4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * proc base directory handling functions
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
50 #include <asm/uaccess.h>
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/init.h>
57 #include <linux/capability.h>
58 #include <linux/file.h>
59 #include <linux/string.h>
60 #include <linux/seq_file.h>
61 #include <linux/namei.h>
62 #include <linux/mnt_namespace.h>
64 #include <linux/rcupdate.h>
65 #include <linux/kallsyms.h>
66 #include <linux/resource.h>
67 #include <linux/module.h>
68 #include <linux/mount.h>
69 #include <linux/security.h>
70 #include <linux/ptrace.h>
71 #include <linux/cgroup.h>
72 #include <linux/cpuset.h>
73 #include <linux/audit.h>
74 #include <linux/poll.h>
75 #include <linux/nsproxy.h>
76 #include <linux/oom.h>
77 #include <linux/elf.h>
78 #include <linux/pid_namespace.h>
82 * Implementing inode permission operations in /proc is almost
83 * certainly an error. Permission checks need to happen during
84 * each system call not at open time. The reason is that most of
85 * what we wish to check for permissions in /proc varies at runtime.
87 * The classic example of a problem is opening file descriptors
88 * in /proc for a task before it execs a suid executable.
95 const struct inode_operations *iop;
96 const struct file_operations *fop;
100 #define NOD(NAME, MODE, IOP, FOP, OP) { \
102 .len = sizeof(NAME) - 1, \
109 #define DIR(NAME, MODE, OTYPE) \
110 NOD(NAME, (S_IFDIR|(MODE)), \
111 &proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \
113 #define LNK(NAME, OTYPE) \
114 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
115 &proc_pid_link_inode_operations, NULL, \
116 { .proc_get_link = &proc_##OTYPE##_link } )
117 #define REG(NAME, MODE, OTYPE) \
118 NOD(NAME, (S_IFREG|(MODE)), NULL, \
119 &proc_##OTYPE##_operations, {})
120 #define INF(NAME, MODE, OTYPE) \
121 NOD(NAME, (S_IFREG|(MODE)), \
122 NULL, &proc_info_file_operations, \
123 { .proc_read = &proc_##OTYPE } )
124 #define ONE(NAME, MODE, OTYPE) \
125 NOD(NAME, (S_IFREG|(MODE)), \
126 NULL, &proc_single_file_operations, \
127 { .proc_show = &proc_##OTYPE } )
130 EXPORT_SYMBOL(maps_protect);
132 static struct fs_struct *get_fs_struct(struct task_struct *task)
134 struct fs_struct *fs;
138 atomic_inc(&fs->count);
143 static int get_nr_threads(struct task_struct *tsk)
145 /* Must be called with the rcu_read_lock held */
149 if (lock_task_sighand(tsk, &flags)) {
150 count = atomic_read(&tsk->signal->count);
151 unlock_task_sighand(tsk, &flags);
156 static int proc_cwd_link(struct inode *inode, struct path *path)
158 struct task_struct *task = get_proc_task(inode);
159 struct fs_struct *fs = NULL;
160 int result = -ENOENT;
163 fs = get_fs_struct(task);
164 put_task_struct(task);
167 read_lock(&fs->lock);
170 read_unlock(&fs->lock);
177 static int proc_root_link(struct inode *inode, struct path *path)
179 struct task_struct *task = get_proc_task(inode);
180 struct fs_struct *fs = NULL;
181 int result = -ENOENT;
184 fs = get_fs_struct(task);
185 put_task_struct(task);
188 read_lock(&fs->lock);
191 read_unlock(&fs->lock);
198 #define MAY_PTRACE(task) \
199 (task == current || \
200 (task->parent == current && \
201 (task->ptrace & PT_PTRACED) && \
202 (task_is_stopped_or_traced(task)) && \
203 security_ptrace(current,task) == 0))
205 struct mm_struct *mm_for_maps(struct task_struct *task)
207 struct mm_struct *mm = get_task_mm(task);
210 down_read(&mm->mmap_sem);
214 if (task->mm != current->mm && __ptrace_may_attach(task) < 0)
220 up_read(&mm->mmap_sem);
225 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
229 struct mm_struct *mm = get_task_mm(task);
233 goto out_mm; /* Shh! No looking before we're done */
235 len = mm->arg_end - mm->arg_start;
240 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
242 // If the nul at the end of args has been overwritten, then
243 // assume application is using setproctitle(3).
244 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
245 len = strnlen(buffer, res);
249 len = mm->env_end - mm->env_start;
250 if (len > PAGE_SIZE - res)
251 len = PAGE_SIZE - res;
252 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
253 res = strnlen(buffer, res);
262 static int proc_pid_auxv(struct task_struct *task, char *buffer)
265 struct mm_struct *mm = get_task_mm(task);
267 unsigned int nwords = 0;
270 while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
271 res = nwords * sizeof(mm->saved_auxv[0]);
274 memcpy(buffer, mm->saved_auxv, res);
281 #ifdef CONFIG_KALLSYMS
283 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
284 * Returns the resolved symbol. If that fails, simply return the address.
286 static int proc_pid_wchan(struct task_struct *task, char *buffer)
289 char symname[KSYM_NAME_LEN];
291 wchan = get_wchan(task);
293 if (lookup_symbol_name(wchan, symname) < 0)
294 return sprintf(buffer, "%lu", wchan);
296 return sprintf(buffer, "%s", symname);
298 #endif /* CONFIG_KALLSYMS */
300 #ifdef CONFIG_SCHEDSTATS
302 * Provides /proc/PID/schedstat
304 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
306 return sprintf(buffer, "%llu %llu %lu\n",
307 task->sched_info.cpu_time,
308 task->sched_info.run_delay,
309 task->sched_info.pcount);
313 #ifdef CONFIG_LATENCYTOP
314 static int lstats_show_proc(struct seq_file *m, void *v)
317 struct task_struct *task = m->private;
318 seq_puts(m, "Latency Top version : v0.1\n");
320 for (i = 0; i < 32; i++) {
321 if (task->latency_record[i].backtrace[0]) {
323 seq_printf(m, "%i %li %li ",
324 task->latency_record[i].count,
325 task->latency_record[i].time,
326 task->latency_record[i].max);
327 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
328 char sym[KSYM_NAME_LEN];
330 if (!task->latency_record[i].backtrace[q])
332 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
334 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
335 c = strchr(sym, '+');
338 seq_printf(m, "%s ", sym);
347 static int lstats_open(struct inode *inode, struct file *file)
351 struct task_struct *task = get_proc_task(inode);
353 ret = single_open(file, lstats_show_proc, NULL);
355 m = file->private_data;
361 static ssize_t lstats_write(struct file *file, const char __user *buf,
362 size_t count, loff_t *offs)
365 struct task_struct *task;
367 m = file->private_data;
369 clear_all_latency_tracing(task);
374 static const struct file_operations proc_lstats_operations = {
377 .write = lstats_write,
379 .release = single_release,
384 /* The badness from the OOM killer */
385 unsigned long badness(struct task_struct *p, unsigned long uptime);
386 static int proc_oom_score(struct task_struct *task, char *buffer)
388 unsigned long points;
389 struct timespec uptime;
391 do_posix_clock_monotonic_gettime(&uptime);
392 read_lock(&tasklist_lock);
393 points = badness(task, uptime.tv_sec);
394 read_unlock(&tasklist_lock);
395 return sprintf(buffer, "%lu\n", points);
403 static const struct limit_names lnames[RLIM_NLIMITS] = {
404 [RLIMIT_CPU] = {"Max cpu time", "ms"},
405 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
406 [RLIMIT_DATA] = {"Max data size", "bytes"},
407 [RLIMIT_STACK] = {"Max stack size", "bytes"},
408 [RLIMIT_CORE] = {"Max core file size", "bytes"},
409 [RLIMIT_RSS] = {"Max resident set", "bytes"},
410 [RLIMIT_NPROC] = {"Max processes", "processes"},
411 [RLIMIT_NOFILE] = {"Max open files", "files"},
412 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
413 [RLIMIT_AS] = {"Max address space", "bytes"},
414 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
415 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
416 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
417 [RLIMIT_NICE] = {"Max nice priority", NULL},
418 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
421 /* Display limits for a process */
422 static int proc_pid_limits(struct task_struct *task, char *buffer)
427 char *bufptr = buffer;
429 struct rlimit rlim[RLIM_NLIMITS];
432 if (!lock_task_sighand(task,&flags)) {
436 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
437 unlock_task_sighand(task, &flags);
441 * print the file header
443 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
444 "Limit", "Soft Limit", "Hard Limit", "Units");
446 for (i = 0; i < RLIM_NLIMITS; i++) {
447 if (rlim[i].rlim_cur == RLIM_INFINITY)
448 count += sprintf(&bufptr[count], "%-25s %-20s ",
449 lnames[i].name, "unlimited");
451 count += sprintf(&bufptr[count], "%-25s %-20lu ",
452 lnames[i].name, rlim[i].rlim_cur);
454 if (rlim[i].rlim_max == RLIM_INFINITY)
455 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
457 count += sprintf(&bufptr[count], "%-20lu ",
461 count += sprintf(&bufptr[count], "%-10s\n",
464 count += sprintf(&bufptr[count], "\n");
470 /************************************************************************/
471 /* Here the fs part begins */
472 /************************************************************************/
474 /* permission checks */
475 static int proc_fd_access_allowed(struct inode *inode)
477 struct task_struct *task;
479 /* Allow access to a task's file descriptors if it is us or we
480 * may use ptrace attach to the process and find out that
483 task = get_proc_task(inode);
485 allowed = ptrace_may_attach(task);
486 put_task_struct(task);
491 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
494 struct inode *inode = dentry->d_inode;
496 if (attr->ia_valid & ATTR_MODE)
499 error = inode_change_ok(inode, attr);
501 error = inode_setattr(inode, attr);
505 static const struct inode_operations proc_def_inode_operations = {
506 .setattr = proc_setattr,
509 extern const struct seq_operations mounts_op;
515 static int mounts_open(struct inode *inode, struct file *file)
517 struct task_struct *task = get_proc_task(inode);
519 struct mnt_namespace *ns = NULL;
520 struct proc_mounts *p;
525 nsp = task_nsproxy(task);
533 put_task_struct(task);
538 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
540 file->private_data = &p->m;
541 ret = seq_open(file, &mounts_op);
544 p->event = ns->event;
554 static int mounts_release(struct inode *inode, struct file *file)
556 struct seq_file *m = file->private_data;
557 struct mnt_namespace *ns = m->private;
559 return seq_release(inode, file);
562 static unsigned mounts_poll(struct file *file, poll_table *wait)
564 struct proc_mounts *p = file->private_data;
565 struct mnt_namespace *ns = p->m.private;
568 poll_wait(file, &ns->poll, wait);
570 spin_lock(&vfsmount_lock);
571 if (p->event != ns->event) {
572 p->event = ns->event;
575 spin_unlock(&vfsmount_lock);
580 static const struct file_operations proc_mounts_operations = {
584 .release = mounts_release,
588 extern const struct seq_operations mountstats_op;
589 static int mountstats_open(struct inode *inode, struct file *file)
591 int ret = seq_open(file, &mountstats_op);
594 struct seq_file *m = file->private_data;
596 struct mnt_namespace *mnt_ns = NULL;
597 struct task_struct *task = get_proc_task(inode);
601 nsp = task_nsproxy(task);
603 mnt_ns = nsp->mnt_ns;
609 put_task_struct(task);
615 seq_release(inode, file);
622 static const struct file_operations proc_mountstats_operations = {
623 .open = mountstats_open,
626 .release = mounts_release,
629 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
631 static ssize_t proc_info_read(struct file * file, char __user * buf,
632 size_t count, loff_t *ppos)
634 struct inode * inode = file->f_path.dentry->d_inode;
637 struct task_struct *task = get_proc_task(inode);
643 if (count > PROC_BLOCK_SIZE)
644 count = PROC_BLOCK_SIZE;
647 if (!(page = __get_free_page(GFP_TEMPORARY)))
650 length = PROC_I(inode)->op.proc_read(task, (char*)page);
653 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
656 put_task_struct(task);
661 static const struct file_operations proc_info_file_operations = {
662 .read = proc_info_read,
665 static int proc_single_show(struct seq_file *m, void *v)
667 struct inode *inode = m->private;
668 struct pid_namespace *ns;
670 struct task_struct *task;
673 ns = inode->i_sb->s_fs_info;
674 pid = proc_pid(inode);
675 task = get_pid_task(pid, PIDTYPE_PID);
679 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
681 put_task_struct(task);
685 static int proc_single_open(struct inode *inode, struct file *filp)
688 ret = single_open(filp, proc_single_show, NULL);
690 struct seq_file *m = filp->private_data;
697 static const struct file_operations proc_single_file_operations = {
698 .open = proc_single_open,
701 .release = single_release,
704 static int mem_open(struct inode* inode, struct file* file)
706 file->private_data = (void*)((long)current->self_exec_id);
710 static ssize_t mem_read(struct file * file, char __user * buf,
711 size_t count, loff_t *ppos)
713 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
715 unsigned long src = *ppos;
717 struct mm_struct *mm;
722 if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
726 page = (char *)__get_free_page(GFP_TEMPORARY);
732 mm = get_task_mm(task);
738 if (file->private_data != (void*)((long)current->self_exec_id))
744 int this_len, retval;
746 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
747 retval = access_process_vm(task, src, page, this_len, 0);
748 if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) {
754 if (copy_to_user(buf, page, retval)) {
769 free_page((unsigned long) page);
771 put_task_struct(task);
776 #define mem_write NULL
779 /* This is a security hazard */
780 static ssize_t mem_write(struct file * file, const char __user *buf,
781 size_t count, loff_t *ppos)
785 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
786 unsigned long dst = *ppos;
792 if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
796 page = (char *)__get_free_page(GFP_TEMPORARY);
802 int this_len, retval;
804 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
805 if (copy_from_user(page, buf, this_len)) {
809 retval = access_process_vm(task, dst, page, this_len, 1);
821 free_page((unsigned long) page);
823 put_task_struct(task);
829 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
833 file->f_pos = offset;
836 file->f_pos += offset;
841 force_successful_syscall_return();
845 static const struct file_operations proc_mem_operations = {
852 static ssize_t environ_read(struct file *file, char __user *buf,
853 size_t count, loff_t *ppos)
855 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
857 unsigned long src = *ppos;
859 struct mm_struct *mm;
864 if (!ptrace_may_attach(task))
868 page = (char *)__get_free_page(GFP_TEMPORARY);
874 mm = get_task_mm(task);
879 int this_len, retval, max_len;
881 this_len = mm->env_end - (mm->env_start + src);
886 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
887 this_len = (this_len > max_len) ? max_len : this_len;
889 retval = access_process_vm(task, (mm->env_start + src),
897 if (copy_to_user(buf, page, retval)) {
911 free_page((unsigned long) page);
913 put_task_struct(task);
918 static const struct file_operations proc_environ_operations = {
919 .read = environ_read,
922 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
923 size_t count, loff_t *ppos)
925 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
926 char buffer[PROC_NUMBUF];
932 oom_adjust = task->oomkilladj;
933 put_task_struct(task);
935 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
937 return simple_read_from_buffer(buf, count, ppos, buffer, len);
940 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
941 size_t count, loff_t *ppos)
943 struct task_struct *task;
944 char buffer[PROC_NUMBUF], *end;
947 memset(buffer, 0, sizeof(buffer));
948 if (count > sizeof(buffer) - 1)
949 count = sizeof(buffer) - 1;
950 if (copy_from_user(buffer, buf, count))
952 oom_adjust = simple_strtol(buffer, &end, 0);
953 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
954 oom_adjust != OOM_DISABLE)
958 task = get_proc_task(file->f_path.dentry->d_inode);
961 if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
962 put_task_struct(task);
965 task->oomkilladj = oom_adjust;
966 put_task_struct(task);
967 if (end - buffer == 0)
972 static const struct file_operations proc_oom_adjust_operations = {
973 .read = oom_adjust_read,
974 .write = oom_adjust_write,
977 #ifdef CONFIG_AUDITSYSCALL
979 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
980 size_t count, loff_t *ppos)
982 struct inode * inode = file->f_path.dentry->d_inode;
983 struct task_struct *task = get_proc_task(inode);
985 char tmpbuf[TMPBUFLEN];
989 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
990 audit_get_loginuid(task));
991 put_task_struct(task);
992 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
995 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
996 size_t count, loff_t *ppos)
998 struct inode * inode = file->f_path.dentry->d_inode;
1003 if (!capable(CAP_AUDIT_CONTROL))
1006 if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1009 if (count >= PAGE_SIZE)
1010 count = PAGE_SIZE - 1;
1013 /* No partial writes. */
1016 page = (char*)__get_free_page(GFP_TEMPORARY);
1020 if (copy_from_user(page, buf, count))
1024 loginuid = simple_strtoul(page, &tmp, 10);
1030 length = audit_set_loginuid(current, loginuid);
1031 if (likely(length == 0))
1035 free_page((unsigned long) page);
1039 static const struct file_operations proc_loginuid_operations = {
1040 .read = proc_loginuid_read,
1041 .write = proc_loginuid_write,
1045 #ifdef CONFIG_FAULT_INJECTION
1046 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1047 size_t count, loff_t *ppos)
1049 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1050 char buffer[PROC_NUMBUF];
1056 make_it_fail = task->make_it_fail;
1057 put_task_struct(task);
1059 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1061 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1064 static ssize_t proc_fault_inject_write(struct file * file,
1065 const char __user * buf, size_t count, loff_t *ppos)
1067 struct task_struct *task;
1068 char buffer[PROC_NUMBUF], *end;
1071 if (!capable(CAP_SYS_RESOURCE))
1073 memset(buffer, 0, sizeof(buffer));
1074 if (count > sizeof(buffer) - 1)
1075 count = sizeof(buffer) - 1;
1076 if (copy_from_user(buffer, buf, count))
1078 make_it_fail = simple_strtol(buffer, &end, 0);
1081 task = get_proc_task(file->f_dentry->d_inode);
1084 task->make_it_fail = make_it_fail;
1085 put_task_struct(task);
1086 if (end - buffer == 0)
1088 return end - buffer;
1091 static const struct file_operations proc_fault_inject_operations = {
1092 .read = proc_fault_inject_read,
1093 .write = proc_fault_inject_write,
1098 #ifdef CONFIG_SCHED_DEBUG
1100 * Print out various scheduling related per-task fields:
1102 static int sched_show(struct seq_file *m, void *v)
1104 struct inode *inode = m->private;
1105 struct task_struct *p;
1109 p = get_proc_task(inode);
1112 proc_sched_show_task(p, m);
1120 sched_write(struct file *file, const char __user *buf,
1121 size_t count, loff_t *offset)
1123 struct inode *inode = file->f_path.dentry->d_inode;
1124 struct task_struct *p;
1128 p = get_proc_task(inode);
1131 proc_sched_set_task(p);
1138 static int sched_open(struct inode *inode, struct file *filp)
1142 ret = single_open(filp, sched_show, NULL);
1144 struct seq_file *m = filp->private_data;
1151 static const struct file_operations proc_pid_sched_operations = {
1154 .write = sched_write,
1155 .llseek = seq_lseek,
1156 .release = single_release,
1161 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1163 struct inode *inode = dentry->d_inode;
1164 int error = -EACCES;
1166 /* We don't need a base pointer in the /proc filesystem */
1167 path_put(&nd->path);
1169 /* Are we allowed to snoop on the tasks file descriptors? */
1170 if (!proc_fd_access_allowed(inode))
1173 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1174 nd->last_type = LAST_BIND;
1176 return ERR_PTR(error);
1179 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1181 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1188 pathname = d_path(path, tmp, PAGE_SIZE);
1189 len = PTR_ERR(pathname);
1190 if (IS_ERR(pathname))
1192 len = tmp + PAGE_SIZE - 1 - pathname;
1196 if (copy_to_user(buffer, pathname, len))
1199 free_page((unsigned long)tmp);
1203 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1205 int error = -EACCES;
1206 struct inode *inode = dentry->d_inode;
1209 /* Are we allowed to snoop on the tasks file descriptors? */
1210 if (!proc_fd_access_allowed(inode))
1213 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1217 error = do_proc_readlink(&path, buffer, buflen);
1223 static const struct inode_operations proc_pid_link_inode_operations = {
1224 .readlink = proc_pid_readlink,
1225 .follow_link = proc_pid_follow_link,
1226 .setattr = proc_setattr,
1230 /* building an inode */
1232 static int task_dumpable(struct task_struct *task)
1235 struct mm_struct *mm;
1240 dumpable = get_dumpable(mm);
1248 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1250 struct inode * inode;
1251 struct proc_inode *ei;
1253 /* We need a new inode */
1255 inode = new_inode(sb);
1261 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1262 inode->i_op = &proc_def_inode_operations;
1265 * grab the reference to task.
1267 ei->pid = get_task_pid(task, PIDTYPE_PID);
1273 if (task_dumpable(task)) {
1274 inode->i_uid = task->euid;
1275 inode->i_gid = task->egid;
1277 security_task_to_inode(task, inode);
1287 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1289 struct inode *inode = dentry->d_inode;
1290 struct task_struct *task;
1291 generic_fillattr(inode, stat);
1296 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1298 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1299 task_dumpable(task)) {
1300 stat->uid = task->euid;
1301 stat->gid = task->egid;
1311 * Exceptional case: normally we are not allowed to unhash a busy
1312 * directory. In this case, however, we can do it - no aliasing problems
1313 * due to the way we treat inodes.
1315 * Rewrite the inode's ownerships here because the owning task may have
1316 * performed a setuid(), etc.
1318 * Before the /proc/pid/status file was created the only way to read
1319 * the effective uid of a /process was to stat /proc/pid. Reading
1320 * /proc/pid/status is slow enough that procps and other packages
1321 * kept stating /proc/pid. To keep the rules in /proc simple I have
1322 * made this apply to all per process world readable and executable
1325 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1327 struct inode *inode = dentry->d_inode;
1328 struct task_struct *task = get_proc_task(inode);
1330 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1331 task_dumpable(task)) {
1332 inode->i_uid = task->euid;
1333 inode->i_gid = task->egid;
1338 inode->i_mode &= ~(S_ISUID | S_ISGID);
1339 security_task_to_inode(task, inode);
1340 put_task_struct(task);
1347 static int pid_delete_dentry(struct dentry * dentry)
1349 /* Is the task we represent dead?
1350 * If so, then don't put the dentry on the lru list,
1351 * kill it immediately.
1353 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1356 static struct dentry_operations pid_dentry_operations =
1358 .d_revalidate = pid_revalidate,
1359 .d_delete = pid_delete_dentry,
1364 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1365 struct task_struct *, const void *);
1368 * Fill a directory entry.
1370 * If possible create the dcache entry and derive our inode number and
1371 * file type from dcache entry.
1373 * Since all of the proc inode numbers are dynamically generated, the inode
1374 * numbers do not exist until the inode is cache. This means creating the
1375 * the dcache entry in readdir is necessary to keep the inode numbers
1376 * reported by readdir in sync with the inode numbers reported
1379 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1380 char *name, int len,
1381 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1383 struct dentry *child, *dir = filp->f_path.dentry;
1384 struct inode *inode;
1387 unsigned type = DT_UNKNOWN;
1391 qname.hash = full_name_hash(name, len);
1393 child = d_lookup(dir, &qname);
1396 new = d_alloc(dir, &qname);
1398 child = instantiate(dir->d_inode, new, task, ptr);
1405 if (!child || IS_ERR(child) || !child->d_inode)
1406 goto end_instantiate;
1407 inode = child->d_inode;
1410 type = inode->i_mode >> 12;
1415 ino = find_inode_number(dir, &qname);
1418 return filldir(dirent, name, len, filp->f_pos, ino, type);
1421 static unsigned name_to_int(struct dentry *dentry)
1423 const char *name = dentry->d_name.name;
1424 int len = dentry->d_name.len;
1427 if (len > 1 && *name == '0')
1430 unsigned c = *name++ - '0';
1433 if (n >= (~0U-9)/10)
1443 #define PROC_FDINFO_MAX 64
1445 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1447 struct task_struct *task = get_proc_task(inode);
1448 struct files_struct *files = NULL;
1450 int fd = proc_fd(inode);
1453 files = get_files_struct(task);
1454 put_task_struct(task);
1458 * We are not taking a ref to the file structure, so we must
1461 spin_lock(&files->file_lock);
1462 file = fcheck_files(files, fd);
1465 *path = file->f_path;
1466 path_get(&file->f_path);
1469 snprintf(info, PROC_FDINFO_MAX,
1472 (long long) file->f_pos,
1474 spin_unlock(&files->file_lock);
1475 put_files_struct(files);
1478 spin_unlock(&files->file_lock);
1479 put_files_struct(files);
1484 static int proc_fd_link(struct inode *inode, struct path *path)
1486 return proc_fd_info(inode, path, NULL);
1489 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1491 struct inode *inode = dentry->d_inode;
1492 struct task_struct *task = get_proc_task(inode);
1493 int fd = proc_fd(inode);
1494 struct files_struct *files;
1497 files = get_files_struct(task);
1500 if (fcheck_files(files, fd)) {
1502 put_files_struct(files);
1503 if (task_dumpable(task)) {
1504 inode->i_uid = task->euid;
1505 inode->i_gid = task->egid;
1510 inode->i_mode &= ~(S_ISUID | S_ISGID);
1511 security_task_to_inode(task, inode);
1512 put_task_struct(task);
1516 put_files_struct(files);
1518 put_task_struct(task);
1524 static struct dentry_operations tid_fd_dentry_operations =
1526 .d_revalidate = tid_fd_revalidate,
1527 .d_delete = pid_delete_dentry,
1530 static struct dentry *proc_fd_instantiate(struct inode *dir,
1531 struct dentry *dentry, struct task_struct *task, const void *ptr)
1533 unsigned fd = *(const unsigned *)ptr;
1535 struct files_struct *files;
1536 struct inode *inode;
1537 struct proc_inode *ei;
1538 struct dentry *error = ERR_PTR(-ENOENT);
1540 inode = proc_pid_make_inode(dir->i_sb, task);
1545 files = get_files_struct(task);
1548 inode->i_mode = S_IFLNK;
1551 * We are not taking a ref to the file structure, so we must
1554 spin_lock(&files->file_lock);
1555 file = fcheck_files(files, fd);
1558 if (file->f_mode & 1)
1559 inode->i_mode |= S_IRUSR | S_IXUSR;
1560 if (file->f_mode & 2)
1561 inode->i_mode |= S_IWUSR | S_IXUSR;
1562 spin_unlock(&files->file_lock);
1563 put_files_struct(files);
1565 inode->i_op = &proc_pid_link_inode_operations;
1567 ei->op.proc_get_link = proc_fd_link;
1568 dentry->d_op = &tid_fd_dentry_operations;
1569 d_add(dentry, inode);
1570 /* Close the race of the process dying before we return the dentry */
1571 if (tid_fd_revalidate(dentry, NULL))
1577 spin_unlock(&files->file_lock);
1578 put_files_struct(files);
1584 static struct dentry *proc_lookupfd_common(struct inode *dir,
1585 struct dentry *dentry,
1586 instantiate_t instantiate)
1588 struct task_struct *task = get_proc_task(dir);
1589 unsigned fd = name_to_int(dentry);
1590 struct dentry *result = ERR_PTR(-ENOENT);
1597 result = instantiate(dir, dentry, task, &fd);
1599 put_task_struct(task);
1604 static int proc_readfd_common(struct file * filp, void * dirent,
1605 filldir_t filldir, instantiate_t instantiate)
1607 struct dentry *dentry = filp->f_path.dentry;
1608 struct inode *inode = dentry->d_inode;
1609 struct task_struct *p = get_proc_task(inode);
1610 unsigned int fd, ino;
1612 struct files_struct * files;
1613 struct fdtable *fdt;
1623 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1627 ino = parent_ino(dentry);
1628 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1632 files = get_files_struct(p);
1636 fdt = files_fdtable(files);
1637 for (fd = filp->f_pos-2;
1639 fd++, filp->f_pos++) {
1640 char name[PROC_NUMBUF];
1643 if (!fcheck_files(files, fd))
1647 len = snprintf(name, sizeof(name), "%d", fd);
1648 if (proc_fill_cache(filp, dirent, filldir,
1649 name, len, instantiate,
1657 put_files_struct(files);
1665 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1666 struct nameidata *nd)
1668 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1671 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1673 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1676 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1677 size_t len, loff_t *ppos)
1679 char tmp[PROC_FDINFO_MAX];
1680 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1682 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1686 static const struct file_operations proc_fdinfo_file_operations = {
1687 .open = nonseekable_open,
1688 .read = proc_fdinfo_read,
1691 static const struct file_operations proc_fd_operations = {
1692 .read = generic_read_dir,
1693 .readdir = proc_readfd,
1697 * /proc/pid/fd needs a special permission handler so that a process can still
1698 * access /proc/self/fd after it has executed a setuid().
1700 static int proc_fd_permission(struct inode *inode, int mask,
1701 struct nameidata *nd)
1705 rv = generic_permission(inode, mask, NULL);
1708 if (task_pid(current) == proc_pid(inode))
1714 * proc directories can do almost nothing..
1716 static const struct inode_operations proc_fd_inode_operations = {
1717 .lookup = proc_lookupfd,
1718 .permission = proc_fd_permission,
1719 .setattr = proc_setattr,
1722 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1723 struct dentry *dentry, struct task_struct *task, const void *ptr)
1725 unsigned fd = *(unsigned *)ptr;
1726 struct inode *inode;
1727 struct proc_inode *ei;
1728 struct dentry *error = ERR_PTR(-ENOENT);
1730 inode = proc_pid_make_inode(dir->i_sb, task);
1735 inode->i_mode = S_IFREG | S_IRUSR;
1736 inode->i_fop = &proc_fdinfo_file_operations;
1737 dentry->d_op = &tid_fd_dentry_operations;
1738 d_add(dentry, inode);
1739 /* Close the race of the process dying before we return the dentry */
1740 if (tid_fd_revalidate(dentry, NULL))
1747 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1748 struct dentry *dentry,
1749 struct nameidata *nd)
1751 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1754 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1756 return proc_readfd_common(filp, dirent, filldir,
1757 proc_fdinfo_instantiate);
1760 static const struct file_operations proc_fdinfo_operations = {
1761 .read = generic_read_dir,
1762 .readdir = proc_readfdinfo,
1766 * proc directories can do almost nothing..
1768 static const struct inode_operations proc_fdinfo_inode_operations = {
1769 .lookup = proc_lookupfdinfo,
1770 .setattr = proc_setattr,
1774 static struct dentry *proc_pident_instantiate(struct inode *dir,
1775 struct dentry *dentry, struct task_struct *task, const void *ptr)
1777 const struct pid_entry *p = ptr;
1778 struct inode *inode;
1779 struct proc_inode *ei;
1780 struct dentry *error = ERR_PTR(-EINVAL);
1782 inode = proc_pid_make_inode(dir->i_sb, task);
1787 inode->i_mode = p->mode;
1788 if (S_ISDIR(inode->i_mode))
1789 inode->i_nlink = 2; /* Use getattr to fix if necessary */
1791 inode->i_op = p->iop;
1793 inode->i_fop = p->fop;
1795 dentry->d_op = &pid_dentry_operations;
1796 d_add(dentry, inode);
1797 /* Close the race of the process dying before we return the dentry */
1798 if (pid_revalidate(dentry, NULL))
1804 static struct dentry *proc_pident_lookup(struct inode *dir,
1805 struct dentry *dentry,
1806 const struct pid_entry *ents,
1809 struct inode *inode;
1810 struct dentry *error;
1811 struct task_struct *task = get_proc_task(dir);
1812 const struct pid_entry *p, *last;
1814 error = ERR_PTR(-ENOENT);
1821 * Yes, it does not scale. And it should not. Don't add
1822 * new entries into /proc/<tgid>/ without very good reasons.
1824 last = &ents[nents - 1];
1825 for (p = ents; p <= last; p++) {
1826 if (p->len != dentry->d_name.len)
1828 if (!memcmp(dentry->d_name.name, p->name, p->len))
1834 error = proc_pident_instantiate(dir, dentry, task, p);
1836 put_task_struct(task);
1841 static int proc_pident_fill_cache(struct file *filp, void *dirent,
1842 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1844 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1845 proc_pident_instantiate, task, p);
1848 static int proc_pident_readdir(struct file *filp,
1849 void *dirent, filldir_t filldir,
1850 const struct pid_entry *ents, unsigned int nents)
1853 struct dentry *dentry = filp->f_path.dentry;
1854 struct inode *inode = dentry->d_inode;
1855 struct task_struct *task = get_proc_task(inode);
1856 const struct pid_entry *p, *last;
1869 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
1875 ino = parent_ino(dentry);
1876 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
1888 last = &ents[nents - 1];
1890 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
1899 put_task_struct(task);
1904 #ifdef CONFIG_SECURITY
1905 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
1906 size_t count, loff_t *ppos)
1908 struct inode * inode = file->f_path.dentry->d_inode;
1911 struct task_struct *task = get_proc_task(inode);
1916 length = security_getprocattr(task,
1917 (char*)file->f_path.dentry->d_name.name,
1919 put_task_struct(task);
1921 length = simple_read_from_buffer(buf, count, ppos, p, length);
1926 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
1927 size_t count, loff_t *ppos)
1929 struct inode * inode = file->f_path.dentry->d_inode;
1932 struct task_struct *task = get_proc_task(inode);
1937 if (count > PAGE_SIZE)
1940 /* No partial writes. */
1946 page = (char*)__get_free_page(GFP_TEMPORARY);
1951 if (copy_from_user(page, buf, count))
1954 length = security_setprocattr(task,
1955 (char*)file->f_path.dentry->d_name.name,
1956 (void*)page, count);
1958 free_page((unsigned long) page);
1960 put_task_struct(task);
1965 static const struct file_operations proc_pid_attr_operations = {
1966 .read = proc_pid_attr_read,
1967 .write = proc_pid_attr_write,
1970 static const struct pid_entry attr_dir_stuff[] = {
1971 REG("current", S_IRUGO|S_IWUGO, pid_attr),
1972 REG("prev", S_IRUGO, pid_attr),
1973 REG("exec", S_IRUGO|S_IWUGO, pid_attr),
1974 REG("fscreate", S_IRUGO|S_IWUGO, pid_attr),
1975 REG("keycreate", S_IRUGO|S_IWUGO, pid_attr),
1976 REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
1979 static int proc_attr_dir_readdir(struct file * filp,
1980 void * dirent, filldir_t filldir)
1982 return proc_pident_readdir(filp,dirent,filldir,
1983 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
1986 static const struct file_operations proc_attr_dir_operations = {
1987 .read = generic_read_dir,
1988 .readdir = proc_attr_dir_readdir,
1991 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
1992 struct dentry *dentry, struct nameidata *nd)
1994 return proc_pident_lookup(dir, dentry,
1995 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
1998 static const struct inode_operations proc_attr_dir_inode_operations = {
1999 .lookup = proc_attr_dir_lookup,
2000 .getattr = pid_getattr,
2001 .setattr = proc_setattr,
2006 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2007 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2008 size_t count, loff_t *ppos)
2010 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2011 struct mm_struct *mm;
2012 char buffer[PROC_NUMBUF];
2020 mm = get_task_mm(task);
2022 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2023 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2024 MMF_DUMP_FILTER_SHIFT));
2026 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2029 put_task_struct(task);
2034 static ssize_t proc_coredump_filter_write(struct file *file,
2035 const char __user *buf,
2039 struct task_struct *task;
2040 struct mm_struct *mm;
2041 char buffer[PROC_NUMBUF], *end;
2048 memset(buffer, 0, sizeof(buffer));
2049 if (count > sizeof(buffer) - 1)
2050 count = sizeof(buffer) - 1;
2051 if (copy_from_user(buffer, buf, count))
2055 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2058 if (end - buffer == 0)
2062 task = get_proc_task(file->f_dentry->d_inode);
2067 mm = get_task_mm(task);
2071 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2073 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2075 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2080 put_task_struct(task);
2085 static const struct file_operations proc_coredump_filter_operations = {
2086 .read = proc_coredump_filter_read,
2087 .write = proc_coredump_filter_write,
2094 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2097 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2098 pid_t tgid = task_tgid_nr_ns(current, ns);
2099 char tmp[PROC_NUMBUF];
2102 sprintf(tmp, "%d", tgid);
2103 return vfs_readlink(dentry,buffer,buflen,tmp);
2106 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2108 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2109 pid_t tgid = task_tgid_nr_ns(current, ns);
2110 char tmp[PROC_NUMBUF];
2112 return ERR_PTR(-ENOENT);
2113 sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2114 return ERR_PTR(vfs_follow_link(nd,tmp));
2117 static const struct inode_operations proc_self_inode_operations = {
2118 .readlink = proc_self_readlink,
2119 .follow_link = proc_self_follow_link,
2125 * These are the directory entries in the root directory of /proc
2126 * that properly belong to the /proc filesystem, as they describe
2127 * describe something that is process related.
2129 static const struct pid_entry proc_base_stuff[] = {
2130 NOD("self", S_IFLNK|S_IRWXUGO,
2131 &proc_self_inode_operations, NULL, {}),
2135 * Exceptional case: normally we are not allowed to unhash a busy
2136 * directory. In this case, however, we can do it - no aliasing problems
2137 * due to the way we treat inodes.
2139 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2141 struct inode *inode = dentry->d_inode;
2142 struct task_struct *task = get_proc_task(inode);
2144 put_task_struct(task);
2151 static struct dentry_operations proc_base_dentry_operations =
2153 .d_revalidate = proc_base_revalidate,
2154 .d_delete = pid_delete_dentry,
2157 static struct dentry *proc_base_instantiate(struct inode *dir,
2158 struct dentry *dentry, struct task_struct *task, const void *ptr)
2160 const struct pid_entry *p = ptr;
2161 struct inode *inode;
2162 struct proc_inode *ei;
2163 struct dentry *error = ERR_PTR(-EINVAL);
2165 /* Allocate the inode */
2166 error = ERR_PTR(-ENOMEM);
2167 inode = new_inode(dir->i_sb);
2171 /* Initialize the inode */
2173 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2176 * grab the reference to the task.
2178 ei->pid = get_task_pid(task, PIDTYPE_PID);
2184 inode->i_mode = p->mode;
2185 if (S_ISDIR(inode->i_mode))
2187 if (S_ISLNK(inode->i_mode))
2190 inode->i_op = p->iop;
2192 inode->i_fop = p->fop;
2194 dentry->d_op = &proc_base_dentry_operations;
2195 d_add(dentry, inode);
2204 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2206 struct dentry *error;
2207 struct task_struct *task = get_proc_task(dir);
2208 const struct pid_entry *p, *last;
2210 error = ERR_PTR(-ENOENT);
2215 /* Lookup the directory entry */
2216 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2217 for (p = proc_base_stuff; p <= last; p++) {
2218 if (p->len != dentry->d_name.len)
2220 if (!memcmp(dentry->d_name.name, p->name, p->len))
2226 error = proc_base_instantiate(dir, dentry, task, p);
2229 put_task_struct(task);
2234 static int proc_base_fill_cache(struct file *filp, void *dirent,
2235 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2237 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2238 proc_base_instantiate, task, p);
2241 #ifdef CONFIG_TASK_IO_ACCOUNTING
2242 static int proc_pid_io_accounting(struct task_struct *task, char *buffer)
2244 return sprintf(buffer,
2245 #ifdef CONFIG_TASK_XACCT
2251 "read_bytes: %llu\n"
2252 "write_bytes: %llu\n"
2253 "cancelled_write_bytes: %llu\n",
2254 #ifdef CONFIG_TASK_XACCT
2255 (unsigned long long)task->rchar,
2256 (unsigned long long)task->wchar,
2257 (unsigned long long)task->syscr,
2258 (unsigned long long)task->syscw,
2260 (unsigned long long)task->ioac.read_bytes,
2261 (unsigned long long)task->ioac.write_bytes,
2262 (unsigned long long)task->ioac.cancelled_write_bytes);
2269 static const struct file_operations proc_task_operations;
2270 static const struct inode_operations proc_task_inode_operations;
2272 static const struct pid_entry tgid_base_stuff[] = {
2273 DIR("task", S_IRUGO|S_IXUGO, task),
2274 DIR("fd", S_IRUSR|S_IXUSR, fd),
2275 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
2276 REG("environ", S_IRUSR, environ),
2277 INF("auxv", S_IRUSR, pid_auxv),
2278 ONE("status", S_IRUGO, pid_status),
2279 INF("limits", S_IRUSR, pid_limits),
2280 #ifdef CONFIG_SCHED_DEBUG
2281 REG("sched", S_IRUGO|S_IWUSR, pid_sched),
2283 INF("cmdline", S_IRUGO, pid_cmdline),
2284 ONE("stat", S_IRUGO, tgid_stat),
2285 ONE("statm", S_IRUGO, pid_statm),
2286 REG("maps", S_IRUGO, maps),
2288 REG("numa_maps", S_IRUGO, numa_maps),
2290 REG("mem", S_IRUSR|S_IWUSR, mem),
2294 REG("mounts", S_IRUGO, mounts),
2295 REG("mountstats", S_IRUSR, mountstats),
2296 #ifdef CONFIG_PROC_PAGE_MONITOR
2297 REG("clear_refs", S_IWUSR, clear_refs),
2298 REG("smaps", S_IRUGO, smaps),
2299 REG("pagemap", S_IRUSR, pagemap),
2301 #ifdef CONFIG_SECURITY
2302 DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
2304 #ifdef CONFIG_KALLSYMS
2305 INF("wchan", S_IRUGO, pid_wchan),
2307 #ifdef CONFIG_SCHEDSTATS
2308 INF("schedstat", S_IRUGO, pid_schedstat),
2310 #ifdef CONFIG_LATENCYTOP
2311 REG("latency", S_IRUGO, lstats),
2313 #ifdef CONFIG_PROC_PID_CPUSET
2314 REG("cpuset", S_IRUGO, cpuset),
2316 #ifdef CONFIG_CGROUPS
2317 REG("cgroup", S_IRUGO, cgroup),
2319 INF("oom_score", S_IRUGO, oom_score),
2320 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
2321 #ifdef CONFIG_AUDITSYSCALL
2322 REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
2324 #ifdef CONFIG_FAULT_INJECTION
2325 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2327 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2328 REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2330 #ifdef CONFIG_TASK_IO_ACCOUNTING
2331 INF("io", S_IRUGO, pid_io_accounting),
2335 static int proc_tgid_base_readdir(struct file * filp,
2336 void * dirent, filldir_t filldir)
2338 return proc_pident_readdir(filp,dirent,filldir,
2339 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2342 static const struct file_operations proc_tgid_base_operations = {
2343 .read = generic_read_dir,
2344 .readdir = proc_tgid_base_readdir,
2347 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2348 return proc_pident_lookup(dir, dentry,
2349 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2352 static const struct inode_operations proc_tgid_base_inode_operations = {
2353 .lookup = proc_tgid_base_lookup,
2354 .getattr = pid_getattr,
2355 .setattr = proc_setattr,
2358 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2360 struct dentry *dentry, *leader, *dir;
2361 char buf[PROC_NUMBUF];
2365 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2366 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2368 if (!(current->flags & PF_EXITING))
2369 shrink_dcache_parent(dentry);
2378 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2379 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2384 name.len = strlen(name.name);
2385 dir = d_hash_and_lookup(leader, &name);
2387 goto out_put_leader;
2390 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2391 dentry = d_hash_and_lookup(dir, &name);
2393 shrink_dcache_parent(dentry);
2406 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2407 * @task: task that should be flushed.
2409 * When flushing dentries from proc, one needs to flush them from global
2410 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2411 * in. This call is supposed to do all of this job.
2413 * Looks in the dcache for
2415 * /proc/@tgid/task/@pid
2416 * if either directory is present flushes it and all of it'ts children
2419 * It is safe and reasonable to cache /proc entries for a task until
2420 * that task exits. After that they just clog up the dcache with
2421 * useless entries, possibly causing useful dcache entries to be
2422 * flushed instead. This routine is proved to flush those useless
2423 * dcache entries at process exit time.
2425 * NOTE: This routine is just an optimization so it does not guarantee
2426 * that no dcache entries will exist at process exit time it
2427 * just makes it very unlikely that any will persist.
2430 void proc_flush_task(struct task_struct *task)
2433 struct pid *pid, *tgid = NULL;
2436 pid = task_pid(task);
2437 if (thread_group_leader(task))
2438 tgid = task_tgid(task);
2440 for (i = 0; i <= pid->level; i++) {
2441 upid = &pid->numbers[i];
2442 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2443 tgid ? tgid->numbers[i].nr : 0);
2446 upid = &pid->numbers[pid->level];
2448 pid_ns_release_proc(upid->ns);
2451 static struct dentry *proc_pid_instantiate(struct inode *dir,
2452 struct dentry * dentry,
2453 struct task_struct *task, const void *ptr)
2455 struct dentry *error = ERR_PTR(-ENOENT);
2456 struct inode *inode;
2458 inode = proc_pid_make_inode(dir->i_sb, task);
2462 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2463 inode->i_op = &proc_tgid_base_inode_operations;
2464 inode->i_fop = &proc_tgid_base_operations;
2465 inode->i_flags|=S_IMMUTABLE;
2467 #ifdef CONFIG_SECURITY
2468 inode->i_nlink += 1;
2471 dentry->d_op = &pid_dentry_operations;
2473 d_add(dentry, inode);
2474 /* Close the race of the process dying before we return the dentry */
2475 if (pid_revalidate(dentry, NULL))
2481 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2483 struct dentry *result = ERR_PTR(-ENOENT);
2484 struct task_struct *task;
2486 struct pid_namespace *ns;
2488 result = proc_base_lookup(dir, dentry);
2489 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2492 tgid = name_to_int(dentry);
2496 ns = dentry->d_sb->s_fs_info;
2498 task = find_task_by_pid_ns(tgid, ns);
2500 get_task_struct(task);
2505 result = proc_pid_instantiate(dir, dentry, task, NULL);
2506 put_task_struct(task);
2512 * Find the first task with tgid >= tgid
2517 struct task_struct *task;
2519 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2524 put_task_struct(iter.task);
2528 pid = find_ge_pid(iter.tgid, ns);
2530 iter.tgid = pid_nr_ns(pid, ns);
2531 iter.task = pid_task(pid, PIDTYPE_PID);
2532 /* What we to know is if the pid we have find is the
2533 * pid of a thread_group_leader. Testing for task
2534 * being a thread_group_leader is the obvious thing
2535 * todo but there is a window when it fails, due to
2536 * the pid transfer logic in de_thread.
2538 * So we perform the straight forward test of seeing
2539 * if the pid we have found is the pid of a thread
2540 * group leader, and don't worry if the task we have
2541 * found doesn't happen to be a thread group leader.
2542 * As we don't care in the case of readdir.
2544 if (!iter.task || !has_group_leader_pid(iter.task)) {
2548 get_task_struct(iter.task);
2554 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2556 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2557 struct tgid_iter iter)
2559 char name[PROC_NUMBUF];
2560 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2561 return proc_fill_cache(filp, dirent, filldir, name, len,
2562 proc_pid_instantiate, iter.task, NULL);
2565 /* for the /proc/ directory itself, after non-process stuff has been done */
2566 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2568 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2569 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2570 struct tgid_iter iter;
2571 struct pid_namespace *ns;
2576 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2577 const struct pid_entry *p = &proc_base_stuff[nr];
2578 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2582 ns = filp->f_dentry->d_sb->s_fs_info;
2584 iter.tgid = filp->f_pos - TGID_OFFSET;
2585 for (iter = next_tgid(ns, iter);
2587 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2588 filp->f_pos = iter.tgid + TGID_OFFSET;
2589 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2590 put_task_struct(iter.task);
2594 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2596 put_task_struct(reaper);
2604 static const struct pid_entry tid_base_stuff[] = {
2605 DIR("fd", S_IRUSR|S_IXUSR, fd),
2606 DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
2607 REG("environ", S_IRUSR, environ),
2608 INF("auxv", S_IRUSR, pid_auxv),
2609 ONE("status", S_IRUGO, pid_status),
2610 INF("limits", S_IRUSR, pid_limits),
2611 #ifdef CONFIG_SCHED_DEBUG
2612 REG("sched", S_IRUGO|S_IWUSR, pid_sched),
2614 INF("cmdline", S_IRUGO, pid_cmdline),
2615 ONE("stat", S_IRUGO, tid_stat),
2616 ONE("statm", S_IRUGO, pid_statm),
2617 REG("maps", S_IRUGO, maps),
2619 REG("numa_maps", S_IRUGO, numa_maps),
2621 REG("mem", S_IRUSR|S_IWUSR, mem),
2625 REG("mounts", S_IRUGO, mounts),
2626 #ifdef CONFIG_PROC_PAGE_MONITOR
2627 REG("clear_refs", S_IWUSR, clear_refs),
2628 REG("smaps", S_IRUGO, smaps),
2629 REG("pagemap", S_IRUSR, pagemap),
2631 #ifdef CONFIG_SECURITY
2632 DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
2634 #ifdef CONFIG_KALLSYMS
2635 INF("wchan", S_IRUGO, pid_wchan),
2637 #ifdef CONFIG_SCHEDSTATS
2638 INF("schedstat", S_IRUGO, pid_schedstat),
2640 #ifdef CONFIG_LATENCYTOP
2641 REG("latency", S_IRUGO, lstats),
2643 #ifdef CONFIG_PROC_PID_CPUSET
2644 REG("cpuset", S_IRUGO, cpuset),
2646 #ifdef CONFIG_CGROUPS
2647 REG("cgroup", S_IRUGO, cgroup),
2649 INF("oom_score", S_IRUGO, oom_score),
2650 REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
2651 #ifdef CONFIG_AUDITSYSCALL
2652 REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
2654 #ifdef CONFIG_FAULT_INJECTION
2655 REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2659 static int proc_tid_base_readdir(struct file * filp,
2660 void * dirent, filldir_t filldir)
2662 return proc_pident_readdir(filp,dirent,filldir,
2663 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2666 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2667 return proc_pident_lookup(dir, dentry,
2668 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2671 static const struct file_operations proc_tid_base_operations = {
2672 .read = generic_read_dir,
2673 .readdir = proc_tid_base_readdir,
2676 static const struct inode_operations proc_tid_base_inode_operations = {
2677 .lookup = proc_tid_base_lookup,
2678 .getattr = pid_getattr,
2679 .setattr = proc_setattr,
2682 static struct dentry *proc_task_instantiate(struct inode *dir,
2683 struct dentry *dentry, struct task_struct *task, const void *ptr)
2685 struct dentry *error = ERR_PTR(-ENOENT);
2686 struct inode *inode;
2687 inode = proc_pid_make_inode(dir->i_sb, task);
2691 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2692 inode->i_op = &proc_tid_base_inode_operations;
2693 inode->i_fop = &proc_tid_base_operations;
2694 inode->i_flags|=S_IMMUTABLE;
2696 #ifdef CONFIG_SECURITY
2697 inode->i_nlink += 1;
2700 dentry->d_op = &pid_dentry_operations;
2702 d_add(dentry, inode);
2703 /* Close the race of the process dying before we return the dentry */
2704 if (pid_revalidate(dentry, NULL))
2710 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2712 struct dentry *result = ERR_PTR(-ENOENT);
2713 struct task_struct *task;
2714 struct task_struct *leader = get_proc_task(dir);
2716 struct pid_namespace *ns;
2721 tid = name_to_int(dentry);
2725 ns = dentry->d_sb->s_fs_info;
2727 task = find_task_by_pid_ns(tid, ns);
2729 get_task_struct(task);
2733 if (!same_thread_group(leader, task))
2736 result = proc_task_instantiate(dir, dentry, task, NULL);
2738 put_task_struct(task);
2740 put_task_struct(leader);
2746 * Find the first tid of a thread group to return to user space.
2748 * Usually this is just the thread group leader, but if the users
2749 * buffer was too small or there was a seek into the middle of the
2750 * directory we have more work todo.
2752 * In the case of a short read we start with find_task_by_pid.
2754 * In the case of a seek we start with the leader and walk nr
2757 static struct task_struct *first_tid(struct task_struct *leader,
2758 int tid, int nr, struct pid_namespace *ns)
2760 struct task_struct *pos;
2763 /* Attempt to start with the pid of a thread */
2764 if (tid && (nr > 0)) {
2765 pos = find_task_by_pid_ns(tid, ns);
2766 if (pos && (pos->group_leader == leader))
2770 /* If nr exceeds the number of threads there is nothing todo */
2772 if (nr && nr >= get_nr_threads(leader))
2775 /* If we haven't found our starting place yet start
2776 * with the leader and walk nr threads forward.
2778 for (pos = leader; nr > 0; --nr) {
2779 pos = next_thread(pos);
2780 if (pos == leader) {
2786 get_task_struct(pos);
2793 * Find the next thread in the thread list.
2794 * Return NULL if there is an error or no next thread.
2796 * The reference to the input task_struct is released.
2798 static struct task_struct *next_tid(struct task_struct *start)
2800 struct task_struct *pos = NULL;
2802 if (pid_alive(start)) {
2803 pos = next_thread(start);
2804 if (thread_group_leader(pos))
2807 get_task_struct(pos);
2810 put_task_struct(start);
2814 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2815 struct task_struct *task, int tid)
2817 char name[PROC_NUMBUF];
2818 int len = snprintf(name, sizeof(name), "%d", tid);
2819 return proc_fill_cache(filp, dirent, filldir, name, len,
2820 proc_task_instantiate, task, NULL);
2823 /* for the /proc/TGID/task/ directories */
2824 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
2826 struct dentry *dentry = filp->f_path.dentry;
2827 struct inode *inode = dentry->d_inode;
2828 struct task_struct *leader = NULL;
2829 struct task_struct *task;
2830 int retval = -ENOENT;
2833 unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */
2834 struct pid_namespace *ns;
2836 task = get_proc_task(inode);
2840 if (pid_alive(task)) {
2841 leader = task->group_leader;
2842 get_task_struct(leader);
2845 put_task_struct(task);
2853 if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
2858 ino = parent_ino(dentry);
2859 if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
2865 /* f_version caches the tgid value that the last readdir call couldn't
2866 * return. lseek aka telldir automagically resets f_version to 0.
2868 ns = filp->f_dentry->d_sb->s_fs_info;
2869 tid = (int)filp->f_version;
2870 filp->f_version = 0;
2871 for (task = first_tid(leader, tid, pos - 2, ns);
2873 task = next_tid(task), pos++) {
2874 tid = task_pid_nr_ns(task, ns);
2875 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
2876 /* returning this tgid failed, save it as the first
2877 * pid for the next readir call */
2878 filp->f_version = (u64)tid;
2879 put_task_struct(task);
2885 put_task_struct(leader);
2890 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
2892 struct inode *inode = dentry->d_inode;
2893 struct task_struct *p = get_proc_task(inode);
2894 generic_fillattr(inode, stat);
2898 stat->nlink += get_nr_threads(p);
2906 static const struct inode_operations proc_task_inode_operations = {
2907 .lookup = proc_task_lookup,
2908 .getattr = proc_task_getattr,
2909 .setattr = proc_setattr,
2912 static const struct file_operations proc_task_operations = {
2913 .read = generic_read_dir,
2914 .readdir = proc_task_readdir,