4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
34 #include <linux/suspend.h>
35 #include <linux/pagemap.h>
36 #include <linux/kthread.h>
37 #include <linux/poison.h>
38 #include <linux/proc_fs.h>
40 #include <asm/uaccess.h>
43 EXPORT_SYMBOL(journal_start);
44 EXPORT_SYMBOL(journal_restart);
45 EXPORT_SYMBOL(journal_extend);
46 EXPORT_SYMBOL(journal_stop);
47 EXPORT_SYMBOL(journal_lock_updates);
48 EXPORT_SYMBOL(journal_unlock_updates);
49 EXPORT_SYMBOL(journal_get_write_access);
50 EXPORT_SYMBOL(journal_get_create_access);
51 EXPORT_SYMBOL(journal_get_undo_access);
52 EXPORT_SYMBOL(journal_dirty_data);
53 EXPORT_SYMBOL(journal_dirty_metadata);
54 EXPORT_SYMBOL(journal_release_buffer);
55 EXPORT_SYMBOL(journal_forget);
57 EXPORT_SYMBOL(journal_sync_buffer);
59 EXPORT_SYMBOL(journal_flush);
60 EXPORT_SYMBOL(journal_revoke);
62 EXPORT_SYMBOL(journal_init_dev);
63 EXPORT_SYMBOL(journal_init_inode);
64 EXPORT_SYMBOL(journal_update_format);
65 EXPORT_SYMBOL(journal_check_used_features);
66 EXPORT_SYMBOL(journal_check_available_features);
67 EXPORT_SYMBOL(journal_set_features);
68 EXPORT_SYMBOL(journal_create);
69 EXPORT_SYMBOL(journal_load);
70 EXPORT_SYMBOL(journal_destroy);
71 EXPORT_SYMBOL(journal_update_superblock);
72 EXPORT_SYMBOL(journal_abort);
73 EXPORT_SYMBOL(journal_errno);
74 EXPORT_SYMBOL(journal_ack_err);
75 EXPORT_SYMBOL(journal_clear_err);
76 EXPORT_SYMBOL(log_wait_commit);
77 EXPORT_SYMBOL(journal_start_commit);
78 EXPORT_SYMBOL(journal_force_commit_nested);
79 EXPORT_SYMBOL(journal_wipe);
80 EXPORT_SYMBOL(journal_blocks_per_page);
81 EXPORT_SYMBOL(journal_invalidatepage);
82 EXPORT_SYMBOL(journal_try_to_free_buffers);
83 EXPORT_SYMBOL(journal_force_commit);
85 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
86 static void __journal_abort_soft (journal_t *journal, int errno);
89 * Helper function used to manage commit timeouts
92 static void commit_timeout(unsigned long __data)
94 struct task_struct * p = (struct task_struct *) __data;
100 * kjournald: The main thread function used to manage a logging device
103 * This kernel thread is responsible for two things:
105 * 1) COMMIT: Every so often we need to commit the current state of the
106 * filesystem to disk. The journal thread is responsible for writing
107 * all of the metadata buffers to disk.
109 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
110 * of the data in that part of the log has been rewritten elsewhere on
111 * the disk. Flushing these old buffers to reclaim space in the log is
112 * known as checkpointing, and this thread is responsible for that job.
115 static int kjournald(void *arg)
117 journal_t *journal = arg;
118 transaction_t *transaction;
121 * Set up an interval timer which can be used to trigger a commit wakeup
122 * after the commit interval expires
124 setup_timer(&journal->j_commit_timer, commit_timeout,
125 (unsigned long)current);
127 /* Record that the journal thread is running */
128 journal->j_task = current;
129 wake_up(&journal->j_wait_done_commit);
131 printk(KERN_INFO "kjournald starting. Commit interval %ld seconds\n",
132 journal->j_commit_interval / HZ);
135 * And now, wait forever for commit wakeup events.
137 spin_lock(&journal->j_state_lock);
140 if (journal->j_flags & JFS_UNMOUNT)
143 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
144 journal->j_commit_sequence, journal->j_commit_request);
146 if (journal->j_commit_sequence != journal->j_commit_request) {
147 jbd_debug(1, "OK, requests differ\n");
148 spin_unlock(&journal->j_state_lock);
149 del_timer_sync(&journal->j_commit_timer);
150 journal_commit_transaction(journal);
151 spin_lock(&journal->j_state_lock);
155 wake_up(&journal->j_wait_done_commit);
156 if (freezing(current)) {
158 * The simpler the better. Flushing journal isn't a
159 * good idea, because that depends on threads that may
160 * be already stopped.
162 jbd_debug(1, "Now suspending kjournald\n");
163 spin_unlock(&journal->j_state_lock);
165 spin_lock(&journal->j_state_lock);
168 * We assume on resume that commits are already there,
172 int should_sleep = 1;
174 prepare_to_wait(&journal->j_wait_commit, &wait,
176 if (journal->j_commit_sequence != journal->j_commit_request)
178 transaction = journal->j_running_transaction;
179 if (transaction && time_after_eq(jiffies,
180 transaction->t_expires))
182 if (journal->j_flags & JFS_UNMOUNT)
185 spin_unlock(&journal->j_state_lock);
187 spin_lock(&journal->j_state_lock);
189 finish_wait(&journal->j_wait_commit, &wait);
192 jbd_debug(1, "kjournald wakes\n");
195 * Were we woken up by a commit wakeup event?
197 transaction = journal->j_running_transaction;
198 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
199 journal->j_commit_request = transaction->t_tid;
200 jbd_debug(1, "woke because of timeout\n");
205 spin_unlock(&journal->j_state_lock);
206 del_timer_sync(&journal->j_commit_timer);
207 journal->j_task = NULL;
208 wake_up(&journal->j_wait_done_commit);
209 jbd_debug(1, "Journal thread exiting.\n");
213 static void journal_start_thread(journal_t *journal)
215 kthread_run(kjournald, journal, "kjournald");
216 wait_event(journal->j_wait_done_commit, journal->j_task != 0);
219 static void journal_kill_thread(journal_t *journal)
221 spin_lock(&journal->j_state_lock);
222 journal->j_flags |= JFS_UNMOUNT;
224 while (journal->j_task) {
225 wake_up(&journal->j_wait_commit);
226 spin_unlock(&journal->j_state_lock);
227 wait_event(journal->j_wait_done_commit, journal->j_task == 0);
228 spin_lock(&journal->j_state_lock);
230 spin_unlock(&journal->j_state_lock);
234 * journal_write_metadata_buffer: write a metadata buffer to the journal.
236 * Writes a metadata buffer to a given disk block. The actual IO is not
237 * performed but a new buffer_head is constructed which labels the data
238 * to be written with the correct destination disk block.
240 * Any magic-number escaping which needs to be done will cause a
241 * copy-out here. If the buffer happens to start with the
242 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
243 * magic number is only written to the log for descripter blocks. In
244 * this case, we copy the data and replace the first word with 0, and we
245 * return a result code which indicates that this buffer needs to be
246 * marked as an escaped buffer in the corresponding log descriptor
247 * block. The missing word can then be restored when the block is read
250 * If the source buffer has already been modified by a new transaction
251 * since we took the last commit snapshot, we use the frozen copy of
252 * that data for IO. If we end up using the existing buffer_head's data
253 * for the write, then we *have* to lock the buffer to prevent anyone
254 * else from using and possibly modifying it while the IO is in
257 * The function returns a pointer to the buffer_heads to be used for IO.
259 * We assume that the journal has already been locked in this function.
266 * Bit 0 set == escape performed on the data
267 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
270 int journal_write_metadata_buffer(transaction_t *transaction,
271 struct journal_head *jh_in,
272 struct journal_head **jh_out,
275 int need_copy_out = 0;
276 int done_copy_out = 0;
279 struct buffer_head *new_bh;
280 struct journal_head *new_jh;
281 struct page *new_page;
282 unsigned int new_offset;
283 struct buffer_head *bh_in = jh2bh(jh_in);
286 * The buffer really shouldn't be locked: only the current committing
287 * transaction is allowed to write it, so nobody else is allowed
290 * akpm: except if we're journalling data, and write() output is
291 * also part of a shared mapping, and another thread has
292 * decided to launch a writepage() against this buffer.
294 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
296 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
299 * If a new transaction has already done a buffer copy-out, then
300 * we use that version of the data for the commit.
302 jbd_lock_bh_state(bh_in);
304 if (jh_in->b_frozen_data) {
306 new_page = virt_to_page(jh_in->b_frozen_data);
307 new_offset = offset_in_page(jh_in->b_frozen_data);
309 new_page = jh2bh(jh_in)->b_page;
310 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
313 mapped_data = kmap_atomic(new_page, KM_USER0);
317 if (*((__be32 *)(mapped_data + new_offset)) ==
318 cpu_to_be32(JFS_MAGIC_NUMBER)) {
322 kunmap_atomic(mapped_data, KM_USER0);
325 * Do we need to do a data copy?
327 if (need_copy_out && !done_copy_out) {
330 jbd_unlock_bh_state(bh_in);
331 tmp = jbd_rep_kmalloc(bh_in->b_size, GFP_NOFS);
332 jbd_lock_bh_state(bh_in);
333 if (jh_in->b_frozen_data) {
338 jh_in->b_frozen_data = tmp;
339 mapped_data = kmap_atomic(new_page, KM_USER0);
340 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
341 kunmap_atomic(mapped_data, KM_USER0);
343 new_page = virt_to_page(tmp);
344 new_offset = offset_in_page(tmp);
349 * Did we need to do an escaping? Now we've done all the
350 * copying, we can finally do so.
353 mapped_data = kmap_atomic(new_page, KM_USER0);
354 *((unsigned int *)(mapped_data + new_offset)) = 0;
355 kunmap_atomic(mapped_data, KM_USER0);
358 /* keep subsequent assertions sane */
360 init_buffer(new_bh, NULL, NULL);
361 atomic_set(&new_bh->b_count, 1);
362 jbd_unlock_bh_state(bh_in);
364 new_jh = journal_add_journal_head(new_bh); /* This sleeps */
366 set_bh_page(new_bh, new_page, new_offset);
367 new_jh->b_transaction = NULL;
368 new_bh->b_size = jh2bh(jh_in)->b_size;
369 new_bh->b_bdev = transaction->t_journal->j_dev;
370 new_bh->b_blocknr = blocknr;
371 set_buffer_mapped(new_bh);
372 set_buffer_dirty(new_bh);
377 * The to-be-written buffer needs to get moved to the io queue,
378 * and the original buffer whose contents we are shadowing or
379 * copying is moved to the transaction's shadow queue.
381 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
382 journal_file_buffer(jh_in, transaction, BJ_Shadow);
383 JBUFFER_TRACE(new_jh, "file as BJ_IO");
384 journal_file_buffer(new_jh, transaction, BJ_IO);
386 return do_escape | (done_copy_out << 1);
390 * Allocation code for the journal file. Manage the space left in the
391 * journal, so that we can begin checkpointing when appropriate.
395 * __log_space_left: Return the number of free blocks left in the journal.
397 * Called with the journal already locked.
399 * Called under j_state_lock
402 int __log_space_left(journal_t *journal)
404 int left = journal->j_free;
406 assert_spin_locked(&journal->j_state_lock);
409 * Be pessimistic here about the number of those free blocks which
410 * might be required for log descriptor control blocks.
413 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
415 left -= MIN_LOG_RESERVED_BLOCKS;
424 * Called under j_state_lock. Returns true if a transaction was started.
426 int __log_start_commit(journal_t *journal, tid_t target)
429 * Are we already doing a recent enough commit?
431 if (!tid_geq(journal->j_commit_request, target)) {
433 * We want a new commit: OK, mark the request and wakup the
434 * commit thread. We do _not_ do the commit ourselves.
437 journal->j_commit_request = target;
438 jbd_debug(1, "JBD: requesting commit %d/%d\n",
439 journal->j_commit_request,
440 journal->j_commit_sequence);
441 wake_up(&journal->j_wait_commit);
447 int log_start_commit(journal_t *journal, tid_t tid)
451 spin_lock(&journal->j_state_lock);
452 ret = __log_start_commit(journal, tid);
453 spin_unlock(&journal->j_state_lock);
458 * Force and wait upon a commit if the calling process is not within
459 * transaction. This is used for forcing out undo-protected data which contains
460 * bitmaps, when the fs is running out of space.
462 * We can only force the running transaction if we don't have an active handle;
463 * otherwise, we will deadlock.
465 * Returns true if a transaction was started.
467 int journal_force_commit_nested(journal_t *journal)
469 transaction_t *transaction = NULL;
472 spin_lock(&journal->j_state_lock);
473 if (journal->j_running_transaction && !current->journal_info) {
474 transaction = journal->j_running_transaction;
475 __log_start_commit(journal, transaction->t_tid);
476 } else if (journal->j_committing_transaction)
477 transaction = journal->j_committing_transaction;
480 spin_unlock(&journal->j_state_lock);
481 return 0; /* Nothing to retry */
484 tid = transaction->t_tid;
485 spin_unlock(&journal->j_state_lock);
486 log_wait_commit(journal, tid);
491 * Start a commit of the current running transaction (if any). Returns true
492 * if a transaction was started, and fills its tid in at *ptid
494 int journal_start_commit(journal_t *journal, tid_t *ptid)
498 spin_lock(&journal->j_state_lock);
499 if (journal->j_running_transaction) {
500 tid_t tid = journal->j_running_transaction->t_tid;
502 ret = __log_start_commit(journal, tid);
505 } else if (journal->j_committing_transaction && ptid) {
507 * If ext3_write_super() recently started a commit, then we
508 * have to wait for completion of that transaction
510 *ptid = journal->j_committing_transaction->t_tid;
513 spin_unlock(&journal->j_state_lock);
518 * Wait for a specified commit to complete.
519 * The caller may not hold the journal lock.
521 int log_wait_commit(journal_t *journal, tid_t tid)
525 #ifdef CONFIG_JBD_DEBUG
526 spin_lock(&journal->j_state_lock);
527 if (!tid_geq(journal->j_commit_request, tid)) {
529 "%s: error: j_commit_request=%d, tid=%d\n",
530 __FUNCTION__, journal->j_commit_request, tid);
532 spin_unlock(&journal->j_state_lock);
534 spin_lock(&journal->j_state_lock);
535 while (tid_gt(tid, journal->j_commit_sequence)) {
536 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
537 tid, journal->j_commit_sequence);
538 wake_up(&journal->j_wait_commit);
539 spin_unlock(&journal->j_state_lock);
540 wait_event(journal->j_wait_done_commit,
541 !tid_gt(tid, journal->j_commit_sequence));
542 spin_lock(&journal->j_state_lock);
544 spin_unlock(&journal->j_state_lock);
546 if (unlikely(is_journal_aborted(journal))) {
547 printk(KERN_EMERG "journal commit I/O error\n");
554 * Log buffer allocation routines:
557 int journal_next_log_block(journal_t *journal, unsigned long *retp)
559 unsigned long blocknr;
561 spin_lock(&journal->j_state_lock);
562 J_ASSERT(journal->j_free > 1);
564 blocknr = journal->j_head;
567 if (journal->j_head == journal->j_last)
568 journal->j_head = journal->j_first;
569 spin_unlock(&journal->j_state_lock);
570 return journal_bmap(journal, blocknr, retp);
574 * Conversion of logical to physical block numbers for the journal
576 * On external journals the journal blocks are identity-mapped, so
577 * this is a no-op. If needed, we can use j_blk_offset - everything is
580 int journal_bmap(journal_t *journal, unsigned long blocknr,
586 if (journal->j_inode) {
587 ret = bmap(journal->j_inode, blocknr);
591 char b[BDEVNAME_SIZE];
593 printk(KERN_ALERT "%s: journal block not found "
594 "at offset %lu on %s\n",
597 bdevname(journal->j_dev, b));
599 __journal_abort_soft(journal, err);
602 *retp = blocknr; /* +journal->j_blk_offset */
608 * We play buffer_head aliasing tricks to write data/metadata blocks to
609 * the journal without copying their contents, but for journal
610 * descriptor blocks we do need to generate bona fide buffers.
612 * After the caller of journal_get_descriptor_buffer() has finished modifying
613 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
614 * But we don't bother doing that, so there will be coherency problems with
615 * mmaps of blockdevs which hold live JBD-controlled filesystems.
617 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
619 struct buffer_head *bh;
620 unsigned long blocknr;
623 err = journal_next_log_block(journal, &blocknr);
628 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
630 memset(bh->b_data, 0, journal->j_blocksize);
631 set_buffer_uptodate(bh);
633 BUFFER_TRACE(bh, "return this buffer");
634 return journal_add_journal_head(bh);
638 * Management for journal control blocks: functions to create and
639 * destroy journal_t structures, and to initialise and read existing
640 * journal blocks from disk. */
642 /* First: create and setup a journal_t object in memory. We initialise
643 * very few fields yet: that has to wait until we have created the
644 * journal structures from from scratch, or loaded them from disk. */
646 static journal_t * journal_init_common (void)
651 journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL);
654 memset(journal, 0, sizeof(*journal));
656 init_waitqueue_head(&journal->j_wait_transaction_locked);
657 init_waitqueue_head(&journal->j_wait_logspace);
658 init_waitqueue_head(&journal->j_wait_done_commit);
659 init_waitqueue_head(&journal->j_wait_checkpoint);
660 init_waitqueue_head(&journal->j_wait_commit);
661 init_waitqueue_head(&journal->j_wait_updates);
662 mutex_init(&journal->j_barrier);
663 mutex_init(&journal->j_checkpoint_mutex);
664 spin_lock_init(&journal->j_revoke_lock);
665 spin_lock_init(&journal->j_list_lock);
666 spin_lock_init(&journal->j_state_lock);
668 journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
670 /* The journal is marked for error until we succeed with recovery! */
671 journal->j_flags = JFS_ABORT;
673 /* Set up a default-sized revoke table for the new mount. */
674 err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
684 /* journal_init_dev and journal_init_inode:
686 * Create a journal structure assigned some fixed set of disk blocks to
687 * the journal. We don't actually touch those disk blocks yet, but we
688 * need to set up all of the mapping information to tell the journaling
689 * system where the journal blocks are.
694 * journal_t * journal_init_dev() - creates an initialises a journal structure
695 * @bdev: Block device on which to create the journal
696 * @fs_dev: Device which hold journalled filesystem for this journal.
697 * @start: Block nr Start of journal.
698 * @len: Lenght of the journal in blocks.
699 * @blocksize: blocksize of journalling device
700 * @returns: a newly created journal_t *
702 * journal_init_dev creates a journal which maps a fixed contiguous
703 * range of blocks on an arbitrary block device.
706 journal_t * journal_init_dev(struct block_device *bdev,
707 struct block_device *fs_dev,
708 int start, int len, int blocksize)
710 journal_t *journal = journal_init_common();
711 struct buffer_head *bh;
717 journal->j_dev = bdev;
718 journal->j_fs_dev = fs_dev;
719 journal->j_blk_offset = start;
720 journal->j_maxlen = len;
721 journal->j_blocksize = blocksize;
723 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
724 J_ASSERT(bh != NULL);
725 journal->j_sb_buffer = bh;
726 journal->j_superblock = (journal_superblock_t *)bh->b_data;
728 /* journal descriptor can store up to n blocks -bzzz */
729 n = journal->j_blocksize / sizeof(journal_block_tag_t);
730 journal->j_wbufsize = n;
731 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
732 if (!journal->j_wbuf) {
733 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
743 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
744 * @inode: An inode to create the journal in
746 * journal_init_inode creates a journal which maps an on-disk inode as
747 * the journal. The inode must exist already, must support bmap() and
748 * must have all data blocks preallocated.
750 journal_t * journal_init_inode (struct inode *inode)
752 struct buffer_head *bh;
753 journal_t *journal = journal_init_common();
756 unsigned long blocknr;
761 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
762 journal->j_inode = inode;
764 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
765 journal, inode->i_sb->s_id, inode->i_ino,
766 (long long) inode->i_size,
767 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
769 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
770 journal->j_blocksize = inode->i_sb->s_blocksize;
772 /* journal descriptor can store up to n blocks -bzzz */
773 n = journal->j_blocksize / sizeof(journal_block_tag_t);
774 journal->j_wbufsize = n;
775 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
776 if (!journal->j_wbuf) {
777 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
783 err = journal_bmap(journal, 0, &blocknr);
784 /* If that failed, give up */
786 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
792 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
793 J_ASSERT(bh != NULL);
794 journal->j_sb_buffer = bh;
795 journal->j_superblock = (journal_superblock_t *)bh->b_data;
801 * If the journal init or create aborts, we need to mark the journal
802 * superblock as being NULL to prevent the journal destroy from writing
803 * back a bogus superblock.
805 static void journal_fail_superblock (journal_t *journal)
807 struct buffer_head *bh = journal->j_sb_buffer;
809 journal->j_sb_buffer = NULL;
813 * Given a journal_t structure, initialise the various fields for
814 * startup of a new journaling session. We use this both when creating
815 * a journal, and after recovering an old journal to reset it for
819 static int journal_reset(journal_t *journal)
821 journal_superblock_t *sb = journal->j_superblock;
822 unsigned int first, last;
824 first = be32_to_cpu(sb->s_first);
825 last = be32_to_cpu(sb->s_maxlen);
827 journal->j_first = first;
828 journal->j_last = last;
830 journal->j_head = first;
831 journal->j_tail = first;
832 journal->j_free = last - first;
834 journal->j_tail_sequence = journal->j_transaction_sequence;
835 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
836 journal->j_commit_request = journal->j_commit_sequence;
838 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
840 /* Add the dynamic fields and write it to disk. */
841 journal_update_superblock(journal, 1);
842 journal_start_thread(journal);
847 * int journal_create() - Initialise the new journal file
848 * @journal: Journal to create. This structure must have been initialised
850 * Given a journal_t structure which tells us which disk blocks we can
851 * use, create a new journal superblock and initialise all of the
852 * journal fields from scratch.
854 int journal_create(journal_t *journal)
856 unsigned long blocknr;
857 struct buffer_head *bh;
858 journal_superblock_t *sb;
861 if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
862 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
864 journal_fail_superblock(journal);
868 if (journal->j_inode == NULL) {
870 * We don't know what block to start at!
873 "%s: creation of journal on external device!\n",
878 /* Zero out the entire journal on disk. We cannot afford to
879 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
880 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
881 for (i = 0; i < journal->j_maxlen; i++) {
882 err = journal_bmap(journal, i, &blocknr);
885 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
887 memset (bh->b_data, 0, journal->j_blocksize);
888 BUFFER_TRACE(bh, "marking dirty");
889 mark_buffer_dirty(bh);
890 BUFFER_TRACE(bh, "marking uptodate");
891 set_buffer_uptodate(bh);
896 sync_blockdev(journal->j_dev);
897 jbd_debug(1, "JBD: journal cleared.\n");
899 /* OK, fill in the initial static fields in the new superblock */
900 sb = journal->j_superblock;
902 sb->s_header.h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
903 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
905 sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
906 sb->s_maxlen = cpu_to_be32(journal->j_maxlen);
907 sb->s_first = cpu_to_be32(1);
909 journal->j_transaction_sequence = 1;
911 journal->j_flags &= ~JFS_ABORT;
912 journal->j_format_version = 2;
914 return journal_reset(journal);
918 * void journal_update_superblock() - Update journal sb on disk.
919 * @journal: The journal to update.
920 * @wait: Set to '0' if you don't want to wait for IO completion.
922 * Update a journal's dynamic superblock fields and write it to disk,
923 * optionally waiting for the IO to complete.
925 void journal_update_superblock(journal_t *journal, int wait)
927 journal_superblock_t *sb = journal->j_superblock;
928 struct buffer_head *bh = journal->j_sb_buffer;
931 * As a special case, if the on-disk copy is already marked as needing
932 * no recovery (s_start == 0) and there are no outstanding transactions
933 * in the filesystem, then we can safely defer the superblock update
934 * until the next commit by setting JFS_FLUSHED. This avoids
935 * attempting a write to a potential-readonly device.
937 if (sb->s_start == 0 && journal->j_tail_sequence ==
938 journal->j_transaction_sequence) {
939 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
940 "(start %ld, seq %d, errno %d)\n",
941 journal->j_tail, journal->j_tail_sequence,
946 spin_lock(&journal->j_state_lock);
947 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
948 journal->j_tail, journal->j_tail_sequence, journal->j_errno);
950 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
951 sb->s_start = cpu_to_be32(journal->j_tail);
952 sb->s_errno = cpu_to_be32(journal->j_errno);
953 spin_unlock(&journal->j_state_lock);
955 BUFFER_TRACE(bh, "marking dirty");
956 mark_buffer_dirty(bh);
958 sync_dirty_buffer(bh);
960 ll_rw_block(SWRITE, 1, &bh);
963 /* If we have just flushed the log (by marking s_start==0), then
964 * any future commit will have to be careful to update the
965 * superblock again to re-record the true start of the log. */
967 spin_lock(&journal->j_state_lock);
969 journal->j_flags &= ~JFS_FLUSHED;
971 journal->j_flags |= JFS_FLUSHED;
972 spin_unlock(&journal->j_state_lock);
976 * Read the superblock for a given journal, performing initial
977 * validation of the format.
980 static int journal_get_superblock(journal_t *journal)
982 struct buffer_head *bh;
983 journal_superblock_t *sb;
986 bh = journal->j_sb_buffer;
988 J_ASSERT(bh != NULL);
989 if (!buffer_uptodate(bh)) {
990 ll_rw_block(READ, 1, &bh);
992 if (!buffer_uptodate(bh)) {
994 "JBD: IO error reading journal superblock\n");
999 sb = journal->j_superblock;
1003 if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1004 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1005 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1009 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1010 case JFS_SUPERBLOCK_V1:
1011 journal->j_format_version = 1;
1013 case JFS_SUPERBLOCK_V2:
1014 journal->j_format_version = 2;
1017 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1021 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1022 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1023 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1024 printk (KERN_WARNING "JBD: journal file too short\n");
1031 journal_fail_superblock(journal);
1036 * Load the on-disk journal superblock and read the key fields into the
1040 static int load_superblock(journal_t *journal)
1043 journal_superblock_t *sb;
1045 err = journal_get_superblock(journal);
1049 sb = journal->j_superblock;
1051 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1052 journal->j_tail = be32_to_cpu(sb->s_start);
1053 journal->j_first = be32_to_cpu(sb->s_first);
1054 journal->j_last = be32_to_cpu(sb->s_maxlen);
1055 journal->j_errno = be32_to_cpu(sb->s_errno);
1062 * int journal_load() - Read journal from disk.
1063 * @journal: Journal to act on.
1065 * Given a journal_t structure which tells us which disk blocks contain
1066 * a journal, read the journal from disk to initialise the in-memory
1069 int journal_load(journal_t *journal)
1073 err = load_superblock(journal);
1077 /* If this is a V2 superblock, then we have to check the
1078 * features flags on it. */
1080 if (journal->j_format_version >= 2) {
1081 journal_superblock_t *sb = journal->j_superblock;
1083 if ((sb->s_feature_ro_compat &
1084 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1085 (sb->s_feature_incompat &
1086 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1087 printk (KERN_WARNING
1088 "JBD: Unrecognised features on journal\n");
1093 /* Let the recovery code check whether it needs to recover any
1094 * data from the journal. */
1095 if (journal_recover(journal))
1096 goto recovery_error;
1098 /* OK, we've finished with the dynamic journal bits:
1099 * reinitialise the dynamic contents of the superblock in memory
1100 * and reset them on disk. */
1101 if (journal_reset(journal))
1102 goto recovery_error;
1104 journal->j_flags &= ~JFS_ABORT;
1105 journal->j_flags |= JFS_LOADED;
1109 printk (KERN_WARNING "JBD: recovery failed\n");
1114 * void journal_destroy() - Release a journal_t structure.
1115 * @journal: Journal to act on.
1117 * Release a journal_t structure once it is no longer in use by the
1120 void journal_destroy(journal_t *journal)
1122 /* Wait for the commit thread to wake up and die. */
1123 journal_kill_thread(journal);
1125 /* Force a final log commit */
1126 if (journal->j_running_transaction)
1127 journal_commit_transaction(journal);
1129 /* Force any old transactions to disk */
1131 /* Totally anal locking here... */
1132 spin_lock(&journal->j_list_lock);
1133 while (journal->j_checkpoint_transactions != NULL) {
1134 spin_unlock(&journal->j_list_lock);
1135 log_do_checkpoint(journal);
1136 spin_lock(&journal->j_list_lock);
1139 J_ASSERT(journal->j_running_transaction == NULL);
1140 J_ASSERT(journal->j_committing_transaction == NULL);
1141 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1142 spin_unlock(&journal->j_list_lock);
1144 /* We can now mark the journal as empty. */
1145 journal->j_tail = 0;
1146 journal->j_tail_sequence = ++journal->j_transaction_sequence;
1147 if (journal->j_sb_buffer) {
1148 journal_update_superblock(journal, 1);
1149 brelse(journal->j_sb_buffer);
1152 if (journal->j_inode)
1153 iput(journal->j_inode);
1154 if (journal->j_revoke)
1155 journal_destroy_revoke(journal);
1156 kfree(journal->j_wbuf);
1162 *int journal_check_used_features () - Check if features specified are used.
1163 * @journal: Journal to check.
1164 * @compat: bitmask of compatible features
1165 * @ro: bitmask of features that force read-only mount
1166 * @incompat: bitmask of incompatible features
1168 * Check whether the journal uses all of a given set of
1169 * features. Return true (non-zero) if it does.
1172 int journal_check_used_features (journal_t *journal, unsigned long compat,
1173 unsigned long ro, unsigned long incompat)
1175 journal_superblock_t *sb;
1177 if (!compat && !ro && !incompat)
1179 if (journal->j_format_version == 1)
1182 sb = journal->j_superblock;
1184 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1185 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1186 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1193 * int journal_check_available_features() - Check feature set in journalling layer
1194 * @journal: Journal to check.
1195 * @compat: bitmask of compatible features
1196 * @ro: bitmask of features that force read-only mount
1197 * @incompat: bitmask of incompatible features
1199 * Check whether the journaling code supports the use of
1200 * all of a given set of features on this journal. Return true
1201 * (non-zero) if it can. */
1203 int journal_check_available_features (journal_t *journal, unsigned long compat,
1204 unsigned long ro, unsigned long incompat)
1206 journal_superblock_t *sb;
1208 if (!compat && !ro && !incompat)
1211 sb = journal->j_superblock;
1213 /* We can support any known requested features iff the
1214 * superblock is in version 2. Otherwise we fail to support any
1215 * extended sb features. */
1217 if (journal->j_format_version != 2)
1220 if ((compat & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1221 (ro & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1222 (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1229 * int journal_set_features () - Mark a given journal feature in the superblock
1230 * @journal: Journal to act on.
1231 * @compat: bitmask of compatible features
1232 * @ro: bitmask of features that force read-only mount
1233 * @incompat: bitmask of incompatible features
1235 * Mark a given journal feature as present on the
1236 * superblock. Returns true if the requested features could be set.
1240 int journal_set_features (journal_t *journal, unsigned long compat,
1241 unsigned long ro, unsigned long incompat)
1243 journal_superblock_t *sb;
1245 if (journal_check_used_features(journal, compat, ro, incompat))
1248 if (!journal_check_available_features(journal, compat, ro, incompat))
1251 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1252 compat, ro, incompat);
1254 sb = journal->j_superblock;
1256 sb->s_feature_compat |= cpu_to_be32(compat);
1257 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1258 sb->s_feature_incompat |= cpu_to_be32(incompat);
1265 * int journal_update_format () - Update on-disk journal structure.
1266 * @journal: Journal to act on.
1268 * Given an initialised but unloaded journal struct, poke about in the
1269 * on-disk structure to update it to the most recent supported version.
1271 int journal_update_format (journal_t *journal)
1273 journal_superblock_t *sb;
1276 err = journal_get_superblock(journal);
1280 sb = journal->j_superblock;
1282 switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1283 case JFS_SUPERBLOCK_V2:
1285 case JFS_SUPERBLOCK_V1:
1286 return journal_convert_superblock_v1(journal, sb);
1293 static int journal_convert_superblock_v1(journal_t *journal,
1294 journal_superblock_t *sb)
1296 int offset, blocksize;
1297 struct buffer_head *bh;
1300 "JBD: Converting superblock from version 1 to 2.\n");
1302 /* Pre-initialise new fields to zero */
1303 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1304 blocksize = be32_to_cpu(sb->s_blocksize);
1305 memset(&sb->s_feature_compat, 0, blocksize-offset);
1307 sb->s_nr_users = cpu_to_be32(1);
1308 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1309 journal->j_format_version = 2;
1311 bh = journal->j_sb_buffer;
1312 BUFFER_TRACE(bh, "marking dirty");
1313 mark_buffer_dirty(bh);
1314 sync_dirty_buffer(bh);
1320 * int journal_flush () - Flush journal
1321 * @journal: Journal to act on.
1323 * Flush all data for a given journal to disk and empty the journal.
1324 * Filesystems can use this when remounting readonly to ensure that
1325 * recovery does not need to happen on remount.
1328 int journal_flush(journal_t *journal)
1331 transaction_t *transaction = NULL;
1332 unsigned long old_tail;
1334 spin_lock(&journal->j_state_lock);
1336 /* Force everything buffered to the log... */
1337 if (journal->j_running_transaction) {
1338 transaction = journal->j_running_transaction;
1339 __log_start_commit(journal, transaction->t_tid);
1340 } else if (journal->j_committing_transaction)
1341 transaction = journal->j_committing_transaction;
1343 /* Wait for the log commit to complete... */
1345 tid_t tid = transaction->t_tid;
1347 spin_unlock(&journal->j_state_lock);
1348 log_wait_commit(journal, tid);
1350 spin_unlock(&journal->j_state_lock);
1353 /* ...and flush everything in the log out to disk. */
1354 spin_lock(&journal->j_list_lock);
1355 while (!err && journal->j_checkpoint_transactions != NULL) {
1356 spin_unlock(&journal->j_list_lock);
1357 err = log_do_checkpoint(journal);
1358 spin_lock(&journal->j_list_lock);
1360 spin_unlock(&journal->j_list_lock);
1361 cleanup_journal_tail(journal);
1363 /* Finally, mark the journal as really needing no recovery.
1364 * This sets s_start==0 in the underlying superblock, which is
1365 * the magic code for a fully-recovered superblock. Any future
1366 * commits of data to the journal will restore the current
1368 spin_lock(&journal->j_state_lock);
1369 old_tail = journal->j_tail;
1370 journal->j_tail = 0;
1371 spin_unlock(&journal->j_state_lock);
1372 journal_update_superblock(journal, 1);
1373 spin_lock(&journal->j_state_lock);
1374 journal->j_tail = old_tail;
1376 J_ASSERT(!journal->j_running_transaction);
1377 J_ASSERT(!journal->j_committing_transaction);
1378 J_ASSERT(!journal->j_checkpoint_transactions);
1379 J_ASSERT(journal->j_head == journal->j_tail);
1380 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1381 spin_unlock(&journal->j_state_lock);
1386 * int journal_wipe() - Wipe journal contents
1387 * @journal: Journal to act on.
1388 * @write: flag (see below)
1390 * Wipe out all of the contents of a journal, safely. This will produce
1391 * a warning if the journal contains any valid recovery information.
1392 * Must be called between journal_init_*() and journal_load().
1394 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1395 * we merely suppress recovery.
1398 int journal_wipe(journal_t *journal, int write)
1400 journal_superblock_t *sb;
1403 J_ASSERT (!(journal->j_flags & JFS_LOADED));
1405 err = load_superblock(journal);
1409 sb = journal->j_superblock;
1411 if (!journal->j_tail)
1414 printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1415 write ? "Clearing" : "Ignoring");
1417 err = journal_skip_recovery(journal);
1419 journal_update_superblock(journal, 1);
1426 * journal_dev_name: format a character string to describe on what
1427 * device this journal is present.
1430 static const char *journal_dev_name(journal_t *journal, char *buffer)
1432 struct block_device *bdev;
1434 if (journal->j_inode)
1435 bdev = journal->j_inode->i_sb->s_bdev;
1437 bdev = journal->j_dev;
1439 return bdevname(bdev, buffer);
1443 * Journal abort has very specific semantics, which we describe
1444 * for journal abort.
1446 * Two internal function, which provide abort to te jbd layer
1451 * Quick version for internal journal use (doesn't lock the journal).
1452 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1453 * and don't attempt to make any other journal updates.
1455 void __journal_abort_hard(journal_t *journal)
1457 transaction_t *transaction;
1458 char b[BDEVNAME_SIZE];
1460 if (journal->j_flags & JFS_ABORT)
1463 printk(KERN_ERR "Aborting journal on device %s.\n",
1464 journal_dev_name(journal, b));
1466 spin_lock(&journal->j_state_lock);
1467 journal->j_flags |= JFS_ABORT;
1468 transaction = journal->j_running_transaction;
1470 __log_start_commit(journal, transaction->t_tid);
1471 spin_unlock(&journal->j_state_lock);
1474 /* Soft abort: record the abort error status in the journal superblock,
1475 * but don't do any other IO. */
1476 static void __journal_abort_soft (journal_t *journal, int errno)
1478 if (journal->j_flags & JFS_ABORT)
1481 if (!journal->j_errno)
1482 journal->j_errno = errno;
1484 __journal_abort_hard(journal);
1487 journal_update_superblock(journal, 1);
1491 * void journal_abort () - Shutdown the journal immediately.
1492 * @journal: the journal to shutdown.
1493 * @errno: an error number to record in the journal indicating
1494 * the reason for the shutdown.
1496 * Perform a complete, immediate shutdown of the ENTIRE
1497 * journal (not of a single transaction). This operation cannot be
1498 * undone without closing and reopening the journal.
1500 * The journal_abort function is intended to support higher level error
1501 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1504 * Journal abort has very specific semantics. Any existing dirty,
1505 * unjournaled buffers in the main filesystem will still be written to
1506 * disk by bdflush, but the journaling mechanism will be suspended
1507 * immediately and no further transaction commits will be honoured.
1509 * Any dirty, journaled buffers will be written back to disk without
1510 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1511 * filesystem, but we _do_ attempt to leave as much data as possible
1512 * behind for fsck to use for cleanup.
1514 * Any attempt to get a new transaction handle on a journal which is in
1515 * ABORT state will just result in an -EROFS error return. A
1516 * journal_stop on an existing handle will return -EIO if we have
1517 * entered abort state during the update.
1519 * Recursive transactions are not disturbed by journal abort until the
1520 * final journal_stop, which will receive the -EIO error.
1522 * Finally, the journal_abort call allows the caller to supply an errno
1523 * which will be recorded (if possible) in the journal superblock. This
1524 * allows a client to record failure conditions in the middle of a
1525 * transaction without having to complete the transaction to record the
1526 * failure to disk. ext3_error, for example, now uses this
1529 * Errors which originate from within the journaling layer will NOT
1530 * supply an errno; a null errno implies that absolutely no further
1531 * writes are done to the journal (unless there are any already in
1536 void journal_abort(journal_t *journal, int errno)
1538 __journal_abort_soft(journal, errno);
1542 * int journal_errno () - returns the journal's error state.
1543 * @journal: journal to examine.
1545 * This is the errno numbet set with journal_abort(), the last
1546 * time the journal was mounted - if the journal was stopped
1547 * without calling abort this will be 0.
1549 * If the journal has been aborted on this mount time -EROFS will
1552 int journal_errno(journal_t *journal)
1556 spin_lock(&journal->j_state_lock);
1557 if (journal->j_flags & JFS_ABORT)
1560 err = journal->j_errno;
1561 spin_unlock(&journal->j_state_lock);
1566 * int journal_clear_err () - clears the journal's error state
1567 * @journal: journal to act on.
1569 * An error must be cleared or Acked to take a FS out of readonly
1572 int journal_clear_err(journal_t *journal)
1576 spin_lock(&journal->j_state_lock);
1577 if (journal->j_flags & JFS_ABORT)
1580 journal->j_errno = 0;
1581 spin_unlock(&journal->j_state_lock);
1586 * void journal_ack_err() - Ack journal err.
1587 * @journal: journal to act on.
1589 * An error must be cleared or Acked to take a FS out of readonly
1592 void journal_ack_err(journal_t *journal)
1594 spin_lock(&journal->j_state_lock);
1595 if (journal->j_errno)
1596 journal->j_flags |= JFS_ACK_ERR;
1597 spin_unlock(&journal->j_state_lock);
1600 int journal_blocks_per_page(struct inode *inode)
1602 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1606 * Simple support for retrying memory allocations. Introduced to help to
1607 * debug different VM deadlock avoidance strategies.
1609 void * __jbd_kmalloc (const char *where, size_t size, gfp_t flags, int retry)
1611 return kmalloc(size, flags | (retry ? __GFP_NOFAIL : 0));
1615 * Journal_head storage management
1617 static kmem_cache_t *journal_head_cache;
1618 #ifdef CONFIG_JBD_DEBUG
1619 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1622 static int journal_init_journal_head_cache(void)
1626 J_ASSERT(journal_head_cache == 0);
1627 journal_head_cache = kmem_cache_create("journal_head",
1628 sizeof(struct journal_head),
1634 if (journal_head_cache == 0) {
1636 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1641 static void journal_destroy_journal_head_cache(void)
1643 J_ASSERT(journal_head_cache != NULL);
1644 kmem_cache_destroy(journal_head_cache);
1645 journal_head_cache = NULL;
1649 * journal_head splicing and dicing
1651 static struct journal_head *journal_alloc_journal_head(void)
1653 struct journal_head *ret;
1654 static unsigned long last_warning;
1656 #ifdef CONFIG_JBD_DEBUG
1657 atomic_inc(&nr_journal_heads);
1659 ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1661 jbd_debug(1, "out of memory for journal_head\n");
1662 if (time_after(jiffies, last_warning + 5*HZ)) {
1663 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1665 last_warning = jiffies;
1669 ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1675 static void journal_free_journal_head(struct journal_head *jh)
1677 #ifdef CONFIG_JBD_DEBUG
1678 atomic_dec(&nr_journal_heads);
1679 memset(jh, JBD_POISON_FREE, sizeof(*jh));
1681 kmem_cache_free(journal_head_cache, jh);
1685 * A journal_head is attached to a buffer_head whenever JBD has an
1686 * interest in the buffer.
1688 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1689 * is set. This bit is tested in core kernel code where we need to take
1690 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1693 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1695 * When a buffer has its BH_JBD bit set it is immune from being released by
1696 * core kernel code, mainly via ->b_count.
1698 * A journal_head may be detached from its buffer_head when the journal_head's
1699 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1700 * Various places in JBD call journal_remove_journal_head() to indicate that the
1701 * journal_head can be dropped if needed.
1703 * Various places in the kernel want to attach a journal_head to a buffer_head
1704 * _before_ attaching the journal_head to a transaction. To protect the
1705 * journal_head in this situation, journal_add_journal_head elevates the
1706 * journal_head's b_jcount refcount by one. The caller must call
1707 * journal_put_journal_head() to undo this.
1709 * So the typical usage would be:
1711 * (Attach a journal_head if needed. Increments b_jcount)
1712 * struct journal_head *jh = journal_add_journal_head(bh);
1714 * jh->b_transaction = xxx;
1715 * journal_put_journal_head(jh);
1717 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1718 * because it has a non-zero b_transaction.
1722 * Give a buffer_head a journal_head.
1724 * Doesn't need the journal lock.
1727 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1729 struct journal_head *jh;
1730 struct journal_head *new_jh = NULL;
1733 if (!buffer_jbd(bh)) {
1734 new_jh = journal_alloc_journal_head();
1735 memset(new_jh, 0, sizeof(*new_jh));
1738 jbd_lock_bh_journal_head(bh);
1739 if (buffer_jbd(bh)) {
1743 (atomic_read(&bh->b_count) > 0) ||
1744 (bh->b_page && bh->b_page->mapping));
1747 jbd_unlock_bh_journal_head(bh);
1752 new_jh = NULL; /* We consumed it */
1757 BUFFER_TRACE(bh, "added journal_head");
1760 jbd_unlock_bh_journal_head(bh);
1762 journal_free_journal_head(new_jh);
1763 return bh->b_private;
1767 * Grab a ref against this buffer_head's journal_head. If it ended up not
1768 * having a journal_head, return NULL
1770 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1772 struct journal_head *jh = NULL;
1774 jbd_lock_bh_journal_head(bh);
1775 if (buffer_jbd(bh)) {
1779 jbd_unlock_bh_journal_head(bh);
1783 static void __journal_remove_journal_head(struct buffer_head *bh)
1785 struct journal_head *jh = bh2jh(bh);
1787 J_ASSERT_JH(jh, jh->b_jcount >= 0);
1790 if (jh->b_jcount == 0) {
1791 if (jh->b_transaction == NULL &&
1792 jh->b_next_transaction == NULL &&
1793 jh->b_cp_transaction == NULL) {
1794 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1795 J_ASSERT_BH(bh, buffer_jbd(bh));
1796 J_ASSERT_BH(bh, jh2bh(jh) == bh);
1797 BUFFER_TRACE(bh, "remove journal_head");
1798 if (jh->b_frozen_data) {
1799 printk(KERN_WARNING "%s: freeing "
1802 kfree(jh->b_frozen_data);
1804 if (jh->b_committed_data) {
1805 printk(KERN_WARNING "%s: freeing "
1806 "b_committed_data\n",
1808 kfree(jh->b_committed_data);
1810 bh->b_private = NULL;
1811 jh->b_bh = NULL; /* debug, really */
1812 clear_buffer_jbd(bh);
1814 journal_free_journal_head(jh);
1816 BUFFER_TRACE(bh, "journal_head was locked");
1822 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1823 * and has a zero b_jcount then remove and release its journal_head. If we did
1824 * see that the buffer is not used by any transaction we also "logically"
1825 * decrement ->b_count.
1827 * We in fact take an additional increment on ->b_count as a convenience,
1828 * because the caller usually wants to do additional things with the bh
1829 * after calling here.
1830 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1831 * time. Once the caller has run __brelse(), the buffer is eligible for
1832 * reaping by try_to_free_buffers().
1834 void journal_remove_journal_head(struct buffer_head *bh)
1836 jbd_lock_bh_journal_head(bh);
1837 __journal_remove_journal_head(bh);
1838 jbd_unlock_bh_journal_head(bh);
1842 * Drop a reference on the passed journal_head. If it fell to zero then try to
1843 * release the journal_head from the buffer_head.
1845 void journal_put_journal_head(struct journal_head *jh)
1847 struct buffer_head *bh = jh2bh(jh);
1849 jbd_lock_bh_journal_head(bh);
1850 J_ASSERT_JH(jh, jh->b_jcount > 0);
1852 if (!jh->b_jcount && !jh->b_transaction) {
1853 __journal_remove_journal_head(bh);
1856 jbd_unlock_bh_journal_head(bh);
1862 #if defined(CONFIG_JBD_DEBUG)
1863 int journal_enable_debug;
1864 EXPORT_SYMBOL(journal_enable_debug);
1867 #if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS)
1869 static struct proc_dir_entry *proc_jbd_debug;
1871 static int read_jbd_debug(char *page, char **start, off_t off,
1872 int count, int *eof, void *data)
1876 ret = sprintf(page + off, "%d\n", journal_enable_debug);
1881 static int write_jbd_debug(struct file *file, const char __user *buffer,
1882 unsigned long count, void *data)
1886 if (count > ARRAY_SIZE(buf) - 1)
1887 count = ARRAY_SIZE(buf) - 1;
1888 if (copy_from_user(buf, buffer, count))
1890 buf[ARRAY_SIZE(buf) - 1] = '\0';
1891 journal_enable_debug = simple_strtoul(buf, NULL, 10);
1895 #define JBD_PROC_NAME "sys/fs/jbd-debug"
1897 static void __init create_jbd_proc_entry(void)
1899 proc_jbd_debug = create_proc_entry(JBD_PROC_NAME, 0644, NULL);
1900 if (proc_jbd_debug) {
1901 /* Why is this so hard? */
1902 proc_jbd_debug->read_proc = read_jbd_debug;
1903 proc_jbd_debug->write_proc = write_jbd_debug;
1907 static void __exit remove_jbd_proc_entry(void)
1910 remove_proc_entry(JBD_PROC_NAME, NULL);
1915 #define create_jbd_proc_entry() do {} while (0)
1916 #define remove_jbd_proc_entry() do {} while (0)
1920 kmem_cache_t *jbd_handle_cache;
1922 static int __init journal_init_handle_cache(void)
1924 jbd_handle_cache = kmem_cache_create("journal_handle",
1930 if (jbd_handle_cache == NULL) {
1931 printk(KERN_EMERG "JBD: failed to create handle cache\n");
1937 static void journal_destroy_handle_cache(void)
1939 if (jbd_handle_cache)
1940 kmem_cache_destroy(jbd_handle_cache);
1944 * Module startup and shutdown
1947 static int __init journal_init_caches(void)
1951 ret = journal_init_revoke_caches();
1953 ret = journal_init_journal_head_cache();
1955 ret = journal_init_handle_cache();
1959 static void journal_destroy_caches(void)
1961 journal_destroy_revoke_caches();
1962 journal_destroy_journal_head_cache();
1963 journal_destroy_handle_cache();
1966 static int __init journal_init(void)
1970 /* Static check for data structure consistency. There's no code
1971 * invoked --- we'll just get a linker failure if things aren't right.
1973 extern void journal_bad_superblock_size(void);
1974 if (sizeof(struct journal_superblock_s) != 1024)
1975 journal_bad_superblock_size();
1978 ret = journal_init_caches();
1980 journal_destroy_caches();
1981 create_jbd_proc_entry();
1985 static void __exit journal_exit(void)
1987 #ifdef CONFIG_JBD_DEBUG
1988 int n = atomic_read(&nr_journal_heads);
1990 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
1992 remove_jbd_proc_entry();
1993 journal_destroy_caches();
1996 MODULE_LICENSE("GPL");
1997 module_init(journal_init);
1998 module_exit(journal_exit);