         writel(1, hw->hw_addr + tx_ring->itr_register);
384         }
385
386         for (i = 0; i < adapter->num_rx_queues; i++) {
387                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
388                 rx_ring->buddy = NULL;
389                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
390                 adapter->eims_enable_mask |= rx_ring->eims_value;
391                 if (rx_ring->itr_val)
392                         writel(rx_ring->itr_val,
393                                hw->hw_addr + rx_ring->itr_register);
394                 else
395                         writel(1, hw->hw_addr + rx_ring->itr_register);
396         }
397
398
399         /* set vector for other causes, i.e. link changes */
400         switch (hw->mac.type) {
401         case e1000_82575:
402                 array_wr32(E1000_MSIXBM(0), vector++,
403                                       E1000_EIMS_OTHER);
404
405                 tmp = rd32(E1000_CTRL_EXT);
406                 /* enable MSI-X PBA support*/
407                 tmp |= E1000_CTRL_EXT_PBA_CLR;
408
409                 /* Auto-Mask interrupts upon ICR read. */
410                 tmp |= E1000_CTRL_EXT_EIAME;
411                 tmp |= E1000_CTRL_EXT_IRCA;
412
413                 wr32(E1000_CTRL_EXT, tmp);
414                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
415                 adapter->eims_other = E1000_EIMS_OTHER;
416
417                 break;
418
419         case e1000_82576:
420                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
421                 wr32(E1000_IVAR_MISC, tmp);
422
423                 adapter->eims_enable_mask = (1 << (vector)) - 1;
424                 adapter->eims_other = 1 << (vector - 1);
425                 break;
426         default:
427                 /* do nothing, since nothing else supports MSI-X */
428                 break;
429         } /* switch (hw->mac.type) */
430         wrfl();
431 }
432
433 /**
434  * igb_request_msix - Initialize MSI-X interrupts
435  *
436  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
437  * kernel.
438  **/
439 static int igb_request_msix(struct igb_adapter *adapter)
440 {
441         struct net_device *netdev = adapter->netdev;
442         int i, err = 0, vector = 0;
443
444         vector = 0;
445
446         for (i = 0; i < adapter->num_tx_queues; i++) {
447                 struct igb_ring *ring = &(adapter->tx_ring[i]);
448                 sprintf(ring->name, "%s-tx%d", netdev->name, i);
449                 err = request_irq(adapter->msix_entries[vector].vector,
450                                   &igb_msix_tx, 0, ring->name,
451                                   &(adapter->tx_ring[i]));
452                 if (err)
453                         goto out;
454                 ring->itr_register = E1000_EITR(0) + (vector << 2);
455                 ring->itr_val = 976; /* ~4000 ints/sec */
456                 vector++;
457         }
458         for (i = 0; i < adapter->num_rx_queues; i++) {
459                 struct igb_ring *ring = &(adapter->rx_ring[i]);
460                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
461                         sprintf(ring->name, "%s-rx%d", netdev->name, i);
462                 else
463                         memcpy(ring->name, netdev->name, IFNAMSIZ);
464                 err = request_irq(adapter->msix_entries[vector].vector,
465                                   &igb_msix_rx, 0, ring->name,
466                                   &(adapter->rx_ring[i]));
467                 if (err)
468                         goto out;
469                 ring->itr_register = E1000_EITR(0) + (vector << 2);
470                 ring->itr_val = adapter->itr;
471                 /* overwrite the poll routine for MSIX, we've already done
472                  * netif_napi_add */
473                 ring->napi.poll = &igb_clean_rx_ring_msix;
474                 vector++;
475         }
476
477         err = request_irq(adapter->msix_entries[vector].vector,
478                           &igb_msix_other, 0, netdev->name, netdev);
479         if (err)
480                 goto out;
481
482         igb_configure_msix(adapter);
483         return 0;
484 out:
485         return err;
486 }
487
488 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
489 {
490         if (adapter->msix_entries) {
491                 pci_disable_msix(adapter->pdev);
492                 kfree(adapter->msix_entries);
493                 adapter->msix_entries = NULL;
494         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
495                 pci_disable_msi(adapter->pdev);
496         return;
497 }
498
499
500 /**
501  * igb_set_interrupt_capability - set MSI or MSI-X if supported
502  *
503  * Attempt to configure interrupts using the best available
504  * capabilities of the hardware and kernel.
505  **/
506 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
507 {
508         int err;
509         int numvecs, i;
510
511         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
512         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
513                                         GFP_KERNEL);
514         if (!adapter->msix_entries)
515                 goto msi_only;
516
517         for (i = 0; i < numvecs; i++)
518                 adapter->msix_entries[i].entry = i;
519
520         err = pci_enable_msix(adapter->pdev,
521                               adapter->msix_entries,
522                               numvecs);
523         if (err == 0)
524                 goto out;
525
526         igb_reset_interrupt_capability(adapter);
527
528         /* If we can't do MSI-X, try MSI */
529 msi_only:
530         adapter->num_rx_queues = 1;
531         adapter->num_tx_queues = 1;
532         if (!pci_enable_msi(adapter->pdev))
533                 adapter->flags |= IGB_FLAG_HAS_MSI;
534 out:
535         /* Notify the stack of the (possibly) reduced Tx Queue count. */
536         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
537         return;
538 }
539
540 /**
541  * igb_request_irq - initialize interrupts
542  *
543  * Attempts to configure interrupts using the best available
544  * capabilities of the hardware and kernel.
545  **/
546 static int igb_request_irq(struct igb_adapter *adapter)
547 {
548         struct net_device *netdev = adapter->netdev;
549         struct e1000_hw *hw = &adapter->hw;
550         int err = 0;
551
552         if (adapter->msix_entries) {
553                 err = igb_request_msix(adapter);
554                 if (!err)
555                         goto request_done;
556                 /* fall back to MSI */
557                 igb_reset_interrupt_capability(adapter);
558                 if (!pci_enable_msi(adapter->pdev))
559                         adapter->flags |= IGB_FLAG_HAS_MSI;
560                 igb_free_all_tx_resources(adapter);
561                 igb_free_all_rx_resources(adapter);
562                 adapter->num_rx_queues = 1;
563                 igb_alloc_queues(adapter);
564         } else {
565                 switch (hw->mac.type) {
566                 case e1000_82575:
567                         wr32(E1000_MSIXBM(0),
568                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
569                         break;
570                 case e1000_82576:
571                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
572                         break;
573                 default:
574                         break;
575                 }
576         }
577
578         if (adapter->flags & IGB_FLAG_HAS_MSI) {
579                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
580                                   netdev->name, netdev);
581                 if (!err)
582                         goto request_done;
583                 /* fall back to legacy interrupts */
584                 igb_reset_interrupt_capability(adapter);
585                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
586         }
587
588         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
589                           netdev->name, netdev);
590
591         if (err)
592                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
593                         err);
594
595 request_done:
596         return err;
597 }
598
599 static void igb_free_irq(struct igb_adapter *adapter)
600 {
601         struct net_device *netdev = adapter->netdev;
602
603         if (adapter->msix_entries) {
604                 int vector = 0, i;
605
606                 for (i = 0; i < adapter->num_tx_queues; i++)
607                         free_irq(adapter->msix_entries[vector++].vector,
608                                 &(adapter->tx_ring[i]));
609                 for (i = 0; i < adapter->num_rx_queues; i++)
610                         free_irq(adapter->msix_entries[vector++].vector,
611                                 &(adapter->rx_ring[i]));
612
613                 free_irq(adapter->msix_entries[vector++].vector, netdev);
614                 return;
615         }
616
617         free_irq(adapter->pdev->irq, netdev);
618 }
619
620 /**
621  * igb_irq_disable - Mask off interrupt generation on the NIC
622  * @adapter: board private structure
623  **/
624 static void igb_irq_disable(struct igb_adapter *adapter)
625 {
626         struct e1000_hw *hw = &adapter->hw;
627
628         if (adapter->msix_entries) {
629                 wr32(E1000_EIAM, 0);
630                 wr32(E1000_EIMC, ~0);
631                 wr32(E1000_EIAC, 0);
632         }
633
634         wr32(E1000_IAM, 0);
635         wr32(E1000_IMC, ~0);
636         wrfl();
637         synchronize_irq(adapter->pdev->irq);
638 }
639
640 /**
641  * igb_irq_enable - Enable default interrupt generation settings
642  * @adapter: board private structure
643  **/
644 static void igb_irq_enable(struct igb_adapter *adapter)
645 {
646         struct e1000_hw *hw = &adapter->hw;
647
648         if (adapter->msix_entries) {
649                 wr32(E1000_EIAC, adapter->eims_enable_mask);
650                 wr32(E1000_EIAM, adapter->eims_enable_mask);
651                 wr32(E1000_EIMS, adapter->eims_enable_mask);
652                 wr32(E1000_IMS, E1000_IMS_LSC);
653         } else {
654                 wr32(E1000_IMS, IMS_ENABLE_MASK);
655                 wr32(E1000_IAM, IMS_ENABLE_MASK);
656         }
657 }
658
659 static void igb_update_mng_vlan(struct igb_adapter *adapter)
660 {
661         struct net_device *netdev = adapter->netdev;
662         u16 vid = adapter->hw.mng_cookie.vlan_id;
663         u16 old_vid = adapter->mng_vlan_id;
664         if (adapter->vlgrp) {
665                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
666                         if (adapter->hw.mng_cookie.status &
667                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
668                                 igb_vlan_rx_add_vid(netdev, vid);
669                                 adapter->mng_vlan_id = vid;
670                         } else
671                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
672
673                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
674                                         (vid != old_vid) &&
675                             !vlan_group_get_device(adapter->vlgrp, old_vid))
676                                 igb_vlan_rx_kill_vid(netdev, old_vid);
677                 } else
678                         adapter->mng_vlan_id = vid;
679         }
680 }
681
682 /**
683  * igb_release_hw_control - release control of the h/w to f/w
684  * @adapter: address of board private structure
685  *
686  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
687  * For ASF and Pass Through versions of f/w this means that the
688  * driver is no longer loaded.
689  *
690  **/
691 static void igb_release_hw_control(struct igb_adapter *adapter)
692 {
693         struct e1000_hw *hw = &adapter->hw;
694         u32 ctrl_ext;
695
696         /* Let firmware take over control of h/w */
697         ctrl_ext = rd32(E1000_CTRL_EXT);
698         wr32(E1000_CTRL_EXT,
699                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
700 }
701
702
703 /**
704  * igb_get_hw_control - get control of the h/w from f/w
705  * @adapter: address of board private structure
706  *
707  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
708  * For ASF and Pass Through versions of f/w this means that
709  * the driver is loaded.
710  *
711  **/
712 static void igb_get_hw_control(struct igb_adapter *adapter)
713 {
714         struct e1000_hw *hw = &adapter->hw;
715         u32 ctrl_ext;
716
717         /* Let firmware know the driver has taken over */
718         ctrl_ext = rd32(E1000_CTRL_EXT);
719         wr32(E1000_CTRL_EXT,
720                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
721 }
722
723 /**
724  * igb_configure - configure the hardware for RX and TX
725  * @adapter: private board structure
726  **/
727 static void igb_configure(struct igb_adapter *adapter)
728 {
729         struct net_device *netdev = adapter->netdev;
730         int i;
731
732         igb_get_hw_control(adapter);
733         igb_set_multi(netdev);
734
735         igb_restore_vlan(adapter);
736
737         igb_configure_tx(adapter);
738         igb_setup_rctl(adapter);
739         igb_configure_rx(adapter);
740
741         igb_rx_fifo_flush_82575(&adapter->hw);
742
743         /* call IGB_DESC_UNUSED which always leaves
744          * at least 1 descriptor unused to make sure
745          * next_to_use != next_to_clean */
746         for (i = 0; i < adapter->num_rx_queues; i++) {
747                 struct igb_ring *ring = &adapter->rx_ring[i];
748                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
749         }
750
751
752         adapter->tx_queue_len = netdev->tx_queue_len;
753 }
754
755
756 /**
757  * igb_up - Open the interface and prepare it to handle traffic
758  * @adapter: board private structure
759  **/
760
761 int igb_up(struct igb_adapter *adapter)
762 {
763         struct e1000_hw *hw = &adapter->hw;
764         int i;
765
766         /* hardware has been reset, we need to reload some things */
767         igb_configure(adapter);
768
769         clear_bit(__IGB_DOWN, &adapter->state);
770
771         for (i = 0; i < adapter->num_rx_queues; i++)
772                 napi_enable(&adapter->rx_ring[i].napi);
773         if (adapter->msix_entries)
774                 igb_configure_msix(adapter);
775
776         /* Clear any pending interrupts. */
777         rd32(E1000_ICR);
778         igb_irq_enable(adapter);
779
780         /* Fire a link change interrupt to start the watchdog. */
781         wr32(E1000_ICS, E1000_ICS_LSC);
782         return 0;
783 }
784
785 void igb_down(struct igb_adapter *adapter)
786 {
787         struct e1000_hw *hw = &adapter->hw;
788         struct net_device *netdev = adapter->netdev;
789         u32 tctl, rctl;
790         int i;
791
792         /* signal that we're down so the interrupt handler does not
793          * reschedule our watchdog timer */
794         set_bit(__IGB_DOWN, &adapter->state);
795
796         /* disable receives in the hardware */
797         rctl = rd32(E1000_RCTL);
798         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
799         /* flush and sleep below */
800
801         netif_tx_stop_all_queues(netdev);
802
803         /* disable transmits in the hardware */
804         tctl = rd32(E1000_TCTL);
805         tctl &= ~E1000_TCTL_EN;
806         wr32(E1000_TCTL, tctl);
807         /* flush both disables and wait for them to finish */
808         wrfl();
809         msleep(10);
810
811         for (i = 0; i < adapter->num_rx_queues; i++)
812                 napi_disable(&adapter->rx_ring[i].napi);
813
814         igb_irq_disable(adapter);
815
816         del_timer_sync(&adapter->watchdog_timer);
817         del_timer_sync(&adapter->phy_info_timer);
818
819         netdev->tx_queue_len = adapter->tx_queue_len;
820         netif_carrier_off(netdev);
821         adapter->link_speed = 0;
822         adapter->link_duplex = 0;
823
824         if (!pci_channel_offline(adapter->pdev))
825                 igb_reset(adapter);
826         igb_clean_all_tx_rings(adapter);
827         igb_clean_all_rx_rings(adapter);
828 }
829
830 void igb_reinit_locked(struct igb_adapter *adapter)
831 {
832         WARN_ON(in_interrupt());
833         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
834                 msleep(1);
835         igb_down(adapter);
836         igb_up(adapter);
837         clear_bit(__IGB_RESETTING, &adapter->state);
838 }
839
840 void igb_reset(struct igb_adapter *adapter)
841 {
842         struct e1000_hw *hw = &adapter->hw;
843         struct e1000_mac_info *mac = &hw->mac;
844         struct e1000_fc_info *fc = &hw->fc;
845         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
846         u16 hwm;
847
848         /* Repartition Pba for greater than 9k mtu
849          * To take effect CTRL.RST is required.
850          */
851         if (mac->type != e1000_82576) {
852         pba = E1000_PBA_34K;
853         }
854         else {
855                 pba = E1000_PBA_64K;
856         }
857
858         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
859             (mac->type < e1000_82576)) {
860                 /* adjust PBA for jumbo frames */
861                 wr32(E1000_PBA, pba);
862
863                 /* To maintain wire speed transmits, the Tx FIFO should be
864                  * large enough to accommodate two full transmit packets,
865                  * rounded up to the next 1KB and expressed in KB.  Likewise,
866                  * the Rx FIFO should be large enough to accommodate at least
867                  * one full receive packet and is similarly rounded up and
868                  * expressed in KB. */
869                 pba = rd32(E1000_PBA);
870                 /* upper 16 bits has Tx packet buffer allocation size in KB */
871                 tx_space = pba >> 16;
872                 /* lower 16 bits has Rx packet buffer allocation size in KB */
873                 pba &= 0xffff;
874                 /* the tx fifo also stores 16 bytes of information about the tx
875                  * but don't include ethernet FCS because hardware appends it */
876                 min_tx_space = (adapter->max_frame_size +
877                                 sizeof(struct e1000_tx_desc) -
878                                 ETH_FCS_LEN) * 2;
879                 min_tx_space = ALIGN(min_tx_space, 1024);
880                 min_tx_space >>= 10;
881                 /* software strips receive CRC, so leave room for it */
882                 min_rx_space = adapter->max_frame_size;
883                 min_rx_space = ALIGN(min_rx_space, 1024);
884                 min_rx_space >>= 10;
885
886                 /* If current Tx allocation is less than the min Tx FIFO size,
887                  * and the min Tx FIFO size is less than the current Rx FIFO
888                  * allocation, take space away from current Rx allocation */
889                 if (tx_space < min_tx_space &&
890                     ((min_tx_space - tx_space) < pba)) {
891                         pba = pba - (min_tx_space - tx_space);
892
893                         /* if short on rx space, rx wins and must trump tx
894                          * adjustment */
895                         if (pba < min_rx_space)
896                                 pba = min_rx_space;
897                 }
898                 wr32(E1000_PBA, pba);
899         }
900
901         /* flow control settings */
902         /* The high water mark must be low enough to fit one full frame
903          * (or the size used for early receive) above it in the Rx FIFO.
904          * Set it to the lower of:
905          * - 90% of the Rx FIFO size, or
906          * - the full Rx FIFO size minus one full frame */
907         hwm = min(((pba << 10) * 9 / 10),
908                         ((pba << 10) - 2 * adapter->max_frame_size));
909
910         if (mac->type < e1000_82576) {
911                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
912                 fc->low_water = fc->high_water - 8;
913         } else {
914                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
915                 fc->low_water = fc->high_water - 16;
916         }
917         fc->pause_time = 0xFFFF;
918         fc->send_xon = 1;
919         fc->type = fc->original_type;
920
921         /* Allow time for pending master requests to run */
922         adapter->hw.mac.ops.reset_hw(&adapter->hw);
923         wr32(E1000_WUC, 0);
924
925         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
926                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
927
928         igb_update_mng_vlan(adapter);
929
930         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
931         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
932
933         igb_reset_adaptive(&adapter->hw);
934         igb_get_phy_info(&adapter->hw);
935 }
936
937 /**
938  * igb_is_need_ioport - determine if an adapter needs ioport resources or not
939  * @pdev: PCI device information struct
940  *
941  * Returns true if an adapter needs ioport resources
942  **/
943 static int igb_is_need_ioport(struct pci_dev *pdev)
944 {
945         switch (pdev->device) {
946         /* Currently there are no adapters that need ioport resources */
947         default:
948                 return false;
949         }
950 }
951
952 static const struct net_device_ops igb_netdev_ops = {
953         .ndo_open               = igb_open,
954         .ndo_stop               = igb_close,
955         .ndo_start_xmit         = igb_xmit_frame_adv,
956         .ndo_get_stats          = igb_get_stats,
957         .ndo_set_multicast_list = igb_set_multi,
958         .ndo_set_mac_address    = igb_set_mac,
959         .ndo_change_mtu         = igb_change_mtu,
960         .ndo_do_ioctl           = igb_ioctl,
961         .ndo_tx_timeout         = igb_tx_timeout,
962         .ndo_validate_addr      = eth_validate_addr,
963         .ndo_vlan_rx_register   = igb_vlan_rx_register,
964         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
965         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
966 #ifdef CONFIG_NET_POLL_CONTROLLER
967         .ndo_poll_controller    = igb_netpoll,
968 #endif
969 };
970
971 /**
972  * igb_probe - Device Initialization Routine
973  * @pdev: PCI device information struct
974  * @ent: entry in igb_pci_tbl
975  *
976  * Returns 0 on success, negative on failure
977  *
978  * igb_probe initializes an adapter identified by a pci_dev structure.
979  * The OS initialization, configuring of the adapter private structure,
980  * and a hardware reset occur.
981  **/
982 static int __devinit igb_probe(struct pci_dev *pdev,
983                                const struct pci_device_id *ent)
984 {
985         struct net_device *netdev;
986         struct igb_adapter *adapter;
987         struct e1000_hw *hw;
988         struct pci_dev *us_dev;
989         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
990         unsigned long mmio_start, mmio_len;
991         int i, err, pci_using_dac, pos;
992         u16 eeprom_data = 0, state = 0;
993         u16 eeprom_apme_mask = IGB_EEPROM_APME;
994         u32 part_num;
995         int bars, need_ioport;
996
997         /* do not allocate ioport bars when not needed */
998         need_ioport = igb_is_need_ioport(pdev);
999         if (need_ioport) {
1000                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1001                 err = pci_enable_device(pdev);
1002         } else {
1003                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1004                 err = pci_enable_device_mem(pdev);
1005         }
1006         if (err)
1007                 return err;
1008
1009         pci_using_dac = 0;
1010         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1011         if (!err) {
1012                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1013                 if (!err)
1014                         pci_using_dac = 1;
1015         } else {
1016                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1017                 if (err) {
1018                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1019                         if (err) {
1020                                 dev_err(&pdev->dev, "No usable DMA "
1021                                         "configuration, aborting\n");
1022                                 goto err_dma;
1023                         }
1024                 }
1025         }
1026
1027         /* 82575 requires that the pci-e link partner disable the L0s state */
1028         switch (pdev->device) {
1029         case E1000_DEV_ID_82575EB_COPPER:
1030         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1031         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1032                 us_dev = pdev->bus->self;
1033                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1034                 if (pos) {
1035                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1036                                              &state);
1037                         state &= ~PCIE_LINK_STATE_L0S;
1038                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1039                                               state);
1040                         dev_info(&pdev->dev,
1041                                  "Disabling ASPM L0s upstream switch port %s\n",
1042                                  pci_name(us_dev));
1043                 }
1044         default:
1045                 break;
1046         }
1047
1048         err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1049         if (err)
1050                 goto err_pci_reg;
1051
1052         pci_set_master(pdev);
1053         pci_save_state(pdev);
1054
1055         err = -ENOMEM;
1056         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1057         if (!netdev)
1058                 goto err_alloc_etherdev;
1059
1060         SET_NETDEV_DEV(netdev, &pdev->dev);
1061
1062         pci_set_drvdata(pdev, netdev);
1063         adapter = netdev_priv(netdev);
1064         adapter->netdev = netdev;
1065         adapter->pdev = pdev;
1066         hw = &adapter->hw;
1067         hw->back = adapter;
1068         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1069         adapter->bars = bars;
1070         adapter->need_ioport = need_ioport;
1071
1072         mmio_start = pci_resource_start(pdev, 0);
1073         mmio_len = pci_resource_len(pdev, 0);
1074
1075         err = -EIO;
1076         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1077         if (!adapter->hw.hw_addr)
1078                 goto err_ioremap;
1079
1080         netdev->netdev_ops = &igb_netdev_ops;
1081         igb_set_ethtool_ops(netdev);
1082         netdev->watchdog_timeo = 5 * HZ;
1083
1084         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1085
1086         netdev->mem_start = mmio_start;
1087         netdev->mem_end = mmio_start + mmio_len;
1088
1089         /* PCI config space info */
1090         hw->vendor_id = pdev->vendor;
1091         hw->device_id = pdev->device;
1092         hw->revision_id = pdev->revision;
1093         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1094         hw->subsystem_device_id = pdev->subsystem_device;
1095
1096         /* setup the private structure */
1097         hw->back = adapter;
1098         /* Copy the default MAC, PHY and NVM function pointers */
1099         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1100         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1101         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1102         /* Initialize skew-specific constants */
1103         err = ei->get_invariants(hw);
1104         if (err)
1105                 goto err_hw_init;
1106
1107         err = igb_sw_init(adapter);
1108         if (err)
1109                 goto err_sw_init;
1110
1111         igb_get_bus_info_pcie(hw);
1112
1113         /* set flags */
1114         switch (hw->mac.type) {
1115         case e1000_82576:
1116         case e1000_82575:
1117                 adapter->flags |= IGB_FLAG_HAS_DCA;
1118                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1119                 break;
1120         default:
1121                 break;
1122         }
1123
1124         hw->phy.autoneg_wait_to_complete = false;
1125         hw->mac.adaptive_ifs = true;
1126
1127         /* Copper options */
1128         if (hw->phy.media_type == e1000_media_type_copper) {
1129                 hw->phy.mdix = AUTO_ALL_MODES;
1130                 hw->phy.disable_polarity_correction = false;
1131                 hw->phy.ms_type = e1000_ms_hw_default;
1132         }
1133
1134         if (igb_check_reset_block(hw))
1135                 dev_info(&pdev->dev,
1136                         "PHY reset is blocked due to SOL/IDER session.\n");
1137
1138         netdev->features = NETIF_F_SG |
1139                            NETIF_F_HW_CSUM |
1140                            NETIF_F_HW_VLAN_TX |
1141                            NETIF_F_HW_VLAN_RX |
1142                            NETIF_F_HW_VLAN_FILTER;
1143
1144         netdev->features |= NETIF_F_TSO;
1145         netdev->features |= NETIF_F_TSO6;
1146
1147 #ifdef CONFIG_IGB_LRO
1148         netdev->features |= NETIF_F_LRO;
1149 #endif
1150
1151         netdev->vlan_features |= NETIF_F_TSO;
1152         netdev->vlan_features |= NETIF_F_TSO6;
1153         netdev->vlan_features |= NETIF_F_HW_CSUM;
1154         netdev->vlan_features |= NETIF_F_SG;
1155
1156         if (pci_using_dac)
1157                 netdev->features |= NETIF_F_HIGHDMA;
1158
1159         netdev->features |= NETIF_F_LLTX;
1160         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1161
1162         /* before reading the NVM, reset the controller to put the device in a
1163          * known good starting state */
1164         hw->mac.ops.reset_hw(hw);
1165
1166         /* make sure the NVM is good */
1167         if (igb_validate_nvm_checksum(hw) < 0) {
1168                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1169                 err = -EIO;
1170                 goto err_eeprom;
1171         }
1172
1173         /* copy the MAC address out of the NVM */
1174         if (hw->mac.ops.read_mac_addr(hw))
1175                 dev_err(&pdev->dev, "NVM Read Error\n");
1176
1177         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1178         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1179
1180         if (!is_valid_ether_addr(netdev->perm_addr)) {
1181                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1182                 err = -EIO;
1183                 goto err_eeprom;
1184         }
1185
1186         init_timer(&adapter->watchdog_timer);
1187         adapter->watchdog_timer.function = &igb_watchdog;
1188         adapter->watchdog_timer.data = (unsigned long) adapter;
1189
1190         init_timer(&adapter->phy_info_timer);
1191         adapter->phy_info_timer.function = &igb_update_phy_info;
1192         adapter->phy_info_timer.data = (unsigned long) adapter;
1193
1194         INIT_WORK(&adapter->reset_task, igb_reset_task);
1195         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1196
1197         /* Initialize link & ring properties that are user-changeable */
1198         adapter->tx_ring->count = 256;
1199         for (i = 0; i < adapter->num_tx_queues; i++)
1200                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1201         adapter->rx_ring->count = 256;
1202         for (i = 0; i < adapter->num_rx_queues; i++)
1203                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1204
1205         adapter->fc_autoneg = true;
1206         hw->mac.autoneg = true;
1207         hw->phy.autoneg_advertised = 0x2f;
1208
1209         hw->fc.original_type = e1000_fc_default;
1210         hw->fc.type = e1000_fc_default;
1211
1212         adapter->itr_setting = 3;
1213         adapter->itr = IGB_START_ITR;
1214
1215         igb_validate_mdi_setting(hw);
1216
1217         adapter->rx_csum = 1;
1218
1219         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1220          * enable the ACPI Magic Packet filter
1221          */
1222
1223         if (hw->bus.func == 0 ||
1224             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1225                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1226                                      &eeprom_data);
1227
1228         if (eeprom_data & eeprom_apme_mask)
1229                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1230
1231         /* now that we have the eeprom settings, apply the special cases where
1232          * the eeprom may be wrong or the board simply won't support wake on
1233          * lan on a particular port */
1234         switch (pdev->device) {
1235         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1236                 adapter->eeprom_wol = 0;
1237                 break;
1238         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1239         case E1000_DEV_ID_82576_FIBER:
1240         case E1000_DEV_ID_82576_SERDES:
1241                 /* Wake events only supported on port A for dual fiber
1242                  * regardless of eeprom setting */
1243                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1244                         adapter->eeprom_wol = 0;
1245                 break;
1246         }
1247
1248         /* initialize the wol settings based on the eeprom settings */
1249         adapter->wol = adapter->eeprom_wol;
1250         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1251
1252         /* reset the hardware with the new settings */
1253         igb_reset(adapter);
1254
1255         /* let the f/w know that the h/w is now under the control of the
1256          * driver. */
1257         igb_get_hw_control(adapter);
1258
1259         /* tell the stack to leave us alone until igb_open() is called */
1260         netif_carrier_off(netdev);
1261         netif_tx_stop_all_queues(netdev);
1262
1263         strcpy(netdev->name, "eth%d");
1264         err = register_netdev(netdev);
1265         if (err)
1266                 goto err_register;
1267
1268 #ifdef CONFIG_IGB_DCA
1269         if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1270             (dca_add_requester(&pdev->dev) == 0)) {
1271                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1272                 dev_info(&pdev->dev, "DCA enabled\n");
1273                 /* Always use CB2 mode, difference is masked
1274                  * in the CB driver. */
1275                 wr32(E1000_DCA_CTRL, 2);
1276                 igb_setup_dca(adapter);
1277         }
1278 #endif
1279
1280         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1281         /* print bus type/speed/width info */
1282         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1283                  netdev->name,
1284                  ((hw->bus.speed == e1000_bus_speed_2500)
1285                   ? "2.5Gb/s" : "unknown"),
1286                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1287                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1288                   ? "Width x1" : "unknown"),
1289                  netdev->dev_addr);
1290
1291         igb_read_part_num(hw, &part_num);
1292         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1293                 (part_num >> 8), (part_num & 0xff));
1294
1295         dev_info(&pdev->dev,
1296                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1297                 adapter->msix_entries ? "MSI-X" :
1298                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1299                 adapter->num_rx_queues, adapter->num_tx_queues);
1300
1301         return 0;
1302
1303 err_register:
1304         igb_release_hw_control(adapter);
1305 err_eeprom:
1306         if (!igb_check_reset_block(hw))
1307                 igb_reset_phy(hw);
1308
1309         if (hw->flash_address)
1310                 iounmap(hw->flash_address);
1311
1312         igb_remove_device(hw);
1313         igb_free_queues(adapter);
1314 err_sw_init:
1315 err_hw_init:
1316         iounmap(hw->hw_addr);
1317 err_ioremap:
1318         free_netdev(netdev);
1319 err_alloc_etherdev:
1320         pci_release_selected_regions(pdev, bars);
1321 err_pci_reg:
1322 err_dma:
1323         pci_disable_device(pdev);
1324         return err;
1325 }
1326
1327 /**
1328  * igb_remove - Device Removal Routine
1329  * @pdev: PCI device information struct
1330  *
1331  * igb_remove is called by the PCI subsystem to alert the driver
1332  * that it should release a PCI device.  The could be caused by a
1333  * Hot-Plug event, or because the driver is going to be removed from
1334  * memory.
1335  **/
1336 static void __devexit igb_remove(struct pci_dev *pdev)
1337 {
1338         struct net_device *netdev = pci_get_drvdata(pdev);
1339         struct igb_adapter *adapter = netdev_priv(netdev);
1340 #ifdef CONFIG_IGB_DCA
1341         struct e1000_hw *hw = &adapter->hw;
1342 #endif
1343
1344         /* flush_scheduled work may reschedule our watchdog task, so
1345          * explicitly disable watchdog tasks from being rescheduled  */
1346         set_bit(__IGB_DOWN, &adapter->state);
1347         del_timer_sync(&adapter->watchdog_timer);
1348         del_timer_sync(&adapter->phy_info_timer);
1349
1350         flush_scheduled_work();
1351
1352 #ifdef CONFIG_IGB_DCA
1353         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1354                 dev_info(&pdev->dev, "DCA disabled\n");
1355                 dca_remove_requester(&pdev->dev);
1356                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1357                 wr32(E1000_DCA_CTRL, 1);
1358         }
1359 #endif
1360
1361         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1362          * would have already happened in close and is redundant. */
1363         igb_release_hw_control(adapter);
1364
1365         unregister_netdev(netdev);
1366
1367         if (!igb_check_reset_block(&adapter->hw))
1368                 igb_reset_phy(&adapter->hw);
1369
1370         igb_remove_device(&adapter->hw);
1371         igb_reset_interrupt_capability(adapter);
1372
1373         igb_free_queues(adapter);
1374
1375         iounmap(adapter->hw.hw_addr);
1376         if (adapter->hw.flash_address)
1377                 iounmap(adapter->hw.flash_address);
1378         pci_release_selected_regions(pdev, adapter->bars);
1379
1380         free_netdev(netdev);
1381
1382         pci_disable_device(pdev);
1383 }
1384
1385 /**
1386  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1387  * @adapter: board private structure to initialize
1388  *
1389  * igb_sw_init initializes the Adapter private data structure.
1390  * Fields are initialized based on PCI device information and
1391  * OS network device settings (MTU size).
1392  **/
1393 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1394 {
1395         struct e1000_hw *hw = &adapter->hw;
1396         struct net_device *netdev = adapter->netdev;
1397         struct pci_dev *pdev = adapter->pdev;
1398
1399         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1400
1401         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1402         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1403         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1404         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1405         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1406         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1407
1408         /* Number of supported queues. */
1409         /* Having more queues than CPUs doesn't make sense. */
1410         adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1411         adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1412
1413         /* This call may decrease the number of queues depending on
1414          * interrupt mode. */
1415         igb_set_interrupt_capability(adapter);
1416
1417         if (igb_alloc_queues(adapter)) {
1418                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1419                 return -ENOMEM;
1420         }
1421
1422         /* Explicitly disable IRQ since the NIC can be in any state. */
1423         igb_irq_disable(adapter);
1424
1425         set_bit(__IGB_DOWN, &adapter->state);
1426         return 0;
1427 }
1428
1429 /**
1430  * igb_open - Called when a network interface is made active
1431  * @netdev: network interface device structure
1432  *
1433  * Returns 0 on success, negative value on failure
1434  *
1435  * The open entry point is called when a network interface is made
1436  * active by the system (IFF_UP).  At this point all resources needed
1437  * for transmit and receive operations are allocated, the interrupt
1438  * handler is registered with the OS, the watchdog timer is started,
1439  * and the stack is notified that the interface is ready.
1440  **/
1441 static int igb_open(struct net_device *netdev)
1442 {
1443         struct igb_adapter *adapter = netdev_priv(netdev);
1444         struct e1000_hw *hw = &adapter->hw;
1445         int err;
1446         int i;
1447
1448         /* disallow open during test */
1449         if (test_bit(__IGB_TESTING, &adapter->state))
1450                 return -EBUSY;
1451
1452         /* allocate transmit descriptors */
1453         err = igb_setup_all_tx_resources(adapter);
1454         if (err)
1455                 goto err_setup_tx;
1456
1457         /* allocate receive descriptors */
1458         err = igb_setup_all_rx_resources(adapter);
1459         if (err)
1460                 goto err_setup_rx;
1461
1462         /* e1000_power_up_phy(adapter); */
1463
1464         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1465         if ((adapter->hw.mng_cookie.status &
1466              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1467                 igb_update_mng_vlan(adapter);
1468
1469         /* before we allocate an interrupt, we must be ready to handle it.
1470          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1471          * as soon as we call pci_request_irq, so we have to setup our
1472          * clean_rx handler before we do so.  */
1473         igb_configure(adapter);
1474
1475         err = igb_request_irq(adapter);
1476         if (err)
1477                 goto err_req_irq;
1478
1479         /* From here on the code is the same as igb_up() */
1480         clear_bit(__IGB_DOWN, &adapter->state);
1481
1482         for (i = 0; i < adapter->num_rx_queues; i++)
1483                 napi_enable(&adapter->rx_ring[i].napi);
1484
1485         /* Clear any pending interrupts. */
1486         rd32(E1000_ICR);
1487
1488         igb_irq_enable(adapter);
1489
1490         netif_tx_start_all_queues(netdev);
1491
1492         /* Fire a link status change interrupt to start the watchdog. */
1493         wr32(E1000_ICS, E1000_ICS_LSC);
1494
1495         return 0;
1496
1497 err_req_irq:
1498         igb_release_hw_control(adapter);
1499         /* e1000_power_down_phy(adapter); */
1500         igb_free_all_rx_resources(adapter);
1501 err_setup_rx:
1502         igb_free_all_tx_resources(adapter);
1503 err_setup_tx:
1504         igb_reset(adapter);
1505
1506         return err;
1507 }
1508
1509 /**
1510  * igb_close - Disables a network interface
1511  * @netdev: network interface device structure
1512  *
1513  * Returns 0, this is not allowed to fail
1514  *
1515  * The close entry point is called when an interface is de-activated
1516  * by the OS.  The hardware is still under the driver's control, but
1517  * needs to be disabled.  A global MAC reset is issued to stop the
1518  * hardware, and all transmit and receive resources are freed.
1519  **/
1520 static int igb_close(struct net_device *netdev)
1521 {
1522         struct igb_adapter *adapter = netdev_priv(netdev);
1523
1524         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1525         igb_down(adapter);
1526
1527         igb_free_irq(adapter);
1528
1529         igb_free_all_tx_resources(adapter);
1530         igb_free_all_rx_resources(adapter);
1531
1532         /* kill manageability vlan ID if supported, but not if a vlan with
1533          * the same ID is registered on the host OS (let 8021q kill it) */
1534         if ((adapter->hw.mng_cookie.status &
1535                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1536              !(adapter->vlgrp &&
1537                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1538                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1539
1540         return 0;
1541 }
1542
1543 /**
1544  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1545  * @adapter: board private structure
1546  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1547  *
1548  * Return 0 on success, negative on failure
1549  **/
1550
1551 int igb_setup_tx_resources(struct igb_adapter *adapter,
1552                            struct igb_ring *tx_ring)
1553 {
1554         struct pci_dev *pdev = adapter->pdev;
1555         int size;
1556
1557         size = sizeof(struct igb_buffer) * tx_ring->count;
1558         tx_ring->buffer_info = vmalloc(size);
1559         if (!tx_ring->buffer_info)
1560                 goto err;
1561         memset(tx_ring->buffer_info, 0, size);
1562
1563         /* round up to nearest 4K */
1564         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1565                         + sizeof(u32);
1566         tx_ring->size = ALIGN(tx_ring->size, 4096);
1567
1568         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1569                                              &tx_ring->dma);
1570
1571         if (!tx_ring->desc)
1572                 goto err;
1573
1574         tx_ring->adapter = adapter;
1575         tx_ring->next_to_use = 0;
1576         tx_ring->next_to_clean = 0;
1577         return 0;
1578
1579 err:
1580         vfree(tx_ring->buffer_info);
1581         dev_err(&adapter->pdev->dev,
1582                 "Unable to allocate memory for the transmit descriptor ring\n");
1583         return -ENOMEM;
1584 }
1585
1586 /**
1587  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1588  *                                (Descriptors) for all queues
1589  * @adapter: board private structure
1590  *
1591  * Return 0 on success, negative on failure
1592  **/
1593 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1594 {
1595         int i, err = 0;
1596         int r_idx;
1597
1598         for (i = 0; i < adapter->num_tx_queues; i++) {
1599                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1600                 if (err) {
1601                         dev_err(&adapter->pdev->dev,
1602                                 "Allocation for Tx Queue %u failed\n", i);
1603                         for (i--; i >= 0; i--)
1604                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1605                         break;
1606                 }
1607         }
1608
1609         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1610                 r_idx = i % adapter->num_tx_queues;
1611                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1612         }       
1613         return err;
1614 }
1615
1616 /**
1617  * igb_configure_tx - Configure transmit Unit after Reset
1618  * @adapter: board private structure
1619  *
1620  * Configure the Tx unit of the MAC after a reset.
1621  **/
1622 static void igb_configure_tx(struct igb_adapter *adapter)
1623 {
1624         u64 tdba, tdwba;
1625         struct e1000_hw *hw = &adapter->hw;
1626         u32 tctl;
1627         u32 txdctl, txctrl;
1628         int i;
1629
1630         for (i = 0; i < adapter->num_tx_queues; i++) {
1631                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1632
1633                 wr32(E1000_TDLEN(i),
1634                                 ring->count * sizeof(struct e1000_tx_desc));
1635                 tdba = ring->dma;
1636                 wr32(E1000_TDBAL(i),
1637                                 tdba & 0x00000000ffffffffULL);
1638                 wr32(E1000_TDBAH(i), tdba >> 32);
1639
1640                 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1641                 tdwba |= 1; /* enable head wb */
1642                 wr32(E1000_TDWBAL(i),
1643                                 tdwba & 0x00000000ffffffffULL);
1644                 wr32(E1000_TDWBAH(i), tdwba >> 32);
1645
1646                 ring->head = E1000_TDH(i);
1647                 ring->tail = E1000_TDT(i);
1648                 writel(0, hw->hw_addr + ring->tail);
1649                 writel(0, hw->hw_addr + ring->head);
1650                 txdctl = rd32(E1000_TXDCTL(i));
1651                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1652                 wr32(E1000_TXDCTL(i), txdctl);
1653
1654                 /* Turn off Relaxed Ordering on head write-backs.  The
1655                  * writebacks MUST be delivered in order or it will
1656                  * completely screw up our bookeeping.
1657                  */
1658                 txctrl = rd32(E1000_DCA_TXCTRL(i));
1659                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1660                 wr32(E1000_DCA_TXCTRL(i), txctrl);
1661         }
1662
1663
1664
1665         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1666
1667         /* Program the Transmit Control Register */
1668
1669         tctl = rd32(E1000_TCTL);
1670         tctl &= ~E1000_TCTL_CT;
1671         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1672                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1673
1674         igb_config_collision_dist(hw);
1675
1676         /* Setup Transmit Descriptor Settings for eop descriptor */
1677         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1678
1679         /* Enable transmits */
1680         tctl |= E1000_TCTL_EN;
1681
1682         wr32(E1000_TCTL, tctl);
1683 }
1684
1685 /**
1686  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1687  * @adapter: board private structure
1688  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1689  *
1690  * Returns 0 on success, negative on failure
1691  **/
1692
1693 int igb_setup_rx_resources(struct igb_adapter *adapter,
1694                            struct igb_ring *rx_ring)
1695 {
1696         struct pci_dev *pdev = adapter->pdev;
1697         int size, desc_len;
1698
1699 #ifdef CONFIG_IGB_LRO
1700         size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1701         rx_ring->lro_mgr.lro_arr = vmalloc(size);
1702         if (!rx_ring->lro_mgr.lro_arr)
1703                 goto err;
1704         memset(rx_ring->lro_mgr.lro_arr, 0, size);
1705 #endif
1706
1707         size = sizeof(struct igb_buffer) * rx_ring->count;
1708         rx_ring->buffer_info = vmalloc(size);
1709         if (!rx_ring->buffer_info)
1710                 goto err;
1711         memset(rx_ring->buffer_info, 0, size);
1712
1713         desc_len = sizeof(union e1000_adv_rx_desc);
1714
1715         /* Round up to nearest 4K */
1716         rx_ring->size = rx_ring->count * desc_len;
1717         rx_ring->size = ALIGN(rx_ring->size, 4096);
1718
1719         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1720                                              &rx_ring->dma);
1721
1722         if (!rx_ring->desc)
1723                 goto err;
1724
1725         rx_ring->next_to_clean = 0;
1726         rx_ring->next_to_use = 0;
1727
1728         rx_ring->adapter = adapter;
1729
1730         return 0;
1731
1732 err:
1733 #ifdef CONFIG_IGB_LRO
1734         vfree(rx_ring->lro_mgr.lro_arr);
1735         rx_ring->lro_mgr.lro_arr = NULL;
1736 #endif
1737         vfree(rx_ring->buffer_info);
1738         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1739                 "the receive descriptor ring\n");
1740         return -ENOMEM;
1741 }
1742
1743 /**
1744  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1745  *                                (Descriptors) for all queues
1746  * @adapter: board private structure
1747  *
1748  * Return 0 on success, negative on failure
1749  **/
1750 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1751 {
1752         int i, err = 0;
1753
1754         for (i = 0; i < adapter->num_rx_queues; i++) {
1755                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1756                 if (err) {
1757                         dev_err(&adapter->pdev->dev,
1758                                 "Allocation for Rx Queue %u failed\n", i);
1759                         for (i--; i >= 0; i--)
1760                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1761                         break;
1762                 }
1763         }
1764
1765         return err;
1766 }
1767
1768 /**
1769  * igb_setup_rctl - configure the receive control registers
1770  * @adapter: Board private structure
1771  **/
1772 static void igb_setup_rctl(struct igb_adapter *adapter)
1773 {
1774         struct e1000_hw *hw = &adapter->hw;
1775         u32 rctl;
1776         u32 srrctl = 0;
1777         int i;
1778
1779         rctl = rd32(E1000_RCTL);
1780
1781         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1782
1783         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1784                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1785                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1786
1787         /*
1788          * enable stripping of CRC. It's unlikely this will break BMC
1789          * redirection as it did with e1000. Newer features require
1790          * that the HW strips the CRC.
1791         */
1792         rctl |= E1000_RCTL_SECRC;
1793
1794         rctl &= ~E1000_RCTL_SBP;
1795
1796         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1797                 rctl &= ~E1000_RCTL_LPE;
1798         else
1799                 rctl |= E1000_RCTL_LPE;
1800         if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1801                 /* Setup buffer sizes */
1802                 rctl &= ~E1000_RCTL_SZ_4096;
1803                 rctl |= E1000_RCTL_BSEX;
1804                 switch (adapter->rx_buffer_len) {
1805                 case IGB_RXBUFFER_256:
1806                         rctl |= E1000_RCTL_SZ_256;
1807                         rctl &= ~E1000_RCTL_BSEX;
1808                         break;
1809                 case IGB_RXBUFFER_512:
1810                         rctl |= E1000_RCTL_SZ_512;
1811                         rctl &= ~E1000_RCTL_BSEX;
1812                         break;
1813                 case IGB_RXBUFFER_1024:
1814                         rctl |= E1000_RCTL_SZ_1024;
1815                         rctl &= ~E1000_RCTL_BSEX;
1816                         break;
1817                 case IGB_RXBUFFER_2048:
1818                 default:
1819                         rctl |= E1000_RCTL_SZ_2048;
1820                         rctl &= ~E1000_RCTL_BSEX;
1821                         break;
1822                 }
1823         } else {
1824                 rctl &= ~E1000_RCTL_BSEX;
1825                 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1826         }
1827
1828         /* 82575 and greater support packet-split where the protocol
1829          * header is placed in skb->data and the packet data is
1830          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1831          * In the case of a non-split, skb->data is linearly filled,
1832          * followed by the page buffers.  Therefore, skb->data is
1833          * sized to hold the largest protocol header.
1834          */
1835         /* allocations using alloc_page take too long for regular MTU
1836          * so only enable packet split for jumbo frames */
1837         if (rctl & E1000_RCTL_LPE) {
1838                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1839                 srrctl |= adapter->rx_ps_hdr_size <<
1840                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1841                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1842         } else {
1843                 adapter->rx_ps_hdr_size = 0;
1844                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1845         }
1846
1847         for (i = 0; i < adapter->num_rx_queues; i++)
1848                 wr32(E1000_SRRCTL(i), srrctl);
1849
1850         wr32(E1000_RCTL, rctl);
1851 }
1852
1853 /**
1854  * igb_configure_rx - Configure receive Unit after Reset
1855  * @adapter: board private structure
1856  *
1857  * Configure the Rx unit of the MAC after a reset.
1858  **/
1859 static void igb_configure_rx(struct igb_adapter *adapter)
1860 {
1861         u64 rdba;
1862         struct e1000_hw *hw = &adapter->hw;
1863         u32 rctl, rxcsum;
1864         u32 rxdctl;
1865         int i;
1866
1867         /* disable receives while setting up the descriptors */
1868         rctl = rd32(E1000_RCTL);
1869         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1870         wrfl();
1871         mdelay(10);
1872
1873         if (adapter->itr_setting > 3)
1874                 wr32(E1000_ITR, adapter->itr);
1875
1876         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1877          * the Base and Length of the Rx Descriptor Ring */
1878         for (i = 0; i < adapter->num_rx_queues; i++) {
1879                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1880                 rdba = ring->dma;
1881                 wr32(E1000_RDBAL(i),
1882                                 rdba & 0x00000000ffffffffULL);
1883                 wr32(E1000_RDBAH(i), rdba >> 32);
1884                 wr32(E1000_RDLEN(i),
1885                                ring->count * sizeof(union e1000_adv_rx_desc));
1886
1887                 ring->head = E1000_RDH(i);
1888                 ring->tail = E1000_RDT(i);
1889                 writel(0, hw->hw_addr + ring->tail);
1890                 writel(0, hw->hw_addr + ring->head);
1891
1892                 rxdctl = rd32(E1000_RXDCTL(i));
1893                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1894                 rxdctl &= 0xFFF00000;
1895                 rxdctl |= IGB_RX_PTHRESH;
1896                 rxdctl |= IGB_RX_HTHRESH << 8;
1897                 rxdctl |= IGB_RX_WTHRESH << 16;
1898                 wr32(E1000_RXDCTL(i), rxdctl);
1899 #ifdef CONFIG_IGB_LRO
1900                 /* Intitial LRO Settings */
1901                 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1902                 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1903                 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1904                 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1905                 ring->lro_mgr.dev = adapter->netdev;
1906                 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1907                 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1908 #endif
1909         }
1910
1911         if (adapter->num_rx_queues > 1) {
1912                 u32 random[10];
1913                 u32 mrqc;
1914                 u32 j, shift;
1915                 union e1000_reta {
1916                         u32 dword;
1917                         u8  bytes[4];
1918                 } reta;
1919
1920                 get_random_bytes(&random[0], 40);
1921
1922                 if (hw->mac.type >= e1000_82576)
1923                         shift = 0;
1924                 else
1925                         shift = 6;
1926                 for (j = 0; j < (32 * 4); j++) {
1927                         reta.bytes[j & 3] =
1928                                 (j % adapter->num_rx_queues) << shift;
1929                         if ((j & 3) == 3)
1930                                 writel(reta.dword,
1931                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1932                 }
1933                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1934
1935                 /* Fill out hash function seeds */
1936                 for (j = 0; j < 10; j++)
1937                         array_wr32(E1000_RSSRK(0), j, random[j]);
1938
1939                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1940                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1941                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1942                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1943                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1944                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1945                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1946                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1947
1948
1949                 wr32(E1000_MRQC, mrqc);
1950
1951                 /* Multiqueue and raw packet checksumming are mutually
1952                  * exclusive.  Note that this not the same as TCP/IP
1953                  * checksumming, which works fine. */
1954                 rxcsum = rd32(E1000_RXCSUM);
1955                 rxcsum |= E1000_RXCSUM_PCSD;
1956                 wr32(E1000_RXCSUM, rxcsum);
1957         } else {
1958                 /* Enable Receive Checksum Offload for TCP and UDP */
1959                 rxcsum = rd32(E1000_RXCSUM);
1960                 if (adapter->rx_csum) {
1961                         rxcsum |= E1000_RXCSUM_TUOFL;
1962
1963                         /* Enable IPv4 payload checksum for UDP fragments
1964                          * Must be used in conjunction with packet-split. */
1965                         if (adapter->rx_ps_hdr_size)
1966                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1967                 } else {
1968                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1969                         /* don't need to clear IPPCSE as it defaults to 0 */
1970                 }
1971                 wr32(E1000_RXCSUM, rxcsum);
1972         }
1973
1974         if (adapter->vlgrp)
1975                 wr32(E1000_RLPML,
1976                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1977         else
1978                 wr32(E1000_RLPML, adapter->max_frame_size);
1979
1980         /* Enable Receives */
1981         wr32(E1000_RCTL, rctl);
1982 }
1983
1984 /**
1985  * igb_free_tx_resources - Free Tx Resources per Queue
1986  * @adapter: board private structure
1987  * @tx_ring: Tx descriptor ring for a specific queue
1988  *
1989  * Free all transmit software resources
1990  **/
1991 void igb_free_tx_resources(struct igb_ring *tx_ring)
1992 {
1993         struct pci_dev *pdev = tx_ring->adapter->pdev;
1994
1995         igb_clean_tx_ring(tx_ring);
1996
1997         vfree(tx_ring->buffer_info);
1998         tx_ring->buffer_info = NULL;
1999
2000         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2001
2002         tx_ring->desc = NULL;
2003 }
2004
2005 /**
2006  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2007  * @adapter: board private structure
2008  *
2009  * Free all transmit software resources
2010  **/
2011 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2012 {
2013         int i;
2014
2015         for (i = 0; i < adapter->num_tx_queues; i++)
2016                 igb_free_tx_resources(&adapter->tx_ring[i]);
2017 }
2018
2019 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2020                                            struct igb_buffer *buffer_info)
2021 {
2022         if (buffer_info->dma) {
2023                 pci_unmap_page(adapter->pdev,
2024                                 buffer_info->dma,
2025                                 buffer_info->length,
2026                                 PCI_DMA_TODEVICE);
2027                 buffer_info->dma = 0;
2028         }
2029         if (buffer_info->skb) {
2030                 dev_kfree_skb_any(buffer_info->skb);
2031                 buffer_info->skb = NULL;
2032         }
2033         buffer_info->time_stamp = 0;
2034         /* buffer_info must be completely set up in the transmit path */
2035 }
2036
2037 /**
2038  * igb_clean_tx_ring - Free Tx Buffers
2039  * @adapter: board private structure
2040  * @tx_ring: ring to be cleaned
2041  **/
2042 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2043 {
2044         struct igb_adapter *adapter = tx_ring->adapter;
2045         struct igb_buffer *buffer_info;
2046         unsigned long size;
2047         unsigned int i;
2048
2049         if (!tx_ring->buffer_info)
2050                 return;
2051         /* Free all the Tx ring sk_buffs */
2052
2053         for (i = 0; i < tx_ring->count; i++) {
2054                 buffer_info = &tx_ring->buffer_info[i];
2055                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2056         }
2057
2058         size = sizeof(struct igb_buffer) * tx_ring->count;
2059         memset(tx_ring->buffer_info, 0, size);
2060
2061         /* Zero out the descriptor ring */
2062
2063         memset(tx_ring->desc, 0, tx_ring->size);
2064
2065         tx_ring->next_to_use = 0;
2066         tx_ring->next_to_clean = 0;
2067
2068         writel(0, adapter->hw.hw_addr + tx_ring->head);
2069         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2070 }
2071
2072 /**
2073  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2074  * @adapter: board private structure
2075  **/
2076 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2077 {
2078         int i;
2079
2080         for (i = 0; i < adapter->num_tx_queues; i++)
2081                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2082 }
2083
2084 /**
2085  * igb_free_rx_resources - Free Rx Resources
2086  * @adapter: board private structure
2087  * @rx_ring: ring to clean the resources from
2088  *
2089  * Free all receive software resources
2090  **/
2091 void igb_free_rx_resources(struct igb_ring *rx_ring)
2092 {
2093         struct pci_dev *pdev = rx_ring->adapter->pdev;
2094
2095         igb_clean_rx_ring(rx_ring);
2096
2097         vfree(rx_ring->buffer_info);
2098         rx_ring->buffer_info = NULL;
2099
2100 #ifdef CONFIG_IGB_LRO
2101         vfree(rx_ring->lro_mgr.lro_arr);
2102         rx_ring->lro_mgr.lro_arr = NULL;
2103 #endif 
2104
2105         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2106
2107         rx_ring->desc = NULL;
2108 }
2109
2110 /**
2111  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2112  * @adapter: board private structure
2113  *
2114  * Free all receive software resources
2115  **/
2116 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2117 {
2118         int i;
2119
2120         for (i = 0; i < adapter->num_rx_queues; i++)
2121                 igb_free_rx_resources(&adapter->rx_ring[i]);
2122 }
2123
2124 /**
2125  * igb_clean_rx_ring - Free Rx Buffers per Queue
2126  * @adapter: board private structure
2127  * @rx_ring: ring to free buffers from
2128  **/
2129 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2130 {
2131         struct igb_adapter *adapter = rx_ring->adapter;
2132         struct igb_buffer *buffer_info;
2133         struct pci_dev *pdev = adapter->pdev;
2134         unsigned long size;
2135         unsigned int i;
2136
2137         if (!rx_ring->buffer_info)
2138                 return;
2139         /* Free all the Rx ring sk_buffs */
2140         for (i = 0; i < rx_ring->count; i++) {
2141                 buffer_info = &rx_ring->buffer_info[i];
2142                 if (buffer_info->dma) {
2143                         if (adapter->rx_ps_hdr_size)
2144                                 pci_unmap_single(pdev, buffer_info->dma,
2145                                                  adapter->rx_ps_hdr_size,
2146                                                  PCI_DMA_FROMDEVICE);
2147                         else
2148                                 pci_unmap_single(pdev, buffer_info->dma,
2149                                                  adapter->rx_buffer_len,
2150                                                  PCI_DMA_FROMDEVICE);
2151                         buffer_info->dma = 0;
2152                 }
2153
2154                 if (buffer_info->skb) {
2155                         dev_kfree_skb(buffer_info->skb);
2156                         buffer_info->skb = NULL;
2157                 }
2158                 if (buffer_info->page) {
2159                         if (buffer_info->page_dma)
2160                                 pci_unmap_page(pdev, buffer_info->page_dma,
2161                                                PAGE_SIZE / 2,
2162                                                PCI_DMA_FROMDEVICE);
2163                         put_page(buffer_info->page);
2164                         buffer_info->page = NULL;
2165                         buffer_info->page_dma = 0;
2166                         buffer_info->page_offset = 0;
2167                 }
2168         }
2169
2170         size = sizeof(struct igb_buffer) * rx_ring->count;
2171         memset(rx_ring->buffer_info, 0, size);
2172
2173         /* Zero out the descriptor ring */
2174         memset(rx_ring->desc, 0, rx_ring->size);
2175
2176         rx_ring->next_to_clean = 0;
2177         rx_ring->next_to_use = 0;
2178
2179         writel(0, adapter->hw.hw_addr + rx_ring->head);
2180         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2181 }
2182
2183 /**
2184  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2185  * @adapter: board private structure
2186  **/
2187 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2188 {
2189         int i;
2190
2191         for (i = 0; i < adapter->num_rx_queues; i++)
2192                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2193 }
2194
2195 /**
2196  * igb_set_mac - Change the Ethernet Address of the NIC
2197  * @netdev: network interface device structure
2198  * @p: pointer to an address structure
2199  *
2200  * Returns 0 on success, negative on failure
2201  **/
2202 static int igb_set_mac(struct net_device *netdev, void *p)
2203 {
2204         struct igb_adapter *adapter = netdev_priv(netdev);
2205         struct sockaddr *addr = p;
2206
2207         if (!is_valid_ether_addr(addr->sa_data))
2208                 return -EADDRNOTAVAIL;
2209
2210         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2211         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2212
2213         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2214
2215         return 0;
2216 }
2217
2218 /**
2219  * igb_set_multi - Multicast and Promiscuous mode set
2220  * @netdev: network interface device structure
2221  *
2222  * The set_multi entry point is called whenever the multicast address
2223  * list or the network interface flags are updated.  This routine is
2224  * responsible for configuring the hardware for proper multicast,
2225  * promiscuous mode, and all-multi behavior.
2226  **/
2227 static void igb_set_multi(struct net_device *netdev)
2228 {
2229         struct igb_adapter *adapter = netdev_priv(netdev);
2230         struct e1000_hw *hw = &adapter->hw;
2231         struct e1000_mac_info *mac = &hw->mac;
2232         struct dev_mc_list *mc_ptr;
2233         u8  *mta_list;
2234         u32 rctl;
2235         int i;
2236
2237         /* Check for Promiscuous and All Multicast modes */
2238
2239         rctl = rd32(E1000_RCTL);
2240
2241         if (netdev->flags & IFF_PROMISC) {
2242                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2243                 rctl &= ~E1000_RCTL_VFE;
2244         } else {
2245                 if (netdev->flags & IFF_ALLMULTI) {
2246                         rctl |= E1000_RCTL_MPE;
2247                         rctl &= ~E1000_RCTL_UPE;
2248                 } else
2249                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2250                 rctl |= E1000_RCTL_VFE;
2251         }
2252         wr32(E1000_RCTL, rctl);
2253
2254         if (!netdev->mc_count) {
2255                 /* nothing to program, so clear mc list */
2256                 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2257                                           mac->rar_entry_count);
2258                 return;
2259         }
2260
2261         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2262         if (!mta_list)
2263                 return;
2264
2265         /* The shared function expects a packed array of only addresses. */
2266         mc_ptr = netdev->mc_list;
2267
2268         for (i = 0; i < netdev->mc_count; i++) {
2269                 if (!mc_ptr)
2270                         break;
2271                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2272                 mc_ptr = mc_ptr->next;
2273         }
2274         igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2275                                       mac->rar_entry_count);
2276         kfree(mta_list);
2277 }
2278
2279 /* Need to wait a few seconds after link up to get diagnostic information from
2280  * the phy */
2281 static void igb_update_phy_info(unsigned long data)
2282 {
2283         struct igb_adapter *adapter = (struct igb_adapter *) data;
2284         igb_get_phy_info(&adapter->hw);
2285 }
2286
2287 /**
2288  * igb_watchdog - Timer Call-back
2289  * @data: pointer to adapter cast into an unsigned long
2290  **/
2291 static void igb_watchdog(unsigned long data)
2292 {
2293         struct igb_adapter *adapter = (struct igb_adapter *)data;
2294         /* Do the rest outside of interrupt context */
2295         schedule_work(&adapter->watchdog_task);
2296 }
2297
2298 static void igb_watchdog_task(struct work_struct *work)
2299 {
2300         struct igb_adapter *adapter = container_of(work,
2301                                         struct igb_adapter, watchdog_task);
2302         struct e1000_hw *hw = &adapter->hw;
2303
2304         struct net_device *netdev = adapter->netdev;
2305         struct igb_ring *tx_ring = adapter->tx_ring;
2306         struct e1000_mac_info *mac = &adapter->hw.mac;
2307         u32 link;
2308         u32 eics = 0;
2309         s32 ret_val;
2310         int i;
2311
2312         if ((netif_carrier_ok(netdev)) &&
2313             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2314                 goto link_up;
2315
2316         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2317         if ((ret_val == E1000_ERR_PHY) &&
2318             (hw->phy.type == e1000_phy_igp_3) &&
2319             (rd32(E1000_CTRL) &
2320              E1000_PHY_CTRL_GBE_DISABLE))
2321                 dev_info(&adapter->pdev->dev,
2322                          "Gigabit has been disabled, downgrading speed\n");
2323
2324         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2325             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2326                 link = mac->serdes_has_link;
2327         else
2328                 link = rd32(E1000_STATUS) &
2329                                       E1000_STATUS_LU;
2330
2331         if (link) {
2332                 if (!netif_carrier_ok(netdev)) {
2333                         u32 ctrl;
2334                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2335                                                    &adapter->link_speed,
2336                                                    &adapter->link_duplex);
2337
2338                         ctrl = rd32(E1000_CTRL);
2339                         dev_info(&adapter->pdev->dev,
2340                                  "NIC Link is Up %d Mbps %s, "
2341                                  "Flow Control: %s\n",
2342                                  adapter->link_speed,
2343                                  adapter->link_duplex == FULL_DUPLEX ?
2344                                  "Full Duplex" : "Half Duplex",
2345                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2346                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2347                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2348                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2349
2350                         /* tweak tx_queue_len according to speed/duplex and
2351                          * adjust the timeout factor */
2352                         netdev->tx_queue_len = adapter->tx_queue_len;
2353                         adapter->tx_timeout_factor = 1;
2354                         switch (adapter->link_speed) {
2355                         case SPEED_10:
2356                                 netdev->tx_queue_len = 10;
2357                                 adapter->tx_timeout_factor = 14;
2358                                 break;
2359                         case SPEED_100:
2360                                 netdev->tx_queue_len = 100;
2361                                 /* maybe add some timeout factor ? */
2362                                 break;
2363                         }
2364
2365                         netif_carrier_on(netdev);
2366                         netif_tx_wake_all_queues(netdev);
2367
2368                         if (!test_bit(__IGB_DOWN, &adapter->state))
2369                                 mod_timer(&adapter->phy_info_timer,
2370                                           round_jiffies(jiffies + 2 * HZ));
2371                 }
2372         } else {
2373                 if (netif_carrier_ok(netdev)) {
2374                         adapter->link_speed = 0;
2375                         adapter->link_duplex = 0;
2376                         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2377                         netif_carrier_off(netdev);
2378                         netif_tx_stop_all_queues(netdev);
2379                         if (!test_bit(__IGB_DOWN, &adapter->state))
2380                                 mod_timer(&adapter->phy_info_timer,
2381                                           round_jiffies(jiffies + 2 * HZ));
2382                 }
2383         }
2384
2385 link_up:
2386         igb_update_stats(adapter);
2387
2388         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2389         adapter->tpt_old = adapter->stats.tpt;
2390         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2391         adapter->colc_old = adapter->stats.colc;
2392
2393         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2394         adapter->gorc_old = adapter->stats.gorc;
2395         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2396         adapter->gotc_old = adapter->stats.gotc;
2397
2398         igb_update_adaptive(&adapter->hw);
2399
2400         if (!netif_carrier_ok(netdev)) {
2401                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2402                         /* We've lost link, so the controller stops DMA,
2403                          * but we've got queued Tx work that's never going
2404                          * to get done, so reset controller to flush Tx.
2405                          * (Do the reset outside of interrupt context). */
2406                         adapter->tx_timeout_count++;
2407                         schedule_work(&adapter->reset_task);
2408                 }
2409         }
2410
2411         /* Cause software interrupt to ensure rx ring is cleaned */
2412         if (adapter->msix_entries) {
2413                 for (i = 0; i < adapter->num_rx_queues; i++)
2414                         eics |= adapter->rx_ring[i].eims_value;
2415                 wr32(E1000_EICS, eics);
2416         } else {
2417                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2418         }
2419
2420         /* Force detection of hung controller every watchdog period */
2421         tx_ring->detect_tx_hung = true;
2422
2423         /* Reset the timer */
2424         if (!test_bit(__IGB_DOWN, &adapter->state))
2425                 mod_timer(&adapter->watchdog_timer,
2426                           round_jiffies(jiffies + 2 * HZ));
2427 }
2428
2429 enum latency_range {
2430         lowest_latency = 0,
2431         low_latency = 1,
2432         bulk_latency = 2,
2433         latency_invalid = 255
2434 };
2435
2436
2437 /**
2438  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2439  *
2440  *      Stores a new ITR value based on strictly on packet size.  This
2441  *      algorithm is less sophisticated than that used in igb_update_itr,
2442  *      due to the difficulty of synchronizing statistics across multiple
2443  *      receive rings.  The divisors and thresholds used by this fuction
2444  *      were determined based on theoretical maximum wire speed and testing
2445  *      data, in order to minimize response time while increasing bulk
2446  *      throughput.
2447  *      This functionality is controlled by the InterruptThrottleRate module
2448  *      parameter (see igb_param.c)
2449  *      NOTE:  This function is called only when operating in a multiqueue
2450  *             receive environment.
2451  * @rx_ring: pointer to ring
2452  **/
2453 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2454 {
2455         int new_val = rx_ring->itr_val;
2456         int avg_wire_size = 0;
2457         struct igb_adapter *adapter = rx_ring->adapter;
2458
2459         if (!rx_ring->total_packets)
2460                 goto clear_counts; /* no packets, so don't do anything */
2461
2462         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2463          * ints/sec - ITR timer value of 120 ticks.
2464          */
2465         if (adapter->link_speed != SPEED_1000) {
2466                 new_val = 120;
2467                 goto set_itr_val;
2468         }
2469         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2470
2471         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2472         avg_wire_size += 24;
2473
2474         /* Don't starve jumbo frames */
2475         avg_wire_size = min(avg_wire_size, 3000);
2476
2477         /* Give a little boost to mid-size frames */
2478         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2479                 new_val = avg_wire_size / 3;
2480         else
2481                 new_val = avg_wire_size / 2;
2482
2483 set_itr_val:
2484         if (new_val != rx_ring->itr_val) {
2485                 rx_ring->itr_val = new_val;
2486                 rx_ring->set_itr = 1;
2487         }
2488 clear_counts:
2489         rx_ring->total_bytes = 0;
2490         rx_ring->total_packets = 0;
2491 }
2492
2493 /**
2494  * igb_update_itr - update the dynamic ITR value based on statistics
2495  *      Stores a new ITR value based on packets and byte
2496  *      counts during the last interrupt.  The advantage of per interrupt
2497  *      computation is faster updates and more accurate ITR for the current
2498  *      traffic pattern.  Constants in this function were computed
2499  *      based on theoretical maximum wire speed and thresholds were set based
2500  *      on testing data as well as attempting to minimize response time
2501  *      while increasing bulk throughput.
2502  *      this functionality is controlled by the InterruptThrottleRate module
2503  *      parameter (see igb_param.c)
2504  *      NOTE:  These calculations are only valid when operating in a single-
2505  *             queue environment.
2506  * @adapter: pointer to adapter
2507  * @itr_setting: current adapter->itr
2508  * @packets: the number of packets during this measurement interval
2509  * @bytes: the number of bytes during this measurement interval
2510  **/
2511 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2512                                    int packets, int bytes)
2513 {
2514         unsigned int retval = itr_setting;
2515
2516         if (packets == 0)
2517                 goto update_itr_done;
2518
2519         switch (itr_setting) {
2520         case lowest_latency:
2521                 /* handle TSO and jumbo frames */
2522                 if (bytes/packets > 8000)
2523                         retval = bulk_latency;
2524                 else if ((packets < 5) && (bytes > 512))
2525                         retval = low_latency;
2526                 break;
2527         case low_latency:  /* 50 usec aka 20000 ints/s */
2528                 if (bytes > 10000) {
2529                         /* this if handles the TSO accounting */
2530                         if (bytes/packets > 8000) {
2531                                 retval = bulk_latency;
2532                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2533                                 retval = bulk_latency;
2534                         } else if ((packets > 35)) {
2535                                 retval = lowest_latency;
2536                         }
2537                 } else if (bytes/packets > 2000) {
2538                         retval = bulk_latency;
2539                 } else if (packets <= 2 && bytes < 512) {
2540                         retval = lowest_latency;
2541                 }
2542                 break;
2543         case bulk_latency: /* 250 usec aka 4000 ints/s */
2544                 if (bytes > 25000) {
2545                         if (packets > 35)
2546                                 retval = low_latency;
2547                 } else if (bytes < 6000) {
2548                         retval = low_latency;
2549                 }
2550                 break;
2551         }
2552
2553 update_itr_done:
2554         return retval;
2555 }
2556
2557 static void igb_set_itr(struct igb_adapter *adapter)
2558 {
2559         u16 current_itr;
2560         u32 new_itr = adapter->itr;
2561
2562         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2563         if (adapter->link_speed != SPEED_1000) {
2564                 current_itr = 0;
2565                 new_itr = 4000;
2566                 goto set_itr_now;
2567         }
2568
2569         adapter->rx_itr = igb_update_itr(adapter,
2570                                     adapter->rx_itr,
2571                                     adapter->rx_ring->total_packets,
2572                                     adapter->rx_ring->total_bytes);
2573
2574         if (adapter->rx_ring->buddy) {
2575                 adapter->tx_itr = igb_update_itr(adapter,
2576                                             adapter->tx_itr,
2577                                             adapter->tx_ring->total_packets,
2578                                             adapter->tx_ring->total_bytes);
2579
2580                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2581         } else {
2582                 current_itr = adapter->rx_itr;
2583         }
2584
2585         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2586         if (adapter->itr_setting == 3 &&
2587             current_itr == lowest_latency)
2588                 current_itr = low_latency;
2589
2590         switch (current_itr) {
2591         /* counts and packets in update_itr are dependent on these numbers */
2592         case lowest_latency:
2593                 new_itr = 70000;
2594                 break;
2595         case low_latency:
2596                 new_itr = 20000; /* aka hwitr = ~200 */
2597                 break;
2598         case bulk_latency:
2599                 new_itr = 4000;
2600                 break;
2601         default:
2602                 break;
2603         }
2604
2605 set_itr_now:
2606         adapter->rx_ring->total_bytes = 0;
2607         adapter->rx_ring->total_packets = 0;
2608         if (adapter->rx_ring->buddy) {
2609                 adapter->rx_ring->buddy->total_bytes = 0;
2610                 adapter->rx_ring->buddy->total_packets = 0;
2611         }
2612
2613         if (new_itr != adapter->itr) {
2614                 /* this attempts to bias the interrupt rate towards Bulk
2615                  * by adding intermediate steps when interrupt rate is
2616                  * increasing */
2617                 new_itr = new_itr > adapter->itr ?
2618                              min(adapter->itr + (new_itr >> 2), new_itr) :
2619                              new_itr;
2620                 /* Don't write the value here; it resets the adapter's
2621                  * internal timer, and causes us to delay far longer than
2622                  * we should between interrupts.  Instead, we write the ITR
2623                  * value at the beginning of the next interrupt so the timing
2624                  * ends up being correct.
2625                  */
2626                 adapter->itr = new_itr;
2627                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2628                 adapter->rx_ring->set_itr = 1;
2629         }
2630
2631         return;
2632 }
2633
2634
2635 #define IGB_TX_FLAGS_CSUM               0x00000001
2636 #define IGB_TX_FLAGS_VLAN               0x00000002
2637 #define IGB_TX_FLAGS_TSO                0x00000004
2638 #define IGB_TX_FLAGS_IPV4               0x00000008
2639 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2640 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2641
2642 static inline int igb_tso_adv(struct igb_adapter *adapter,
2643                               struct igb_ring *tx_ring,
2644                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2645 {
2646         struct e1000_adv_tx_context_desc *context_desc;
2647         unsigned int i;
2648         int err;
2649         struct igb_buffer *buffer_info;
2650         u32 info = 0, tu_cmd = 0;
2651         u32 mss_l4len_idx, l4len;
2652         *hdr_len = 0;
2653
2654         if (skb_header_cloned(skb)) {
2655                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2656                 if (err)
2657                         return err;
2658         }
2659
2660         l4len = tcp_hdrlen(skb);
2661         *hdr_len += l4len;
2662
2663         if (skb->protocol == htons(ETH_P_IP)) {
2664                 struct iphdr *iph = ip_hdr(skb);
2665                 iph->tot_len = 0;
2666                 iph->check = 0;
2667                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2668                                                          iph->daddr, 0,
2669                                                          IPPROTO_TCP,
2670                                                          0);
2671         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2672                 ipv6_hdr(skb)->payload_len = 0;
2673                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2674                                                        &ipv6_hdr(skb)->daddr,
2675                                                        0, IPPROTO_TCP, 0);
2676         }
2677
2678         i = tx_ring->next_to_use;
2679
2680         buffer_info = &tx_ring->buffer_info[i];
2681         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2682         /* VLAN MACLEN IPLEN */
2683         if (tx_flags & IGB_TX_FLAGS_VLAN)
2684                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2685         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2686         *hdr_len += skb_network_offset(skb);
2687         info |= skb_network_header_len(skb);
2688         *hdr_len += skb_network_header_len(skb);
2689         context_desc->vlan_macip_lens = cpu_to_le32(info);
2690
2691         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2692         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2693
2694         if (skb->protocol == htons(ETH_P_IP))
2695                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2696         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2697
2698         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2699
2700         /* MSS L4LEN IDX */
2701         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2702         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2703
2704         /* Context index must be unique per ring. */
2705         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2706                 mss_l4len_idx |= tx_ring->queue_index << 4;
2707
2708         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2709         context_desc->seqnum_seed = 0;
2710
2711         buffer_info->time_stamp = jiffies;
2712         buffer_info->dma = 0;
2713         i++;
2714         if (i == tx_ring->count)
2715                 i = 0;
2716
2717         tx_ring->next_to_use = i;
2718
2719         return true;
2720 }
2721
2722 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2723                                         struct igb_ring *tx_ring,
2724                                         struct sk_buff *skb, u32 tx_flags)
2725 {
2726         struct e1000_adv_tx_context_desc *context_desc;
2727         unsigned int i;
2728         struct igb_buffer *buffer_info;
2729         u32 info = 0, tu_cmd = 0;
2730
2731         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2732             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2733                 i = tx_ring->next_to_use;
2734                 buffer_info = &tx_ring->buffer_info[i];
2735                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2736
2737                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2738                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2739                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2740                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2741                         info |= skb_network_header_len(skb);
2742
2743                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2744
2745                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2746
2747                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2748                         switch (skb->protocol) {
2749                         case __constant_htons(ETH_P_IP):
2750                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2751                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2752                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2753                                 break;
2754                         case __constant_htons(ETH_P_IPV6):
2755                                 /* XXX what about other V6 headers?? */
2756                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2757                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2758                                 break;
2759                         default:
2760                                 if (unlikely(net_ratelimit()))
2761                                         dev_warn(&adapter->pdev->dev,
2762                                             "partial checksum but proto=%x!\n",
2763                                             skb->protocol);
2764                                 break;
2765                         }
2766                 }
2767
2768                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2769                 context_desc->seqnum_seed = 0;
2770                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2771                         context_desc->mss_l4len_idx =
2772                                 cpu_to_le32(tx_ring->queue_index << 4);
2773
2774                 buffer_info->time_stamp = jiffies;
2775                 buffer_info->dma = 0;
2776
2777                 i++;
2778                 if (i == tx_ring->count)
2779                         i = 0;
2780                 tx_ring->next_to_use = i;
2781
2782                 return true;
2783         }
2784
2785
2786         return false;
2787 }
2788
2789 #define IGB_MAX_TXD_PWR 16
2790 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2791
2792 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2793                                  struct igb_ring *tx_ring,
2794                                  struct sk_buff *skb)
2795 {
2796         struct igb_buffer *buffer_info;
2797         unsigned int len = skb_headlen(skb);
2798         unsigned int count = 0, i;
2799         unsigned int f;
2800
2801         i = tx_ring->next_to_use;
2802
2803         buffer_info = &tx_ring->buffer_info[i];
2804         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2805         buffer_info->length = len;
2806         /* set time_stamp *before* dma to help avoid a possible race */
2807         buffer_info->time_stamp = jiffies;
2808         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2809                                           PCI_DMA_TODEVICE);
2810         count++;
2811         i++;
2812         if (i == tx_ring->count)
2813                 i = 0;
2814
2815         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2816                 struct skb_frag_struct *frag;
2817
2818                 frag = &skb_shinfo(skb)->frags[f];
2819                 len = frag->size;
2820
2821                 buffer_info = &tx_ring->buffer_info[i];
2822                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2823                 buffer_info->length = len;
2824                 buffer_info->time_stamp = jiffies;
2825                 buffer_info->dma = pci_map_page(adapter->pdev,
2826                                                 frag->page,
2827                                                 frag->page_offset,
2828                                                 len,
2829                                                 PCI_DMA_TODEVICE);
2830
2831                 count++;
2832                 i++;
2833                 if (i == tx_ring->count)
2834                         i = 0;
2835         }
2836
2837         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2838         tx_ring->buffer_info[i].skb = skb;
2839
2840         return count;
2841 }
2842
2843 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2844                                     struct igb_ring *tx_ring,
2845                                     int tx_flags, int count, u32 paylen,
2846                                     u8 hdr_len)
2847 {
2848         union e1000_adv_tx_desc *tx_desc = NULL;
2849         struct igb_buffer *buffer_info;
2850         u32 olinfo_status = 0, cmd_type_len;
2851         unsigned int i;
2852
2853         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2854                         E1000_ADVTXD_DCMD_DEXT);
2855
2856         if (tx_flags & IGB_TX_FLAGS_VLAN)
2857                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2858
2859         if (tx_flags & IGB_TX_FLAGS_TSO) {
2860                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2861
2862                 /* insert tcp checksum */
2863                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2864
2865                 /* insert ip checksum */
2866                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2867                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2868
2869         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2870                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2871         }
2872
2873         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2874             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2875                          IGB_TX_FLAGS_VLAN)))
2876                 olinfo_status |= tx_ring->queue_index << 4;
2877
2878         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2879
2880         i = tx_ring->next_to_use;
2881         while (count--) {
2882                 buffer_info = &tx_ring->buffer_info[i];
2883                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2884                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2885                 tx_desc->read.cmd_type_len =
2886                         cpu_to_le32(cmd_type_len | buffer_info->length);
2887                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2888                 i++;
2889                 if (i == tx_ring->count)
2890                         i = 0;
2891         }
2892
2893         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2894         /* Force memory writes to complete before letting h/w
2895          * know there are new descriptors to fetch.  (Only
2896          * applicable for weak-ordered memory model archs,
2897          * such as IA-64). */
2898         wmb();
2899
2900         tx_ring->next_to_use = i;
2901         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2902         /* we need this if more than one processor can write to our tail
2903          * at a time, it syncronizes IO on IA64/Altix systems */
2904         mmiowb();
2905 }
2906
2907 static int __igb_maybe_stop_tx(struct net_device *netdev,
2908                                struct igb_ring *tx_ring, int size)
2909 {
2910         struct igb_adapter *adapter = netdev_priv(netdev);
2911
2912         netif_stop_subqueue(netdev, tx_ring->queue_index);
2913
2914         /* Herbert's original patch had:
2915          *  smp_mb__after_netif_stop_queue();
2916          * but since that doesn't exist yet, just open code it. */
2917         smp_mb();
2918
2919         /* We need to check again in a case another CPU has just
2920          * made room available. */
2921         if (IGB_DESC_UNUSED(tx_ring) < size)
2922                 return -EBUSY;
2923
2924         /* A reprieve! */
2925         netif_wake_subqueue(netdev, tx_ring->queue_index);
2926         ++adapter->restart_queue;
2927         return 0;
2928 }
2929
2930 static int igb_maybe_stop_tx(struct net_device *netdev,
2931                              struct igb_ring *tx_ring, int size)
2932 {
2933         if (IGB_DESC_UNUSED(tx_ring) >= size)
2934                 return 0;
2935         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2936 }
2937
2938 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2939
2940 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2941                                    struct net_device *netdev,
2942                                    struct igb_ring *tx_ring)
2943 {
2944         struct igb_adapter *adapter = netdev_priv(netdev);
2945         unsigned int tx_flags = 0;
2946         unsigned int len;
2947         u8 hdr_len = 0;
2948         int tso = 0;
2949
2950         len = skb_headlen(skb);
2951
2952         if (test_bit(__IGB_DOWN, &adapter->state)) {
2953                 dev_kfree_skb_any(skb);
2954                 return NETDEV_TX_OK;
2955         }
2956
2957         if (skb->len <= 0) {
2958                 dev_kfree_skb_any(skb);
2959                 return NETDEV_TX_OK;
2960         }
2961
2962         /* need: 1 descriptor per page,
2963          *       + 2 desc gap to keep tail from touching head,
2964          *       + 1 desc for skb->data,
2965          *       + 1 desc for context descriptor,
2966          * otherwise try next time */
2967         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2968                 /* this is a hard error */
2969                 return NETDEV_TX_BUSY;
2970         }
2971         skb_orphan(skb);
2972
2973         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2974                 tx_flags |= IGB_TX_FLAGS_VLAN;
2975                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2976         }
2977
2978         if (skb->protocol == htons(ETH_P_IP))
2979                 tx_flags |= IGB_TX_FLAGS_IPV4;
2980
2981         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2982                                               &hdr_len) : 0;
2983
2984         if (tso < 0) {
2985                 dev_kfree_skb_any(skb);
2986                 return NETDEV_TX_OK;
2987         }
2988
2989         if (tso)
2990                 tx_flags |= IGB_TX_FLAGS_TSO;
2991         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2992                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2993                                 tx_flags |= IGB_TX_FLAGS_CSUM;
2994
2995         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2996                          igb_tx_map_adv(adapter, tx_ring, skb),
2997                          skb->len, hdr_len);
2998
2999         netdev->trans_start = jiffies;
3000
3001         /* Make sure there is space in the ring for the next send. */
3002         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3003
3004         return NETDEV_TX_OK;
3005 }
3006
3007 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3008 {
3009         struct igb_adapter *adapter = netdev_priv(netdev);
3010         struct igb_ring *tx_ring;
3011
3012         int r_idx = 0;
3013         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3014         tx_ring = adapter->multi_tx_table[r_idx];
3015
3016         /* This goes back to the question of how to logically map a tx queue
3017          * to a flow.  Right now, performance is impacted slightly negatively
3018          * if using multiple tx queues.  If the stack breaks away from a
3019          * single qdisc implementation, we can look at this again. */
3020         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3021 }
3022
3023 /**
3024  * igb_tx_timeout - Respond to a Tx Hang
3025  * @netdev: network interface device structure
3026  **/
3027 static void igb_tx_timeout(struct net_device *netdev)
3028 {
3029         struct igb_adapter *adapter = netdev_priv(netdev);
3030         struct e1000_hw *hw = &adapter->hw;
3031
3032         /* Do the reset outside of interrupt context */
3033         adapter->tx_timeout_count++;
3034         schedule_work(&adapter->reset_task);
3035         wr32(E1000_EICS, adapter->eims_enable_mask &
3036                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3037 }
3038
3039 static void igb_reset_task(struct work_struct *work)
3040 {
3041         struct igb_adapter *adapter;
3042         adapter = container_of(work, struct igb_adapter, reset_task);
3043
3044         igb_reinit_locked(adapter);
3045 }
3046
3047 /**
3048  * igb_get_stats - Get System Network Statistics
3049  * @netdev: network interface device structure
3050  *
3051  * Returns the address of the device statistics structure.
3052  * The statistics are actually updated from the timer callback.
3053  **/
3054 static struct net_device_stats *
3055 igb_get_stats(struct net_device *netdev)
3056 {
3057         struct igb_adapter *adapter = netdev_priv(netdev);
3058
3059         /* only return the current stats */
3060         return &adapter->net_stats;
3061 }
3062
3063 /**
3064  * igb_change_mtu - Change the Maximum Transfer Unit
3065  * @netdev: network interface device structure
3066  * @new_mtu: new value for maximum frame size
3067  *
3068  * Returns 0 on success, negative on failure
3069  **/
3070 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3071 {
3072         struct igb_adapter *adapter = netdev_priv(netdev);
3073         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3074
3075         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3076             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3077                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3078                 return -EINVAL;
3079         }
3080
3081 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3082         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3083                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3084                 return -EINVAL;
3085         }
3086
3087         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3088                 msleep(1);
3089         /* igb_down has a dependency on max_frame_size */
3090         adapter->max_frame_size = max_frame;
3091         if (netif_running(netdev))
3092                 igb_down(adapter);
3093
3094         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3095          * means we reserve 2 more, this pushes us to allocate from the next
3096          * larger slab size.
3097          * i.e. RXBUFFER_2048 --> size-4096 slab
3098          */
3099
3100         if (max_frame <= IGB_RXBUFFER_256)
3101                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3102         else if (max_frame <= IGB_RXBUFFER_512)
3103                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3104         else if (max_frame <= IGB_RXBUFFER_1024)
3105                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3106         else if (max_frame <= IGB_RXBUFFER_2048)
3107                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3108         else
3109 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3110                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3111 #else
3112                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3113 #endif
3114         /* adjust allocation if LPE protects us, and we aren't using SBP */
3115         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3116              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3117                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3118
3119         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3120                  netdev->mtu, new_mtu);
3121         netdev->mtu = new_mtu;
3122
3123         if (netif_running(netdev))
3124                 igb_up(adapter);
3125         else
3126                 igb_reset(adapter);
3127
3128         clear_bit(__IGB_RESETTING, &adapter->state);
3129
3130         return 0;
3131 }
3132
3133 /**
3134  * igb_update_stats - Update the board statistics counters
3135  * @adapter: board private structure
3136  **/
3137
3138 void igb_update_stats(struct igb_adapter *adapter)
3139 {
3140         struct e1000_hw *hw = &adapter->hw;
3141         struct pci_dev *pdev = adapter->pdev;
3142         u16 phy_tmp;
3143
3144 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3145
3146         /*
3147          * Prevent stats update while adapter is being reset, or if the pci
3148          * connection is down.
3149          */
3150         if (adapter->link_speed == 0)
3151                 return;
3152         if (pci_channel_offline(pdev))
3153                 return;
3154
3155         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3156         adapter->stats.gprc += rd32(E1000_GPRC);
3157         adapter->stats.gorc += rd32(E1000_GORCL);
3158         rd32(E1000_GORCH); /* clear GORCL */
3159         adapter->stats.bprc += rd32(E1000_BPRC);
3160         adapter->stats.mprc += rd32(E1000_MPRC);
3161         adapter->stats.roc += rd32(E1000_ROC);
3162
3163         adapter->stats.prc64 += rd32(E1000_PRC64);
3164         adapter->stats.prc127 += rd32(E1000_PRC127);
3165         adapter->stats.prc255 += rd32(E1000_PRC255);
3166         adapter->stats.prc511 += rd32(E1000_PRC511);
3167         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3168         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3169         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3170         adapter->stats.sec += rd32(E1000_SEC);
3171
3172         adapter->stats.mpc += rd32(E1000_MPC);
3173         adapter->stats.scc += rd32(E1000_SCC);
3174         adapter->stats.ecol += rd32(E1000_ECOL);
3175         adapter->stats.mcc += rd32(E1000_MCC);
3176         adapter->stats.latecol += rd32(E1000_LATECOL);
3177         adapter->stats.dc += rd32(E1000_DC);
3178         adapter->stats.rlec += rd32(E1000_RLEC);
3179         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3180         adapter->stats.xontxc += rd32(E1000_XONTXC);
3181         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3182         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3183         adapter->stats.fcruc += rd32(E1000_FCRUC);
3184         adapter->stats.gptc += rd32(E1000_GPTC);
3185         adapter->stats.gotc += rd32(E1000_GOTCL);
3186         rd32(E1000_GOTCH); /* clear GOTCL */
3187         adapter->stats.rnbc += rd32(E1000_RNBC);
3188         adapter->stats.ruc += rd32(E1000_RUC);
3189         adapter->stats.rfc += rd32(E1000_RFC);
3190         adapter->stats.rjc += rd32(E1000_RJC);
3191         adapter->stats.tor += rd32(E1000_TORH);
3192         adapter->stats.tot += rd32(E1000_TOTH);
3193         adapter->stats.tpr += rd32(E1000_TPR);
3194
3195         adapter->stats.ptc64 += rd32(E1000_PTC64);
3196         adapter->stats.ptc127 += rd32(E1000_PTC127);
3197         adapter->stats.ptc255 += rd32(E1000_PTC255);
3198         adapter->stats.ptc511 += rd32(E1000_PTC511);
3199         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3200         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3201
3202         adapter->stats.mptc += rd32(E1000_MPTC);
3203         adapter->stats.bptc += rd32(E1000_BPTC);
3204
3205         /* used for adaptive IFS */
3206
3207         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3208         adapter->stats.tpt += hw->mac.tx_packet_delta;
3209         hw->mac.collision_delta = rd32(E1000_COLC);
3210         adapter->stats.colc += hw->mac.collision_delta;
3211
3212         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3213         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3214         adapter->stats.tncrs += rd32(E1000_TNCRS);
3215         adapter->stats.tsctc += rd32(E1000_TSCTC);
3216         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3217
3218         adapter->stats.iac += rd32(E1000_IAC);
3219         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3220         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3221         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3222         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3223         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3224         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3225         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3226         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3227
3228         /* Fill out the OS statistics structure */
3229         adapter->net_stats.multicast = adapter->stats.mprc;
3230         adapter->net_stats.collisions = adapter->stats.colc;
3231
3232         /* Rx Errors */
3233
3234         /* RLEC on some newer hardware can be incorrect so build
3235         * our own version based on RUC and ROC */
3236         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3237                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3238                 adapter->stats.ruc + adapter->stats.roc +
3239                 adapter->stats.cexterr;
3240         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3241                                               adapter->stats.roc;
3242         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3243         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3244         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3245
3246         /* Tx Errors */
3247         adapter->net_stats.tx_errors = adapter->stats.ecol +
3248                                        adapter->stats.latecol;
3249         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3250         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3251         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3252
3253         /* Tx Dropped needs to be maintained elsewhere */
3254
3255         /* Phy Stats */
3256         if (hw->phy.media_type == e1000_media_type_copper) {
3257                 if ((adapter->link_speed == SPEED_1000) &&
3258                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3259                                               &phy_tmp))) {
3260                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3261                         adapter->phy_stats.idle_errors += phy_tmp;
3262                 }
3263         }
3264
3265         /* Management Stats */
3266         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3267         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3268         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3269 }
3270
3271
3272 static irqreturn_t igb_msix_other(int irq, void *data)
3273 {
3274         struct net_device *netdev = data;
3275         struct igb_adapter *adapter = netdev_priv(netdev);
3276         struct e1000_hw *hw = &adapter->hw;
3277         u32 icr = rd32(E1000_ICR);
3278
3279         /* reading ICR causes bit 31 of EICR to be cleared */
3280         if (!(icr & E1000_ICR_LSC))
3281                 goto no_link_interrupt;
3282         hw->mac.get_link_status = 1;
3283         /* guard against interrupt when we're going down */
3284         if (!test_bit(__IGB_DOWN, &adapter->state))
3285                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3286         
3287 no_link_interrupt:
3288         wr32(E1000_IMS, E1000_IMS_LSC);
3289         wr32(E1000_EIMS, adapter->eims_other);
3290
3291         return IRQ_HANDLED;
3292 }
3293
3294 static irqreturn_t igb_msix_tx(int irq, void *data)
3295 {
3296         struct igb_ring *tx_ring = data;
3297         struct igb_adapter *adapter = tx_ring->adapter;
3298         struct e1000_hw *hw = &adapter->hw;
3299
3300 #ifdef CONFIG_IGB_DCA
3301         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3302                 igb_update_tx_dca(tx_ring);
3303 #endif
3304         tx_ring->total_bytes = 0;
3305         tx_ring->total_packets = 0;
3306
3307         /* auto mask will automatically reenable the interrupt when we write
3308          * EICS */
3309         if (!igb_clean_tx_irq(tx_ring))
3310                 /* Ring was not completely cleaned, so fire another interrupt */
3311                 wr32(E1000_EICS, tx_ring->eims_value);
3312         else
3313                 wr32(E1000_EIMS, tx_ring->eims_value);
3314
3315         return IRQ_HANDLED;
3316 }
3317
3318 static void igb_write_itr(struct igb_ring *ring)
3319 {
3320         struct e1000_hw *hw = &ring->adapter->hw;
3321         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3322                 switch (hw->mac.type) {
3323                 case e1000_82576:
3324                         wr32(ring->itr_register,
3325                              ring->itr_val |
3326                              0x80000000);
3327                         break;
3328                 default:
3329                         wr32(ring->itr_register,
3330                              ring->itr_val |
3331                              (ring->itr_val << 16));
3332                         break;
3333                 }
3334                 ring->set_itr = 0;
3335         }
3336 }
3337
3338 static irqreturn_t igb_msix_rx(int irq, void *data)
3339 {
3340         struct igb_ring *rx_ring = data;
3341         struct igb_adapter *adapter = rx_ring->adapter;
3342
3343         /* Write the ITR value calculated at the end of the
3344          * previous interrupt.
3345          */
3346
3347         igb_write_itr(rx_ring);
3348
3349         if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3350                 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3351
3352 #ifdef CONFIG_IGB_DCA
3353         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3354                 igb_update_rx_dca(rx_ring);
3355 #endif
3356                 return IRQ_HANDLED;
3357 }
3358
3359 #ifdef CONFIG_IGB_DCA
3360 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3361 {
3362         u32 dca_rxctrl;
3363         struct igb_adapter *adapter = rx_ring->adapter;
3364         struct e1000_hw *hw = &adapter->hw;
3365         int cpu = get_cpu();
3366         int q = rx_ring - adapter->rx_ring;
3367
3368         if (rx_ring->cpu != cpu) {
3369                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3370                 if (hw->mac.type == e1000_82576) {
3371                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3372                         dca_rxctrl |= dca_get_tag(cpu) <<
3373                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3374                 } else {
3375                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3376                         dca_rxctrl |= dca_get_tag(cpu);
3377                 }
3378                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3379                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3380                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3381                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3382                 rx_ring->cpu = cpu;
3383         }
3384         put_cpu();
3385 }
3386
3387 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3388 {
3389         u32 dca_txctrl;
3390         struct igb_adapter *adapter = tx_ring->adapter;
3391         struct e1000_hw *hw = &adapter->hw;
3392         int cpu = get_cpu();
3393         int q = tx_ring - adapter->tx_ring;
3394
3395         if (tx_ring->cpu != cpu) {
3396                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3397                 if (hw->mac.type == e1000_82576) {
3398                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3399                         dca_txctrl |= dca_get_tag(cpu) <<
3400                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3401                 } else {
3402                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3403                         dca_txctrl |= dca_get_tag(cpu);
3404                 }
3405                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3406                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3407                 tx_ring->cpu = cpu;
3408         }
3409         put_cpu();
3410 }
3411
3412 static void igb_setup_dca(struct igb_adapter *adapter)
3413 {
3414         int i;
3415
3416         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3417                 return;
3418
3419         for (i = 0; i < adapter->num_tx_queues; i++) {
3420                 adapter->tx_ring[i].cpu = -1;
3421                 igb_update_tx_dca(&adapter->tx_ring[i]);
3422         }
3423         for (i = 0; i < adapter->num_rx_queues; i++) {
3424                 adapter->rx_ring[i].cpu = -1;
3425                 igb_update_rx_dca(&adapter->rx_ring[i]);
3426         }
3427 }
3428
3429 static int __igb_notify_dca(struct device *dev, void *data)
3430 {
3431         struct net_device *netdev = dev_get_drvdata(dev);
3432         struct igb_adapter *adapter = netdev_priv(netdev);
3433         struct e1000_hw *hw = &adapter->hw;
3434         unsigned long event = *(unsigned long *)data;
3435
3436         if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3437                 goto out;
3438
3439         switch (event) {
3440         case DCA_PROVIDER_ADD:
3441                 /* if already enabled, don't do it again */
3442                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3443                         break;
3444                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3445                 /* Always use CB2 mode, difference is masked
3446                  * in the CB driver. */
3447                 wr32(E1000_DCA_CTRL, 2);
3448                 if (dca_add_requester(dev) == 0) {
3449                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3450                         igb_setup_dca(adapter);
3451                         break;
3452                 }
3453                 /* Fall Through since DCA is disabled. */
3454         case DCA_PROVIDER_REMOVE:
3455                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3456                         /* without this a class_device is left
3457                          * hanging around in the sysfs model */
3458                         dca_remove_requester(dev);
3459                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3460                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3461                         wr32(E1000_DCA_CTRL, 1);
3462                 }
3463                 break;
3464         }
3465 out:
3466         return 0;
3467 }
3468
3469 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3470                           void *p)
3471 {
3472         int ret_val;
3473
3474         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3475                                          __igb_notify_dca);
3476
3477         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3478 }
3479 #endif /* CONFIG_IGB_DCA */
3480
3481 /**
3482  * igb_intr_msi - Interrupt Handler
3483  * @irq: interrupt number
3484  * @data: pointer to a network interface device structure
3485  **/
3486 static irqreturn_t igb_intr_msi(int irq, void *data)
3487 {
3488         struct net_device *netdev = data;
3489         struct igb_adapter *adapter = netdev_priv(netdev);
3490         struct e1000_hw *hw = &adapter->hw;
3491         /* read ICR disables interrupts using IAM */
3492         u32 icr = rd32(E1000_ICR);
3493
3494         igb_write_itr(adapter->rx_ring);
3495
3496         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3497                 hw->mac.get_link_status = 1;
3498                 if (!test_bit(__IGB_DOWN, &adapter->state))
3499                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3500         }
3501
3502         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3503
3504         return IRQ_HANDLED;
3505 }
3506
3507 /**
3508  * igb_intr - Interrupt Handler
3509  * @irq: interrupt number
3510  * @data: pointer to a network interface device structure
3511  **/
3512 static irqreturn_t igb_intr(int irq, void *data)
3513 {
3514         struct net_device *netdev = data;
3515         struct igb_adapter *adapter = netdev_priv(netdev);
3516         struct e1000_hw *hw = &adapter->hw;
3517         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3518          * need for the IMC write */
3519         u32 icr = rd32(E1000_ICR);
3520         u32 eicr = 0;
3521         if (!icr)
3522                 return IRQ_NONE;  /* Not our interrupt */
3523
3524         igb_write_itr(adapter->rx_ring);
3525
3526         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3527          * not set, then the adapter didn't send an interrupt */
3528         if (!(icr & E1000_ICR_INT_ASSERTED))
3529                 return IRQ_NONE;
3530
3531         eicr = rd32(E1000_EICR);
3532
3533         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3534                 hw->mac.get_link_status = 1;
3535                 /* guard against interrupt when we're going down */
3536                 if (!test_bit(__IGB_DOWN, &adapter->state))
3537                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3538         }
3539
3540         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3541
3542         return IRQ_HANDLED;
3543 }
3544
3545 /**
3546  * igb_poll - NAPI Rx polling callback
3547  * @napi: napi polling structure
3548  * @budget: count of how many packets we should handle
3549  **/
3550 static int igb_poll(struct napi_struct *napi, int budget)
3551 {
3552         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3553         struct igb_adapter *adapter = rx_ring->adapter;
3554         struct net_device *netdev = adapter->netdev;
3555         int tx_clean_complete, work_done = 0;
3556
3557         /* this poll routine only supports one tx and one rx queue */
3558 #ifdef CONFIG_IGB_DCA
3559         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3560                 igb_update_tx_dca(&adapter->tx_ring[0]);
3561 #endif
3562         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3563
3564 #ifdef CONFIG_IGB_DCA
3565         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3566                 igb_update_rx_dca(&adapter->rx_ring[0]);
3567 #endif
3568         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3569
3570         /* If no Tx and not enough Rx work done, exit the polling mode */
3571         if ((tx_clean_complete && (work_done < budget)) ||
3572             !netif_running(netdev)) {
3573                 if (adapter->itr_setting & 3)
3574                         igb_set_itr(adapter);
3575                 netif_rx_complete(netdev, napi);
3576                 if (!test_bit(__IGB_DOWN, &adapter->state))
3577                         igb_irq_enable(adapter);
3578                 return 0;
3579         }
3580
3581         return 1;
3582 }
3583
3584 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3585 {
3586         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3587         struct igb_adapter *adapter = rx_ring->adapter;
3588         struct e1000_hw *hw = &adapter->hw;
3589         struct net_device *netdev = adapter->netdev;
3590         int work_done = 0;
3591
3592 #ifdef CONFIG_IGB_DCA
3593         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3594                 igb_update_rx_dca(rx_ring);
3595 #endif
3596         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3597
3598
3599         /* If not enough Rx work done, exit the polling mode */
3600         if ((work_done == 0) || !netif_running(netdev)) {
3601                 netif_rx_complete(netdev, napi);
3602
3603                 if (adapter->itr_setting & 3) {
3604                         if (adapter->num_rx_queues == 1)
3605                                 igb_set_itr(adapter);
3606                         else
3607                                 igb_update_ring_itr(rx_ring);
3608                 }
3609
3610                 if (!test_bit(__IGB_DOWN, &adapter->state))
3611                         wr32(E1000_EIMS, rx_ring->eims_value);
3612
3613                 return 0;
3614         }
3615
3616         return 1;
3617 }
3618
3619 static inline u32 get_head(struct igb_ring *tx_ring)
3620 {
3621         void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3622         return le32_to_cpu(*(volatile __le32 *)end);
3623 }
3624
3625 /**
3626  * igb_clean_tx_irq - Reclaim resources after transmit completes
3627  * @adapter: board private structure
3628  * returns true if ring is completely cleaned
3629  **/
3630 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3631 {
3632         struct igb_adapter *adapter = tx_ring->adapter;
3633         struct e1000_hw *hw = &adapter->hw;
3634         struct net_device *netdev = adapter->netdev;
3635         struct e1000_tx_desc *tx_desc;
3636         struct igb_buffer *buffer_info;
3637         struct sk_buff *skb;
3638         unsigned int i;
3639         u32 head, oldhead;
3640         unsigned int count = 0;
3641         unsigned int total_bytes = 0, total_packets = 0;
3642         bool retval = true;
3643
3644         rmb();
3645         head = get_head(tx_ring);
3646         i = tx_ring->next_to_clean;
3647         while (1) {
3648                 while (i != head) {
3649                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3650                         buffer_info = &tx_ring->buffer_info[i];
3651                         skb = buffer_info->skb;
3652
3653                         if (skb) {
3654                                 unsigned int segs, bytecount;
3655                                 /* gso_segs is currently only valid for tcp */
3656                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3657                                 /* multiply data chunks by size of headers */
3658                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3659                                             skb->len;
3660                                 total_packets += segs;
3661                                 total_bytes += bytecount;
3662                         }
3663
3664                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3665
3666                         i++;
3667                         if (i == tx_ring->count)
3668                                 i = 0;
3669
3670                         count++;
3671                         if (count == IGB_MAX_TX_CLEAN) {
3672                                 retval = false;
3673                                 goto done_cleaning;
3674                         }
3675                 }
3676                 oldhead = head;
3677                 rmb();
3678                 head = get_head(tx_ring);
3679                 if (head == oldhead)
3680                         goto done_cleaning;
3681         }  /* while (1) */
3682
3683 done_cleaning:
3684         tx_ring->next_to_clean = i;
3685
3686         if (unlikely(count &&
3687                      netif_carrier_ok(netdev) &&
3688                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3689                 /* Make sure that anybody stopping the queue after this
3690                  * sees the new next_to_clean.
3691                  */
3692                 smp_mb();
3693                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3694                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3695                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3696                         ++adapter->restart_queue;
3697                 }
3698         }
3699
3700         if (tx_ring->detect_tx_hung) {
3701                 /* Detect a transmit hang in hardware, this serializes the
3702                  * check with the clearing of time_stamp and movement of i */
3703                 tx_ring->detect_tx_hung = false;
3704                 if (tx_ring->buffer_info[i].time_stamp &&
3705                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3706                                (adapter->tx_timeout_factor * HZ))
3707                     && !(rd32(E1000_STATUS) &
3708                          E1000_STATUS_TXOFF)) {
3709
3710                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3711                         /* detected Tx unit hang */
3712                         dev_err(&adapter->pdev->dev,
3713                                 "Detected Tx Unit Hang\n"
3714                                 "  Tx Queue             <%d>\n"
3715                                 "  TDH                  <%x>\n"
3716                                 "  TDT                  <%x>\n"
3717                                 "  next_to_use          <%x>\n"
3718                                 "  next_to_clean        <%x>\n"
3719                                 "  head (WB)            <%x>\n"
3720                                 "buffer_info[next_to_clean]\n"
3721                                 "  time_stamp           <%lx>\n"
3722                                 "  jiffies              <%lx>\n"
3723                                 "  desc.status          <%x>\n",
3724                                 tx_ring->queue_index,
3725                                 readl(adapter->hw.hw_addr + tx_ring->head),
3726                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3727                                 tx_ring->next_to_use,
3728                                 tx_ring->next_to_clean,
3729                                 head,
3730                                 tx_ring->buffer_info[i].time_stamp,
3731                                 jiffies,
3732                                 tx_desc->upper.fields.status);
3733                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3734                 }
3735         }
3736         tx_ring->total_bytes += total_bytes;
3737         tx_ring->total_packets += total_packets;
3738         tx_ring->tx_stats.bytes += total_bytes;
3739         tx_ring->tx_stats.packets += total_packets;
3740         adapter->net_stats.tx_bytes += total_bytes;
3741         adapter->net_stats.tx_packets += total_packets;
3742         return retval;
3743 }
3744
3745 #ifdef CONFIG_IGB_LRO
3746  /**
3747  * igb_get_skb_hdr - helper function for LRO header processing
3748  * @skb: pointer to sk_buff to be added to LRO packet
3749  * @iphdr: pointer to ip header structure
3750  * @tcph: pointer to tcp header structure
3751  * @hdr_flags: pointer to header flags
3752  * @priv: pointer to the receive descriptor for the current sk_buff
3753  **/
3754 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3755                            u64 *hdr_flags, void *priv)
3756 {
3757         union e1000_adv_rx_desc *rx_desc = priv;
3758         u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3759                        (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3760
3761         /* Verify that this is a valid IPv4 TCP packet */
3762         if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3763                           E1000_RXDADV_PKTTYPE_TCP))
3764                 return -1;
3765
3766         /* Set network headers */
3767         skb_reset_network_header(skb);
3768         skb_set_transport_header(skb, ip_hdrlen(skb));
3769         *iphdr = ip_hdr(skb);
3770         *tcph = tcp_hdr(skb);
3771         *hdr_flags = LRO_IPV4 | LRO_TCP;
3772
3773         return 0;
3774
3775 }
3776 #endif /* CONFIG_IGB_LRO */
3777
3778 /**
3779  * igb_receive_skb - helper function to handle rx indications
3780  * @ring: pointer to receive ring receving this packet 
3781  * @status: descriptor status field as written by hardware
3782  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3783  * @skb: pointer to sk_buff to be indicated to stack
3784  **/
3785 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3786                             union e1000_adv_rx_desc * rx_desc,
3787                             struct sk_buff *skb)
3788 {
3789         struct igb_adapter * adapter = ring->adapter;
3790         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3791
3792 #ifdef CONFIG_IGB_LRO
3793         if (adapter->netdev->features & NETIF_F_LRO &&
3794             skb->ip_summed == CHECKSUM_UNNECESSARY) {
3795                 if (vlan_extracted)
3796                         lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3797                                            adapter->vlgrp,
3798                                            le16_to_cpu(rx_desc->wb.upper.vlan),
3799                                            rx_desc);
3800                 else
3801                         lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3802                 ring->lro_used = 1;
3803         } else {
3804 #endif
3805                 if (vlan_extracted)
3806                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3807                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3808                 else
3809
3810                         netif_receive_skb(skb);
3811 #ifdef CONFIG_IGB_LRO
3812         }
3813 #endif
3814 }
3815
3816
3817 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3818                                        u32 status_err, struct sk_buff *skb)
3819 {
3820         skb->ip_summed = CHECKSUM_NONE;
3821
3822         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3823         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3824                 return;
3825         /* TCP/UDP checksum error bit is set */
3826         if (status_err &
3827             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3828                 /* let the stack verify checksum errors */
3829                 adapter->hw_csum_err++;
3830                 return;
3831         }
3832         /* It must be a TCP or UDP packet with a valid checksum */
3833         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3834                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3835
3836         adapter->hw_csum_good++;
3837 }
3838
3839 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3840                                  int *work_done, int budget)
3841 {
3842         struct igb_adapter *adapter = rx_ring->adapter;
3843         struct net_device *netdev = adapter->netdev;
3844         struct pci_dev *pdev = adapter->pdev;
3845         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3846         struct igb_buffer *buffer_info , *next_buffer;
3847         struct sk_buff *skb;
3848         unsigned int i;
3849         u32 length, hlen, staterr;
3850         bool cleaned = false;
3851         int cleaned_count = 0;
3852         unsigned int total_bytes = 0, total_packets = 0;
3853
3854         i = rx_ring->next_to_clean;
3855         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3856         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3857
3858         while (staterr & E1000_RXD_STAT_DD) {
3859                 if (*work_done >= budget)
3860                         break;
3861                 (*work_done)++;
3862                 buffer_info = &rx_ring->buffer_info[i];
3863
3864                 /* HW will not DMA in data larger than the given buffer, even
3865                  * if it parses the (NFS, of course) header to be larger.  In
3866                  * that case, it fills the header buffer and spills the rest
3867                  * into the page.
3868                  */
3869                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3870                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3871                 if (hlen > adapter->rx_ps_hdr_size)
3872                         hlen = adapter->rx_ps_hdr_size;
3873
3874                 length = le16_to_cpu(rx_desc->wb.upper.length);
3875                 cleaned = true;
3876                 cleaned_count++;
3877
3878                 skb = buffer_info->skb;
3879                 prefetch(skb->data - NET_IP_ALIGN);
3880                 buffer_info->skb = NULL;
3881                 if (!adapter->rx_ps_hdr_size) {
3882                         pci_unmap_single(pdev, buffer_info->dma,
3883                                          adapter->rx_buffer_len +
3884                                            NET_IP_ALIGN,
3885                                          PCI_DMA_FROMDEVICE);
3886                         skb_put(skb, length);
3887                         goto send_up;
3888                 }
3889
3890                 if (!skb_shinfo(skb)->nr_frags) {
3891                         pci_unmap_single(pdev, buffer_info->dma,
3892                                          adapter->rx_ps_hdr_size +
3893                                            NET_IP_ALIGN,
3894                                          PCI_DMA_FROMDEVICE);
3895                         skb_put(skb, hlen);
3896                 }
3897
3898                 if (length) {
3899                         pci_unmap_page(pdev, buffer_info->page_dma,
3900                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3901                         buffer_info->page_dma = 0;
3902
3903                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3904                                                 buffer_info->page,
3905                                                 buffer_info->page_offset,
3906                                                 length);
3907
3908                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3909                             (page_count(buffer_info->page) != 1))
3910                                 buffer_info->page = NULL;
3911                         else
3912                                 get_page(buffer_info->page);
3913
3914                         skb->len += length;
3915                         skb->data_len += length;
3916
3917                         skb->truesize += length;
3918                 }
3919 send_up:
3920                 i++;
3921                 if (i == rx_ring->count)
3922                         i = 0;
3923                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3924                 prefetch(next_rxd);
3925                 next_buffer = &rx_ring->buffer_info[i];
3926
3927                 if (!(staterr & E1000_RXD_STAT_EOP)) {
3928                         buffer_info->skb = next_buffer->skb;
3929                         buffer_info->dma = next_buffer->dma;
3930                         next_buffer->skb = skb;
3931                         next_buffer->dma = 0;
3932                         goto next_desc;
3933                 }
3934
3935                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3936                         dev_kfree_skb_irq(skb);
3937                         goto next_desc;
3938                 }
3939
3940                 total_bytes += skb->len;
3941                 total_packets++;
3942
3943                 igb_rx_checksum_adv(adapter, staterr, skb);
3944
3945                 skb->protocol = eth_type_trans(skb, netdev);
3946
3947                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3948
3949 next_desc:
3950                 rx_desc->wb.upper.status_error = 0;
3951
3952                 /* return some buffers to hardware, one at a time is too slow */
3953                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3954                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3955                         cleaned_count = 0;
3956                 }
3957
3958                 /* use prefetched values */
3959                 rx_desc = next_rxd;
3960                 buffer_info = next_buffer;
3961
3962                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3963         }
3964
3965         rx_ring->next_to_clean = i;
3966         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3967
3968 #ifdef CONFIG_IGB_LRO
3969         if (rx_ring->lro_used) {
3970                 lro_flush_all(&rx_ring->lro_mgr);
3971                 rx_ring->lro_used = 0;
3972         }
3973 #endif
3974
3975         if (cleaned_count)
3976                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3977
3978         rx_ring->total_packets += total_packets;
3979         rx_ring->total_bytes += total_bytes;
3980         rx_ring->rx_stats.packets += total_packets;
3981         rx_ring->rx_stats.bytes += total_bytes;
3982         adapter->net_stats.rx_bytes += total_bytes;
3983         adapter->net_stats.rx_packets += total_packets;
3984         return cleaned;
3985 }
3986
3987
3988 /**
3989  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3990  * @adapter: address of board private structure
3991  **/
3992 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3993                                      int cleaned_count)
3994 {
3995         struct igb_adapter *adapter = rx_ring->adapter;
3996         struct net_device *netdev = adapter->netdev;
3997         struct pci_dev *pdev = adapter->pdev;
3998         union e1000_adv_rx_desc *rx_desc;
3999         struct igb_buffer *buffer_info;
4000         struct sk_buff *skb;
4001         unsigned int i;
4002
4003         i = rx_ring->next_to_use;
4004         buffer_info = &rx_ring->buffer_info[i];
4005
4006         while (cleaned_count--) {
4007                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4008
4009                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4010                         if (!buffer_info->page) {
4011                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4012                                 if (!buffer_info->page) {
4013                                         adapter->alloc_rx_buff_failed++;
4014                                         goto no_buffers;
4015                                 }
4016                                 buffer_info->page_offset = 0;
4017                         } else {
4018                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4019                         }
4020                         buffer_info->page_dma =
4021                                 pci_map_page(pdev,
4022                                              buffer_info->page,
4023                                              buffer_info->page_offset,
4024                                              PAGE_SIZE / 2,
4025                                              PCI_DMA_FROMDEVICE);
4026                 }
4027
4028                 if (!buffer_info->skb) {
4029                         int bufsz;
4030
4031                         if (adapter->rx_ps_hdr_size)
4032                                 bufsz = adapter->rx_ps_hdr_size;
4033                         else
4034                                 bufsz = adapter->rx_buffer_len;
4035                         bufsz += NET_IP_ALIGN;
4036                         skb = netdev_alloc_skb(netdev, bufsz);
4037
4038                         if (!skb) {
4039                                 adapter->alloc_rx_buff_failed++;
4040                                 goto no_buffers;
4041                         }
4042
4043                         /* Make buffer alignment 2 beyond a 16 byte boundary
4044                          * this will result in a 16 byte aligned IP header after
4045                          * the 14 byte MAC header is removed
4046                          */
4047                         skb_reserve(skb, NET_IP_ALIGN);
4048
4049                         buffer_info->skb = skb;
4050                         buffer_info->dma = pci_map_single(pdev, skb->data,
4051                                                           bufsz,
4052                                                           PCI_DMA_FROMDEVICE);
4053
4054                 }
4055                 /* Refresh the desc even if buffer_addrs didn't change because
4056                  * each write-back erases this info. */
4057                 if (adapter->rx_ps_hdr_size) {
4058                         rx_desc->read.pkt_addr =
4059                              cpu_to_le64(buffer_info->page_dma);
4060                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4061                 } else {
4062                         rx_desc->read.pkt_addr =
4063                              cpu_to_le64(buffer_info->dma);
4064                         rx_desc->read.hdr_addr = 0;
4065                 }
4066
4067                 i++;
4068                 if (i == rx_ring->count)
4069                         i = 0;
4070                 buffer_info = &rx_ring->buffer_info[i];
4071         }
4072
4073 no_buffers:
4074         if (rx_ring->next_to_use != i) {
4075                 rx_ring->next_to_use = i;
4076                 if (i == 0)
4077                         i = (rx_ring->count - 1);
4078                 else
4079                         i--;
4080
4081                 /* Force memory writes to complete before letting h/w
4082                  * know there are new descriptors to fetch.  (Only
4083                  * applicable for weak-ordered memory model archs,
4084                  * such as IA-64). */
4085                 wmb();
4086                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4087         }
4088 }
4089
4090 /**
4091  * igb_mii_ioctl -
4092  * @netdev:
4093  * @ifreq:
4094  * @cmd:
4095  **/
4096 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4097 {
4098         struct igb_adapter *adapter = netdev_priv(netdev);
4099         struct mii_ioctl_data *data = if_mii(ifr);
4100
4101         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4102                 return -EOPNOTSUPP;
4103
4104         switch (cmd) {
4105         case SIOCGMIIPHY:
4106                 data->phy_id = adapter->hw.phy.addr;
4107                 break;
4108         case SIOCGMIIREG:
4109                 if (!capable(CAP_NET_ADMIN))
4110                         return -EPERM;
4111                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4112                                      &data->val_out))
4113                         return -EIO;
4114                 break;
4115         case SIOCSMIIREG:
4116         default:
4117                 return -EOPNOTSUPP;
4118         }
4119         return 0;
4120 }
4121
4122 /**
4123  * igb_ioctl -
4124  * @netdev:
4125  * @ifreq:
4126  * @cmd:
4127  **/
4128 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4129 {
4130         switch (cmd) {
4131         case SIOCGMIIPHY:
4132         case SIOCGMIIREG:
4133         case SIOCSMIIREG:
4134                 return igb_mii_ioctl(netdev, ifr, cmd);
4135         default:
4136                 return -EOPNOTSUPP;
4137         }
4138 }
4139
4140 static void igb_vlan_rx_register(struct net_device *netdev,
4141                                  struct vlan_group *grp)
4142 {
4143         struct igb_adapter *adapter = netdev_priv(netdev);
4144         struct e1000_hw *hw = &adapter->hw;
4145         u32 ctrl, rctl;
4146
4147         igb_irq_disable(adapter);
4148         adapter->vlgrp = grp;
4149
4150         if (grp) {
4151                 /* enable VLAN tag insert/strip */
4152                 ctrl = rd32(E1000_CTRL);
4153                 ctrl |= E1000_CTRL_VME;
4154                 wr32(E1000_CTRL, ctrl);
4155
4156                 /* enable VLAN receive filtering */
4157                 rctl = rd32(E1000_RCTL);
4158                 rctl &= ~E1000_RCTL_CFIEN;
4159                 wr32(E1000_RCTL, rctl);
4160                 igb_update_mng_vlan(adapter);
4161                 wr32(E1000_RLPML,
4162                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4163         } else {
4164                 /* disable VLAN tag insert/strip */
4165                 ctrl = rd32(E1000_CTRL);
4166                 ctrl &= ~E1000_CTRL_VME;
4167                 wr32(E1000_CTRL, ctrl);
4168
4169                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4170                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4171                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4172                 }
4173                 wr32(E1000_RLPML,
4174                                 adapter->max_frame_size);
4175         }
4176
4177         if (!test_bit(__IGB_DOWN, &adapter->state))
4178                 igb_irq_enable(adapter);
4179 }
4180
4181 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4182 {
4183         struct igb_adapter *adapter = netdev_priv(netdev);
4184         struct e1000_hw *hw = &adapter->hw;
4185         u32 vfta, index;
4186
4187         if ((adapter->hw.mng_cookie.status &
4188              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4189             (vid == adapter->mng_vlan_id))
4190                 return;
4191         /* add VID to filter table */
4192         index = (vid >> 5) & 0x7F;
4193         vfta = array_rd32(E1000_VFTA, index);
4194         vfta |= (1 << (vid & 0x1F));
4195         igb_write_vfta(&adapter->hw, index, vfta);
4196 }
4197
4198 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4199 {
4200         struct igb_adapter *adapter = netdev_priv(netdev);
4201         struct e1000_hw *hw = &adapter->hw;
4202         u32 vfta, index;
4203
4204         igb_irq_disable(adapter);
4205         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4206
4207         if (!test_bit(__IGB_DOWN, &adapter->state))
4208                 igb_irq_enable(adapter);
4209
4210         if ((adapter->hw.mng_cookie.status &
4211              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4212             (vid == adapter->mng_vlan_id)) {
4213                 /* release control to f/w */
4214                 igb_release_hw_control(adapter);
4215                 return;
4216         }
4217
4218         /* remove VID from filter table */
4219         index = (vid >> 5) & 0x7F;
4220         vfta = array_rd32(E1000_VFTA, index);
4221         vfta &= ~(1 << (vid & 0x1F));
4222         igb_write_vfta(&adapter->hw, index, vfta);
4223 }
4224
4225 static void igb_restore_vlan(struct igb_adapter *adapter)
4226 {
4227         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4228
4229         if (adapter->vlgrp) {
4230                 u16 vid;
4231                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4232                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4233                                 continue;
4234                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4235                 }
4236         }
4237 }
4238
4239 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4240 {
4241         struct e1000_mac_info *mac = &adapter->hw.mac;
4242
4243         mac->autoneg = 0;
4244
4245         /* Fiber NICs only allow 1000 gbps Full duplex */
4246         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4247                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4248                 dev_err(&adapter->pdev->dev,
4249                         "Unsupported Speed/Duplex configuration\n");
4250                 return -EINVAL;
4251         }
4252
4253         switch (spddplx) {
4254         case SPEED_10 + DUPLEX_HALF:
4255                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4256                 break;
4257         case SPEED_10 + DUPLEX_FULL:
4258                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4259                 break;
4260         case SPEED_100 + DUPLEX_HALF:
4261                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4262                 break;
4263         case SPEED_100 + DUPLEX_FULL:
4264                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4265                 break;
4266         case SPEED_1000 + DUPLEX_FULL:
4267                 mac->autoneg = 1;
4268                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4269                 break;
4270         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4271         default:
4272                 dev_err(&adapter->pdev->dev,
4273                         "Unsupported Speed/Duplex configuration\n");
4274                 return -EINVAL;
4275         }
4276         return 0;
4277 }
4278
4279
4280 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4281 {
4282         struct net_device *netdev = pci_get_drvdata(pdev);
4283         struct igb_adapter *adapter = netdev_priv(netdev);
4284         struct e1000_hw *hw = &adapter->hw;
4285         u32 ctrl, rctl, status;
4286         u32 wufc = adapter->wol;
4287 #ifdef CONFIG_PM
4288         int retval = 0;
4289 #endif
4290
4291         netif_device_detach(netdev);
4292
4293         if (netif_running(netdev))
4294                 igb_close(netdev);
4295
4296         igb_reset_interrupt_capability(adapter);
4297
4298         igb_free_queues(adapter);
4299
4300 #ifdef CONFIG_PM
4301         retval = pci_save_state(pdev);
4302         if (retval)
4303                 return retval;
4304 #endif
4305
4306         status = rd32(E1000_STATUS);
4307         if (status & E1000_STATUS_LU)
4308                 wufc &= ~E1000_WUFC_LNKC;
4309
4310         if (wufc) {
4311                 igb_setup_rctl(adapter);
4312                 igb_set_multi(netdev);
4313
4314                 /* turn on all-multi mode if wake on multicast is enabled */
4315                 if (wufc & E1000_WUFC_MC) {
4316                         rctl = rd32(E1000_RCTL);
4317                         rctl |= E1000_RCTL_MPE;
4318                         wr32(E1000_RCTL, rctl);
4319                 }
4320
4321                 ctrl = rd32(E1000_CTRL);
4322                 /* advertise wake from D3Cold */
4323                 #define E1000_CTRL_ADVD3WUC 0x00100000
4324                 /* phy power management enable */
4325                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4326                 ctrl |= E1000_CTRL_ADVD3WUC;
4327                 wr32(E1000_CTRL, ctrl);
4328
4329                 /* Allow time for pending master requests to run */
4330                 igb_disable_pcie_master(&adapter->hw);
4331
4332                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4333                 wr32(E1000_WUFC, wufc);
4334         } else {
4335                 wr32(E1000_WUC, 0);
4336                 wr32(E1000_WUFC, 0);
4337         }
4338
4339         /* make sure adapter isn't asleep if manageability/wol is enabled */
4340         if (wufc || adapter->en_mng_pt) {
4341                 pci_enable_wake(pdev, PCI_D3hot, 1);
4342                 pci_enable_wake(pdev, PCI_D3cold, 1);
4343         } else {
4344                 igb_shutdown_fiber_serdes_link_82575(hw);
4345                 pci_enable_wake(pdev, PCI_D3hot, 0);
4346                 pci_enable_wake(pdev, PCI_D3cold, 0);
4347         }
4348
4349         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4350          * would have already happened in close and is redundant. */
4351         igb_release_hw_control(adapter);
4352
4353         pci_disable_device(pdev);
4354
4355         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4356
4357         return 0;
4358 }
4359
4360 #ifdef CONFIG_PM
4361 static int igb_resume(struct pci_dev *pdev)
4362 {
4363         struct net_device *netdev = pci_get_drvdata(pdev);
4364         struct igb_adapter *adapter = netdev_priv(netdev);
4365         struct e1000_hw *hw = &adapter->hw;
4366         u32 err;
4367
4368         pci_set_power_state(pdev, PCI_D0);
4369         pci_restore_state(pdev);
4370
4371         if (adapter->need_ioport)
4372                 err = pci_enable_device(pdev);
4373         else
4374                 err = pci_enable_device_mem(pdev);
4375         if (err) {
4376                 dev_err(&pdev->dev,
4377                         "igb: Cannot enable PCI device from suspend\n");
4378                 return err;
4379         }
4380         pci_set_master(pdev);
4381
4382         pci_enable_wake(pdev, PCI_D3hot, 0);
4383         pci_enable_wake(pdev, PCI_D3cold, 0);
4384
4385         igb_set_interrupt_capability(adapter);
4386
4387         if (igb_alloc_queues(adapter)) {
4388                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4389                 return -ENOMEM;
4390         }
4391
4392         /* e1000_power_up_phy(adapter); */
4393
4394         igb_reset(adapter);
4395         wr32(E1000_WUS, ~0);
4396
4397         if (netif_running(netdev)) {
4398                 err = igb_open(netdev);
4399                 if (err)
4400                         return err;
4401         }
4402
4403         netif_device_attach(netdev);
4404
4405         /* let the f/w know that the h/w is now under the control of the
4406          * driver. */
4407         igb_get_hw_control(adapter);
4408
4409         return 0;
4410 }
4411 #endif
4412
4413 static void igb_shutdown(struct pci_dev *pdev)
4414 {
4415         igb_suspend(pdev, PMSG_SUSPEND);
4416 }
4417
4418 #ifdef CONFIG_NET_POLL_CONTROLLER
4419 /*
4420  * Polling 'interrupt' - used by things like netconsole to send skbs
4421  * without having to re-enable interrupts. It's not called while
4422  * the interrupt routine is executing.
4423  */
4424 static void igb_netpoll(struct net_device *netdev)
4425 {
4426         struct igb_adapter *adapter = netdev_priv(netdev);
4427         int i;
4428         int work_done = 0;
4429
4430         igb_irq_disable(adapter);
4431         adapter->flags |= IGB_FLAG_IN_NETPOLL;
4432
4433         for (i = 0; i < adapter->num_tx_queues; i++)
4434                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4435
4436         for (i = 0; i < adapter->num_rx_queues; i++)
4437                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4438                                      &work_done,
4439                                      adapter->rx_ring[i].napi.weight);
4440
4441         adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4442         igb_irq_enable(adapter);
4443 }
4444 #endif /* CONFIG_NET_POLL_CONTROLLER */
4445
4446 /**
4447  * igb_io_error_detected - called when PCI error is detected
4448  * @pdev: Pointer to PCI device
4449  * @state: The current pci connection state
4450  *
4451  * This function is called after a PCI bus error affecting
4452  * this device has been detected.
4453  */
4454 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4455                                               pci_channel_state_t state)
4456 {
4457         struct net_device *netdev = pci_get_drvdata(pdev);
4458         struct igb_adapter *adapter = netdev_priv(netdev);
4459
4460         netif_device_detach(netdev);
4461
4462         if (netif_running(netdev))
4463                 igb_down(adapter);
4464         pci_disable_device(pdev);
4465
4466         /* Request a slot slot reset. */
4467         return PCI_ERS_RESULT_NEED_RESET;
4468 }
4469
4470 /**
4471  * igb_io_slot_reset - called after the pci bus has been reset.
4472  * @pdev: Pointer to PCI device
4473  *
4474  * Restart the card from scratch, as if from a cold-boot. Implementation
4475  * resembles the first-half of the igb_resume routine.
4476  */
4477 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4478 {
4479         struct net_device *netdev = pci_get_drvdata(pdev);
4480         struct igb_adapter *adapter = netdev_priv(netdev);
4481         struct e1000_hw *hw = &adapter->hw;
4482         int err;
4483
4484         if (adapter->need_ioport)
4485                 err = pci_enable_device(pdev);
4486         else
4487                 err = pci_enable_device_mem(pdev);
4488         if (err) {
4489                 dev_err(&pdev->dev,
4490                         "Cannot re-enable PCI device after reset.\n");
4491                 return PCI_ERS_RESULT_DISCONNECT;
4492         }
4493         pci_set_master(pdev);
4494         pci_restore_state(pdev);
4495
4496         pci_enable_wake(pdev, PCI_D3hot, 0);
4497         pci_enable_wake(pdev, PCI_D3cold, 0);
4498
4499         igb_reset(adapter);
4500         wr32(E1000_WUS, ~0);
4501
4502         return PCI_ERS_RESULT_RECOVERED;
4503 }
4504
4505 /**
4506  * igb_io_resume - called when traffic can start flowing again.
4507  * @pdev: Pointer to PCI device
4508  *
4509  * This callback is called when the error recovery driver tells us that
4510  * its OK to resume normal operation. Implementation resembles the
4511  * second-half of the igb_resume routine.
4512  */
4513 static void igb_io_resume(struct pci_dev *pdev)
4514 {
4515         struct net_device *netdev = pci_get_drvdata(pdev);
4516         struct igb_adapter *adapter = netdev_priv(netdev);
4517
4518         if (netif_running(netdev)) {
4519                 if (igb_up(adapter)) {
4520                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4521                         return;
4522                 }
4523         }
4524
4525         netif_device_attach(netdev);
4526
4527         /* let the f/w know that the h/w is now under the control of the
4528          * driver. */
4529         igb_get_hw_control(adapter);
4530
4531 }
4532
4533 /* igb_main.c */