2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/mach-types.h>
19 #include <asm/setup.h>
20 #include <asm/sizes.h>
23 #include <asm/mach/arch.h>
24 #include <asm/mach/map.h>
28 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
30 extern void _stext, _etext, __data_start, _end;
31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
34 * empty_zero_page is a special page that is used for
35 * zero-initialized data and COW.
37 struct page *empty_zero_page;
38 EXPORT_SYMBOL(empty_zero_page);
41 * The pmd table for the upper-most set of pages.
45 #define CPOLICY_UNCACHED 0
46 #define CPOLICY_BUFFERED 1
47 #define CPOLICY_WRITETHROUGH 2
48 #define CPOLICY_WRITEBACK 3
49 #define CPOLICY_WRITEALLOC 4
51 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
52 static unsigned int ecc_mask __initdata = 0;
54 pgprot_t pgprot_kernel;
56 EXPORT_SYMBOL(pgprot_user);
57 EXPORT_SYMBOL(pgprot_kernel);
60 const char policy[16];
66 static struct cachepolicy cache_policies[] __initdata = {
70 .pmd = PMD_SECT_UNCACHED,
75 .pmd = PMD_SECT_BUFFERED,
76 .pte = PTE_BUFFERABLE,
78 .policy = "writethrough",
83 .policy = "writeback",
86 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
88 .policy = "writealloc",
91 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
96 * These are useful for identifying cache coherency
97 * problems by allowing the cache or the cache and
98 * writebuffer to be turned off. (Note: the write
99 * buffer should not be on and the cache off).
101 static void __init early_cachepolicy(char **p)
105 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
106 int len = strlen(cache_policies[i].policy);
108 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
110 cr_alignment &= ~cache_policies[i].cr_mask;
111 cr_no_alignment &= ~cache_policies[i].cr_mask;
116 if (i == ARRAY_SIZE(cache_policies))
117 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
118 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
119 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
120 cachepolicy = CPOLICY_WRITEBACK;
123 set_cr(cr_alignment);
125 __early_param("cachepolicy=", early_cachepolicy);
127 static void __init early_nocache(char **__unused)
129 char *p = "buffered";
130 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
131 early_cachepolicy(&p);
133 __early_param("nocache", early_nocache);
135 static void __init early_nowrite(char **__unused)
137 char *p = "uncached";
138 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
139 early_cachepolicy(&p);
141 __early_param("nowb", early_nowrite);
143 static void __init early_ecc(char **p)
145 if (memcmp(*p, "on", 2) == 0) {
146 ecc_mask = PMD_PROTECTION;
148 } else if (memcmp(*p, "off", 3) == 0) {
153 __early_param("ecc=", early_ecc);
155 static int __init noalign_setup(char *__unused)
157 cr_alignment &= ~CR_A;
158 cr_no_alignment &= ~CR_A;
159 set_cr(cr_alignment);
162 __setup("noalign", noalign_setup);
165 void adjust_cr(unsigned long mask, unsigned long set)
173 local_irq_save(flags);
175 cr_no_alignment = (cr_no_alignment & ~mask) | set;
176 cr_alignment = (cr_alignment & ~mask) | set;
178 set_cr((get_cr() & ~mask) | set);
180 local_irq_restore(flags);
184 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
185 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
187 static struct mem_type mem_types[] = {
188 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
189 .prot_pte = PROT_PTE_DEVICE,
190 .prot_l1 = PMD_TYPE_TABLE,
191 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
194 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
195 .prot_pte = PROT_PTE_DEVICE,
196 .prot_pte_ext = PTE_EXT_TEX(2),
197 .prot_l1 = PMD_TYPE_TABLE,
198 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_TEX(2),
201 [MT_DEVICE_CACHED] = { /* ioremap_cached */
202 .prot_pte = PROT_PTE_DEVICE | L_PTE_CACHEABLE | L_PTE_BUFFERABLE,
203 .prot_l1 = PMD_TYPE_TABLE,
204 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
207 [MT_DEVICE_IXP2000] = { /* IXP2400 requires XCB=101 for on-chip I/O */
208 .prot_pte = PROT_PTE_DEVICE,
209 .prot_l1 = PMD_TYPE_TABLE,
210 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE |
214 [MT_DEVICE_WC] = { /* ioremap_wc */
215 .prot_pte = PROT_PTE_DEVICE,
216 .prot_l1 = PMD_TYPE_TABLE,
217 .prot_sect = PROT_SECT_DEVICE,
221 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
222 .domain = DOMAIN_KERNEL,
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
226 .domain = DOMAIN_KERNEL,
229 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
231 .prot_l1 = PMD_TYPE_TABLE,
232 .domain = DOMAIN_USER,
234 [MT_HIGH_VECTORS] = {
235 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
236 L_PTE_USER | L_PTE_EXEC,
237 .prot_l1 = PMD_TYPE_TABLE,
238 .domain = DOMAIN_USER,
241 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
242 .domain = DOMAIN_KERNEL,
245 .prot_sect = PMD_TYPE_SECT,
246 .domain = DOMAIN_KERNEL,
250 const struct mem_type *get_mem_type(unsigned int type)
252 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
256 * Adjust the PMD section entries according to the CPU in use.
258 static void __init build_mem_type_table(void)
260 struct cachepolicy *cp;
261 unsigned int cr = get_cr();
262 unsigned int user_pgprot, kern_pgprot;
263 int cpu_arch = cpu_architecture();
266 if (cpu_arch < CPU_ARCH_ARMv6) {
267 #if defined(CONFIG_CPU_DCACHE_DISABLE)
268 if (cachepolicy > CPOLICY_BUFFERED)
269 cachepolicy = CPOLICY_BUFFERED;
270 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
271 if (cachepolicy > CPOLICY_WRITETHROUGH)
272 cachepolicy = CPOLICY_WRITETHROUGH;
275 if (cpu_arch < CPU_ARCH_ARMv5) {
276 if (cachepolicy >= CPOLICY_WRITEALLOC)
277 cachepolicy = CPOLICY_WRITEBACK;
282 * On non-Xscale3 ARMv5-and-older systems, use CB=01
283 * (Uncached/Buffered) for ioremap_wc() mappings. On XScale3
284 * and ARMv6+, use TEXCB=00100 mappings (Inner/Outer Uncacheable
285 * in xsc3 parlance, Uncached Normal in ARMv6 parlance).
287 if (cpu_is_xsc3() || cpu_arch >= CPU_ARCH_ARMv6) {
288 mem_types[MT_DEVICE_WC].prot_pte_ext |= PTE_EXT_TEX(1);
289 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
291 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_BUFFERABLE;
292 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
296 * ARMv5 and lower, bit 4 must be set for page tables.
297 * (was: cache "update-able on write" bit on ARM610)
298 * However, Xscale cores require this bit to be cleared.
300 if (cpu_is_xscale()) {
301 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
302 mem_types[i].prot_sect &= ~PMD_BIT4;
303 mem_types[i].prot_l1 &= ~PMD_BIT4;
305 } else if (cpu_arch < CPU_ARCH_ARMv6) {
306 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
307 if (mem_types[i].prot_l1)
308 mem_types[i].prot_l1 |= PMD_BIT4;
309 if (mem_types[i].prot_sect)
310 mem_types[i].prot_sect |= PMD_BIT4;
314 cp = &cache_policies[cachepolicy];
315 kern_pgprot = user_pgprot = cp->pte;
318 * Enable CPU-specific coherency if supported.
319 * (Only available on XSC3 at the moment.)
321 if (arch_is_coherent()) {
323 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
324 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
329 * ARMv6 and above have extended page tables.
331 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
333 * Mark cache clean areas and XIP ROM read only
334 * from SVC mode and no access from userspace.
336 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
337 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
338 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
341 * Mark the device area as "shared device"
343 mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
344 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
348 * Mark memory with the "shared" attribute for SMP systems
350 user_pgprot |= L_PTE_SHARED;
351 kern_pgprot |= L_PTE_SHARED;
352 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
356 for (i = 0; i < 16; i++) {
357 unsigned long v = pgprot_val(protection_map[i]);
358 v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot;
359 protection_map[i] = __pgprot(v);
362 mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot;
363 mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot;
365 if (cpu_arch >= CPU_ARCH_ARMv5) {
368 * Only use write-through for non-SMP systems
370 mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
371 mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
374 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
377 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
378 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
379 L_PTE_DIRTY | L_PTE_WRITE |
380 L_PTE_EXEC | kern_pgprot);
382 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
383 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
384 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
385 mem_types[MT_ROM].prot_sect |= cp->pmd;
389 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
393 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
396 printk("Memory policy: ECC %sabled, Data cache %s\n",
397 ecc_mask ? "en" : "dis", cp->policy);
399 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
400 struct mem_type *t = &mem_types[i];
402 t->prot_l1 |= PMD_DOMAIN(t->domain);
404 t->prot_sect |= PMD_DOMAIN(t->domain);
408 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
410 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
411 unsigned long end, unsigned long pfn,
412 const struct mem_type *type)
416 if (pmd_none(*pmd)) {
417 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
418 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
421 pte = pte_offset_kernel(pmd, addr);
423 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
426 } while (pte++, addr += PAGE_SIZE, addr != end);
429 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
430 unsigned long end, unsigned long phys,
431 const struct mem_type *type)
433 pmd_t *pmd = pmd_offset(pgd, addr);
436 * Try a section mapping - end, addr and phys must all be aligned
437 * to a section boundary. Note that PMDs refer to the individual
438 * L1 entries, whereas PGDs refer to a group of L1 entries making
439 * up one logical pointer to an L2 table.
441 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
444 if (addr & SECTION_SIZE)
448 *pmd = __pmd(phys | type->prot_sect);
449 phys += SECTION_SIZE;
450 } while (pmd++, addr += SECTION_SIZE, addr != end);
455 * No need to loop; pte's aren't interested in the
456 * individual L1 entries.
458 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
462 static void __init create_36bit_mapping(struct map_desc *md,
463 const struct mem_type *type)
465 unsigned long phys, addr, length, end;
469 phys = (unsigned long)__pfn_to_phys(md->pfn);
470 length = PAGE_ALIGN(md->length);
472 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
473 printk(KERN_ERR "MM: CPU does not support supersection "
474 "mapping for 0x%08llx at 0x%08lx\n",
475 __pfn_to_phys((u64)md->pfn), addr);
479 /* N.B. ARMv6 supersections are only defined to work with domain 0.
480 * Since domain assignments can in fact be arbitrary, the
481 * 'domain == 0' check below is required to insure that ARMv6
482 * supersections are only allocated for domain 0 regardless
483 * of the actual domain assignments in use.
486 printk(KERN_ERR "MM: invalid domain in supersection "
487 "mapping for 0x%08llx at 0x%08lx\n",
488 __pfn_to_phys((u64)md->pfn), addr);
492 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
493 printk(KERN_ERR "MM: cannot create mapping for "
494 "0x%08llx at 0x%08lx invalid alignment\n",
495 __pfn_to_phys((u64)md->pfn), addr);
500 * Shift bits [35:32] of address into bits [23:20] of PMD
503 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
505 pgd = pgd_offset_k(addr);
508 pmd_t *pmd = pmd_offset(pgd, addr);
511 for (i = 0; i < 16; i++)
512 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
514 addr += SUPERSECTION_SIZE;
515 phys += SUPERSECTION_SIZE;
516 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
517 } while (addr != end);
521 * Create the page directory entries and any necessary
522 * page tables for the mapping specified by `md'. We
523 * are able to cope here with varying sizes and address
524 * offsets, and we take full advantage of sections and
527 void __init create_mapping(struct map_desc *md)
529 unsigned long phys, addr, length, end;
530 const struct mem_type *type;
533 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
534 printk(KERN_WARNING "BUG: not creating mapping for "
535 "0x%08llx at 0x%08lx in user region\n",
536 __pfn_to_phys((u64)md->pfn), md->virtual);
540 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
541 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
542 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
543 "overlaps vmalloc space\n",
544 __pfn_to_phys((u64)md->pfn), md->virtual);
547 type = &mem_types[md->type];
550 * Catch 36-bit addresses
552 if (md->pfn >= 0x100000) {
553 create_36bit_mapping(md, type);
557 addr = md->virtual & PAGE_MASK;
558 phys = (unsigned long)__pfn_to_phys(md->pfn);
559 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
561 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
562 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
563 "be mapped using pages, ignoring.\n",
564 __pfn_to_phys(md->pfn), addr);
568 pgd = pgd_offset_k(addr);
571 unsigned long next = pgd_addr_end(addr, end);
573 alloc_init_section(pgd, addr, next, phys, type);
577 } while (pgd++, addr != end);
581 * Create the architecture specific mappings
583 void __init iotable_init(struct map_desc *io_desc, int nr)
587 for (i = 0; i < nr; i++)
588 create_mapping(io_desc + i);
591 static int __init check_membank_valid(struct membank *mb)
594 * Check whether this memory region has non-zero size.
600 * Check whether this memory region would entirely overlap
603 if (phys_to_virt(mb->start) >= VMALLOC_MIN) {
604 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
605 "(vmalloc region overlap).\n",
606 mb->start, mb->start + mb->size - 1);
611 * Check whether this memory region would partially overlap
614 if (phys_to_virt(mb->start + mb->size) < phys_to_virt(mb->start) ||
615 phys_to_virt(mb->start + mb->size) > VMALLOC_MIN) {
616 unsigned long newsize = VMALLOC_MIN - phys_to_virt(mb->start);
618 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
619 "to -%.8lx (vmalloc region overlap).\n",
620 mb->start, mb->start + mb->size - 1,
621 mb->start + newsize - 1);
628 static void __init sanity_check_meminfo(struct meminfo *mi)
633 for (i = 0, j = 0; i < mi->nr_banks; i++) {
634 if (check_membank_valid(&mi->bank[i]))
635 mi->bank[j++] = mi->bank[i];
640 static inline void prepare_page_table(struct meminfo *mi)
645 * Clear out all the mappings below the kernel image.
647 for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
648 pmd_clear(pmd_off_k(addr));
650 #ifdef CONFIG_XIP_KERNEL
651 /* The XIP kernel is mapped in the module area -- skip over it */
652 addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
654 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
655 pmd_clear(pmd_off_k(addr));
658 * Clear out all the kernel space mappings, except for the first
659 * memory bank, up to the end of the vmalloc region.
661 for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
662 addr < VMALLOC_END; addr += PGDIR_SIZE)
663 pmd_clear(pmd_off_k(addr));
667 * Reserve the various regions of node 0
669 void __init reserve_node_zero(pg_data_t *pgdat)
671 unsigned long res_size = 0;
674 * Register the kernel text and data with bootmem.
675 * Note that this can only be in node 0.
677 #ifdef CONFIG_XIP_KERNEL
678 reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
681 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
686 * Reserve the page tables. These are already in use,
687 * and can only be in node 0.
689 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
690 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
693 * Hmm... This should go elsewhere, but we really really need to
694 * stop things allocating the low memory; ideally we need a better
695 * implementation of GFP_DMA which does not assume that DMA-able
696 * memory starts at zero.
698 if (machine_is_integrator() || machine_is_cintegrator())
699 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
702 * These should likewise go elsewhere. They pre-reserve the
703 * screen memory region at the start of main system memory.
705 if (machine_is_edb7211())
706 res_size = 0x00020000;
707 if (machine_is_p720t())
708 res_size = 0x00014000;
710 /* H1940 and RX3715 need to reserve this for suspend */
712 if (machine_is_h1940() || machine_is_rx3715()) {
713 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
715 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
721 * Because of the SA1111 DMA bug, we want to preserve our
722 * precious DMA-able memory...
724 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
727 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
732 * Set up device the mappings. Since we clear out the page tables for all
733 * mappings above VMALLOC_END, we will remove any debug device mappings.
734 * This means you have to be careful how you debug this function, or any
735 * called function. This means you can't use any function or debugging
736 * method which may touch any device, otherwise the kernel _will_ crash.
738 static void __init devicemaps_init(struct machine_desc *mdesc)
745 * Allocate the vector page early.
747 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
750 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
751 pmd_clear(pmd_off_k(addr));
754 * Map the kernel if it is XIP.
755 * It is always first in the modulearea.
757 #ifdef CONFIG_XIP_KERNEL
758 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
759 map.virtual = MODULE_START;
760 map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
762 create_mapping(&map);
766 * Map the cache flushing regions.
769 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
770 map.virtual = FLUSH_BASE;
772 map.type = MT_CACHECLEAN;
773 create_mapping(&map);
775 #ifdef FLUSH_BASE_MINICACHE
776 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
777 map.virtual = FLUSH_BASE_MINICACHE;
779 map.type = MT_MINICLEAN;
780 create_mapping(&map);
784 * Create a mapping for the machine vectors at the high-vectors
785 * location (0xffff0000). If we aren't using high-vectors, also
786 * create a mapping at the low-vectors virtual address.
788 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
789 map.virtual = 0xffff0000;
790 map.length = PAGE_SIZE;
791 map.type = MT_HIGH_VECTORS;
792 create_mapping(&map);
794 if (!vectors_high()) {
796 map.type = MT_LOW_VECTORS;
797 create_mapping(&map);
801 * Ask the machine support to map in the statically mapped devices.
807 * Finally flush the caches and tlb to ensure that we're in a
808 * consistent state wrt the writebuffer. This also ensures that
809 * any write-allocated cache lines in the vector page are written
810 * back. After this point, we can start to touch devices again.
812 local_flush_tlb_all();
817 * paging_init() sets up the page tables, initialises the zone memory
818 * maps, and sets up the zero page, bad page and bad page tables.
820 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
824 build_mem_type_table();
825 sanity_check_meminfo(mi);
826 prepare_page_table(mi);
828 devicemaps_init(mdesc);
830 top_pmd = pmd_off_k(0xffff0000);
833 * allocate the zero page. Note that we count on this going ok.
835 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
836 memzero(zero_page, PAGE_SIZE);
837 empty_zero_page = virt_to_page(zero_page);
838 flush_dcache_page(empty_zero_page);
842 * In order to soft-boot, we need to insert a 1:1 mapping in place of
843 * the user-mode pages. This will then ensure that we have predictable
844 * results when turning the mmu off
846 void setup_mm_for_reboot(char mode)
848 unsigned long base_pmdval;
852 if (current->mm && current->mm->pgd)
853 pgd = current->mm->pgd;
857 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
858 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
859 base_pmdval |= PMD_BIT4;
861 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
862 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
865 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
866 pmd[0] = __pmd(pmdval);
867 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
868 flush_pmd_entry(pmd);