2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <linux/capability.h>
29 #include <asm/param.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include <asm/siginfo.h>
35 * SLAB caches for signal bits.
38 static kmem_cache_t *sigqueue_cachep;
41 * In POSIX a signal is sent either to a specific thread (Linux task)
42 * or to the process as a whole (Linux thread group). How the signal
43 * is sent determines whether it's to one thread or the whole group,
44 * which determines which signal mask(s) are involved in blocking it
45 * from being delivered until later. When the signal is delivered,
46 * either it's caught or ignored by a user handler or it has a default
47 * effect that applies to the whole thread group (POSIX process).
49 * The possible effects an unblocked signal set to SIG_DFL can have are:
50 * ignore - Nothing Happens
51 * terminate - kill the process, i.e. all threads in the group,
52 * similar to exit_group. The group leader (only) reports
53 * WIFSIGNALED status to its parent.
54 * coredump - write a core dump file describing all threads using
55 * the same mm and then kill all those threads
56 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
58 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
59 * Other signals when not blocked and set to SIG_DFL behaves as follows.
60 * The job control signals also have other special effects.
62 * +--------------------+------------------+
63 * | POSIX signal | default action |
64 * +--------------------+------------------+
65 * | SIGHUP | terminate |
66 * | SIGINT | terminate |
67 * | SIGQUIT | coredump |
68 * | SIGILL | coredump |
69 * | SIGTRAP | coredump |
70 * | SIGABRT/SIGIOT | coredump |
71 * | SIGBUS | coredump |
72 * | SIGFPE | coredump |
73 * | SIGKILL | terminate(+) |
74 * | SIGUSR1 | terminate |
75 * | SIGSEGV | coredump |
76 * | SIGUSR2 | terminate |
77 * | SIGPIPE | terminate |
78 * | SIGALRM | terminate |
79 * | SIGTERM | terminate |
80 * | SIGCHLD | ignore |
81 * | SIGCONT | ignore(*) |
82 * | SIGSTOP | stop(*)(+) |
83 * | SIGTSTP | stop(*) |
84 * | SIGTTIN | stop(*) |
85 * | SIGTTOU | stop(*) |
87 * | SIGXCPU | coredump |
88 * | SIGXFSZ | coredump |
89 * | SIGVTALRM | terminate |
90 * | SIGPROF | terminate |
91 * | SIGPOLL/SIGIO | terminate |
92 * | SIGSYS/SIGUNUSED | coredump |
93 * | SIGSTKFLT | terminate |
94 * | SIGWINCH | ignore |
95 * | SIGPWR | terminate |
96 * | SIGRTMIN-SIGRTMAX | terminate |
97 * +--------------------+------------------+
98 * | non-POSIX signal | default action |
99 * +--------------------+------------------+
100 * | SIGEMT | coredump |
101 * +--------------------+------------------+
103 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
104 * (*) Special job control effects:
105 * When SIGCONT is sent, it resumes the process (all threads in the group)
106 * from TASK_STOPPED state and also clears any pending/queued stop signals
107 * (any of those marked with "stop(*)"). This happens regardless of blocking,
108 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
109 * any pending/queued SIGCONT signals; this happens regardless of blocking,
110 * catching, or ignored the stop signal, though (except for SIGSTOP) the
111 * default action of stopping the process may happen later or never.
115 #define M_SIGEMT M(SIGEMT)
120 #if SIGRTMIN > BITS_PER_LONG
121 #define M(sig) (1ULL << ((sig)-1))
123 #define M(sig) (1UL << ((sig)-1))
125 #define T(sig, mask) (M(sig) & (mask))
127 #define SIG_KERNEL_ONLY_MASK (\
128 M(SIGKILL) | M(SIGSTOP) )
130 #define SIG_KERNEL_STOP_MASK (\
131 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
133 #define SIG_KERNEL_COREDUMP_MASK (\
134 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
135 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
136 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
138 #define SIG_KERNEL_IGNORE_MASK (\
139 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
141 #define sig_kernel_only(sig) \
142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
143 #define sig_kernel_coredump(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
145 #define sig_kernel_ignore(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
147 #define sig_kernel_stop(sig) \
148 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
150 #define sig_user_defined(t, signr) \
151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154 #define sig_fatal(t, signr) \
155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158 static int sig_ignored(struct task_struct *t, int sig)
160 void __user * handler;
163 * Tracers always want to know about signals..
165 if (t->ptrace & PT_PTRACED)
169 * Blocked signals are never ignored, since the
170 * signal handler may change by the time it is
173 if (sigismember(&t->blocked, sig))
176 /* Is it explicitly or implicitly ignored? */
177 handler = t->sighand->action[sig-1].sa.sa_handler;
178 return handler == SIG_IGN ||
179 (handler == SIG_DFL && sig_kernel_ignore(sig));
183 * Re-calculate pending state from the set of locally pending
184 * signals, globally pending signals, and blocked signals.
186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
191 switch (_NSIG_WORDS) {
193 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
194 ready |= signal->sig[i] &~ blocked->sig[i];
197 case 4: ready = signal->sig[3] &~ blocked->sig[3];
198 ready |= signal->sig[2] &~ blocked->sig[2];
199 ready |= signal->sig[1] &~ blocked->sig[1];
200 ready |= signal->sig[0] &~ blocked->sig[0];
203 case 2: ready = signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
207 case 1: ready = signal->sig[0] &~ blocked->sig[0];
212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214 fastcall void recalc_sigpending_tsk(struct task_struct *t)
216 if (t->signal->group_stop_count > 0 ||
218 PENDING(&t->pending, &t->blocked) ||
219 PENDING(&t->signal->shared_pending, &t->blocked))
220 set_tsk_thread_flag(t, TIF_SIGPENDING);
222 clear_tsk_thread_flag(t, TIF_SIGPENDING);
225 void recalc_sigpending(void)
227 recalc_sigpending_tsk(current);
230 /* Given the mask, find the first available signal that should be serviced. */
233 next_signal(struct sigpending *pending, sigset_t *mask)
235 unsigned long i, *s, *m, x;
238 s = pending->signal.sig;
240 switch (_NSIG_WORDS) {
242 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
243 if ((x = *s &~ *m) != 0) {
244 sig = ffz(~x) + i*_NSIG_BPW + 1;
249 case 2: if ((x = s[0] &~ m[0]) != 0)
251 else if ((x = s[1] &~ m[1]) != 0)
258 case 1: if ((x = *s &~ *m) != 0)
266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
269 struct sigqueue *q = NULL;
271 atomic_inc(&t->user->sigpending);
272 if (override_rlimit ||
273 atomic_read(&t->user->sigpending) <=
274 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
275 q = kmem_cache_alloc(sigqueue_cachep, flags);
276 if (unlikely(q == NULL)) {
277 atomic_dec(&t->user->sigpending);
279 INIT_LIST_HEAD(&q->list);
281 q->user = get_uid(t->user);
286 static void __sigqueue_free(struct sigqueue *q)
288 if (q->flags & SIGQUEUE_PREALLOC)
290 atomic_dec(&q->user->sigpending);
292 kmem_cache_free(sigqueue_cachep, q);
295 static void flush_sigqueue(struct sigpending *queue)
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
308 * Flush all pending signals for a task.
312 flush_signals(struct task_struct *t)
316 spin_lock_irqsave(&t->sighand->siglock, flags);
317 clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 flush_sigqueue(&t->pending);
319 flush_sigqueue(&t->signal->shared_pending);
320 spin_unlock_irqrestore(&t->sighand->siglock, flags);
324 * This function expects the tasklist_lock write-locked.
326 void __exit_sighand(struct task_struct *tsk)
328 struct sighand_struct * sighand = tsk->sighand;
330 /* Ok, we're done with the signal handlers */
332 if (atomic_dec_and_test(&sighand->count))
333 kmem_cache_free(sighand_cachep, sighand);
336 void exit_sighand(struct task_struct *tsk)
338 write_lock_irq(&tasklist_lock);
340 if (tsk->sighand != NULL) {
341 struct sighand_struct *sighand = rcu_dereference(tsk->sighand);
342 spin_lock(&sighand->siglock);
344 spin_unlock(&sighand->siglock);
347 write_unlock_irq(&tasklist_lock);
351 * This function expects the tasklist_lock write-locked.
353 void __exit_signal(struct task_struct *tsk)
355 struct signal_struct * sig = tsk->signal;
356 struct sighand_struct * sighand;
360 if (!atomic_read(&sig->count))
363 sighand = rcu_dereference(tsk->sighand);
364 spin_lock(&sighand->siglock);
365 posix_cpu_timers_exit(tsk);
366 if (atomic_dec_and_test(&sig->count)) {
367 posix_cpu_timers_exit_group(tsk);
370 spin_unlock(&sighand->siglock);
371 flush_sigqueue(&sig->shared_pending);
374 * If there is any task waiting for the group exit
377 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
378 wake_up_process(sig->group_exit_task);
379 sig->group_exit_task = NULL;
381 if (tsk == sig->curr_target)
382 sig->curr_target = next_thread(tsk);
385 * Accumulate here the counters for all threads but the
386 * group leader as they die, so they can be added into
387 * the process-wide totals when those are taken.
388 * The group leader stays around as a zombie as long
389 * as there are other threads. When it gets reaped,
390 * the exit.c code will add its counts into these totals.
391 * We won't ever get here for the group leader, since it
392 * will have been the last reference on the signal_struct.
394 sig->utime = cputime_add(sig->utime, tsk->utime);
395 sig->stime = cputime_add(sig->stime, tsk->stime);
396 sig->min_flt += tsk->min_flt;
397 sig->maj_flt += tsk->maj_flt;
398 sig->nvcsw += tsk->nvcsw;
399 sig->nivcsw += tsk->nivcsw;
400 sig->sched_time += tsk->sched_time;
402 spin_unlock(&sighand->siglock);
403 sig = NULL; /* Marker for below. */
406 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
407 flush_sigqueue(&tsk->pending);
410 * We are cleaning up the signal_struct here.
412 exit_thread_group_keys(sig);
413 kmem_cache_free(signal_cachep, sig);
417 void exit_signal(struct task_struct *tsk)
419 atomic_dec(&tsk->signal->live);
421 write_lock_irq(&tasklist_lock);
423 write_unlock_irq(&tasklist_lock);
427 * Flush all handlers for a task.
431 flush_signal_handlers(struct task_struct *t, int force_default)
434 struct k_sigaction *ka = &t->sighand->action[0];
435 for (i = _NSIG ; i != 0 ; i--) {
436 if (force_default || ka->sa.sa_handler != SIG_IGN)
437 ka->sa.sa_handler = SIG_DFL;
439 sigemptyset(&ka->sa.sa_mask);
445 /* Notify the system that a driver wants to block all signals for this
446 * process, and wants to be notified if any signals at all were to be
447 * sent/acted upon. If the notifier routine returns non-zero, then the
448 * signal will be acted upon after all. If the notifier routine returns 0,
449 * then then signal will be blocked. Only one block per process is
450 * allowed. priv is a pointer to private data that the notifier routine
451 * can use to determine if the signal should be blocked or not. */
454 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
458 spin_lock_irqsave(¤t->sighand->siglock, flags);
459 current->notifier_mask = mask;
460 current->notifier_data = priv;
461 current->notifier = notifier;
462 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
465 /* Notify the system that blocking has ended. */
468 unblock_all_signals(void)
472 spin_lock_irqsave(¤t->sighand->siglock, flags);
473 current->notifier = NULL;
474 current->notifier_data = NULL;
476 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
479 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
481 struct sigqueue *q, *first = NULL;
482 int still_pending = 0;
484 if (unlikely(!sigismember(&list->signal, sig)))
488 * Collect the siginfo appropriate to this signal. Check if
489 * there is another siginfo for the same signal.
491 list_for_each_entry(q, &list->list, list) {
492 if (q->info.si_signo == sig) {
501 list_del_init(&first->list);
502 copy_siginfo(info, &first->info);
503 __sigqueue_free(first);
505 sigdelset(&list->signal, sig);
508 /* Ok, it wasn't in the queue. This must be
509 a fast-pathed signal or we must have been
510 out of queue space. So zero out the info.
512 sigdelset(&list->signal, sig);
513 info->si_signo = sig;
522 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
527 sig = next_signal(pending, mask);
529 if (current->notifier) {
530 if (sigismember(current->notifier_mask, sig)) {
531 if (!(current->notifier)(current->notifier_data)) {
532 clear_thread_flag(TIF_SIGPENDING);
538 if (!collect_signal(sig, pending, info))
548 * Dequeue a signal and return the element to the caller, which is
549 * expected to free it.
551 * All callers have to hold the siglock.
553 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
555 int signr = __dequeue_signal(&tsk->pending, mask, info);
557 signr = __dequeue_signal(&tsk->signal->shared_pending,
559 if (signr && unlikely(sig_kernel_stop(signr))) {
561 * Set a marker that we have dequeued a stop signal. Our
562 * caller might release the siglock and then the pending
563 * stop signal it is about to process is no longer in the
564 * pending bitmasks, but must still be cleared by a SIGCONT
565 * (and overruled by a SIGKILL). So those cases clear this
566 * shared flag after we've set it. Note that this flag may
567 * remain set after the signal we return is ignored or
568 * handled. That doesn't matter because its only purpose
569 * is to alert stop-signal processing code when another
570 * processor has come along and cleared the flag.
572 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
573 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
576 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
577 info->si_sys_private){
579 * Release the siglock to ensure proper locking order
580 * of timer locks outside of siglocks. Note, we leave
581 * irqs disabled here, since the posix-timers code is
582 * about to disable them again anyway.
584 spin_unlock(&tsk->sighand->siglock);
585 do_schedule_next_timer(info);
586 spin_lock(&tsk->sighand->siglock);
592 * Tell a process that it has a new active signal..
594 * NOTE! we rely on the previous spin_lock to
595 * lock interrupts for us! We can only be called with
596 * "siglock" held, and the local interrupt must
597 * have been disabled when that got acquired!
599 * No need to set need_resched since signal event passing
600 * goes through ->blocked
602 void signal_wake_up(struct task_struct *t, int resume)
606 set_tsk_thread_flag(t, TIF_SIGPENDING);
609 * For SIGKILL, we want to wake it up in the stopped/traced case.
610 * We don't check t->state here because there is a race with it
611 * executing another processor and just now entering stopped state.
612 * By using wake_up_state, we ensure the process will wake up and
613 * handle its death signal.
615 mask = TASK_INTERRUPTIBLE;
617 mask |= TASK_STOPPED | TASK_TRACED;
618 if (!wake_up_state(t, mask))
623 * Remove signals in mask from the pending set and queue.
624 * Returns 1 if any signals were found.
626 * All callers must be holding the siglock.
628 * This version takes a sigset mask and looks at all signals,
629 * not just those in the first mask word.
631 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
633 struct sigqueue *q, *n;
636 sigandsets(&m, mask, &s->signal);
637 if (sigisemptyset(&m))
640 signandsets(&s->signal, &s->signal, mask);
641 list_for_each_entry_safe(q, n, &s->list, list) {
642 if (sigismember(mask, q->info.si_signo)) {
643 list_del_init(&q->list);
650 * Remove signals in mask from the pending set and queue.
651 * Returns 1 if any signals were found.
653 * All callers must be holding the siglock.
655 static int rm_from_queue(unsigned long mask, struct sigpending *s)
657 struct sigqueue *q, *n;
659 if (!sigtestsetmask(&s->signal, mask))
662 sigdelsetmask(&s->signal, mask);
663 list_for_each_entry_safe(q, n, &s->list, list) {
664 if (q->info.si_signo < SIGRTMIN &&
665 (mask & sigmask(q->info.si_signo))) {
666 list_del_init(&q->list);
674 * Bad permissions for sending the signal
676 static int check_kill_permission(int sig, struct siginfo *info,
677 struct task_struct *t)
680 if (!valid_signal(sig))
683 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
684 && ((sig != SIGCONT) ||
685 (current->signal->session != t->signal->session))
686 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
687 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
688 && !capable(CAP_KILL))
691 error = security_task_kill(t, info, sig);
693 audit_signal_info(sig, t); /* Let audit system see the signal */
698 static void do_notify_parent_cldstop(struct task_struct *tsk,
703 * Handle magic process-wide effects of stop/continue signals.
704 * Unlike the signal actions, these happen immediately at signal-generation
705 * time regardless of blocking, ignoring, or handling. This does the
706 * actual continuing for SIGCONT, but not the actual stopping for stop
707 * signals. The process stop is done as a signal action for SIG_DFL.
709 static void handle_stop_signal(int sig, struct task_struct *p)
711 struct task_struct *t;
713 if (p->signal->flags & SIGNAL_GROUP_EXIT)
715 * The process is in the middle of dying already.
719 if (sig_kernel_stop(sig)) {
721 * This is a stop signal. Remove SIGCONT from all queues.
723 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
726 rm_from_queue(sigmask(SIGCONT), &t->pending);
729 } else if (sig == SIGCONT) {
731 * Remove all stop signals from all queues,
732 * and wake all threads.
734 if (unlikely(p->signal->group_stop_count > 0)) {
736 * There was a group stop in progress. We'll
737 * pretend it finished before we got here. We are
738 * obliged to report it to the parent: if the
739 * SIGSTOP happened "after" this SIGCONT, then it
740 * would have cleared this pending SIGCONT. If it
741 * happened "before" this SIGCONT, then the parent
742 * got the SIGCHLD about the stop finishing before
743 * the continue happened. We do the notification
744 * now, and it's as if the stop had finished and
745 * the SIGCHLD was pending on entry to this kill.
747 p->signal->group_stop_count = 0;
748 p->signal->flags = SIGNAL_STOP_CONTINUED;
749 spin_unlock(&p->sighand->siglock);
750 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
751 spin_lock(&p->sighand->siglock);
753 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
757 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
760 * If there is a handler for SIGCONT, we must make
761 * sure that no thread returns to user mode before
762 * we post the signal, in case it was the only
763 * thread eligible to run the signal handler--then
764 * it must not do anything between resuming and
765 * running the handler. With the TIF_SIGPENDING
766 * flag set, the thread will pause and acquire the
767 * siglock that we hold now and until we've queued
768 * the pending signal.
770 * Wake up the stopped thread _after_ setting
773 state = TASK_STOPPED;
774 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
775 set_tsk_thread_flag(t, TIF_SIGPENDING);
776 state |= TASK_INTERRUPTIBLE;
778 wake_up_state(t, state);
783 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
785 * We were in fact stopped, and are now continued.
786 * Notify the parent with CLD_CONTINUED.
788 p->signal->flags = SIGNAL_STOP_CONTINUED;
789 p->signal->group_exit_code = 0;
790 spin_unlock(&p->sighand->siglock);
791 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
792 spin_lock(&p->sighand->siglock);
795 * We are not stopped, but there could be a stop
796 * signal in the middle of being processed after
797 * being removed from the queue. Clear that too.
799 p->signal->flags = 0;
801 } else if (sig == SIGKILL) {
803 * Make sure that any pending stop signal already dequeued
804 * is undone by the wakeup for SIGKILL.
806 p->signal->flags = 0;
810 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
811 struct sigpending *signals)
813 struct sigqueue * q = NULL;
817 * fast-pathed signals for kernel-internal things like SIGSTOP
820 if (info == SEND_SIG_FORCED)
823 /* Real-time signals must be queued if sent by sigqueue, or
824 some other real-time mechanism. It is implementation
825 defined whether kill() does so. We attempt to do so, on
826 the principle of least surprise, but since kill is not
827 allowed to fail with EAGAIN when low on memory we just
828 make sure at least one signal gets delivered and don't
829 pass on the info struct. */
831 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
832 (is_si_special(info) ||
833 info->si_code >= 0)));
835 list_add_tail(&q->list, &signals->list);
836 switch ((unsigned long) info) {
837 case (unsigned long) SEND_SIG_NOINFO:
838 q->info.si_signo = sig;
839 q->info.si_errno = 0;
840 q->info.si_code = SI_USER;
841 q->info.si_pid = current->pid;
842 q->info.si_uid = current->uid;
844 case (unsigned long) SEND_SIG_PRIV:
845 q->info.si_signo = sig;
846 q->info.si_errno = 0;
847 q->info.si_code = SI_KERNEL;
852 copy_siginfo(&q->info, info);
855 } else if (!is_si_special(info)) {
856 if (sig >= SIGRTMIN && info->si_code != SI_USER)
858 * Queue overflow, abort. We may abort if the signal was rt
859 * and sent by user using something other than kill().
865 sigaddset(&signals->signal, sig);
869 #define LEGACY_QUEUE(sigptr, sig) \
870 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
874 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
878 if (!irqs_disabled())
880 assert_spin_locked(&t->sighand->siglock);
882 /* Short-circuit ignored signals. */
883 if (sig_ignored(t, sig))
886 /* Support queueing exactly one non-rt signal, so that we
887 can get more detailed information about the cause of
889 if (LEGACY_QUEUE(&t->pending, sig))
892 ret = send_signal(sig, info, t, &t->pending);
893 if (!ret && !sigismember(&t->blocked, sig))
894 signal_wake_up(t, sig == SIGKILL);
900 * Force a signal that the process can't ignore: if necessary
901 * we unblock the signal and change any SIG_IGN to SIG_DFL.
905 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
907 unsigned long int flags;
910 spin_lock_irqsave(&t->sighand->siglock, flags);
911 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
912 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
914 if (sigismember(&t->blocked, sig)) {
915 sigdelset(&t->blocked, sig);
917 recalc_sigpending_tsk(t);
918 ret = specific_send_sig_info(sig, info, t);
919 spin_unlock_irqrestore(&t->sighand->siglock, flags);
925 force_sig_specific(int sig, struct task_struct *t)
927 force_sig_info(sig, SEND_SIG_FORCED, t);
931 * Test if P wants to take SIG. After we've checked all threads with this,
932 * it's equivalent to finding no threads not blocking SIG. Any threads not
933 * blocking SIG were ruled out because they are not running and already
934 * have pending signals. Such threads will dequeue from the shared queue
935 * as soon as they're available, so putting the signal on the shared queue
936 * will be equivalent to sending it to one such thread.
938 static inline int wants_signal(int sig, struct task_struct *p)
940 if (sigismember(&p->blocked, sig))
942 if (p->flags & PF_EXITING)
946 if (p->state & (TASK_STOPPED | TASK_TRACED))
948 return task_curr(p) || !signal_pending(p);
952 __group_complete_signal(int sig, struct task_struct *p)
954 struct task_struct *t;
957 * Now find a thread we can wake up to take the signal off the queue.
959 * If the main thread wants the signal, it gets first crack.
960 * Probably the least surprising to the average bear.
962 if (wants_signal(sig, p))
964 else if (thread_group_empty(p))
966 * There is just one thread and it does not need to be woken.
967 * It will dequeue unblocked signals before it runs again.
972 * Otherwise try to find a suitable thread.
974 t = p->signal->curr_target;
976 /* restart balancing at this thread */
977 t = p->signal->curr_target = p;
978 BUG_ON(t->tgid != p->tgid);
980 while (!wants_signal(sig, t)) {
982 if (t == p->signal->curr_target)
984 * No thread needs to be woken.
985 * Any eligible threads will see
986 * the signal in the queue soon.
990 p->signal->curr_target = t;
994 * Found a killable thread. If the signal will be fatal,
995 * then start taking the whole group down immediately.
997 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
998 !sigismember(&t->real_blocked, sig) &&
999 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1001 * This signal will be fatal to the whole group.
1003 if (!sig_kernel_coredump(sig)) {
1005 * Start a group exit and wake everybody up.
1006 * This way we don't have other threads
1007 * running and doing things after a slower
1008 * thread has the fatal signal pending.
1010 p->signal->flags = SIGNAL_GROUP_EXIT;
1011 p->signal->group_exit_code = sig;
1012 p->signal->group_stop_count = 0;
1015 sigaddset(&t->pending.signal, SIGKILL);
1016 signal_wake_up(t, 1);
1023 * There will be a core dump. We make all threads other
1024 * than the chosen one go into a group stop so that nothing
1025 * happens until it gets scheduled, takes the signal off
1026 * the shared queue, and does the core dump. This is a
1027 * little more complicated than strictly necessary, but it
1028 * keeps the signal state that winds up in the core dump
1029 * unchanged from the death state, e.g. which thread had
1030 * the core-dump signal unblocked.
1032 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1033 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1034 p->signal->group_stop_count = 0;
1035 p->signal->group_exit_task = t;
1038 p->signal->group_stop_count++;
1039 signal_wake_up(t, 0);
1042 wake_up_process(p->signal->group_exit_task);
1047 * The signal is already in the shared-pending queue.
1048 * Tell the chosen thread to wake up and dequeue it.
1050 signal_wake_up(t, sig == SIGKILL);
1055 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1059 assert_spin_locked(&p->sighand->siglock);
1060 handle_stop_signal(sig, p);
1062 /* Short-circuit ignored signals. */
1063 if (sig_ignored(p, sig))
1066 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1067 /* This is a non-RT signal and we already have one queued. */
1071 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1072 * We always use the shared queue for process-wide signals,
1073 * to avoid several races.
1075 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1079 __group_complete_signal(sig, p);
1084 * Nuke all other threads in the group.
1086 void zap_other_threads(struct task_struct *p)
1088 struct task_struct *t;
1090 p->signal->flags = SIGNAL_GROUP_EXIT;
1091 p->signal->group_stop_count = 0;
1093 if (thread_group_empty(p))
1096 for (t = next_thread(p); t != p; t = next_thread(t)) {
1098 * Don't bother with already dead threads
1104 * We don't want to notify the parent, since we are
1105 * killed as part of a thread group due to another
1106 * thread doing an execve() or similar. So set the
1107 * exit signal to -1 to allow immediate reaping of
1108 * the process. But don't detach the thread group
1111 if (t != p->group_leader)
1112 t->exit_signal = -1;
1114 /* SIGKILL will be handled before any pending SIGSTOP */
1115 sigaddset(&t->pending.signal, SIGKILL);
1116 signal_wake_up(t, 1);
1121 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1123 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1125 struct sighand_struct *sighand;
1128 sighand = rcu_dereference(tsk->sighand);
1129 if (unlikely(sighand == NULL))
1132 spin_lock_irqsave(&sighand->siglock, *flags);
1133 if (likely(sighand == tsk->sighand))
1135 spin_unlock_irqrestore(&sighand->siglock, *flags);
1141 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1143 unsigned long flags;
1146 ret = check_kill_permission(sig, info, p);
1150 if (lock_task_sighand(p, &flags)) {
1151 ret = __group_send_sig_info(sig, info, p);
1152 unlock_task_sighand(p, &flags);
1160 * kill_pg_info() sends a signal to a process group: this is what the tty
1161 * control characters do (^C, ^Z etc)
1164 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1166 struct task_struct *p = NULL;
1167 int retval, success;
1174 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1175 int err = group_send_sig_info(sig, info, p);
1178 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1179 return success ? 0 : retval;
1183 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1187 read_lock(&tasklist_lock);
1188 retval = __kill_pg_info(sig, info, pgrp);
1189 read_unlock(&tasklist_lock);
1195 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1198 int acquired_tasklist_lock = 0;
1199 struct task_struct *p;
1202 if (unlikely(sig_kernel_stop(sig) || sig == SIGCONT)) {
1203 read_lock(&tasklist_lock);
1204 acquired_tasklist_lock = 1;
1206 p = find_task_by_pid(pid);
1209 error = group_send_sig_info(sig, info, p);
1210 if (unlikely(acquired_tasklist_lock))
1211 read_unlock(&tasklist_lock);
1216 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1217 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1218 uid_t uid, uid_t euid)
1221 struct task_struct *p;
1223 if (!valid_signal(sig))
1226 read_lock(&tasklist_lock);
1227 p = find_task_by_pid(pid);
1232 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1233 && (euid != p->suid) && (euid != p->uid)
1234 && (uid != p->suid) && (uid != p->uid)) {
1238 if (sig && p->sighand) {
1239 unsigned long flags;
1240 spin_lock_irqsave(&p->sighand->siglock, flags);
1241 ret = __group_send_sig_info(sig, info, p);
1242 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1245 read_unlock(&tasklist_lock);
1248 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1251 * kill_something_info() interprets pid in interesting ways just like kill(2).
1253 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1254 * is probably wrong. Should make it like BSD or SYSV.
1257 static int kill_something_info(int sig, struct siginfo *info, int pid)
1260 return kill_pg_info(sig, info, process_group(current));
1261 } else if (pid == -1) {
1262 int retval = 0, count = 0;
1263 struct task_struct * p;
1265 read_lock(&tasklist_lock);
1266 for_each_process(p) {
1267 if (p->pid > 1 && p->tgid != current->tgid) {
1268 int err = group_send_sig_info(sig, info, p);
1274 read_unlock(&tasklist_lock);
1275 return count ? retval : -ESRCH;
1276 } else if (pid < 0) {
1277 return kill_pg_info(sig, info, -pid);
1279 return kill_proc_info(sig, info, pid);
1284 * These are for backward compatibility with the rest of the kernel source.
1288 * These two are the most common entry points. They send a signal
1289 * just to the specific thread.
1292 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1295 unsigned long flags;
1298 * Make sure legacy kernel users don't send in bad values
1299 * (normal paths check this in check_kill_permission).
1301 if (!valid_signal(sig))
1305 * We need the tasklist lock even for the specific
1306 * thread case (when we don't need to follow the group
1307 * lists) in order to avoid races with "p->sighand"
1308 * going away or changing from under us.
1310 read_lock(&tasklist_lock);
1311 spin_lock_irqsave(&p->sighand->siglock, flags);
1312 ret = specific_send_sig_info(sig, info, p);
1313 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1314 read_unlock(&tasklist_lock);
1318 #define __si_special(priv) \
1319 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1322 send_sig(int sig, struct task_struct *p, int priv)
1324 return send_sig_info(sig, __si_special(priv), p);
1328 * This is the entry point for "process-wide" signals.
1329 * They will go to an appropriate thread in the thread group.
1332 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1335 read_lock(&tasklist_lock);
1336 ret = group_send_sig_info(sig, info, p);
1337 read_unlock(&tasklist_lock);
1342 force_sig(int sig, struct task_struct *p)
1344 force_sig_info(sig, SEND_SIG_PRIV, p);
1348 * When things go south during signal handling, we
1349 * will force a SIGSEGV. And if the signal that caused
1350 * the problem was already a SIGSEGV, we'll want to
1351 * make sure we don't even try to deliver the signal..
1354 force_sigsegv(int sig, struct task_struct *p)
1356 if (sig == SIGSEGV) {
1357 unsigned long flags;
1358 spin_lock_irqsave(&p->sighand->siglock, flags);
1359 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1360 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1362 force_sig(SIGSEGV, p);
1367 kill_pg(pid_t pgrp, int sig, int priv)
1369 return kill_pg_info(sig, __si_special(priv), pgrp);
1373 kill_proc(pid_t pid, int sig, int priv)
1375 return kill_proc_info(sig, __si_special(priv), pid);
1379 * These functions support sending signals using preallocated sigqueue
1380 * structures. This is needed "because realtime applications cannot
1381 * afford to lose notifications of asynchronous events, like timer
1382 * expirations or I/O completions". In the case of Posix Timers
1383 * we allocate the sigqueue structure from the timer_create. If this
1384 * allocation fails we are able to report the failure to the application
1385 * with an EAGAIN error.
1388 struct sigqueue *sigqueue_alloc(void)
1392 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1393 q->flags |= SIGQUEUE_PREALLOC;
1397 void sigqueue_free(struct sigqueue *q)
1399 unsigned long flags;
1400 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1402 * If the signal is still pending remove it from the
1405 if (unlikely(!list_empty(&q->list))) {
1406 spinlock_t *lock = ¤t->sighand->siglock;
1407 read_lock(&tasklist_lock);
1408 spin_lock_irqsave(lock, flags);
1409 if (!list_empty(&q->list))
1410 list_del_init(&q->list);
1411 spin_unlock_irqrestore(lock, flags);
1412 read_unlock(&tasklist_lock);
1414 q->flags &= ~SIGQUEUE_PREALLOC;
1419 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1421 unsigned long flags;
1423 struct sighand_struct *sh;
1425 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1428 * The rcu based delayed sighand destroy makes it possible to
1429 * run this without tasklist lock held. The task struct itself
1430 * cannot go away as create_timer did get_task_struct().
1432 * We return -1, when the task is marked exiting, so
1433 * posix_timer_event can redirect it to the group leader
1437 if (unlikely(p->flags & PF_EXITING)) {
1443 sh = rcu_dereference(p->sighand);
1445 spin_lock_irqsave(&sh->siglock, flags);
1446 if (p->sighand != sh) {
1447 /* We raced with exec() in a multithreaded process... */
1448 spin_unlock_irqrestore(&sh->siglock, flags);
1453 * We do the check here again to handle the following scenario:
1458 * interrupt exit code running
1460 * lock sighand->siglock
1461 * unlock sighand->siglock
1463 * add(tsk->pending) flush_sigqueue(tsk->pending)
1467 if (unlikely(p->flags & PF_EXITING)) {
1472 if (unlikely(!list_empty(&q->list))) {
1474 * If an SI_TIMER entry is already queue just increment
1475 * the overrun count.
1477 if (q->info.si_code != SI_TIMER)
1479 q->info.si_overrun++;
1482 /* Short-circuit ignored signals. */
1483 if (sig_ignored(p, sig)) {
1488 list_add_tail(&q->list, &p->pending.list);
1489 sigaddset(&p->pending.signal, sig);
1490 if (!sigismember(&p->blocked, sig))
1491 signal_wake_up(p, sig == SIGKILL);
1494 spin_unlock_irqrestore(&sh->siglock, flags);
1502 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1504 unsigned long flags;
1507 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1509 read_lock(&tasklist_lock);
1510 /* Since it_lock is held, p->sighand cannot be NULL. */
1511 spin_lock_irqsave(&p->sighand->siglock, flags);
1512 handle_stop_signal(sig, p);
1514 /* Short-circuit ignored signals. */
1515 if (sig_ignored(p, sig)) {
1520 if (unlikely(!list_empty(&q->list))) {
1522 * If an SI_TIMER entry is already queue just increment
1523 * the overrun count. Other uses should not try to
1524 * send the signal multiple times.
1526 if (q->info.si_code != SI_TIMER)
1528 q->info.si_overrun++;
1533 * Put this signal on the shared-pending queue.
1534 * We always use the shared queue for process-wide signals,
1535 * to avoid several races.
1537 list_add_tail(&q->list, &p->signal->shared_pending.list);
1538 sigaddset(&p->signal->shared_pending.signal, sig);
1540 __group_complete_signal(sig, p);
1542 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1543 read_unlock(&tasklist_lock);
1548 * Wake up any threads in the parent blocked in wait* syscalls.
1550 static inline void __wake_up_parent(struct task_struct *p,
1551 struct task_struct *parent)
1553 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1557 * Let a parent know about the death of a child.
1558 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1561 void do_notify_parent(struct task_struct *tsk, int sig)
1563 struct siginfo info;
1564 unsigned long flags;
1565 struct sighand_struct *psig;
1569 /* do_notify_parent_cldstop should have been called instead. */
1570 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1572 BUG_ON(!tsk->ptrace &&
1573 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1575 info.si_signo = sig;
1577 info.si_pid = tsk->pid;
1578 info.si_uid = tsk->uid;
1580 /* FIXME: find out whether or not this is supposed to be c*time. */
1581 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1582 tsk->signal->utime));
1583 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1584 tsk->signal->stime));
1586 info.si_status = tsk->exit_code & 0x7f;
1587 if (tsk->exit_code & 0x80)
1588 info.si_code = CLD_DUMPED;
1589 else if (tsk->exit_code & 0x7f)
1590 info.si_code = CLD_KILLED;
1592 info.si_code = CLD_EXITED;
1593 info.si_status = tsk->exit_code >> 8;
1596 psig = tsk->parent->sighand;
1597 spin_lock_irqsave(&psig->siglock, flags);
1598 if (!tsk->ptrace && sig == SIGCHLD &&
1599 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1600 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1602 * We are exiting and our parent doesn't care. POSIX.1
1603 * defines special semantics for setting SIGCHLD to SIG_IGN
1604 * or setting the SA_NOCLDWAIT flag: we should be reaped
1605 * automatically and not left for our parent's wait4 call.
1606 * Rather than having the parent do it as a magic kind of
1607 * signal handler, we just set this to tell do_exit that we
1608 * can be cleaned up without becoming a zombie. Note that
1609 * we still call __wake_up_parent in this case, because a
1610 * blocked sys_wait4 might now return -ECHILD.
1612 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1613 * is implementation-defined: we do (if you don't want
1614 * it, just use SIG_IGN instead).
1616 tsk->exit_signal = -1;
1617 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1620 if (valid_signal(sig) && sig > 0)
1621 __group_send_sig_info(sig, &info, tsk->parent);
1622 __wake_up_parent(tsk, tsk->parent);
1623 spin_unlock_irqrestore(&psig->siglock, flags);
1626 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1628 struct siginfo info;
1629 unsigned long flags;
1630 struct task_struct *parent;
1631 struct sighand_struct *sighand;
1634 parent = tsk->parent;
1636 tsk = tsk->group_leader;
1637 parent = tsk->real_parent;
1640 info.si_signo = SIGCHLD;
1642 info.si_pid = tsk->pid;
1643 info.si_uid = tsk->uid;
1645 /* FIXME: find out whether or not this is supposed to be c*time. */
1646 info.si_utime = cputime_to_jiffies(tsk->utime);
1647 info.si_stime = cputime_to_jiffies(tsk->stime);
1652 info.si_status = SIGCONT;
1655 info.si_status = tsk->signal->group_exit_code & 0x7f;
1658 info.si_status = tsk->exit_code & 0x7f;
1664 sighand = parent->sighand;
1665 spin_lock_irqsave(&sighand->siglock, flags);
1666 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1667 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1668 __group_send_sig_info(SIGCHLD, &info, parent);
1670 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1672 __wake_up_parent(tsk, parent);
1673 spin_unlock_irqrestore(&sighand->siglock, flags);
1677 * This must be called with current->sighand->siglock held.
1679 * This should be the path for all ptrace stops.
1680 * We always set current->last_siginfo while stopped here.
1681 * That makes it a way to test a stopped process for
1682 * being ptrace-stopped vs being job-control-stopped.
1684 * If we actually decide not to stop at all because the tracer is gone,
1685 * we leave nostop_code in current->exit_code.
1687 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1690 * If there is a group stop in progress,
1691 * we must participate in the bookkeeping.
1693 if (current->signal->group_stop_count > 0)
1694 --current->signal->group_stop_count;
1696 current->last_siginfo = info;
1697 current->exit_code = exit_code;
1699 /* Let the debugger run. */
1700 set_current_state(TASK_TRACED);
1701 spin_unlock_irq(¤t->sighand->siglock);
1702 read_lock(&tasklist_lock);
1703 if (likely(current->ptrace & PT_PTRACED) &&
1704 likely(current->parent != current->real_parent ||
1705 !(current->ptrace & PT_ATTACHED)) &&
1706 (likely(current->parent->signal != current->signal) ||
1707 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1708 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1709 read_unlock(&tasklist_lock);
1713 * By the time we got the lock, our tracer went away.
1716 read_unlock(&tasklist_lock);
1717 set_current_state(TASK_RUNNING);
1718 current->exit_code = nostop_code;
1722 * We are back. Now reacquire the siglock before touching
1723 * last_siginfo, so that we are sure to have synchronized with
1724 * any signal-sending on another CPU that wants to examine it.
1726 spin_lock_irq(¤t->sighand->siglock);
1727 current->last_siginfo = NULL;
1730 * Queued signals ignored us while we were stopped for tracing.
1731 * So check for any that we should take before resuming user mode.
1733 recalc_sigpending();
1736 void ptrace_notify(int exit_code)
1740 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1742 memset(&info, 0, sizeof info);
1743 info.si_signo = SIGTRAP;
1744 info.si_code = exit_code;
1745 info.si_pid = current->pid;
1746 info.si_uid = current->uid;
1748 /* Let the debugger run. */
1749 spin_lock_irq(¤t->sighand->siglock);
1750 ptrace_stop(exit_code, 0, &info);
1751 spin_unlock_irq(¤t->sighand->siglock);
1755 finish_stop(int stop_count)
1760 * If there are no other threads in the group, or if there is
1761 * a group stop in progress and we are the last to stop,
1762 * report to the parent. When ptraced, every thread reports itself.
1764 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1766 else if (stop_count == 0)
1771 read_lock(&tasklist_lock);
1772 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1773 read_unlock(&tasklist_lock);
1778 * Now we don't run again until continued.
1780 current->exit_code = 0;
1784 * This performs the stopping for SIGSTOP and other stop signals.
1785 * We have to stop all threads in the thread group.
1786 * Returns nonzero if we've actually stopped and released the siglock.
1787 * Returns zero if we didn't stop and still hold the siglock.
1790 do_signal_stop(int signr)
1792 struct signal_struct *sig = current->signal;
1793 struct sighand_struct *sighand = current->sighand;
1794 int stop_count = -1;
1796 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1799 if (sig->group_stop_count > 0) {
1801 * There is a group stop in progress. We don't need to
1802 * start another one.
1804 signr = sig->group_exit_code;
1805 stop_count = --sig->group_stop_count;
1806 current->exit_code = signr;
1807 set_current_state(TASK_STOPPED);
1808 if (stop_count == 0)
1809 sig->flags = SIGNAL_STOP_STOPPED;
1810 spin_unlock_irq(&sighand->siglock);
1812 else if (thread_group_empty(current)) {
1814 * Lock must be held through transition to stopped state.
1816 current->exit_code = current->signal->group_exit_code = signr;
1817 set_current_state(TASK_STOPPED);
1818 sig->flags = SIGNAL_STOP_STOPPED;
1819 spin_unlock_irq(&sighand->siglock);
1823 * There is no group stop already in progress.
1824 * We must initiate one now, but that requires
1825 * dropping siglock to get both the tasklist lock
1826 * and siglock again in the proper order. Note that
1827 * this allows an intervening SIGCONT to be posted.
1828 * We need to check for that and bail out if necessary.
1830 struct task_struct *t;
1832 spin_unlock_irq(&sighand->siglock);
1834 /* signals can be posted during this window */
1836 read_lock(&tasklist_lock);
1837 spin_lock_irq(&sighand->siglock);
1839 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1841 * Another stop or continue happened while we
1842 * didn't have the lock. We can just swallow this
1843 * signal now. If we raced with a SIGCONT, that
1844 * should have just cleared it now. If we raced
1845 * with another processor delivering a stop signal,
1846 * then the SIGCONT that wakes us up should clear it.
1848 read_unlock(&tasklist_lock);
1852 if (sig->group_stop_count == 0) {
1853 sig->group_exit_code = signr;
1855 for (t = next_thread(current); t != current;
1858 * Setting state to TASK_STOPPED for a group
1859 * stop is always done with the siglock held,
1860 * so this check has no races.
1862 if (!t->exit_state &&
1863 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1865 signal_wake_up(t, 0);
1867 sig->group_stop_count = stop_count;
1870 /* A race with another thread while unlocked. */
1871 signr = sig->group_exit_code;
1872 stop_count = --sig->group_stop_count;
1875 current->exit_code = signr;
1876 set_current_state(TASK_STOPPED);
1877 if (stop_count == 0)
1878 sig->flags = SIGNAL_STOP_STOPPED;
1880 spin_unlock_irq(&sighand->siglock);
1881 read_unlock(&tasklist_lock);
1884 finish_stop(stop_count);
1889 * Do appropriate magic when group_stop_count > 0.
1890 * We return nonzero if we stopped, after releasing the siglock.
1891 * We return zero if we still hold the siglock and should look
1892 * for another signal without checking group_stop_count again.
1894 static int handle_group_stop(void)
1898 if (current->signal->group_exit_task == current) {
1900 * Group stop is so we can do a core dump,
1901 * We are the initiating thread, so get on with it.
1903 current->signal->group_exit_task = NULL;
1907 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1909 * Group stop is so another thread can do a core dump,
1910 * or else we are racing against a death signal.
1911 * Just punt the stop so we can get the next signal.
1916 * There is a group stop in progress. We stop
1917 * without any associated signal being in our queue.
1919 stop_count = --current->signal->group_stop_count;
1920 if (stop_count == 0)
1921 current->signal->flags = SIGNAL_STOP_STOPPED;
1922 current->exit_code = current->signal->group_exit_code;
1923 set_current_state(TASK_STOPPED);
1924 spin_unlock_irq(¤t->sighand->siglock);
1925 finish_stop(stop_count);
1929 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1930 struct pt_regs *regs, void *cookie)
1932 sigset_t *mask = ¤t->blocked;
1938 spin_lock_irq(¤t->sighand->siglock);
1940 struct k_sigaction *ka;
1942 if (unlikely(current->signal->group_stop_count > 0) &&
1943 handle_group_stop())
1946 signr = dequeue_signal(current, mask, info);
1949 break; /* will return 0 */
1951 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1952 ptrace_signal_deliver(regs, cookie);
1954 /* Let the debugger run. */
1955 ptrace_stop(signr, signr, info);
1957 /* We're back. Did the debugger cancel the sig or group_exit? */
1958 signr = current->exit_code;
1959 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1962 current->exit_code = 0;
1964 /* Update the siginfo structure if the signal has
1965 changed. If the debugger wanted something
1966 specific in the siginfo structure then it should
1967 have updated *info via PTRACE_SETSIGINFO. */
1968 if (signr != info->si_signo) {
1969 info->si_signo = signr;
1971 info->si_code = SI_USER;
1972 info->si_pid = current->parent->pid;
1973 info->si_uid = current->parent->uid;
1976 /* If the (new) signal is now blocked, requeue it. */
1977 if (sigismember(¤t->blocked, signr)) {
1978 specific_send_sig_info(signr, info, current);
1983 ka = ¤t->sighand->action[signr-1];
1984 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1986 if (ka->sa.sa_handler != SIG_DFL) {
1987 /* Run the handler. */
1990 if (ka->sa.sa_flags & SA_ONESHOT)
1991 ka->sa.sa_handler = SIG_DFL;
1993 break; /* will return non-zero "signr" value */
1997 * Now we are doing the default action for this signal.
1999 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2002 /* Init gets no signals it doesn't want. */
2003 if (current == child_reaper)
2006 if (sig_kernel_stop(signr)) {
2008 * The default action is to stop all threads in
2009 * the thread group. The job control signals
2010 * do nothing in an orphaned pgrp, but SIGSTOP
2011 * always works. Note that siglock needs to be
2012 * dropped during the call to is_orphaned_pgrp()
2013 * because of lock ordering with tasklist_lock.
2014 * This allows an intervening SIGCONT to be posted.
2015 * We need to check for that and bail out if necessary.
2017 if (signr != SIGSTOP) {
2018 spin_unlock_irq(¤t->sighand->siglock);
2020 /* signals can be posted during this window */
2022 if (is_orphaned_pgrp(process_group(current)))
2025 spin_lock_irq(¤t->sighand->siglock);
2028 if (likely(do_signal_stop(signr))) {
2029 /* It released the siglock. */
2034 * We didn't actually stop, due to a race
2035 * with SIGCONT or something like that.
2040 spin_unlock_irq(¤t->sighand->siglock);
2043 * Anything else is fatal, maybe with a core dump.
2045 current->flags |= PF_SIGNALED;
2046 if (sig_kernel_coredump(signr)) {
2048 * If it was able to dump core, this kills all
2049 * other threads in the group and synchronizes with
2050 * their demise. If we lost the race with another
2051 * thread getting here, it set group_exit_code
2052 * first and our do_group_exit call below will use
2053 * that value and ignore the one we pass it.
2055 do_coredump((long)signr, signr, regs);
2059 * Death signals, no core dump.
2061 do_group_exit(signr);
2064 spin_unlock_irq(¤t->sighand->siglock);
2068 EXPORT_SYMBOL(recalc_sigpending);
2069 EXPORT_SYMBOL_GPL(dequeue_signal);
2070 EXPORT_SYMBOL(flush_signals);
2071 EXPORT_SYMBOL(force_sig);
2072 EXPORT_SYMBOL(kill_pg);
2073 EXPORT_SYMBOL(kill_proc);
2074 EXPORT_SYMBOL(ptrace_notify);
2075 EXPORT_SYMBOL(send_sig);
2076 EXPORT_SYMBOL(send_sig_info);
2077 EXPORT_SYMBOL(sigprocmask);
2078 EXPORT_SYMBOL(block_all_signals);
2079 EXPORT_SYMBOL(unblock_all_signals);
2083 * System call entry points.
2086 asmlinkage long sys_restart_syscall(void)
2088 struct restart_block *restart = ¤t_thread_info()->restart_block;
2089 return restart->fn(restart);
2092 long do_no_restart_syscall(struct restart_block *param)
2098 * We don't need to get the kernel lock - this is all local to this
2099 * particular thread.. (and that's good, because this is _heavily_
2100 * used by various programs)
2104 * This is also useful for kernel threads that want to temporarily
2105 * (or permanently) block certain signals.
2107 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2108 * interface happily blocks "unblockable" signals like SIGKILL
2111 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2115 spin_lock_irq(¤t->sighand->siglock);
2117 *oldset = current->blocked;
2122 sigorsets(¤t->blocked, ¤t->blocked, set);
2125 signandsets(¤t->blocked, ¤t->blocked, set);
2128 current->blocked = *set;
2133 recalc_sigpending();
2134 spin_unlock_irq(¤t->sighand->siglock);
2140 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2142 int error = -EINVAL;
2143 sigset_t old_set, new_set;
2145 /* XXX: Don't preclude handling different sized sigset_t's. */
2146 if (sigsetsize != sizeof(sigset_t))
2151 if (copy_from_user(&new_set, set, sizeof(*set)))
2153 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2155 error = sigprocmask(how, &new_set, &old_set);
2161 spin_lock_irq(¤t->sighand->siglock);
2162 old_set = current->blocked;
2163 spin_unlock_irq(¤t->sighand->siglock);
2167 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2175 long do_sigpending(void __user *set, unsigned long sigsetsize)
2177 long error = -EINVAL;
2180 if (sigsetsize > sizeof(sigset_t))
2183 spin_lock_irq(¤t->sighand->siglock);
2184 sigorsets(&pending, ¤t->pending.signal,
2185 ¤t->signal->shared_pending.signal);
2186 spin_unlock_irq(¤t->sighand->siglock);
2188 /* Outside the lock because only this thread touches it. */
2189 sigandsets(&pending, ¤t->blocked, &pending);
2192 if (!copy_to_user(set, &pending, sigsetsize))
2200 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2202 return do_sigpending(set, sigsetsize);
2205 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2207 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2211 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2213 if (from->si_code < 0)
2214 return __copy_to_user(to, from, sizeof(siginfo_t))
2217 * If you change siginfo_t structure, please be sure
2218 * this code is fixed accordingly.
2219 * It should never copy any pad contained in the structure
2220 * to avoid security leaks, but must copy the generic
2221 * 3 ints plus the relevant union member.
2223 err = __put_user(from->si_signo, &to->si_signo);
2224 err |= __put_user(from->si_errno, &to->si_errno);
2225 err |= __put_user((short)from->si_code, &to->si_code);
2226 switch (from->si_code & __SI_MASK) {
2228 err |= __put_user(from->si_pid, &to->si_pid);
2229 err |= __put_user(from->si_uid, &to->si_uid);
2232 err |= __put_user(from->si_tid, &to->si_tid);
2233 err |= __put_user(from->si_overrun, &to->si_overrun);
2234 err |= __put_user(from->si_ptr, &to->si_ptr);
2237 err |= __put_user(from->si_band, &to->si_band);
2238 err |= __put_user(from->si_fd, &to->si_fd);
2241 err |= __put_user(from->si_addr, &to->si_addr);
2242 #ifdef __ARCH_SI_TRAPNO
2243 err |= __put_user(from->si_trapno, &to->si_trapno);
2247 err |= __put_user(from->si_pid, &to->si_pid);
2248 err |= __put_user(from->si_uid, &to->si_uid);
2249 err |= __put_user(from->si_status, &to->si_status);
2250 err |= __put_user(from->si_utime, &to->si_utime);
2251 err |= __put_user(from->si_stime, &to->si_stime);
2253 case __SI_RT: /* This is not generated by the kernel as of now. */
2254 case __SI_MESGQ: /* But this is */
2255 err |= __put_user(from->si_pid, &to->si_pid);
2256 err |= __put_user(from->si_uid, &to->si_uid);
2257 err |= __put_user(from->si_ptr, &to->si_ptr);
2259 default: /* this is just in case for now ... */
2260 err |= __put_user(from->si_pid, &to->si_pid);
2261 err |= __put_user(from->si_uid, &to->si_uid);
2270 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2271 siginfo_t __user *uinfo,
2272 const struct timespec __user *uts,
2281 /* XXX: Don't preclude handling different sized sigset_t's. */
2282 if (sigsetsize != sizeof(sigset_t))
2285 if (copy_from_user(&these, uthese, sizeof(these)))
2289 * Invert the set of allowed signals to get those we
2292 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2296 if (copy_from_user(&ts, uts, sizeof(ts)))
2298 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2303 spin_lock_irq(¤t->sighand->siglock);
2304 sig = dequeue_signal(current, &these, &info);
2306 timeout = MAX_SCHEDULE_TIMEOUT;
2308 timeout = (timespec_to_jiffies(&ts)
2309 + (ts.tv_sec || ts.tv_nsec));
2312 /* None ready -- temporarily unblock those we're
2313 * interested while we are sleeping in so that we'll
2314 * be awakened when they arrive. */
2315 current->real_blocked = current->blocked;
2316 sigandsets(¤t->blocked, ¤t->blocked, &these);
2317 recalc_sigpending();
2318 spin_unlock_irq(¤t->sighand->siglock);
2320 timeout = schedule_timeout_interruptible(timeout);
2322 spin_lock_irq(¤t->sighand->siglock);
2323 sig = dequeue_signal(current, &these, &info);
2324 current->blocked = current->real_blocked;
2325 siginitset(¤t->real_blocked, 0);
2326 recalc_sigpending();
2329 spin_unlock_irq(¤t->sighand->siglock);
2334 if (copy_siginfo_to_user(uinfo, &info))
2347 sys_kill(int pid, int sig)
2349 struct siginfo info;
2351 info.si_signo = sig;
2353 info.si_code = SI_USER;
2354 info.si_pid = current->tgid;
2355 info.si_uid = current->uid;
2357 return kill_something_info(sig, &info, pid);
2360 static int do_tkill(int tgid, int pid, int sig)
2363 struct siginfo info;
2364 struct task_struct *p;
2367 info.si_signo = sig;
2369 info.si_code = SI_TKILL;
2370 info.si_pid = current->tgid;
2371 info.si_uid = current->uid;
2373 read_lock(&tasklist_lock);
2374 p = find_task_by_pid(pid);
2375 if (p && (tgid <= 0 || p->tgid == tgid)) {
2376 error = check_kill_permission(sig, &info, p);
2378 * The null signal is a permissions and process existence
2379 * probe. No signal is actually delivered.
2381 if (!error && sig && p->sighand) {
2382 spin_lock_irq(&p->sighand->siglock);
2383 handle_stop_signal(sig, p);
2384 error = specific_send_sig_info(sig, &info, p);
2385 spin_unlock_irq(&p->sighand->siglock);
2388 read_unlock(&tasklist_lock);
2394 * sys_tgkill - send signal to one specific thread
2395 * @tgid: the thread group ID of the thread
2396 * @pid: the PID of the thread
2397 * @sig: signal to be sent
2399 * This syscall also checks the tgid and returns -ESRCH even if the PID
2400 * exists but it's not belonging to the target process anymore. This
2401 * method solves the problem of threads exiting and PIDs getting reused.
2403 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2405 /* This is only valid for single tasks */
2406 if (pid <= 0 || tgid <= 0)
2409 return do_tkill(tgid, pid, sig);
2413 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2416 sys_tkill(int pid, int sig)
2418 /* This is only valid for single tasks */
2422 return do_tkill(0, pid, sig);
2426 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2430 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2433 /* Not even root can pretend to send signals from the kernel.
2434 Nor can they impersonate a kill(), which adds source info. */
2435 if (info.si_code >= 0)
2437 info.si_signo = sig;
2439 /* POSIX.1b doesn't mention process groups. */
2440 return kill_proc_info(sig, &info, pid);
2444 do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2446 struct k_sigaction *k;
2449 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2452 k = ¤t->sighand->action[sig-1];
2454 spin_lock_irq(¤t->sighand->siglock);
2455 if (signal_pending(current)) {
2457 * If there might be a fatal signal pending on multiple
2458 * threads, make sure we take it before changing the action.
2460 spin_unlock_irq(¤t->sighand->siglock);
2461 return -ERESTARTNOINTR;
2468 sigdelsetmask(&act->sa.sa_mask,
2469 sigmask(SIGKILL) | sigmask(SIGSTOP));
2472 * "Setting a signal action to SIG_IGN for a signal that is
2473 * pending shall cause the pending signal to be discarded,
2474 * whether or not it is blocked."
2476 * "Setting a signal action to SIG_DFL for a signal that is
2477 * pending and whose default action is to ignore the signal
2478 * (for example, SIGCHLD), shall cause the pending signal to
2479 * be discarded, whether or not it is blocked"
2481 if (act->sa.sa_handler == SIG_IGN ||
2482 (act->sa.sa_handler == SIG_DFL &&
2483 sig_kernel_ignore(sig))) {
2485 * This is a fairly rare case, so we only take the
2486 * tasklist_lock once we're sure we'll need it.
2487 * Now we must do this little unlock and relock
2488 * dance to maintain the lock hierarchy.
2490 struct task_struct *t = current;
2491 spin_unlock_irq(&t->sighand->siglock);
2492 read_lock(&tasklist_lock);
2493 spin_lock_irq(&t->sighand->siglock);
2496 sigaddset(&mask, sig);
2497 rm_from_queue_full(&mask, &t->signal->shared_pending);
2499 rm_from_queue_full(&mask, &t->pending);
2500 recalc_sigpending_tsk(t);
2502 } while (t != current);
2503 spin_unlock_irq(¤t->sighand->siglock);
2504 read_unlock(&tasklist_lock);
2511 spin_unlock_irq(¤t->sighand->siglock);
2516 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2522 oss.ss_sp = (void __user *) current->sas_ss_sp;
2523 oss.ss_size = current->sas_ss_size;
2524 oss.ss_flags = sas_ss_flags(sp);
2533 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2534 || __get_user(ss_sp, &uss->ss_sp)
2535 || __get_user(ss_flags, &uss->ss_flags)
2536 || __get_user(ss_size, &uss->ss_size))
2540 if (on_sig_stack(sp))
2546 * Note - this code used to test ss_flags incorrectly
2547 * old code may have been written using ss_flags==0
2548 * to mean ss_flags==SS_ONSTACK (as this was the only
2549 * way that worked) - this fix preserves that older
2552 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2555 if (ss_flags == SS_DISABLE) {
2560 if (ss_size < MINSIGSTKSZ)
2564 current->sas_ss_sp = (unsigned long) ss_sp;
2565 current->sas_ss_size = ss_size;
2570 if (copy_to_user(uoss, &oss, sizeof(oss)))
2579 #ifdef __ARCH_WANT_SYS_SIGPENDING
2582 sys_sigpending(old_sigset_t __user *set)
2584 return do_sigpending(set, sizeof(*set));
2589 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2590 /* Some platforms have their own version with special arguments others
2591 support only sys_rt_sigprocmask. */
2594 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2597 old_sigset_t old_set, new_set;
2601 if (copy_from_user(&new_set, set, sizeof(*set)))
2603 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2605 spin_lock_irq(¤t->sighand->siglock);
2606 old_set = current->blocked.sig[0];
2614 sigaddsetmask(¤t->blocked, new_set);
2617 sigdelsetmask(¤t->blocked, new_set);
2620 current->blocked.sig[0] = new_set;
2624 recalc_sigpending();
2625 spin_unlock_irq(¤t->sighand->siglock);
2631 old_set = current->blocked.sig[0];
2634 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2641 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2643 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2645 sys_rt_sigaction(int sig,
2646 const struct sigaction __user *act,
2647 struct sigaction __user *oact,
2650 struct k_sigaction new_sa, old_sa;
2653 /* XXX: Don't preclude handling different sized sigset_t's. */
2654 if (sigsetsize != sizeof(sigset_t))
2658 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2662 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2665 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2671 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2673 #ifdef __ARCH_WANT_SYS_SGETMASK
2676 * For backwards compatibility. Functionality superseded by sigprocmask.
2682 return current->blocked.sig[0];
2686 sys_ssetmask(int newmask)
2690 spin_lock_irq(¤t->sighand->siglock);
2691 old = current->blocked.sig[0];
2693 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
2695 recalc_sigpending();
2696 spin_unlock_irq(¤t->sighand->siglock);
2700 #endif /* __ARCH_WANT_SGETMASK */
2702 #ifdef __ARCH_WANT_SYS_SIGNAL
2704 * For backwards compatibility. Functionality superseded by sigaction.
2706 asmlinkage unsigned long
2707 sys_signal(int sig, __sighandler_t handler)
2709 struct k_sigaction new_sa, old_sa;
2712 new_sa.sa.sa_handler = handler;
2713 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2714 sigemptyset(&new_sa.sa.sa_mask);
2716 ret = do_sigaction(sig, &new_sa, &old_sa);
2718 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2720 #endif /* __ARCH_WANT_SYS_SIGNAL */
2722 #ifdef __ARCH_WANT_SYS_PAUSE
2727 current->state = TASK_INTERRUPTIBLE;
2729 return -ERESTARTNOHAND;
2734 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2735 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2739 /* XXX: Don't preclude handling different sized sigset_t's. */
2740 if (sigsetsize != sizeof(sigset_t))
2743 if (copy_from_user(&newset, unewset, sizeof(newset)))
2745 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2747 spin_lock_irq(¤t->sighand->siglock);
2748 current->saved_sigmask = current->blocked;
2749 current->blocked = newset;
2750 recalc_sigpending();
2751 spin_unlock_irq(¤t->sighand->siglock);
2753 current->state = TASK_INTERRUPTIBLE;
2755 set_thread_flag(TIF_RESTORE_SIGMASK);
2756 return -ERESTARTNOHAND;
2758 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2760 void __init signals_init(void)
2763 kmem_cache_create("sigqueue",
2764 sizeof(struct sigqueue),
2765 __alignof__(struct sigqueue),
2766 SLAB_PANIC, NULL, NULL);