2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@suse.de>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
38 * Passed to splice_to_pipe
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 struct pipe_buf_operations *ops;/* ops associated with output pipe */
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *info,
55 struct pipe_buffer *buf)
57 struct page *page = buf->page;
58 struct address_space *mapping = page_mapping(page);
62 WARN_ON(!PageUptodate(page));
65 * At least for ext2 with nobh option, we need to wait on writeback
66 * completing on this page, since we'll remove it from the pagecache.
67 * Otherwise truncate wont wait on the page, allowing the disk
68 * blocks to be reused by someone else before we actually wrote our
69 * data to them. fs corruption ensues.
71 wait_on_page_writeback(page);
73 if (PagePrivate(page))
74 try_to_release_page(page, mapping_gfp_mask(mapping));
76 if (!remove_mapping(mapping, page)) {
81 buf->flags |= PIPE_BUF_FLAG_LRU;
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *info,
86 struct pipe_buffer *buf)
88 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 static int page_cache_pipe_buf_pin(struct pipe_inode_info *info,
94 struct pipe_buffer *buf)
96 struct page *page = buf->page;
99 if (!PageUptodate(page)) {
103 * Page got truncated/unhashed. This will cause a 0-byte
104 * splice, if this is the first page.
106 if (!page->mapping) {
112 * Uh oh, read-error from disk.
114 if (!PageUptodate(page)) {
120 * Page is ok afterall, we are done.
131 static struct pipe_buf_operations page_cache_pipe_buf_ops = {
133 .map = generic_pipe_buf_map,
134 .unmap = generic_pipe_buf_unmap,
135 .pin = page_cache_pipe_buf_pin,
136 .release = page_cache_pipe_buf_release,
137 .steal = page_cache_pipe_buf_steal,
138 .get = generic_pipe_buf_get,
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
147 static struct pipe_buf_operations user_page_pipe_buf_ops = {
149 .map = generic_pipe_buf_map,
150 .unmap = generic_pipe_buf_unmap,
151 .pin = generic_pipe_buf_pin,
152 .release = page_cache_pipe_buf_release,
153 .steal = user_page_pipe_buf_steal,
154 .get = generic_pipe_buf_get,
158 * Pipe output worker. This sets up our pipe format with the page cache
159 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
161 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
162 struct splice_pipe_desc *spd)
164 int ret, do_wakeup, page_nr;
171 mutex_lock(&pipe->inode->i_mutex);
174 if (!pipe->readers) {
175 send_sig(SIGPIPE, current, 0);
181 if (pipe->nrbufs < PIPE_BUFFERS) {
182 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
183 struct pipe_buffer *buf = pipe->bufs + newbuf;
185 buf->page = spd->pages[page_nr];
186 buf->offset = spd->partial[page_nr].offset;
187 buf->len = spd->partial[page_nr].len;
196 if (!--spd->nr_pages)
198 if (pipe->nrbufs < PIPE_BUFFERS)
204 if (spd->flags & SPLICE_F_NONBLOCK) {
210 if (signal_pending(current)) {
218 if (waitqueue_active(&pipe->wait))
219 wake_up_interruptible_sync(&pipe->wait);
220 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
224 pipe->waiting_writers++;
226 pipe->waiting_writers--;
230 mutex_unlock(&pipe->inode->i_mutex);
234 if (waitqueue_active(&pipe->wait))
235 wake_up_interruptible(&pipe->wait);
236 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 while (page_nr < spd->nr_pages)
240 page_cache_release(spd->pages[page_nr++]);
246 __generic_file_splice_read(struct file *in, loff_t *ppos,
247 struct pipe_inode_info *pipe, size_t len,
250 struct address_space *mapping = in->f_mapping;
251 unsigned int loff, nr_pages;
252 struct page *pages[PIPE_BUFFERS];
253 struct partial_page partial[PIPE_BUFFERS];
255 pgoff_t index, end_index;
259 struct splice_pipe_desc spd = {
263 .ops = &page_cache_pipe_buf_ops,
266 index = *ppos >> PAGE_CACHE_SHIFT;
267 loff = *ppos & ~PAGE_CACHE_MASK;
268 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
270 if (nr_pages > PIPE_BUFFERS)
271 nr_pages = PIPE_BUFFERS;
274 * Initiate read-ahead on this page range. however, don't call into
275 * read-ahead if this is a non-zero offset (we are likely doing small
276 * chunk splice and the page is already there) for a single page.
278 if (!loff || nr_pages > 1)
279 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
282 * Now fill in the holes:
288 * Lookup the (hopefully) full range of pages we need.
290 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
293 * If find_get_pages_contig() returned fewer pages than we needed,
296 index += spd.nr_pages;
297 while (spd.nr_pages < nr_pages) {
299 * Page could be there, find_get_pages_contig() breaks on
302 page = find_get_page(mapping, index);
305 * Make sure the read-ahead engine is notified
306 * about this failure.
308 handle_ra_miss(mapping, &in->f_ra, index);
311 * page didn't exist, allocate one.
313 page = page_cache_alloc_cold(mapping);
317 error = add_to_page_cache_lru(page, mapping, index,
318 mapping_gfp_mask(mapping));
319 if (unlikely(error)) {
320 page_cache_release(page);
324 * add_to_page_cache() locks the page, unlock it
325 * to avoid convoluting the logic below even more.
330 pages[spd.nr_pages++] = page;
335 * Now loop over the map and see if we need to start IO on any
336 * pages, fill in the partial map, etc.
338 index = *ppos >> PAGE_CACHE_SHIFT;
339 nr_pages = spd.nr_pages;
341 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
342 unsigned int this_len;
348 * this_len is the max we'll use from this page
350 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
351 page = pages[page_nr];
354 * If the page isn't uptodate, we may need to start io on it
356 if (!PageUptodate(page)) {
358 * If in nonblock mode then dont block on waiting
359 * for an in-flight io page
361 if (flags & SPLICE_F_NONBLOCK)
367 * page was truncated, stop here. if this isn't the
368 * first page, we'll just complete what we already
371 if (!page->mapping) {
376 * page was already under io and is now done, great
378 if (PageUptodate(page)) {
384 * need to read in the page
386 error = mapping->a_ops->readpage(in, page);
387 if (unlikely(error)) {
389 * We really should re-lookup the page here,
390 * but it complicates things a lot. Instead
391 * lets just do what we already stored, and
392 * we'll get it the next time we are called.
394 if (error == AOP_TRUNCATED_PAGE)
401 * i_size must be checked after ->readpage().
403 isize = i_size_read(mapping->host);
404 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
405 if (unlikely(!isize || index > end_index))
409 * if this is the last page, see if we need to shrink
410 * the length and stop
412 if (end_index == index) {
413 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
414 if (total_len + loff > isize)
417 * force quit after adding this page
420 this_len = min(this_len, loff);
425 partial[page_nr].offset = loff;
426 partial[page_nr].len = this_len;
428 total_len += this_len;
435 * Release any pages at the end, if we quit early. 'i' is how far
436 * we got, 'nr_pages' is how many pages are in the map.
438 while (page_nr < nr_pages)
439 page_cache_release(pages[page_nr++]);
442 return splice_to_pipe(pipe, &spd);
448 * generic_file_splice_read - splice data from file to a pipe
449 * @in: file to splice from
450 * @pipe: pipe to splice to
451 * @len: number of bytes to splice
452 * @flags: splice modifier flags
454 * Will read pages from given file and fill them into a pipe.
456 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
457 struct pipe_inode_info *pipe, size_t len,
467 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
474 if (flags & SPLICE_F_NONBLOCK) {
491 EXPORT_SYMBOL(generic_file_splice_read);
494 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
495 * using sendpage(). Return the number of bytes sent.
497 static int pipe_to_sendpage(struct pipe_inode_info *info,
498 struct pipe_buffer *buf, struct splice_desc *sd)
500 struct file *file = sd->file;
501 loff_t pos = sd->pos;
504 ret = buf->ops->pin(info, buf);
506 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
508 ret = file->f_op->sendpage(file, buf->page, buf->offset,
509 sd->len, &pos, more);
516 * This is a little more tricky than the file -> pipe splicing. There are
517 * basically three cases:
519 * - Destination page already exists in the address space and there
520 * are users of it. For that case we have no other option that
521 * copying the data. Tough luck.
522 * - Destination page already exists in the address space, but there
523 * are no users of it. Make sure it's uptodate, then drop it. Fall
524 * through to last case.
525 * - Destination page does not exist, we can add the pipe page to
526 * the page cache and avoid the copy.
528 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
529 * sd->flags), we attempt to migrate pages from the pipe to the output
530 * file address space page cache. This is possible if no one else has
531 * the pipe page referenced outside of the pipe and page cache. If
532 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
533 * a new page in the output file page cache and fill/dirty that.
535 static int pipe_to_file(struct pipe_inode_info *info, struct pipe_buffer *buf,
536 struct splice_desc *sd)
538 struct file *file = sd->file;
539 struct address_space *mapping = file->f_mapping;
540 gfp_t gfp_mask = mapping_gfp_mask(mapping);
541 unsigned int offset, this_len;
547 * make sure the data in this buffer is uptodate
549 ret = buf->ops->pin(info, buf);
553 index = sd->pos >> PAGE_CACHE_SHIFT;
554 offset = sd->pos & ~PAGE_CACHE_MASK;
557 if (this_len + offset > PAGE_CACHE_SIZE)
558 this_len = PAGE_CACHE_SIZE - offset;
561 * Reuse buf page, if SPLICE_F_MOVE is set and we are doing a full
564 if ((sd->flags & SPLICE_F_MOVE) && this_len == PAGE_CACHE_SIZE) {
566 * If steal succeeds, buf->page is now pruned from the vm
567 * side (LRU and page cache) and we can reuse it. The page
568 * will also be looked on successful return.
570 if (buf->ops->steal(info, buf))
574 if (add_to_page_cache(page, mapping, index, gfp_mask)) {
579 page_cache_get(page);
581 if (!(buf->flags & PIPE_BUF_FLAG_LRU))
585 page = find_lock_page(mapping, index);
588 page = page_cache_alloc_cold(mapping);
593 * This will also lock the page
595 ret = add_to_page_cache_lru(page, mapping, index,
602 * We get here with the page locked. If the page is also
603 * uptodate, we don't need to do more. If it isn't, we
604 * may need to bring it in if we are not going to overwrite
607 if (!PageUptodate(page)) {
608 if (this_len < PAGE_CACHE_SIZE) {
609 ret = mapping->a_ops->readpage(file, page);
615 if (!PageUptodate(page)) {
617 * Page got invalidated, repeat.
619 if (!page->mapping) {
621 page_cache_release(page);
628 SetPageUptodate(page);
632 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
633 if (ret == AOP_TRUNCATED_PAGE) {
634 page_cache_release(page);
639 if (buf->page != page) {
641 * Careful, ->map() uses KM_USER0!
643 char *src = buf->ops->map(info, buf, 1);
644 char *dst = kmap_atomic(page, KM_USER1);
646 memcpy(dst + offset, src + buf->offset, this_len);
647 flush_dcache_page(page);
648 kunmap_atomic(dst, KM_USER1);
649 buf->ops->unmap(info, buf, src);
652 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
655 * Return the number of bytes written and mark page as
656 * accessed, we are now done!
659 mark_page_accessed(page);
660 balance_dirty_pages_ratelimited(mapping);
661 } else if (ret == AOP_TRUNCATED_PAGE) {
662 page_cache_release(page);
666 page_cache_release(page);
673 * Pipe input worker. Most of this logic works like a regular pipe, the
674 * key here is the 'actor' worker passed in that actually moves the data
675 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
677 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
678 loff_t *ppos, size_t len, unsigned int flags,
681 int ret, do_wakeup, err;
682 struct splice_desc sd;
693 mutex_lock(&pipe->inode->i_mutex);
697 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
698 struct pipe_buf_operations *ops = buf->ops;
701 if (sd.len > sd.total_len)
702 sd.len = sd.total_len;
704 err = actor(pipe, buf, &sd);
706 if (!ret && err != -ENODATA)
724 ops->release(pipe, buf);
725 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
739 if (!pipe->waiting_writers) {
744 if (flags & SPLICE_F_NONBLOCK) {
750 if (signal_pending(current)) {
758 if (waitqueue_active(&pipe->wait))
759 wake_up_interruptible_sync(&pipe->wait);
760 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
768 mutex_unlock(&pipe->inode->i_mutex);
772 if (waitqueue_active(&pipe->wait))
773 wake_up_interruptible(&pipe->wait);
774 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
781 * generic_file_splice_write - splice data from a pipe to a file
783 * @out: file to write to
784 * @len: number of bytes to splice
785 * @flags: splice modifier flags
787 * Will either move or copy pages (determined by @flags options) from
788 * the given pipe inode to the given file.
792 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
793 loff_t *ppos, size_t len, unsigned int flags)
795 struct address_space *mapping = out->f_mapping;
798 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
800 struct inode *inode = mapping->host;
805 * If file or inode is SYNC and we actually wrote some data,
808 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
811 mutex_lock(&inode->i_mutex);
812 err = generic_osync_inode(inode, mapping,
813 OSYNC_METADATA|OSYNC_DATA);
814 mutex_unlock(&inode->i_mutex);
824 EXPORT_SYMBOL(generic_file_splice_write);
827 * generic_splice_sendpage - splice data from a pipe to a socket
829 * @out: socket to write to
830 * @len: number of bytes to splice
831 * @flags: splice modifier flags
833 * Will send @len bytes from the pipe to a network socket. No data copying
837 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
838 loff_t *ppos, size_t len, unsigned int flags)
840 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
843 EXPORT_SYMBOL(generic_splice_sendpage);
846 * Attempt to initiate a splice from pipe to file.
848 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
849 loff_t *ppos, size_t len, unsigned int flags)
853 if (unlikely(!out->f_op || !out->f_op->splice_write))
856 if (unlikely(!(out->f_mode & FMODE_WRITE)))
859 ret = rw_verify_area(WRITE, out, ppos, len);
860 if (unlikely(ret < 0))
863 return out->f_op->splice_write(pipe, out, ppos, len, flags);
867 * Attempt to initiate a splice from a file to a pipe.
869 static long do_splice_to(struct file *in, loff_t *ppos,
870 struct pipe_inode_info *pipe, size_t len,
876 if (unlikely(!in->f_op || !in->f_op->splice_read))
879 if (unlikely(!(in->f_mode & FMODE_READ)))
882 ret = rw_verify_area(READ, in, ppos, len);
883 if (unlikely(ret < 0))
886 isize = i_size_read(in->f_mapping->host);
887 if (unlikely(*ppos >= isize))
890 left = isize - *ppos;
891 if (unlikely(left < len))
894 return in->f_op->splice_read(in, ppos, pipe, len, flags);
897 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
898 size_t len, unsigned int flags)
900 struct pipe_inode_info *pipe;
907 * We require the input being a regular file, as we don't want to
908 * randomly drop data for eg socket -> socket splicing. Use the
909 * piped splicing for that!
911 i_mode = in->f_dentry->d_inode->i_mode;
912 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
916 * neither in nor out is a pipe, setup an internal pipe attached to
917 * 'out' and transfer the wanted data from 'in' to 'out' through that
919 pipe = current->splice_pipe;
920 if (unlikely(!pipe)) {
921 pipe = alloc_pipe_info(NULL);
926 * We don't have an immediate reader, but we'll read the stuff
927 * out of the pipe right after the splice_to_pipe(). So set
928 * PIPE_READERS appropriately.
932 current->splice_pipe = pipe;
943 size_t read_len, max_read_len;
946 * Do at most PIPE_BUFFERS pages worth of transfer:
948 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
950 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
951 if (unlikely(ret < 0))
957 * NOTE: nonblocking mode only applies to the input. We
958 * must not do the output in nonblocking mode as then we
959 * could get stuck data in the internal pipe:
961 ret = do_splice_from(pipe, out, &out_off, read_len,
962 flags & ~SPLICE_F_NONBLOCK);
963 if (unlikely(ret < 0))
970 * In nonblocking mode, if we got back a short read then
971 * that was due to either an IO error or due to the
972 * pagecache entry not being there. In the IO error case
973 * the _next_ splice attempt will produce a clean IO error
974 * return value (not a short read), so in both cases it's
975 * correct to break out of the loop here:
977 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
981 pipe->nrbufs = pipe->curbuf = 0;
987 * If we did an incomplete transfer we must release
988 * the pipe buffers in question:
990 for (i = 0; i < PIPE_BUFFERS; i++) {
991 struct pipe_buffer *buf = pipe->bufs + i;
994 buf->ops->release(pipe, buf);
998 pipe->nrbufs = pipe->curbuf = 0;
1001 * If we transferred some data, return the number of bytes:
1009 EXPORT_SYMBOL(do_splice_direct);
1012 * Determine where to splice to/from.
1014 static long do_splice(struct file *in, loff_t __user *off_in,
1015 struct file *out, loff_t __user *off_out,
1016 size_t len, unsigned int flags)
1018 struct pipe_inode_info *pipe;
1019 loff_t offset, *off;
1022 pipe = in->f_dentry->d_inode->i_pipe;
1027 if (out->f_op->llseek == no_llseek)
1029 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1035 ret = do_splice_from(pipe, out, off, len, flags);
1037 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1043 pipe = out->f_dentry->d_inode->i_pipe;
1048 if (in->f_op->llseek == no_llseek)
1050 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1056 ret = do_splice_to(in, off, pipe, len, flags);
1058 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1068 * Map an iov into an array of pages and offset/length tupples. With the
1069 * partial_page structure, we can map several non-contiguous ranges into
1070 * our ones pages[] map instead of splitting that operation into pieces.
1071 * Could easily be exported as a generic helper for other users, in which
1072 * case one would probably want to add a 'max_nr_pages' parameter as well.
1074 static int get_iovec_page_array(const struct iovec __user *iov,
1075 unsigned int nr_vecs, struct page **pages,
1076 struct partial_page *partial)
1078 int buffers = 0, error = 0;
1081 * It's ok to take the mmap_sem for reading, even
1082 * across a "get_user()".
1084 down_read(¤t->mm->mmap_sem);
1087 unsigned long off, npages;
1093 * Get user address base and length for this iovec.
1095 error = get_user(base, &iov->iov_base);
1096 if (unlikely(error))
1098 error = get_user(len, &iov->iov_len);
1099 if (unlikely(error))
1103 * Sanity check this iovec. 0 read succeeds.
1108 if (unlikely(!base))
1112 * Get this base offset and number of pages, then map
1113 * in the user pages.
1115 off = (unsigned long) base & ~PAGE_MASK;
1116 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1117 if (npages > PIPE_BUFFERS - buffers)
1118 npages = PIPE_BUFFERS - buffers;
1120 error = get_user_pages(current, current->mm,
1121 (unsigned long) base, npages, 0, 0,
1122 &pages[buffers], NULL);
1124 if (unlikely(error <= 0))
1128 * Fill this contiguous range into the partial page map.
1130 for (i = 0; i < error; i++) {
1131 const int plen = min_t(size_t, len, PAGE_SIZE) - off;
1133 partial[buffers].offset = off;
1134 partial[buffers].len = plen;
1142 * We didn't complete this iov, stop here since it probably
1143 * means we have to move some of this into a pipe to
1144 * be able to continue.
1150 * Don't continue if we mapped fewer pages than we asked for,
1151 * or if we mapped the max number of pages that we have
1154 if (error < npages || buffers == PIPE_BUFFERS)
1161 up_read(¤t->mm->mmap_sem);
1170 * vmsplice splices a user address range into a pipe. It can be thought of
1171 * as splice-from-memory, where the regular splice is splice-from-file (or
1172 * to file). In both cases the output is a pipe, naturally.
1174 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1175 * not the other way around. Splicing from user memory is a simple operation
1176 * that can be supported without any funky alignment restrictions or nasty
1177 * vm tricks. We simply map in the user memory and fill them into a pipe.
1178 * The reverse isn't quite as easy, though. There are two possible solutions
1181 * - memcpy() the data internally, at which point we might as well just
1182 * do a regular read() on the buffer anyway.
1183 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1184 * has restriction limitations on both ends of the pipe).
1186 * Alas, it isn't here.
1189 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1190 unsigned long nr_segs, unsigned int flags)
1192 struct pipe_inode_info *pipe = file->f_dentry->d_inode->i_pipe;
1193 struct page *pages[PIPE_BUFFERS];
1194 struct partial_page partial[PIPE_BUFFERS];
1195 struct splice_pipe_desc spd = {
1199 .ops = &user_page_pipe_buf_ops,
1202 if (unlikely(!pipe))
1204 if (unlikely(nr_segs > UIO_MAXIOV))
1206 else if (unlikely(!nr_segs))
1209 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial);
1210 if (spd.nr_pages <= 0)
1211 return spd.nr_pages;
1213 return splice_to_pipe(pipe, &spd);
1216 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1217 unsigned long nr_segs, unsigned int flags)
1224 file = fget_light(fd, &fput);
1226 if (file->f_mode & FMODE_WRITE)
1227 error = do_vmsplice(file, iov, nr_segs, flags);
1229 fput_light(file, fput);
1235 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1236 int fd_out, loff_t __user *off_out,
1237 size_t len, unsigned int flags)
1240 struct file *in, *out;
1241 int fput_in, fput_out;
1247 in = fget_light(fd_in, &fput_in);
1249 if (in->f_mode & FMODE_READ) {
1250 out = fget_light(fd_out, &fput_out);
1252 if (out->f_mode & FMODE_WRITE)
1253 error = do_splice(in, off_in,
1256 fput_light(out, fput_out);
1260 fput_light(in, fput_in);
1267 * Link contents of ipipe to opipe.
1269 static int link_pipe(struct pipe_inode_info *ipipe,
1270 struct pipe_inode_info *opipe,
1271 size_t len, unsigned int flags)
1273 struct pipe_buffer *ibuf, *obuf;
1274 int ret, do_wakeup, i, ipipe_first;
1276 ret = do_wakeup = ipipe_first = 0;
1279 * Potential ABBA deadlock, work around it by ordering lock
1280 * grabbing by inode address. Otherwise two different processes
1281 * could deadlock (one doing tee from A -> B, the other from B -> A).
1283 if (ipipe->inode < opipe->inode) {
1285 mutex_lock(&ipipe->inode->i_mutex);
1286 mutex_lock(&opipe->inode->i_mutex);
1288 mutex_lock(&opipe->inode->i_mutex);
1289 mutex_lock(&ipipe->inode->i_mutex);
1293 if (!opipe->readers) {
1294 send_sig(SIGPIPE, current, 0);
1299 if (ipipe->nrbufs - i) {
1300 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1303 * If we have room, fill this buffer
1305 if (opipe->nrbufs < PIPE_BUFFERS) {
1306 int nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1309 * Get a reference to this pipe buffer,
1310 * so we can copy the contents over.
1312 ibuf->ops->get(ipipe, ibuf);
1314 obuf = opipe->bufs + nbuf;
1317 if (obuf->len > len)
1327 if (opipe->nrbufs < PIPE_BUFFERS)
1332 * We have input available, but no output room.
1333 * If we already copied data, return that. If we
1334 * need to drop the opipe lock, it must be ordered
1335 * last to avoid deadlocks.
1337 if ((flags & SPLICE_F_NONBLOCK) || !ipipe_first) {
1342 if (signal_pending(current)) {
1349 if (waitqueue_active(&opipe->wait))
1350 wake_up_interruptible(&opipe->wait);
1351 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1355 opipe->waiting_writers++;
1357 opipe->waiting_writers--;
1362 * No input buffers, do the usual checks for available
1363 * writers and blocking and wait if necessary
1365 if (!ipipe->writers)
1367 if (!ipipe->waiting_writers) {
1372 * pipe_wait() drops the ipipe mutex. To avoid deadlocks
1373 * with another process, we can only safely do that if
1374 * the ipipe lock is ordered last.
1376 if ((flags & SPLICE_F_NONBLOCK) || ipipe_first) {
1381 if (signal_pending(current)) {
1387 if (waitqueue_active(&ipipe->wait))
1388 wake_up_interruptible_sync(&ipipe->wait);
1389 kill_fasync(&ipipe->fasync_writers, SIGIO, POLL_OUT);
1394 mutex_unlock(&ipipe->inode->i_mutex);
1395 mutex_unlock(&opipe->inode->i_mutex);
1399 if (waitqueue_active(&opipe->wait))
1400 wake_up_interruptible(&opipe->wait);
1401 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1408 * This is a tee(1) implementation that works on pipes. It doesn't copy
1409 * any data, it simply references the 'in' pages on the 'out' pipe.
1410 * The 'flags' used are the SPLICE_F_* variants, currently the only
1411 * applicable one is SPLICE_F_NONBLOCK.
1413 static long do_tee(struct file *in, struct file *out, size_t len,
1416 struct pipe_inode_info *ipipe = in->f_dentry->d_inode->i_pipe;
1417 struct pipe_inode_info *opipe = out->f_dentry->d_inode->i_pipe;
1420 * Link ipipe to the two output pipes, consuming as we go along.
1423 return link_pipe(ipipe, opipe, len, flags);
1428 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1437 in = fget_light(fdin, &fput_in);
1439 if (in->f_mode & FMODE_READ) {
1441 struct file *out = fget_light(fdout, &fput_out);
1444 if (out->f_mode & FMODE_WRITE)
1445 error = do_tee(in, out, len, flags);
1446 fput_light(out, fput_out);
1449 fput_light(in, fput_in);