2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
28 * Code from fib_hash has been reused which includes the following header:
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
35 * IPv4 FIB: lookup engine and maintenance routines.
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
45 * Substantial contributions to this work comes from:
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
53 #define VERSION "0.408"
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <linux/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/net_namespace.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
85 #define MAX_STAT_DEPTH 32
87 #define KEYLENGTH (8*sizeof(t_key))
89 typedef unsigned int t_key;
93 #define NODE_TYPE_MASK 0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
100 unsigned long parent;
105 unsigned long parent;
107 struct hlist_head list;
112 struct hlist_node hlist;
115 struct list_head falh;
119 unsigned long parent;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
127 struct work_struct work;
129 struct node *child[0];
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
144 unsigned int totdepth;
145 unsigned int maxdepth;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
160 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
163 static struct node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
167 static struct kmem_cache *fn_alias_kmem __read_mostly;
168 static struct kmem_cache *trie_leaf_kmem __read_mostly;
170 static inline struct tnode *node_parent(struct node *node)
172 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
175 static inline struct tnode *node_parent_rcu(struct node *node)
177 struct tnode *ret = node_parent(node);
179 return rcu_dereference(ret);
182 /* Same as rcu_assign_pointer
183 * but that macro() assumes that value is a pointer.
185 static inline void node_set_parent(struct node *node, struct tnode *ptr)
188 node->parent = (unsigned long)ptr | NODE_TYPE(node);
191 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
193 BUG_ON(i >= 1U << tn->bits);
198 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
200 struct node *ret = tnode_get_child(tn, i);
202 return rcu_dereference(ret);
205 static inline int tnode_child_length(const struct tnode *tn)
207 return 1 << tn->bits;
210 static inline t_key mask_pfx(t_key k, unsigned short l)
212 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
215 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
217 if (offset < KEYLENGTH)
218 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
223 static inline int tkey_equals(t_key a, t_key b)
228 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
230 if (bits == 0 || offset >= KEYLENGTH)
232 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
233 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
236 static inline int tkey_mismatch(t_key a, int offset, t_key b)
243 while ((diff << i) >> (KEYLENGTH-1) == 0)
249 To understand this stuff, an understanding of keys and all their bits is
250 necessary. Every node in the trie has a key associated with it, but not
251 all of the bits in that key are significant.
253 Consider a node 'n' and its parent 'tp'.
255 If n is a leaf, every bit in its key is significant. Its presence is
256 necessitated by path compression, since during a tree traversal (when
257 searching for a leaf - unless we are doing an insertion) we will completely
258 ignore all skipped bits we encounter. Thus we need to verify, at the end of
259 a potentially successful search, that we have indeed been walking the
262 Note that we can never "miss" the correct key in the tree if present by
263 following the wrong path. Path compression ensures that segments of the key
264 that are the same for all keys with a given prefix are skipped, but the
265 skipped part *is* identical for each node in the subtrie below the skipped
266 bit! trie_insert() in this implementation takes care of that - note the
267 call to tkey_sub_equals() in trie_insert().
269 if n is an internal node - a 'tnode' here, the various parts of its key
270 have many different meanings.
273 _________________________________________________________________
274 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
275 -----------------------------------------------------------------
276 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
278 _________________________________________________________________
279 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
280 -----------------------------------------------------------------
281 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
288 First, let's just ignore the bits that come before the parent tp, that is
289 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
290 not use them for anything.
292 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
293 index into the parent's child array. That is, they will be used to find
294 'n' among tp's children.
296 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
299 All the bits we have seen so far are significant to the node n. The rest
300 of the bits are really not needed or indeed known in n->key.
302 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
303 n's child array, and will of course be different for each child.
306 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
311 static inline void check_tnode(const struct tnode *tn)
313 WARN_ON(tn && tn->pos+tn->bits > 32);
316 static const int halve_threshold = 25;
317 static const int inflate_threshold = 50;
318 static const int halve_threshold_root = 8;
319 static const int inflate_threshold_root = 15;
322 static void __alias_free_mem(struct rcu_head *head)
324 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
325 kmem_cache_free(fn_alias_kmem, fa);
328 static inline void alias_free_mem_rcu(struct fib_alias *fa)
330 call_rcu(&fa->rcu, __alias_free_mem);
333 static void __leaf_free_rcu(struct rcu_head *head)
335 struct leaf *l = container_of(head, struct leaf, rcu);
336 kmem_cache_free(trie_leaf_kmem, l);
339 static inline void free_leaf(struct leaf *l)
341 call_rcu_bh(&l->rcu, __leaf_free_rcu);
344 static void __leaf_info_free_rcu(struct rcu_head *head)
346 kfree(container_of(head, struct leaf_info, rcu));
349 static inline void free_leaf_info(struct leaf_info *leaf)
351 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
354 static struct tnode *tnode_alloc(size_t size)
356 if (size <= PAGE_SIZE)
357 return kzalloc(size, GFP_KERNEL);
359 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
362 static void __tnode_vfree(struct work_struct *arg)
364 struct tnode *tn = container_of(arg, struct tnode, work);
368 static void __tnode_free_rcu(struct rcu_head *head)
370 struct tnode *tn = container_of(head, struct tnode, rcu);
371 size_t size = sizeof(struct tnode) +
372 (sizeof(struct node *) << tn->bits);
374 if (size <= PAGE_SIZE)
377 INIT_WORK(&tn->work, __tnode_vfree);
378 schedule_work(&tn->work);
382 static inline void tnode_free(struct tnode *tn)
385 free_leaf((struct leaf *) tn);
387 call_rcu(&tn->rcu, __tnode_free_rcu);
390 static struct leaf *leaf_new(void)
392 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
395 INIT_HLIST_HEAD(&l->list);
400 static struct leaf_info *leaf_info_new(int plen)
402 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
405 INIT_LIST_HEAD(&li->falh);
410 static struct tnode *tnode_new(t_key key, int pos, int bits)
412 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
413 struct tnode *tn = tnode_alloc(sz);
416 tn->parent = T_TNODE;
420 tn->full_children = 0;
421 tn->empty_children = 1<<bits;
424 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
425 (unsigned long) (sizeof(struct node) << bits));
430 * Check whether a tnode 'n' is "full", i.e. it is an internal node
431 * and no bits are skipped. See discussion in dyntree paper p. 6
434 static inline int tnode_full(const struct tnode *tn, const struct node *n)
436 if (n == NULL || IS_LEAF(n))
439 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
442 static inline void put_child(struct trie *t, struct tnode *tn, int i,
445 tnode_put_child_reorg(tn, i, n, -1);
449 * Add a child at position i overwriting the old value.
450 * Update the value of full_children and empty_children.
453 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
456 struct node *chi = tn->child[i];
459 BUG_ON(i >= 1<<tn->bits);
461 /* update emptyChildren */
462 if (n == NULL && chi != NULL)
463 tn->empty_children++;
464 else if (n != NULL && chi == NULL)
465 tn->empty_children--;
467 /* update fullChildren */
469 wasfull = tnode_full(tn, chi);
471 isfull = tnode_full(tn, n);
472 if (wasfull && !isfull)
474 else if (!wasfull && isfull)
478 node_set_parent(n, tn);
480 rcu_assign_pointer(tn->child[i], n);
483 static struct node *resize(struct trie *t, struct tnode *tn)
487 struct tnode *old_tn;
488 int inflate_threshold_use;
489 int halve_threshold_use;
495 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
496 tn, inflate_threshold, halve_threshold);
499 if (tn->empty_children == tnode_child_length(tn)) {
504 if (tn->empty_children == tnode_child_length(tn) - 1)
505 for (i = 0; i < tnode_child_length(tn); i++) {
512 /* compress one level */
513 node_set_parent(n, NULL);
518 * Double as long as the resulting node has a number of
519 * nonempty nodes that are above the threshold.
523 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
524 * the Helsinki University of Technology and Matti Tikkanen of Nokia
525 * Telecommunications, page 6:
526 * "A node is doubled if the ratio of non-empty children to all
527 * children in the *doubled* node is at least 'high'."
529 * 'high' in this instance is the variable 'inflate_threshold'. It
530 * is expressed as a percentage, so we multiply it with
531 * tnode_child_length() and instead of multiplying by 2 (since the
532 * child array will be doubled by inflate()) and multiplying
533 * the left-hand side by 100 (to handle the percentage thing) we
534 * multiply the left-hand side by 50.
536 * The left-hand side may look a bit weird: tnode_child_length(tn)
537 * - tn->empty_children is of course the number of non-null children
538 * in the current node. tn->full_children is the number of "full"
539 * children, that is non-null tnodes with a skip value of 0.
540 * All of those will be doubled in the resulting inflated tnode, so
541 * we just count them one extra time here.
543 * A clearer way to write this would be:
545 * to_be_doubled = tn->full_children;
546 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
549 * new_child_length = tnode_child_length(tn) * 2;
551 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
553 * if (new_fill_factor >= inflate_threshold)
555 * ...and so on, tho it would mess up the while () loop.
558 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
562 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
563 * inflate_threshold * new_child_length
565 * expand not_to_be_doubled and to_be_doubled, and shorten:
566 * 100 * (tnode_child_length(tn) - tn->empty_children +
567 * tn->full_children) >= inflate_threshold * new_child_length
569 * expand new_child_length:
570 * 100 * (tnode_child_length(tn) - tn->empty_children +
571 * tn->full_children) >=
572 * inflate_threshold * tnode_child_length(tn) * 2
575 * 50 * (tn->full_children + tnode_child_length(tn) -
576 * tn->empty_children) >= inflate_threshold *
577 * tnode_child_length(tn)
583 /* Keep root node larger */
586 inflate_threshold_use = inflate_threshold_root;
588 inflate_threshold_use = inflate_threshold;
592 while ((tn->full_children > 0 && max_resize-- &&
593 50 * (tn->full_children + tnode_child_length(tn)
594 - tn->empty_children)
595 >= inflate_threshold_use * tnode_child_length(tn))) {
602 #ifdef CONFIG_IP_FIB_TRIE_STATS
603 t->stats.resize_node_skipped++;
609 if (max_resize < 0) {
611 pr_warning("Fix inflate_threshold_root."
612 " Now=%d size=%d bits\n",
613 inflate_threshold_root, tn->bits);
615 pr_warning("Fix inflate_threshold."
616 " Now=%d size=%d bits\n",
617 inflate_threshold, tn->bits);
623 * Halve as long as the number of empty children in this
624 * node is above threshold.
628 /* Keep root node larger */
631 halve_threshold_use = halve_threshold_root;
633 halve_threshold_use = halve_threshold;
637 while (tn->bits > 1 && max_resize-- &&
638 100 * (tnode_child_length(tn) - tn->empty_children) <
639 halve_threshold_use * tnode_child_length(tn)) {
645 #ifdef CONFIG_IP_FIB_TRIE_STATS
646 t->stats.resize_node_skipped++;
652 if (max_resize < 0) {
654 pr_warning("Fix halve_threshold_root."
655 " Now=%d size=%d bits\n",
656 halve_threshold_root, tn->bits);
658 pr_warning("Fix halve_threshold."
659 " Now=%d size=%d bits\n",
660 halve_threshold, tn->bits);
663 /* Only one child remains */
664 if (tn->empty_children == tnode_child_length(tn) - 1)
665 for (i = 0; i < tnode_child_length(tn); i++) {
672 /* compress one level */
674 node_set_parent(n, NULL);
679 return (struct node *) tn;
682 static struct tnode *inflate(struct trie *t, struct tnode *tn)
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
688 pr_debug("In inflate\n");
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
693 return ERR_PTR(-ENOMEM);
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
699 * of tnode is ignored.
702 for (i = 0; i < olen; i++) {
705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
708 inode->pos == oldtnode->pos + oldtnode->bits &&
710 struct tnode *left, *right;
711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
718 right = tnode_new(inode->key|m, inode->pos + 1,
726 put_child(t, tn, 2*i, (struct node *) left);
727 put_child(t, tn, 2*i+1, (struct node *) right);
731 for (i = 0; i < olen; i++) {
733 struct node *node = tnode_get_child(oldtnode, i);
734 struct tnode *left, *right;
741 /* A leaf or an internal node with skipped bits */
743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
744 tn->pos + tn->bits - 1) {
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
748 put_child(t, tn, 2*i, node);
750 put_child(t, tn, 2*i+1, node);
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
765 /* An internal node with more than two children */
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
784 /* Use the old key, but set the new significant
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
808 tnode_free(oldtnode);
812 int size = tnode_child_length(tn);
815 for (j = 0; j < size; j++)
817 tnode_free((struct tnode *)tn->child[j]);
821 return ERR_PTR(-ENOMEM);
825 static struct tnode *halve(struct trie *t, struct tnode *tn)
827 struct tnode *oldtnode = tn;
828 struct node *left, *right;
830 int olen = tnode_child_length(tn);
832 pr_debug("In halve\n");
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
837 return ERR_PTR(-ENOMEM);
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
843 * of tnode is ignored.
846 for (i = 0; i < olen; i += 2) {
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
850 /* Two nonempty children */
854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
859 put_child(t, tn, i/2, (struct node *)newn);
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
870 /* At least one of the children is empty */
872 if (right == NULL) /* Both are empty */
874 put_child(t, tn, i/2, right);
879 put_child(t, tn, i/2, left);
883 /* Two nonempty children */
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
890 tnode_free(oldtnode);
894 int size = tnode_child_length(tn);
897 for (j = 0; j < size; j++)
899 tnode_free((struct tnode *)tn->child[j]);
903 return ERR_PTR(-ENOMEM);
907 /* readside must use rcu_read_lock currently dump routines
908 via get_fa_head and dump */
910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
912 struct hlist_head *head = &l->list;
913 struct hlist_node *node;
914 struct leaf_info *li;
916 hlist_for_each_entry_rcu(li, node, head, hlist)
917 if (li->plen == plen)
923 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
925 struct leaf_info *li = find_leaf_info(l, plen);
933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
954 /* rcu_read_lock needs to be hold by caller from readside */
957 fib_find_node(struct trie *t, u32 key)
964 n = rcu_dereference(t->trie);
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
972 pos = tn->pos + tn->bits;
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
980 /* Case we have found a leaf. Compare prefixes */
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
988 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
991 t_key cindex, key = tn->key;
994 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
995 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
996 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
997 tn = (struct tnode *) resize(t, (struct tnode *)tn);
999 tnode_put_child_reorg((struct tnode *)tp, cindex,
1000 (struct node *)tn, wasfull);
1002 tp = node_parent((struct node *) tn);
1008 /* Handle last (top) tnode */
1010 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1012 return (struct node *)tn;
1015 /* only used from updater-side */
1017 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1020 struct tnode *tp = NULL, *tn = NULL;
1024 struct list_head *fa_head = NULL;
1025 struct leaf_info *li;
1031 /* If we point to NULL, stop. Either the tree is empty and we should
1032 * just put a new leaf in if, or we have reached an empty child slot,
1033 * and we should just put our new leaf in that.
1034 * If we point to a T_TNODE, check if it matches our key. Note that
1035 * a T_TNODE might be skipping any number of bits - its 'pos' need
1036 * not be the parent's 'pos'+'bits'!
1038 * If it does match the current key, get pos/bits from it, extract
1039 * the index from our key, push the T_TNODE and walk the tree.
1041 * If it doesn't, we have to replace it with a new T_TNODE.
1043 * If we point to a T_LEAF, it might or might not have the same key
1044 * as we do. If it does, just change the value, update the T_LEAF's
1045 * value, and return it.
1046 * If it doesn't, we need to replace it with a T_TNODE.
1049 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1050 tn = (struct tnode *) n;
1054 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1056 pos = tn->pos + tn->bits;
1057 n = tnode_get_child(tn,
1058 tkey_extract_bits(key,
1062 BUG_ON(n && node_parent(n) != tn);
1068 * n ----> NULL, LEAF or TNODE
1070 * tp is n's (parent) ----> NULL or TNODE
1073 BUG_ON(tp && IS_LEAF(tp));
1075 /* Case 1: n is a leaf. Compare prefixes */
1077 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1078 l = (struct leaf *) n;
1079 li = leaf_info_new(plen);
1084 fa_head = &li->falh;
1085 insert_leaf_info(&l->list, li);
1094 li = leaf_info_new(plen);
1101 fa_head = &li->falh;
1102 insert_leaf_info(&l->list, li);
1104 if (t->trie && n == NULL) {
1105 /* Case 2: n is NULL, and will just insert a new leaf */
1107 node_set_parent((struct node *)l, tp);
1109 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1110 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1112 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1114 * Add a new tnode here
1115 * first tnode need some special handling
1119 pos = tp->pos+tp->bits;
1124 newpos = tkey_mismatch(key, pos, n->key);
1125 tn = tnode_new(n->key, newpos, 1);
1128 tn = tnode_new(key, newpos, 1); /* First tnode */
1137 node_set_parent((struct node *)tn, tp);
1139 missbit = tkey_extract_bits(key, newpos, 1);
1140 put_child(t, tn, missbit, (struct node *)l);
1141 put_child(t, tn, 1-missbit, n);
1144 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1145 put_child(t, (struct tnode *)tp, cindex,
1148 rcu_assign_pointer(t->trie, (struct node *)tn);
1153 if (tp && tp->pos + tp->bits > 32)
1154 pr_warning("fib_trie"
1155 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1156 tp, tp->pos, tp->bits, key, plen);
1158 /* Rebalance the trie */
1160 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1166 * Caller must hold RTNL.
1168 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1170 struct trie *t = (struct trie *) tb->tb_data;
1171 struct fib_alias *fa, *new_fa;
1172 struct list_head *fa_head = NULL;
1173 struct fib_info *fi;
1174 int plen = cfg->fc_dst_len;
1175 u8 tos = cfg->fc_tos;
1183 key = ntohl(cfg->fc_dst);
1185 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1187 mask = ntohl(inet_make_mask(plen));
1194 fi = fib_create_info(cfg);
1200 l = fib_find_node(t, key);
1204 fa_head = get_fa_head(l, plen);
1205 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1208 /* Now fa, if non-NULL, points to the first fib alias
1209 * with the same keys [prefix,tos,priority], if such key already
1210 * exists or to the node before which we will insert new one.
1212 * If fa is NULL, we will need to allocate a new one and
1213 * insert to the head of f.
1215 * If f is NULL, no fib node matched the destination key
1216 * and we need to allocate a new one of those as well.
1219 if (fa && fa->fa_tos == tos &&
1220 fa->fa_info->fib_priority == fi->fib_priority) {
1221 struct fib_alias *fa_first, *fa_match;
1224 if (cfg->fc_nlflags & NLM_F_EXCL)
1228 * 1. Find exact match for type, scope, fib_info to avoid
1230 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1234 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1235 list_for_each_entry_continue(fa, fa_head, fa_list) {
1236 if (fa->fa_tos != tos)
1238 if (fa->fa_info->fib_priority != fi->fib_priority)
1240 if (fa->fa_type == cfg->fc_type &&
1241 fa->fa_scope == cfg->fc_scope &&
1242 fa->fa_info == fi) {
1248 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1249 struct fib_info *fi_drop;
1259 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1263 fi_drop = fa->fa_info;
1264 new_fa->fa_tos = fa->fa_tos;
1265 new_fa->fa_info = fi;
1266 new_fa->fa_type = cfg->fc_type;
1267 new_fa->fa_scope = cfg->fc_scope;
1268 state = fa->fa_state;
1269 new_fa->fa_state = state & ~FA_S_ACCESSED;
1271 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1272 alias_free_mem_rcu(fa);
1274 fib_release_info(fi_drop);
1275 if (state & FA_S_ACCESSED)
1277 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1278 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1282 /* Error if we find a perfect match which
1283 * uses the same scope, type, and nexthop
1289 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1293 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1297 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1301 new_fa->fa_info = fi;
1302 new_fa->fa_tos = tos;
1303 new_fa->fa_type = cfg->fc_type;
1304 new_fa->fa_scope = cfg->fc_scope;
1305 new_fa->fa_state = 0;
1307 * Insert new entry to the list.
1311 fa_head = fib_insert_node(t, key, plen);
1312 if (unlikely(!fa_head)) {
1314 goto out_free_new_fa;
1318 list_add_tail_rcu(&new_fa->fa_list,
1319 (fa ? &fa->fa_list : fa_head));
1322 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1323 &cfg->fc_nlinfo, 0);
1328 kmem_cache_free(fn_alias_kmem, new_fa);
1330 fib_release_info(fi);
1335 /* should be called with rcu_read_lock */
1336 static int check_leaf(struct trie *t, struct leaf *l,
1337 t_key key, const struct flowi *flp,
1338 struct fib_result *res)
1340 struct leaf_info *li;
1341 struct hlist_head *hhead = &l->list;
1342 struct hlist_node *node;
1344 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1346 int plen = li->plen;
1347 __be32 mask = inet_make_mask(plen);
1349 if (l->key != (key & ntohl(mask)))
1352 err = fib_semantic_match(&li->falh, flp, res,
1353 htonl(l->key), mask, plen);
1355 #ifdef CONFIG_IP_FIB_TRIE_STATS
1357 t->stats.semantic_match_passed++;
1359 t->stats.semantic_match_miss++;
1368 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1369 struct fib_result *res)
1371 struct trie *t = (struct trie *) tb->tb_data;
1376 t_key key = ntohl(flp->fl4_dst);
1379 int current_prefix_length = KEYLENGTH;
1381 t_key node_prefix, key_prefix, pref_mismatch;
1386 n = rcu_dereference(t->trie);
1390 #ifdef CONFIG_IP_FIB_TRIE_STATS
1396 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1400 pn = (struct tnode *) n;
1408 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1411 n = tnode_get_child(pn, cindex);
1414 #ifdef CONFIG_IP_FIB_TRIE_STATS
1415 t->stats.null_node_hit++;
1421 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1427 cn = (struct tnode *)n;
1430 * It's a tnode, and we can do some extra checks here if we
1431 * like, to avoid descending into a dead-end branch.
1432 * This tnode is in the parent's child array at index
1433 * key[p_pos..p_pos+p_bits] but potentially with some bits
1434 * chopped off, so in reality the index may be just a
1435 * subprefix, padded with zero at the end.
1436 * We can also take a look at any skipped bits in this
1437 * tnode - everything up to p_pos is supposed to be ok,
1438 * and the non-chopped bits of the index (se previous
1439 * paragraph) are also guaranteed ok, but the rest is
1440 * considered unknown.
1442 * The skipped bits are key[pos+bits..cn->pos].
1445 /* If current_prefix_length < pos+bits, we are already doing
1446 * actual prefix matching, which means everything from
1447 * pos+(bits-chopped_off) onward must be zero along some
1448 * branch of this subtree - otherwise there is *no* valid
1449 * prefix present. Here we can only check the skipped
1450 * bits. Remember, since we have already indexed into the
1451 * parent's child array, we know that the bits we chopped of
1455 /* NOTA BENE: Checking only skipped bits
1456 for the new node here */
1458 if (current_prefix_length < pos+bits) {
1459 if (tkey_extract_bits(cn->key, current_prefix_length,
1460 cn->pos - current_prefix_length)
1466 * If chopped_off=0, the index is fully validated and we
1467 * only need to look at the skipped bits for this, the new,
1468 * tnode. What we actually want to do is to find out if
1469 * these skipped bits match our key perfectly, or if we will
1470 * have to count on finding a matching prefix further down,
1471 * because if we do, we would like to have some way of
1472 * verifying the existence of such a prefix at this point.
1475 /* The only thing we can do at this point is to verify that
1476 * any such matching prefix can indeed be a prefix to our
1477 * key, and if the bits in the node we are inspecting that
1478 * do not match our key are not ZERO, this cannot be true.
1479 * Thus, find out where there is a mismatch (before cn->pos)
1480 * and verify that all the mismatching bits are zero in the
1485 * Note: We aren't very concerned about the piece of
1486 * the key that precede pn->pos+pn->bits, since these
1487 * have already been checked. The bits after cn->pos
1488 * aren't checked since these are by definition
1489 * "unknown" at this point. Thus, what we want to see
1490 * is if we are about to enter the "prefix matching"
1491 * state, and in that case verify that the skipped
1492 * bits that will prevail throughout this subtree are
1493 * zero, as they have to be if we are to find a
1497 node_prefix = mask_pfx(cn->key, cn->pos);
1498 key_prefix = mask_pfx(key, cn->pos);
1499 pref_mismatch = key_prefix^node_prefix;
1503 * In short: If skipped bits in this node do not match
1504 * the search key, enter the "prefix matching"
1507 if (pref_mismatch) {
1508 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1510 pref_mismatch = pref_mismatch << 1;
1512 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1514 if (key_prefix != 0)
1517 if (current_prefix_length >= cn->pos)
1518 current_prefix_length = mp;
1521 pn = (struct tnode *)n; /* Descend */
1528 /* As zero don't change the child key (cindex) */
1529 while ((chopped_off <= pn->bits)
1530 && !(cindex & (1<<(chopped_off-1))))
1533 /* Decrease current_... with bits chopped off */
1534 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1535 current_prefix_length = pn->pos + pn->bits
1539 * Either we do the actual chop off according or if we have
1540 * chopped off all bits in this tnode walk up to our parent.
1543 if (chopped_off <= pn->bits) {
1544 cindex &= ~(1 << (chopped_off-1));
1546 struct tnode *parent = node_parent((struct node *) pn);
1550 /* Get Child's index */
1551 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1555 #ifdef CONFIG_IP_FIB_TRIE_STATS
1556 t->stats.backtrack++;
1569 * Remove the leaf and return parent.
1571 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1573 struct tnode *tp = node_parent((struct node *) l);
1575 pr_debug("entering trie_leaf_remove(%p)\n", l);
1578 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1579 put_child(t, (struct tnode *)tp, cindex, NULL);
1580 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1582 rcu_assign_pointer(t->trie, NULL);
1588 * Caller must hold RTNL.
1590 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1592 struct trie *t = (struct trie *) tb->tb_data;
1594 int plen = cfg->fc_dst_len;
1595 u8 tos = cfg->fc_tos;
1596 struct fib_alias *fa, *fa_to_delete;
1597 struct list_head *fa_head;
1599 struct leaf_info *li;
1604 key = ntohl(cfg->fc_dst);
1605 mask = ntohl(inet_make_mask(plen));
1611 l = fib_find_node(t, key);
1616 fa_head = get_fa_head(l, plen);
1617 fa = fib_find_alias(fa_head, tos, 0);
1622 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1624 fa_to_delete = NULL;
1625 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1626 list_for_each_entry_continue(fa, fa_head, fa_list) {
1627 struct fib_info *fi = fa->fa_info;
1629 if (fa->fa_tos != tos)
1632 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1633 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1634 fa->fa_scope == cfg->fc_scope) &&
1635 (!cfg->fc_protocol ||
1636 fi->fib_protocol == cfg->fc_protocol) &&
1637 fib_nh_match(cfg, fi) == 0) {
1647 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1648 &cfg->fc_nlinfo, 0);
1650 l = fib_find_node(t, key);
1651 li = find_leaf_info(l, plen);
1653 list_del_rcu(&fa->fa_list);
1655 if (list_empty(fa_head)) {
1656 hlist_del_rcu(&li->hlist);
1660 if (hlist_empty(&l->list))
1661 trie_leaf_remove(t, l);
1663 if (fa->fa_state & FA_S_ACCESSED)
1666 fib_release_info(fa->fa_info);
1667 alias_free_mem_rcu(fa);
1671 static int trie_flush_list(struct list_head *head)
1673 struct fib_alias *fa, *fa_node;
1676 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1677 struct fib_info *fi = fa->fa_info;
1679 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1680 list_del_rcu(&fa->fa_list);
1681 fib_release_info(fa->fa_info);
1682 alias_free_mem_rcu(fa);
1689 static int trie_flush_leaf(struct leaf *l)
1692 struct hlist_head *lih = &l->list;
1693 struct hlist_node *node, *tmp;
1694 struct leaf_info *li = NULL;
1696 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1697 found += trie_flush_list(&li->falh);
1699 if (list_empty(&li->falh)) {
1700 hlist_del_rcu(&li->hlist);
1708 * Scan for the next right leaf starting at node p->child[idx]
1709 * Since we have back pointer, no recursion necessary.
1711 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1717 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1721 while (idx < 1u << p->bits) {
1722 c = tnode_get_child_rcu(p, idx++);
1727 prefetch(p->child[idx]);
1728 return (struct leaf *) c;
1731 /* Rescan start scanning in new node */
1732 p = (struct tnode *) c;
1736 /* Node empty, walk back up to parent */
1737 c = (struct node *) p;
1738 } while ( (p = node_parent_rcu(c)) != NULL);
1740 return NULL; /* Root of trie */
1743 static struct leaf *trie_firstleaf(struct trie *t)
1745 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1750 if (IS_LEAF(n)) /* trie is just a leaf */
1751 return (struct leaf *) n;
1753 return leaf_walk_rcu(n, NULL);
1756 static struct leaf *trie_nextleaf(struct leaf *l)
1758 struct node *c = (struct node *) l;
1759 struct tnode *p = node_parent(c);
1762 return NULL; /* trie with just one leaf */
1764 return leaf_walk_rcu(p, c);
1767 static struct leaf *trie_leafindex(struct trie *t, int index)
1769 struct leaf *l = trie_firstleaf(t);
1771 while (l && index-- > 0)
1772 l = trie_nextleaf(l);
1779 * Caller must hold RTNL.
1781 static int fn_trie_flush(struct fib_table *tb)
1783 struct trie *t = (struct trie *) tb->tb_data;
1784 struct leaf *l, *ll = NULL;
1787 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1788 found += trie_flush_leaf(l);
1790 if (ll && hlist_empty(&ll->list))
1791 trie_leaf_remove(t, ll);
1795 if (ll && hlist_empty(&ll->list))
1796 trie_leaf_remove(t, ll);
1798 pr_debug("trie_flush found=%d\n", found);
1802 static void fn_trie_select_default(struct fib_table *tb,
1803 const struct flowi *flp,
1804 struct fib_result *res)
1806 struct trie *t = (struct trie *) tb->tb_data;
1807 int order, last_idx;
1808 struct fib_info *fi = NULL;
1809 struct fib_info *last_resort;
1810 struct fib_alias *fa = NULL;
1811 struct list_head *fa_head;
1820 l = fib_find_node(t, 0);
1824 fa_head = get_fa_head(l, 0);
1828 if (list_empty(fa_head))
1831 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1832 struct fib_info *next_fi = fa->fa_info;
1834 if (fa->fa_scope != res->scope ||
1835 fa->fa_type != RTN_UNICAST)
1838 if (next_fi->fib_priority > res->fi->fib_priority)
1840 if (!next_fi->fib_nh[0].nh_gw ||
1841 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1843 fa->fa_state |= FA_S_ACCESSED;
1846 if (next_fi != res->fi)
1848 } else if (!fib_detect_death(fi, order, &last_resort,
1849 &last_idx, tb->tb_default)) {
1850 fib_result_assign(res, fi);
1851 tb->tb_default = order;
1857 if (order <= 0 || fi == NULL) {
1858 tb->tb_default = -1;
1862 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1864 fib_result_assign(res, fi);
1865 tb->tb_default = order;
1869 fib_result_assign(res, last_resort);
1870 tb->tb_default = last_idx;
1875 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1876 struct fib_table *tb,
1877 struct sk_buff *skb, struct netlink_callback *cb)
1880 struct fib_alias *fa;
1881 __be32 xkey = htonl(key);
1886 /* rcu_read_lock is hold by caller */
1888 list_for_each_entry_rcu(fa, fah, fa_list) {
1894 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1903 fa->fa_info, NLM_F_MULTI) < 0) {
1913 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1914 struct sk_buff *skb, struct netlink_callback *cb)
1916 struct leaf_info *li;
1917 struct hlist_node *node;
1923 /* rcu_read_lock is hold by caller */
1924 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1933 if (list_empty(&li->falh))
1936 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1947 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1948 struct netlink_callback *cb)
1951 struct trie *t = (struct trie *) tb->tb_data;
1952 t_key key = cb->args[2];
1953 int count = cb->args[3];
1956 /* Dump starting at last key.
1957 * Note: 0.0.0.0/0 (ie default) is first key.
1960 l = trie_firstleaf(t);
1962 /* Normally, continue from last key, but if that is missing
1963 * fallback to using slow rescan
1965 l = fib_find_node(t, key);
1967 l = trie_leafindex(t, count);
1971 cb->args[2] = l->key;
1972 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1973 cb->args[3] = count;
1979 l = trie_nextleaf(l);
1980 memset(&cb->args[4], 0,
1981 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1983 cb->args[3] = count;
1989 void __init fib_hash_init(void)
1991 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1992 sizeof(struct fib_alias),
1993 0, SLAB_PANIC, NULL);
1995 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1996 max(sizeof(struct leaf),
1997 sizeof(struct leaf_info)),
1998 0, SLAB_PANIC, NULL);
2002 /* Fix more generic FIB names for init later */
2003 struct fib_table *fib_hash_table(u32 id)
2005 struct fib_table *tb;
2008 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2014 tb->tb_default = -1;
2015 tb->tb_lookup = fn_trie_lookup;
2016 tb->tb_insert = fn_trie_insert;
2017 tb->tb_delete = fn_trie_delete;
2018 tb->tb_flush = fn_trie_flush;
2019 tb->tb_select_default = fn_trie_select_default;
2020 tb->tb_dump = fn_trie_dump;
2022 t = (struct trie *) tb->tb_data;
2023 memset(t, 0, sizeof(*t));
2025 if (id == RT_TABLE_LOCAL)
2026 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2031 #ifdef CONFIG_PROC_FS
2032 /* Depth first Trie walk iterator */
2033 struct fib_trie_iter {
2034 struct seq_net_private p;
2035 struct fib_table *tb;
2036 struct tnode *tnode;
2041 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2043 struct tnode *tn = iter->tnode;
2044 unsigned cindex = iter->index;
2047 /* A single entry routing table */
2051 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2052 iter->tnode, iter->index, iter->depth);
2054 while (cindex < (1<<tn->bits)) {
2055 struct node *n = tnode_get_child_rcu(tn, cindex);
2060 iter->index = cindex + 1;
2062 /* push down one level */
2063 iter->tnode = (struct tnode *) n;
2073 /* Current node exhausted, pop back up */
2074 p = node_parent_rcu((struct node *)tn);
2076 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2086 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2094 n = rcu_dereference(t->trie);
2099 iter->tnode = (struct tnode *) n;
2111 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2114 struct fib_trie_iter iter;
2116 memset(s, 0, sizeof(*s));
2119 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2121 struct leaf *l = (struct leaf *)n;
2122 struct leaf_info *li;
2123 struct hlist_node *tmp;
2126 s->totdepth += iter.depth;
2127 if (iter.depth > s->maxdepth)
2128 s->maxdepth = iter.depth;
2130 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2133 const struct tnode *tn = (const struct tnode *) n;
2137 if (tn->bits < MAX_STAT_DEPTH)
2138 s->nodesizes[tn->bits]++;
2140 for (i = 0; i < (1<<tn->bits); i++)
2149 * This outputs /proc/net/fib_triestats
2151 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2153 unsigned i, max, pointers, bytes, avdepth;
2156 avdepth = stat->totdepth*100 / stat->leaves;
2160 seq_printf(seq, "\tAver depth: %u.%02d\n",
2161 avdepth / 100, avdepth % 100);
2162 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2164 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2165 bytes = sizeof(struct leaf) * stat->leaves;
2167 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2168 bytes += sizeof(struct leaf_info) * stat->prefixes;
2170 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2171 bytes += sizeof(struct tnode) * stat->tnodes;
2173 max = MAX_STAT_DEPTH;
2174 while (max > 0 && stat->nodesizes[max-1] == 0)
2178 for (i = 1; i <= max; i++)
2179 if (stat->nodesizes[i] != 0) {
2180 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2181 pointers += (1<<i) * stat->nodesizes[i];
2183 seq_putc(seq, '\n');
2184 seq_printf(seq, "\tPointers: %u\n", pointers);
2186 bytes += sizeof(struct node *) * pointers;
2187 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2188 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2191 #ifdef CONFIG_IP_FIB_TRIE_STATS
2192 static void trie_show_usage(struct seq_file *seq,
2193 const struct trie_use_stats *stats)
2195 seq_printf(seq, "\nCounters:\n---------\n");
2196 seq_printf(seq, "gets = %u\n", stats->gets);
2197 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2198 seq_printf(seq, "semantic match passed = %u\n",
2199 stats->semantic_match_passed);
2200 seq_printf(seq, "semantic match miss = %u\n",
2201 stats->semantic_match_miss);
2202 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2203 seq_printf(seq, "skipped node resize = %u\n\n",
2204 stats->resize_node_skipped);
2206 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2208 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2210 if (tb->tb_id == RT_TABLE_LOCAL)
2211 seq_puts(seq, "Local:\n");
2212 else if (tb->tb_id == RT_TABLE_MAIN)
2213 seq_puts(seq, "Main:\n");
2215 seq_printf(seq, "Id %d:\n", tb->tb_id);
2219 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2221 struct net *net = (struct net *)seq->private;
2225 "Basic info: size of leaf:"
2226 " %Zd bytes, size of tnode: %Zd bytes.\n",
2227 sizeof(struct leaf), sizeof(struct tnode));
2229 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2230 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2231 struct hlist_node *node;
2232 struct fib_table *tb;
2234 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2235 struct trie *t = (struct trie *) tb->tb_data;
2236 struct trie_stat stat;
2241 fib_table_print(seq, tb);
2243 trie_collect_stats(t, &stat);
2244 trie_show_stats(seq, &stat);
2245 #ifdef CONFIG_IP_FIB_TRIE_STATS
2246 trie_show_usage(seq, &t->stats);
2254 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2259 net = get_proc_net(inode);
2262 err = single_open(file, fib_triestat_seq_show, net);
2270 static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2272 struct seq_file *seq = f->private_data;
2273 put_net(seq->private);
2274 return single_release(ino, f);
2277 static const struct file_operations fib_triestat_fops = {
2278 .owner = THIS_MODULE,
2279 .open = fib_triestat_seq_open,
2281 .llseek = seq_lseek,
2282 .release = fib_triestat_seq_release,
2285 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2287 struct fib_trie_iter *iter = seq->private;
2288 struct net *net = seq_file_net(seq);
2292 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2293 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2294 struct hlist_node *node;
2295 struct fib_table *tb;
2297 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2300 for (n = fib_trie_get_first(iter,
2301 (struct trie *) tb->tb_data);
2302 n; n = fib_trie_get_next(iter))
2313 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2317 return fib_trie_get_idx(seq, *pos);
2320 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2322 struct fib_trie_iter *iter = seq->private;
2323 struct net *net = seq_file_net(seq);
2324 struct fib_table *tb = iter->tb;
2325 struct hlist_node *tb_node;
2330 /* next node in same table */
2331 n = fib_trie_get_next(iter);
2335 /* walk rest of this hash chain */
2336 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2337 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2338 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2339 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2344 /* new hash chain */
2345 while (++h < FIB_TABLE_HASHSZ) {
2346 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2347 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2348 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2360 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2366 static void seq_indent(struct seq_file *seq, int n)
2368 while (n-- > 0) seq_puts(seq, " ");
2371 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2374 case RT_SCOPE_UNIVERSE: return "universe";
2375 case RT_SCOPE_SITE: return "site";
2376 case RT_SCOPE_LINK: return "link";
2377 case RT_SCOPE_HOST: return "host";
2378 case RT_SCOPE_NOWHERE: return "nowhere";
2380 snprintf(buf, len, "scope=%d", s);
2385 static const char *rtn_type_names[__RTN_MAX] = {
2386 [RTN_UNSPEC] = "UNSPEC",
2387 [RTN_UNICAST] = "UNICAST",
2388 [RTN_LOCAL] = "LOCAL",
2389 [RTN_BROADCAST] = "BROADCAST",
2390 [RTN_ANYCAST] = "ANYCAST",
2391 [RTN_MULTICAST] = "MULTICAST",
2392 [RTN_BLACKHOLE] = "BLACKHOLE",
2393 [RTN_UNREACHABLE] = "UNREACHABLE",
2394 [RTN_PROHIBIT] = "PROHIBIT",
2395 [RTN_THROW] = "THROW",
2397 [RTN_XRESOLVE] = "XRESOLVE",
2400 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2402 if (t < __RTN_MAX && rtn_type_names[t])
2403 return rtn_type_names[t];
2404 snprintf(buf, len, "type %u", t);
2408 /* Pretty print the trie */
2409 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2411 const struct fib_trie_iter *iter = seq->private;
2414 if (!node_parent_rcu(n))
2415 fib_table_print(seq, iter->tb);
2418 struct tnode *tn = (struct tnode *) n;
2419 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2421 seq_indent(seq, iter->depth-1);
2422 seq_printf(seq, " +-- " NIPQUAD_FMT "/%d %d %d %d\n",
2423 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2424 tn->empty_children);
2427 struct leaf *l = (struct leaf *) n;
2428 struct leaf_info *li;
2429 struct hlist_node *node;
2430 __be32 val = htonl(l->key);
2432 seq_indent(seq, iter->depth);
2433 seq_printf(seq, " |-- " NIPQUAD_FMT "\n", NIPQUAD(val));
2435 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2436 struct fib_alias *fa;
2438 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2439 char buf1[32], buf2[32];
2441 seq_indent(seq, iter->depth+1);
2442 seq_printf(seq, " /%d %s %s", li->plen,
2443 rtn_scope(buf1, sizeof(buf1),
2445 rtn_type(buf2, sizeof(buf2),
2448 seq_printf(seq, " tos=%d", fa->fa_tos);
2449 seq_putc(seq, '\n');
2457 static const struct seq_operations fib_trie_seq_ops = {
2458 .start = fib_trie_seq_start,
2459 .next = fib_trie_seq_next,
2460 .stop = fib_trie_seq_stop,
2461 .show = fib_trie_seq_show,
2464 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2466 return seq_open_net(inode, file, &fib_trie_seq_ops,
2467 sizeof(struct fib_trie_iter));
2470 static const struct file_operations fib_trie_fops = {
2471 .owner = THIS_MODULE,
2472 .open = fib_trie_seq_open,
2474 .llseek = seq_lseek,
2475 .release = seq_release_net,
2478 struct fib_route_iter {
2479 struct seq_net_private p;
2480 struct trie *main_trie;
2485 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2487 struct leaf *l = NULL;
2488 struct trie *t = iter->main_trie;
2490 /* use cache location of last found key */
2491 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2495 l = trie_firstleaf(t);
2498 while (l && pos-- > 0) {
2500 l = trie_nextleaf(l);
2504 iter->key = pos; /* remember it */
2506 iter->pos = 0; /* forget it */
2511 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2514 struct fib_route_iter *iter = seq->private;
2515 struct fib_table *tb;
2518 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2522 iter->main_trie = (struct trie *) tb->tb_data;
2524 return SEQ_START_TOKEN;
2526 return fib_route_get_idx(iter, *pos - 1);
2529 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2531 struct fib_route_iter *iter = seq->private;
2535 if (v == SEQ_START_TOKEN) {
2537 l = trie_firstleaf(iter->main_trie);
2540 l = trie_nextleaf(l);
2550 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2556 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2558 static unsigned type2flags[RTN_MAX + 1] = {
2559 [7] = RTF_REJECT, [8] = RTF_REJECT,
2561 unsigned flags = type2flags[type];
2563 if (fi && fi->fib_nh->nh_gw)
2564 flags |= RTF_GATEWAY;
2565 if (mask == htonl(0xFFFFFFFF))
2572 * This outputs /proc/net/route.
2573 * The format of the file is not supposed to be changed
2574 * and needs to be same as fib_hash output to avoid breaking
2577 static int fib_route_seq_show(struct seq_file *seq, void *v)
2580 struct leaf_info *li;
2581 struct hlist_node *node;
2583 if (v == SEQ_START_TOKEN) {
2584 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2585 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2590 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2591 struct fib_alias *fa;
2592 __be32 mask, prefix;
2594 mask = inet_make_mask(li->plen);
2595 prefix = htonl(l->key);
2597 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2598 const struct fib_info *fi = fa->fa_info;
2599 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2602 if (fa->fa_type == RTN_BROADCAST
2603 || fa->fa_type == RTN_MULTICAST)
2608 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2609 "%d\t%08X\t%d\t%u\t%u%n",
2610 fi->fib_dev ? fi->fib_dev->name : "*",
2612 fi->fib_nh->nh_gw, flags, 0, 0,
2616 fi->fib_advmss + 40 : 0),
2618 fi->fib_rtt >> 3, &len);
2621 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2622 "%d\t%08X\t%d\t%u\t%u%n",
2623 prefix, 0, flags, 0, 0, 0,
2624 mask, 0, 0, 0, &len);
2626 seq_printf(seq, "%*s\n", 127 - len, "");
2633 static const struct seq_operations fib_route_seq_ops = {
2634 .start = fib_route_seq_start,
2635 .next = fib_route_seq_next,
2636 .stop = fib_route_seq_stop,
2637 .show = fib_route_seq_show,
2640 static int fib_route_seq_open(struct inode *inode, struct file *file)
2642 return seq_open_net(inode, file, &fib_route_seq_ops,
2643 sizeof(struct fib_route_iter));
2646 static const struct file_operations fib_route_fops = {
2647 .owner = THIS_MODULE,
2648 .open = fib_route_seq_open,
2650 .llseek = seq_lseek,
2651 .release = seq_release_net,
2654 int __net_init fib_proc_init(struct net *net)
2656 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2659 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2660 &fib_triestat_fops))
2663 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2669 proc_net_remove(net, "fib_triestat");
2671 proc_net_remove(net, "fib_trie");
2676 void __net_exit fib_proc_exit(struct net *net)
2678 proc_net_remove(net, "fib_trie");
2679 proc_net_remove(net, "fib_triestat");
2680 proc_net_remove(net, "route");
2683 #endif /* CONFIG_PROC_FS */