1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Tomas Winkler <tomas.winkler@intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/kernel.h>
64 #include <net/mac80211.h>
68 #include "iwl-calib.h"
69 #include "iwl-eeprom.h"
71 /* "false alarms" are signals that our DSP tries to lock onto,
72 * but then determines that they are either noise, or transmissions
73 * from a distant wireless network (also "noise", really) that get
74 * "stepped on" by stronger transmissions within our own network.
75 * This algorithm attempts to set a sensitivity level that is high
76 * enough to receive all of our own network traffic, but not so
77 * high that our DSP gets too busy trying to lock onto non-network
79 static int iwl_sens_energy_cck(struct iwl_priv *priv,
82 struct statistics_general_data *rx_info)
86 u8 max_silence_rssi = 0;
88 u8 silence_rssi_a = 0;
89 u8 silence_rssi_b = 0;
90 u8 silence_rssi_c = 0;
93 /* "false_alarms" values below are cross-multiplications to assess the
94 * numbers of false alarms within the measured period of actual Rx
95 * (Rx is off when we're txing), vs the min/max expected false alarms
96 * (some should be expected if rx is sensitive enough) in a
97 * hypothetical listening period of 200 time units (TU), 204.8 msec:
99 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
102 u32 false_alarms = norm_fa * 200 * 1024;
103 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
104 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
105 struct iwl_sensitivity_data *data = NULL;
106 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
108 data = &(priv->sensitivity_data);
110 data->nrg_auto_corr_silence_diff = 0;
112 /* Find max silence rssi among all 3 receivers.
113 * This is background noise, which may include transmissions from other
114 * networks, measured during silence before our network's beacon */
115 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
116 ALL_BAND_FILTER) >> 8);
117 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
118 ALL_BAND_FILTER) >> 8);
119 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
120 ALL_BAND_FILTER) >> 8);
122 val = max(silence_rssi_b, silence_rssi_c);
123 max_silence_rssi = max(silence_rssi_a, (u8) val);
125 /* Store silence rssi in 20-beacon history table */
126 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
127 data->nrg_silence_idx++;
128 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
129 data->nrg_silence_idx = 0;
131 /* Find max silence rssi across 20 beacon history */
132 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
133 val = data->nrg_silence_rssi[i];
134 silence_ref = max(silence_ref, val);
136 IWL_DEBUG_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n",
137 silence_rssi_a, silence_rssi_b, silence_rssi_c,
140 /* Find max rx energy (min value!) among all 3 receivers,
141 * measured during beacon frame.
142 * Save it in 10-beacon history table. */
143 i = data->nrg_energy_idx;
144 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
145 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
147 data->nrg_energy_idx++;
148 if (data->nrg_energy_idx >= 10)
149 data->nrg_energy_idx = 0;
151 /* Find min rx energy (max value) across 10 beacon history.
152 * This is the minimum signal level that we want to receive well.
153 * Add backoff (margin so we don't miss slightly lower energy frames).
154 * This establishes an upper bound (min value) for energy threshold. */
155 max_nrg_cck = data->nrg_value[0];
156 for (i = 1; i < 10; i++)
157 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
160 IWL_DEBUG_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
161 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
162 rx_info->beacon_energy_c, max_nrg_cck - 6);
164 /* Count number of consecutive beacons with fewer-than-desired
166 if (false_alarms < min_false_alarms)
167 data->num_in_cck_no_fa++;
169 data->num_in_cck_no_fa = 0;
170 IWL_DEBUG_CALIB("consecutive bcns with few false alarms = %u\n",
171 data->num_in_cck_no_fa);
173 /* If we got too many false alarms this time, reduce sensitivity */
174 if ((false_alarms > max_false_alarms) &&
175 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
176 IWL_DEBUG_CALIB("norm FA %u > max FA %u\n",
177 false_alarms, max_false_alarms);
178 IWL_DEBUG_CALIB("... reducing sensitivity\n");
179 data->nrg_curr_state = IWL_FA_TOO_MANY;
180 /* Store for "fewer than desired" on later beacon */
181 data->nrg_silence_ref = silence_ref;
183 /* increase energy threshold (reduce nrg value)
184 * to decrease sensitivity */
185 if (data->nrg_th_cck >
186 (ranges->max_nrg_cck + NRG_STEP_CCK))
187 data->nrg_th_cck = data->nrg_th_cck
190 data->nrg_th_cck = ranges->max_nrg_cck;
191 /* Else if we got fewer than desired, increase sensitivity */
192 } else if (false_alarms < min_false_alarms) {
193 data->nrg_curr_state = IWL_FA_TOO_FEW;
195 /* Compare silence level with silence level for most recent
196 * healthy number or too many false alarms */
197 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
200 IWL_DEBUG_CALIB("norm FA %u < min FA %u, silence diff %d\n",
201 false_alarms, min_false_alarms,
202 data->nrg_auto_corr_silence_diff);
204 /* Increase value to increase sensitivity, but only if:
205 * 1a) previous beacon did *not* have *too many* false alarms
206 * 1b) AND there's a significant difference in Rx levels
207 * from a previous beacon with too many, or healthy # FAs
208 * OR 2) We've seen a lot of beacons (100) with too few
210 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
211 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
212 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
214 IWL_DEBUG_CALIB("... increasing sensitivity\n");
215 /* Increase nrg value to increase sensitivity */
216 val = data->nrg_th_cck + NRG_STEP_CCK;
217 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
219 IWL_DEBUG_CALIB("... but not changing sensitivity\n");
222 /* Else we got a healthy number of false alarms, keep status quo */
224 IWL_DEBUG_CALIB(" FA in safe zone\n");
225 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
227 /* Store for use in "fewer than desired" with later beacon */
228 data->nrg_silence_ref = silence_ref;
230 /* If previous beacon had too many false alarms,
231 * give it some extra margin by reducing sensitivity again
232 * (but don't go below measured energy of desired Rx) */
233 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
234 IWL_DEBUG_CALIB("... increasing margin\n");
235 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
236 data->nrg_th_cck -= NRG_MARGIN;
238 data->nrg_th_cck = max_nrg_cck;
242 /* Make sure the energy threshold does not go above the measured
243 * energy of the desired Rx signals (reduced by backoff margin),
244 * or else we might start missing Rx frames.
245 * Lower value is higher energy, so we use max()!
247 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
248 IWL_DEBUG_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
250 data->nrg_prev_state = data->nrg_curr_state;
252 /* Auto-correlation CCK algorithm */
253 if (false_alarms > min_false_alarms) {
255 /* increase auto_corr values to decrease sensitivity
256 * so the DSP won't be disturbed by the noise
258 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
259 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
261 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
262 data->auto_corr_cck =
263 min((u32)ranges->auto_corr_max_cck, val);
265 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
266 data->auto_corr_cck_mrc =
267 min((u32)ranges->auto_corr_max_cck_mrc, val);
268 } else if ((false_alarms < min_false_alarms) &&
269 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
270 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
272 /* Decrease auto_corr values to increase sensitivity */
273 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
274 data->auto_corr_cck =
275 max((u32)ranges->auto_corr_min_cck, val);
276 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
277 data->auto_corr_cck_mrc =
278 max((u32)ranges->auto_corr_min_cck_mrc, val);
285 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
290 u32 false_alarms = norm_fa * 200 * 1024;
291 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
292 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
293 struct iwl_sensitivity_data *data = NULL;
294 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
296 data = &(priv->sensitivity_data);
298 /* If we got too many false alarms this time, reduce sensitivity */
299 if (false_alarms > max_false_alarms) {
301 IWL_DEBUG_CALIB("norm FA %u > max FA %u)\n",
302 false_alarms, max_false_alarms);
304 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
305 data->auto_corr_ofdm =
306 min((u32)ranges->auto_corr_max_ofdm, val);
308 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
309 data->auto_corr_ofdm_mrc =
310 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
312 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
313 data->auto_corr_ofdm_x1 =
314 min((u32)ranges->auto_corr_max_ofdm_x1, val);
316 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
317 data->auto_corr_ofdm_mrc_x1 =
318 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
321 /* Else if we got fewer than desired, increase sensitivity */
322 else if (false_alarms < min_false_alarms) {
324 IWL_DEBUG_CALIB("norm FA %u < min FA %u\n",
325 false_alarms, min_false_alarms);
327 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
328 data->auto_corr_ofdm =
329 max((u32)ranges->auto_corr_min_ofdm, val);
331 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
332 data->auto_corr_ofdm_mrc =
333 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
335 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
336 data->auto_corr_ofdm_x1 =
337 max((u32)ranges->auto_corr_min_ofdm_x1, val);
339 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
340 data->auto_corr_ofdm_mrc_x1 =
341 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
343 IWL_DEBUG_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
344 min_false_alarms, false_alarms, max_false_alarms);
349 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
350 static int iwl_sensitivity_write(struct iwl_priv *priv)
353 struct iwl_sensitivity_cmd cmd ;
354 struct iwl_sensitivity_data *data = NULL;
355 struct iwl_host_cmd cmd_out = {
356 .id = SENSITIVITY_CMD,
357 .len = sizeof(struct iwl_sensitivity_cmd),
358 .meta.flags = CMD_ASYNC,
362 data = &(priv->sensitivity_data);
364 memset(&cmd, 0, sizeof(cmd));
366 cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
367 cpu_to_le16((u16)data->auto_corr_ofdm);
368 cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
369 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
370 cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
371 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
372 cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
373 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
375 cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
376 cpu_to_le16((u16)data->auto_corr_cck);
377 cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
378 cpu_to_le16((u16)data->auto_corr_cck_mrc);
380 cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] =
381 cpu_to_le16((u16)data->nrg_th_cck);
382 cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] =
383 cpu_to_le16((u16)data->nrg_th_ofdm);
385 cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
386 __constant_cpu_to_le16(190);
387 cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
388 __constant_cpu_to_le16(390);
389 cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] =
390 __constant_cpu_to_le16(62);
392 IWL_DEBUG_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
393 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
394 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
397 IWL_DEBUG_CALIB("cck: ac %u mrc %u thresh %u\n",
398 data->auto_corr_cck, data->auto_corr_cck_mrc,
401 /* Update uCode's "work" table, and copy it to DSP */
402 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
404 /* Don't send command to uCode if nothing has changed */
405 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
406 sizeof(u16)*HD_TABLE_SIZE)) {
407 IWL_DEBUG_CALIB("No change in SENSITIVITY_CMD\n");
411 /* Copy table for comparison next time */
412 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
413 sizeof(u16)*HD_TABLE_SIZE);
415 ret = iwl_send_cmd(priv, &cmd_out);
417 IWL_ERROR("SENSITIVITY_CMD failed\n");
422 void iwl_init_sensitivity(struct iwl_priv *priv)
426 struct iwl_sensitivity_data *data = NULL;
427 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
429 if (priv->disable_sens_cal)
432 IWL_DEBUG_CALIB("Start iwl_init_sensitivity\n");
434 /* Clear driver's sensitivity algo data */
435 data = &(priv->sensitivity_data);
438 /* can happen if IWLWIFI_RUN_TIME_CALIB is selected
439 * but no IWLXXXX_RUN_TIME_CALIB for specific is selected */
442 memset(data, 0, sizeof(struct iwl_sensitivity_data));
444 data->num_in_cck_no_fa = 0;
445 data->nrg_curr_state = IWL_FA_TOO_MANY;
446 data->nrg_prev_state = IWL_FA_TOO_MANY;
447 data->nrg_silence_ref = 0;
448 data->nrg_silence_idx = 0;
449 data->nrg_energy_idx = 0;
451 for (i = 0; i < 10; i++)
452 data->nrg_value[i] = 0;
454 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
455 data->nrg_silence_rssi[i] = 0;
457 data->auto_corr_ofdm = 90;
458 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
459 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
460 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
461 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
462 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
463 data->nrg_th_cck = ranges->nrg_th_cck;
464 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
466 data->last_bad_plcp_cnt_ofdm = 0;
467 data->last_fa_cnt_ofdm = 0;
468 data->last_bad_plcp_cnt_cck = 0;
469 data->last_fa_cnt_cck = 0;
471 ret |= iwl_sensitivity_write(priv);
472 IWL_DEBUG_CALIB("<<return 0x%X\n", ret);
474 EXPORT_SYMBOL(iwl_init_sensitivity);
476 void iwl_sensitivity_calibration(struct iwl_priv *priv,
477 struct iwl4965_notif_statistics *resp)
486 struct iwl_sensitivity_data *data = NULL;
487 struct statistics_rx_non_phy *rx_info = &(resp->rx.general);
488 struct statistics_rx *statistics = &(resp->rx);
490 struct statistics_general_data statis;
492 if (priv->disable_sens_cal)
495 data = &(priv->sensitivity_data);
497 if (!iwl_is_associated(priv)) {
498 IWL_DEBUG_CALIB("<< - not associated\n");
502 spin_lock_irqsave(&priv->lock, flags);
503 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
504 IWL_DEBUG_CALIB("<< invalid data.\n");
505 spin_unlock_irqrestore(&priv->lock, flags);
509 /* Extract Statistics: */
510 rx_enable_time = le32_to_cpu(rx_info->channel_load);
511 fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt);
512 fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt);
513 bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err);
514 bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err);
516 statis.beacon_silence_rssi_a =
517 le32_to_cpu(statistics->general.beacon_silence_rssi_a);
518 statis.beacon_silence_rssi_b =
519 le32_to_cpu(statistics->general.beacon_silence_rssi_b);
520 statis.beacon_silence_rssi_c =
521 le32_to_cpu(statistics->general.beacon_silence_rssi_c);
522 statis.beacon_energy_a =
523 le32_to_cpu(statistics->general.beacon_energy_a);
524 statis.beacon_energy_b =
525 le32_to_cpu(statistics->general.beacon_energy_b);
526 statis.beacon_energy_c =
527 le32_to_cpu(statistics->general.beacon_energy_c);
529 spin_unlock_irqrestore(&priv->lock, flags);
531 IWL_DEBUG_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
533 if (!rx_enable_time) {
534 IWL_DEBUG_CALIB("<< RX Enable Time == 0! \n");
538 /* These statistics increase monotonically, and do not reset
539 * at each beacon. Calculate difference from last value, or just
540 * use the new statistics value if it has reset or wrapped around. */
541 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
542 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
544 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
545 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
548 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
549 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
551 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
552 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
555 if (data->last_fa_cnt_ofdm > fa_ofdm)
556 data->last_fa_cnt_ofdm = fa_ofdm;
558 fa_ofdm -= data->last_fa_cnt_ofdm;
559 data->last_fa_cnt_ofdm += fa_ofdm;
562 if (data->last_fa_cnt_cck > fa_cck)
563 data->last_fa_cnt_cck = fa_cck;
565 fa_cck -= data->last_fa_cnt_cck;
566 data->last_fa_cnt_cck += fa_cck;
569 /* Total aborted signal locks */
570 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
571 norm_fa_cck = fa_cck + bad_plcp_cck;
573 IWL_DEBUG_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
574 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
576 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
577 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
578 iwl_sensitivity_write(priv);
582 EXPORT_SYMBOL(iwl_sensitivity_calibration);
585 * Accumulate 20 beacons of signal and noise statistics for each of
586 * 3 receivers/antennas/rx-chains, then figure out:
587 * 1) Which antennas are connected.
588 * 2) Differential rx gain settings to balance the 3 receivers.
590 void iwl_chain_noise_calibration(struct iwl_priv *priv,
591 struct iwl4965_notif_statistics *stat_resp)
593 struct iwl_chain_noise_data *data = NULL;
601 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
602 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
604 u16 max_average_sig_antenna_i;
605 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
606 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
608 u16 rxon_chnum = INITIALIZATION_VALUE;
609 u16 stat_chnum = INITIALIZATION_VALUE;
612 u32 active_chains = 0;
615 struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general);
617 if (priv->disable_chain_noise_cal)
620 data = &(priv->chain_noise_data);
622 /* Accumulate just the first 20 beacons after the first association,
623 * then we're done forever. */
624 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
625 if (data->state == IWL_CHAIN_NOISE_ALIVE)
626 IWL_DEBUG_CALIB("Wait for noise calib reset\n");
630 spin_lock_irqsave(&priv->lock, flags);
631 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
632 IWL_DEBUG_CALIB(" << Interference data unavailable\n");
633 spin_unlock_irqrestore(&priv->lock, flags);
637 rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK);
638 rxon_chnum = le16_to_cpu(priv->staging_rxon.channel);
639 stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
640 stat_chnum = le32_to_cpu(stat_resp->flag) >> 16;
642 /* Make sure we accumulate data for just the associated channel
643 * (even if scanning). */
644 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
645 IWL_DEBUG_CALIB("Stats not from chan=%d, band24=%d\n",
646 rxon_chnum, rxon_band24);
647 spin_unlock_irqrestore(&priv->lock, flags);
651 /* Accumulate beacon statistics values across 20 beacons */
652 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
654 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
656 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
659 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
660 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
661 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
663 spin_unlock_irqrestore(&priv->lock, flags);
665 data->beacon_count++;
667 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
668 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
669 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
671 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
672 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
673 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
675 IWL_DEBUG_CALIB("chan=%d, band24=%d, beacon=%d\n",
676 rxon_chnum, rxon_band24, data->beacon_count);
677 IWL_DEBUG_CALIB("chain_sig: a %d b %d c %d\n",
678 chain_sig_a, chain_sig_b, chain_sig_c);
679 IWL_DEBUG_CALIB("chain_noise: a %d b %d c %d\n",
680 chain_noise_a, chain_noise_b, chain_noise_c);
682 /* If this is the 20th beacon, determine:
683 * 1) Disconnected antennas (using signal strengths)
684 * 2) Differential gain (using silence noise) to balance receivers */
685 if (data->beacon_count != CAL_NUM_OF_BEACONS)
688 /* Analyze signal for disconnected antenna */
689 average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS;
690 average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS;
691 average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS;
693 if (average_sig[0] >= average_sig[1]) {
694 max_average_sig = average_sig[0];
695 max_average_sig_antenna_i = 0;
696 active_chains = (1 << max_average_sig_antenna_i);
698 max_average_sig = average_sig[1];
699 max_average_sig_antenna_i = 1;
700 active_chains = (1 << max_average_sig_antenna_i);
703 if (average_sig[2] >= max_average_sig) {
704 max_average_sig = average_sig[2];
705 max_average_sig_antenna_i = 2;
706 active_chains = (1 << max_average_sig_antenna_i);
709 IWL_DEBUG_CALIB("average_sig: a %d b %d c %d\n",
710 average_sig[0], average_sig[1], average_sig[2]);
711 IWL_DEBUG_CALIB("max_average_sig = %d, antenna %d\n",
712 max_average_sig, max_average_sig_antenna_i);
714 /* Compare signal strengths for all 3 receivers. */
715 for (i = 0; i < NUM_RX_CHAINS; i++) {
716 if (i != max_average_sig_antenna_i) {
717 s32 rssi_delta = (max_average_sig - average_sig[i]);
719 /* If signal is very weak, compared with
720 * strongest, mark it as disconnected. */
721 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
722 data->disconn_array[i] = 1;
724 active_chains |= (1 << i);
725 IWL_DEBUG_CALIB("i = %d rssiDelta = %d "
726 "disconn_array[i] = %d\n",
727 i, rssi_delta, data->disconn_array[i]);
732 for (i = 0; i < NUM_RX_CHAINS; i++) {
733 /* loops on all the bits of
734 * priv->hw_setting.valid_tx_ant */
735 u8 ant_msk = (1 << i);
736 if (!(priv->hw_params.valid_tx_ant & ant_msk))
740 if (data->disconn_array[i] == 0)
741 /* there is a Tx antenna connected */
743 if (num_tx_chains == priv->hw_params.tx_chains_num &&
744 data->disconn_array[i]) {
745 /* This is the last TX antenna and is also
746 * disconnected connect it anyway */
747 data->disconn_array[i] = 0;
748 active_chains |= ant_msk;
749 IWL_DEBUG_CALIB("All Tx chains are disconnected W/A - "
750 "declare %d as connected\n", i);
755 IWL_DEBUG_CALIB("active_chains (bitwise) = 0x%x\n",
758 /* Save for use within RXON, TX, SCAN commands, etc. */
759 /*priv->valid_antenna = active_chains;*/
760 /*FIXME: should be reflected in RX chains in RXON */
762 /* Analyze noise for rx balance */
763 average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS);
764 average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS);
765 average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS);
767 for (i = 0; i < NUM_RX_CHAINS; i++) {
768 if (!(data->disconn_array[i]) &&
769 (average_noise[i] <= min_average_noise)) {
770 /* This means that chain i is active and has
771 * lower noise values so far: */
772 min_average_noise = average_noise[i];
773 min_average_noise_antenna_i = i;
777 IWL_DEBUG_CALIB("average_noise: a %d b %d c %d\n",
778 average_noise[0], average_noise[1],
781 IWL_DEBUG_CALIB("min_average_noise = %d, antenna %d\n",
782 min_average_noise, min_average_noise_antenna_i);
784 priv->cfg->ops->utils->gain_computation(priv, average_noise,
785 min_average_noise_antenna_i, min_average_noise);
787 EXPORT_SYMBOL(iwl_chain_noise_calibration);