perf_counter: powerpc: set sample enable bit for marked instruction events
[linux-2.6] / arch / powerpc / kernel / perf_counter.c
1 /*
2  * Performance counter support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20
21 struct cpu_hw_counters {
22         int n_counters;
23         int n_percpu;
24         int disabled;
25         int n_added;
26         struct perf_counter *counter[MAX_HWCOUNTERS];
27         unsigned int events[MAX_HWCOUNTERS];
28         u64 mmcr[3];
29         u8 pmcs_enabled;
30 };
31 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
32
33 struct power_pmu *ppmu;
34
35 /*
36  * Normally, to ignore kernel events we set the FCS (freeze counters
37  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
38  * hypervisor bit set in the MSR, or if we are running on a processor
39  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
40  * then we need to use the FCHV bit to ignore kernel events.
41  */
42 static unsigned int freeze_counters_kernel = MMCR0_FCS;
43
44 static void perf_counter_interrupt(struct pt_regs *regs);
45
46 void perf_counter_print_debug(void)
47 {
48 }
49
50 /*
51  * Read one performance monitor counter (PMC).
52  */
53 static unsigned long read_pmc(int idx)
54 {
55         unsigned long val;
56
57         switch (idx) {
58         case 1:
59                 val = mfspr(SPRN_PMC1);
60                 break;
61         case 2:
62                 val = mfspr(SPRN_PMC2);
63                 break;
64         case 3:
65                 val = mfspr(SPRN_PMC3);
66                 break;
67         case 4:
68                 val = mfspr(SPRN_PMC4);
69                 break;
70         case 5:
71                 val = mfspr(SPRN_PMC5);
72                 break;
73         case 6:
74                 val = mfspr(SPRN_PMC6);
75                 break;
76         case 7:
77                 val = mfspr(SPRN_PMC7);
78                 break;
79         case 8:
80                 val = mfspr(SPRN_PMC8);
81                 break;
82         default:
83                 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
84                 val = 0;
85         }
86         return val;
87 }
88
89 /*
90  * Write one PMC.
91  */
92 static void write_pmc(int idx, unsigned long val)
93 {
94         switch (idx) {
95         case 1:
96                 mtspr(SPRN_PMC1, val);
97                 break;
98         case 2:
99                 mtspr(SPRN_PMC2, val);
100                 break;
101         case 3:
102                 mtspr(SPRN_PMC3, val);
103                 break;
104         case 4:
105                 mtspr(SPRN_PMC4, val);
106                 break;
107         case 5:
108                 mtspr(SPRN_PMC5, val);
109                 break;
110         case 6:
111                 mtspr(SPRN_PMC6, val);
112                 break;
113         case 7:
114                 mtspr(SPRN_PMC7, val);
115                 break;
116         case 8:
117                 mtspr(SPRN_PMC8, val);
118                 break;
119         default:
120                 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
121         }
122 }
123
124 /*
125  * Check if a set of events can all go on the PMU at once.
126  * If they can't, this will look at alternative codes for the events
127  * and see if any combination of alternative codes is feasible.
128  * The feasible set is returned in event[].
129  */
130 static int power_check_constraints(unsigned int event[], int n_ev)
131 {
132         u64 mask, value, nv;
133         unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
134         u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
135         u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
136         u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
137         int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
138         int i, j;
139         u64 addf = ppmu->add_fields;
140         u64 tadd = ppmu->test_adder;
141
142         if (n_ev > ppmu->n_counter)
143                 return -1;
144
145         /* First see if the events will go on as-is */
146         for (i = 0; i < n_ev; ++i) {
147                 alternatives[i][0] = event[i];
148                 if (ppmu->get_constraint(event[i], &amasks[i][0],
149                                          &avalues[i][0]))
150                         return -1;
151                 choice[i] = 0;
152         }
153         value = mask = 0;
154         for (i = 0; i < n_ev; ++i) {
155                 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
156                 if ((((nv + tadd) ^ value) & mask) != 0 ||
157                     (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
158                         break;
159                 value = nv;
160                 mask |= amasks[i][0];
161         }
162         if (i == n_ev)
163                 return 0;       /* all OK */
164
165         /* doesn't work, gather alternatives... */
166         if (!ppmu->get_alternatives)
167                 return -1;
168         for (i = 0; i < n_ev; ++i) {
169                 n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]);
170                 for (j = 1; j < n_alt[i]; ++j)
171                         ppmu->get_constraint(alternatives[i][j],
172                                              &amasks[i][j], &avalues[i][j]);
173         }
174
175         /* enumerate all possibilities and see if any will work */
176         i = 0;
177         j = -1;
178         value = mask = nv = 0;
179         while (i < n_ev) {
180                 if (j >= 0) {
181                         /* we're backtracking, restore context */
182                         value = svalues[i];
183                         mask = smasks[i];
184                         j = choice[i];
185                 }
186                 /*
187                  * See if any alternative k for event i,
188                  * where k > j, will satisfy the constraints.
189                  */
190                 while (++j < n_alt[i]) {
191                         nv = (value | avalues[i][j]) +
192                                 (value & avalues[i][j] & addf);
193                         if ((((nv + tadd) ^ value) & mask) == 0 &&
194                             (((nv + tadd) ^ avalues[i][j])
195                              & amasks[i][j]) == 0)
196                                 break;
197                 }
198                 if (j >= n_alt[i]) {
199                         /*
200                          * No feasible alternative, backtrack
201                          * to event i-1 and continue enumerating its
202                          * alternatives from where we got up to.
203                          */
204                         if (--i < 0)
205                                 return -1;
206                 } else {
207                         /*
208                          * Found a feasible alternative for event i,
209                          * remember where we got up to with this event,
210                          * go on to the next event, and start with
211                          * the first alternative for it.
212                          */
213                         choice[i] = j;
214                         svalues[i] = value;
215                         smasks[i] = mask;
216                         value = nv;
217                         mask |= amasks[i][j];
218                         ++i;
219                         j = -1;
220                 }
221         }
222
223         /* OK, we have a feasible combination, tell the caller the solution */
224         for (i = 0; i < n_ev; ++i)
225                 event[i] = alternatives[i][choice[i]];
226         return 0;
227 }
228
229 /*
230  * Check if newly-added counters have consistent settings for
231  * exclude_{user,kernel,hv} with each other and any previously
232  * added counters.
233  */
234 static int check_excludes(struct perf_counter **ctrs, int n_prev, int n_new)
235 {
236         int eu, ek, eh;
237         int i, n;
238         struct perf_counter *counter;
239
240         n = n_prev + n_new;
241         if (n <= 1)
242                 return 0;
243
244         eu = ctrs[0]->hw_event.exclude_user;
245         ek = ctrs[0]->hw_event.exclude_kernel;
246         eh = ctrs[0]->hw_event.exclude_hv;
247         if (n_prev == 0)
248                 n_prev = 1;
249         for (i = n_prev; i < n; ++i) {
250                 counter = ctrs[i];
251                 if (counter->hw_event.exclude_user != eu ||
252                     counter->hw_event.exclude_kernel != ek ||
253                     counter->hw_event.exclude_hv != eh)
254                         return -EAGAIN;
255         }
256         return 0;
257 }
258
259 static void power_perf_read(struct perf_counter *counter)
260 {
261         long val, delta, prev;
262
263         if (!counter->hw.idx)
264                 return;
265         /*
266          * Performance monitor interrupts come even when interrupts
267          * are soft-disabled, as long as interrupts are hard-enabled.
268          * Therefore we treat them like NMIs.
269          */
270         do {
271                 prev = atomic64_read(&counter->hw.prev_count);
272                 barrier();
273                 val = read_pmc(counter->hw.idx);
274         } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
275
276         /* The counters are only 32 bits wide */
277         delta = (val - prev) & 0xfffffffful;
278         atomic64_add(delta, &counter->count);
279         atomic64_sub(delta, &counter->hw.period_left);
280 }
281
282 /*
283  * Disable all counters to prevent PMU interrupts and to allow
284  * counters to be added or removed.
285  */
286 u64 hw_perf_save_disable(void)
287 {
288         struct cpu_hw_counters *cpuhw;
289         unsigned long ret;
290         unsigned long flags;
291
292         local_irq_save(flags);
293         cpuhw = &__get_cpu_var(cpu_hw_counters);
294
295         ret = cpuhw->disabled;
296         if (!ret) {
297                 cpuhw->disabled = 1;
298                 cpuhw->n_added = 0;
299
300                 /*
301                  * Check if we ever enabled the PMU on this cpu.
302                  */
303                 if (!cpuhw->pmcs_enabled) {
304                         if (ppc_md.enable_pmcs)
305                                 ppc_md.enable_pmcs();
306                         cpuhw->pmcs_enabled = 1;
307                 }
308
309                 /*
310                  * Disable instruction sampling if it was enabled
311                  */
312                 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
313                         mtspr(SPRN_MMCRA,
314                               cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
315                         mb();
316                 }
317
318                 /*
319                  * Set the 'freeze counters' bit.
320                  * The barrier is to make sure the mtspr has been
321                  * executed and the PMU has frozen the counters
322                  * before we return.
323                  */
324                 mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC);
325                 mb();
326         }
327         local_irq_restore(flags);
328         return ret;
329 }
330
331 /*
332  * Re-enable all counters if disable == 0.
333  * If we were previously disabled and counters were added, then
334  * put the new config on the PMU.
335  */
336 void hw_perf_restore(u64 disable)
337 {
338         struct perf_counter *counter;
339         struct cpu_hw_counters *cpuhw;
340         unsigned long flags;
341         long i;
342         unsigned long val;
343         s64 left;
344         unsigned int hwc_index[MAX_HWCOUNTERS];
345
346         if (disable)
347                 return;
348         local_irq_save(flags);
349         cpuhw = &__get_cpu_var(cpu_hw_counters);
350         cpuhw->disabled = 0;
351
352         /*
353          * If we didn't change anything, or only removed counters,
354          * no need to recalculate MMCR* settings and reset the PMCs.
355          * Just reenable the PMU with the current MMCR* settings
356          * (possibly updated for removal of counters).
357          */
358         if (!cpuhw->n_added) {
359                 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
360                 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
361                 if (cpuhw->n_counters == 0)
362                         get_lppaca()->pmcregs_in_use = 0;
363                 goto out_enable;
364         }
365
366         /*
367          * Compute MMCR* values for the new set of counters
368          */
369         if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
370                                cpuhw->mmcr)) {
371                 /* shouldn't ever get here */
372                 printk(KERN_ERR "oops compute_mmcr failed\n");
373                 goto out;
374         }
375
376         /*
377          * Add in MMCR0 freeze bits corresponding to the
378          * hw_event.exclude_* bits for the first counter.
379          * We have already checked that all counters have the
380          * same values for these bits as the first counter.
381          */
382         counter = cpuhw->counter[0];
383         if (counter->hw_event.exclude_user)
384                 cpuhw->mmcr[0] |= MMCR0_FCP;
385         if (counter->hw_event.exclude_kernel)
386                 cpuhw->mmcr[0] |= freeze_counters_kernel;
387         if (counter->hw_event.exclude_hv)
388                 cpuhw->mmcr[0] |= MMCR0_FCHV;
389
390         /*
391          * Write the new configuration to MMCR* with the freeze
392          * bit set and set the hardware counters to their initial values.
393          * Then unfreeze the counters.
394          */
395         get_lppaca()->pmcregs_in_use = 1;
396         mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
397         mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
398         mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
399                                 | MMCR0_FC);
400
401         /*
402          * Read off any pre-existing counters that need to move
403          * to another PMC.
404          */
405         for (i = 0; i < cpuhw->n_counters; ++i) {
406                 counter = cpuhw->counter[i];
407                 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
408                         power_perf_read(counter);
409                         write_pmc(counter->hw.idx, 0);
410                         counter->hw.idx = 0;
411                 }
412         }
413
414         /*
415          * Initialize the PMCs for all the new and moved counters.
416          */
417         for (i = 0; i < cpuhw->n_counters; ++i) {
418                 counter = cpuhw->counter[i];
419                 if (counter->hw.idx)
420                         continue;
421                 val = 0;
422                 if (counter->hw_event.irq_period) {
423                         left = atomic64_read(&counter->hw.period_left);
424                         if (left < 0x80000000L)
425                                 val = 0x80000000L - left;
426                 }
427                 atomic64_set(&counter->hw.prev_count, val);
428                 counter->hw.idx = hwc_index[i] + 1;
429                 write_pmc(counter->hw.idx, val);
430                 perf_counter_update_userpage(counter);
431         }
432         cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
433
434  out_enable:
435         mb();
436         mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
437
438         /*
439          * Enable instruction sampling if necessary
440          */
441         if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
442                 mb();
443                 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
444         }
445
446  out:
447         local_irq_restore(flags);
448 }
449
450 static int collect_events(struct perf_counter *group, int max_count,
451                           struct perf_counter *ctrs[], unsigned int *events)
452 {
453         int n = 0;
454         struct perf_counter *counter;
455
456         if (!is_software_counter(group)) {
457                 if (n >= max_count)
458                         return -1;
459                 ctrs[n] = group;
460                 events[n++] = group->hw.config;
461         }
462         list_for_each_entry(counter, &group->sibling_list, list_entry) {
463                 if (!is_software_counter(counter) &&
464                     counter->state != PERF_COUNTER_STATE_OFF) {
465                         if (n >= max_count)
466                                 return -1;
467                         ctrs[n] = counter;
468                         events[n++] = counter->hw.config;
469                 }
470         }
471         return n;
472 }
473
474 static void counter_sched_in(struct perf_counter *counter, int cpu)
475 {
476         counter->state = PERF_COUNTER_STATE_ACTIVE;
477         counter->oncpu = cpu;
478         counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
479         if (is_software_counter(counter))
480                 counter->hw_ops->enable(counter);
481 }
482
483 /*
484  * Called to enable a whole group of counters.
485  * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
486  * Assumes the caller has disabled interrupts and has
487  * frozen the PMU with hw_perf_save_disable.
488  */
489 int hw_perf_group_sched_in(struct perf_counter *group_leader,
490                struct perf_cpu_context *cpuctx,
491                struct perf_counter_context *ctx, int cpu)
492 {
493         struct cpu_hw_counters *cpuhw;
494         long i, n, n0;
495         struct perf_counter *sub;
496
497         cpuhw = &__get_cpu_var(cpu_hw_counters);
498         n0 = cpuhw->n_counters;
499         n = collect_events(group_leader, ppmu->n_counter - n0,
500                            &cpuhw->counter[n0], &cpuhw->events[n0]);
501         if (n < 0)
502                 return -EAGAIN;
503         if (check_excludes(cpuhw->counter, n0, n))
504                 return -EAGAIN;
505         if (power_check_constraints(cpuhw->events, n + n0))
506                 return -EAGAIN;
507         cpuhw->n_counters = n0 + n;
508         cpuhw->n_added += n;
509
510         /*
511          * OK, this group can go on; update counter states etc.,
512          * and enable any software counters
513          */
514         for (i = n0; i < n0 + n; ++i)
515                 cpuhw->counter[i]->hw.config = cpuhw->events[i];
516         cpuctx->active_oncpu += n;
517         n = 1;
518         counter_sched_in(group_leader, cpu);
519         list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
520                 if (sub->state != PERF_COUNTER_STATE_OFF) {
521                         counter_sched_in(sub, cpu);
522                         ++n;
523                 }
524         }
525         ctx->nr_active += n;
526
527         return 1;
528 }
529
530 /*
531  * Add a counter to the PMU.
532  * If all counters are not already frozen, then we disable and
533  * re-enable the PMU in order to get hw_perf_restore to do the
534  * actual work of reconfiguring the PMU.
535  */
536 static int power_perf_enable(struct perf_counter *counter)
537 {
538         struct cpu_hw_counters *cpuhw;
539         unsigned long flags;
540         u64 pmudis;
541         int n0;
542         int ret = -EAGAIN;
543
544         local_irq_save(flags);
545         pmudis = hw_perf_save_disable();
546
547         /*
548          * Add the counter to the list (if there is room)
549          * and check whether the total set is still feasible.
550          */
551         cpuhw = &__get_cpu_var(cpu_hw_counters);
552         n0 = cpuhw->n_counters;
553         if (n0 >= ppmu->n_counter)
554                 goto out;
555         cpuhw->counter[n0] = counter;
556         cpuhw->events[n0] = counter->hw.config;
557         if (check_excludes(cpuhw->counter, n0, 1))
558                 goto out;
559         if (power_check_constraints(cpuhw->events, n0 + 1))
560                 goto out;
561
562         counter->hw.config = cpuhw->events[n0];
563         ++cpuhw->n_counters;
564         ++cpuhw->n_added;
565
566         ret = 0;
567  out:
568         hw_perf_restore(pmudis);
569         local_irq_restore(flags);
570         return ret;
571 }
572
573 /*
574  * Remove a counter from the PMU.
575  */
576 static void power_perf_disable(struct perf_counter *counter)
577 {
578         struct cpu_hw_counters *cpuhw;
579         long i;
580         u64 pmudis;
581         unsigned long flags;
582
583         local_irq_save(flags);
584         pmudis = hw_perf_save_disable();
585
586         power_perf_read(counter);
587
588         cpuhw = &__get_cpu_var(cpu_hw_counters);
589         for (i = 0; i < cpuhw->n_counters; ++i) {
590                 if (counter == cpuhw->counter[i]) {
591                         while (++i < cpuhw->n_counters)
592                                 cpuhw->counter[i-1] = cpuhw->counter[i];
593                         --cpuhw->n_counters;
594                         ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
595                         write_pmc(counter->hw.idx, 0);
596                         counter->hw.idx = 0;
597                         perf_counter_update_userpage(counter);
598                         break;
599                 }
600         }
601         if (cpuhw->n_counters == 0) {
602                 /* disable exceptions if no counters are running */
603                 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
604         }
605
606         hw_perf_restore(pmudis);
607         local_irq_restore(flags);
608 }
609
610 struct hw_perf_counter_ops power_perf_ops = {
611         .enable = power_perf_enable,
612         .disable = power_perf_disable,
613         .read = power_perf_read
614 };
615
616 /* Number of perf_counters counting hardware events */
617 static atomic_t num_counters;
618 /* Used to avoid races in calling reserve/release_pmc_hardware */
619 static DEFINE_MUTEX(pmc_reserve_mutex);
620
621 /*
622  * Release the PMU if this is the last perf_counter.
623  */
624 static void hw_perf_counter_destroy(struct perf_counter *counter)
625 {
626         if (!atomic_add_unless(&num_counters, -1, 1)) {
627                 mutex_lock(&pmc_reserve_mutex);
628                 if (atomic_dec_return(&num_counters) == 0)
629                         release_pmc_hardware();
630                 mutex_unlock(&pmc_reserve_mutex);
631         }
632 }
633
634 const struct hw_perf_counter_ops *
635 hw_perf_counter_init(struct perf_counter *counter)
636 {
637         unsigned long ev;
638         struct perf_counter *ctrs[MAX_HWCOUNTERS];
639         unsigned int events[MAX_HWCOUNTERS];
640         int n;
641         int err;
642
643         if (!ppmu)
644                 return ERR_PTR(-ENXIO);
645         if ((s64)counter->hw_event.irq_period < 0)
646                 return ERR_PTR(-EINVAL);
647         if (!perf_event_raw(&counter->hw_event)) {
648                 ev = perf_event_id(&counter->hw_event);
649                 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
650                         return ERR_PTR(-EOPNOTSUPP);
651                 ev = ppmu->generic_events[ev];
652         } else {
653                 ev = perf_event_config(&counter->hw_event);
654         }
655         counter->hw.config_base = ev;
656         counter->hw.idx = 0;
657
658         /*
659          * If we are not running on a hypervisor, force the
660          * exclude_hv bit to 0 so that we don't care what
661          * the user set it to.
662          */
663         if (!firmware_has_feature(FW_FEATURE_LPAR))
664                 counter->hw_event.exclude_hv = 0;
665         
666         /*
667          * If this is in a group, check if it can go on with all the
668          * other hardware counters in the group.  We assume the counter
669          * hasn't been linked into its leader's sibling list at this point.
670          */
671         n = 0;
672         if (counter->group_leader != counter) {
673                 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
674                                    ctrs, events);
675                 if (n < 0)
676                         return ERR_PTR(-EINVAL);
677         }
678         events[n] = ev;
679         ctrs[n] = counter;
680         if (check_excludes(ctrs, n, 1))
681                 return ERR_PTR(-EINVAL);
682         if (power_check_constraints(events, n + 1))
683                 return ERR_PTR(-EINVAL);
684
685         counter->hw.config = events[n];
686         atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period);
687
688         /*
689          * See if we need to reserve the PMU.
690          * If no counters are currently in use, then we have to take a
691          * mutex to ensure that we don't race with another task doing
692          * reserve_pmc_hardware or release_pmc_hardware.
693          */
694         err = 0;
695         if (!atomic_inc_not_zero(&num_counters)) {
696                 mutex_lock(&pmc_reserve_mutex);
697                 if (atomic_read(&num_counters) == 0 &&
698                     reserve_pmc_hardware(perf_counter_interrupt))
699                         err = -EBUSY;
700                 else
701                         atomic_inc(&num_counters);
702                 mutex_unlock(&pmc_reserve_mutex);
703         }
704         counter->destroy = hw_perf_counter_destroy;
705
706         if (err)
707                 return ERR_PTR(err);
708         return &power_perf_ops;
709 }
710
711 /*
712  * A counter has overflowed; update its count and record
713  * things if requested.  Note that interrupts are hard-disabled
714  * here so there is no possibility of being interrupted.
715  */
716 static void record_and_restart(struct perf_counter *counter, long val,
717                                struct pt_regs *regs)
718 {
719         s64 prev, delta, left;
720         int record = 0;
721
722         /* we don't have to worry about interrupts here */
723         prev = atomic64_read(&counter->hw.prev_count);
724         delta = (val - prev) & 0xfffffffful;
725         atomic64_add(delta, &counter->count);
726
727         /*
728          * See if the total period for this counter has expired,
729          * and update for the next period.
730          */
731         val = 0;
732         left = atomic64_read(&counter->hw.period_left) - delta;
733         if (counter->hw_event.irq_period) {
734                 if (left <= 0) {
735                         left += counter->hw_event.irq_period;
736                         if (left <= 0)
737                                 left = counter->hw_event.irq_period;
738                         record = 1;
739                 }
740                 if (left < 0x80000000L)
741                         val = 0x80000000L - left;
742         }
743         write_pmc(counter->hw.idx, val);
744         atomic64_set(&counter->hw.prev_count, val);
745         atomic64_set(&counter->hw.period_left, left);
746         perf_counter_update_userpage(counter);
747
748         /*
749          * Finally record data if requested.
750          */
751         if (record)
752                 perf_counter_overflow(counter, 1, regs);
753 }
754
755 /*
756  * Performance monitor interrupt stuff
757  */
758 static void perf_counter_interrupt(struct pt_regs *regs)
759 {
760         int i;
761         struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
762         struct perf_counter *counter;
763         long val;
764         int found = 0;
765
766         for (i = 0; i < cpuhw->n_counters; ++i) {
767                 counter = cpuhw->counter[i];
768                 val = read_pmc(counter->hw.idx);
769                 if ((int)val < 0) {
770                         /* counter has overflowed */
771                         found = 1;
772                         record_and_restart(counter, val, regs);
773                 }
774         }
775
776         /*
777          * In case we didn't find and reset the counter that caused
778          * the interrupt, scan all counters and reset any that are
779          * negative, to avoid getting continual interrupts.
780          * Any that we processed in the previous loop will not be negative.
781          */
782         if (!found) {
783                 for (i = 0; i < ppmu->n_counter; ++i) {
784                         val = read_pmc(i + 1);
785                         if ((int)val < 0)
786                                 write_pmc(i + 1, 0);
787                 }
788         }
789
790         /*
791          * Reset MMCR0 to its normal value.  This will set PMXE and
792          * clear FC (freeze counters) and PMAO (perf mon alert occurred)
793          * and thus allow interrupts to occur again.
794          * XXX might want to use MSR.PM to keep the counters frozen until
795          * we get back out of this interrupt.
796          */
797         mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
798
799         /*
800          * If we need a wakeup, check whether interrupts were soft-enabled
801          * when we took the interrupt.  If they were, we can wake stuff up
802          * immediately; otherwise we'll have do the wakeup when interrupts
803          * get soft-enabled.
804          */
805         if (test_perf_counter_pending() && regs->softe) {
806                 irq_enter();
807                 clear_perf_counter_pending();
808                 perf_counter_do_pending();
809                 irq_exit();
810         }
811 }
812
813 void hw_perf_counter_setup(int cpu)
814 {
815         struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
816
817         memset(cpuhw, 0, sizeof(*cpuhw));
818         cpuhw->mmcr[0] = MMCR0_FC;
819 }
820
821 extern struct power_pmu power4_pmu;
822 extern struct power_pmu ppc970_pmu;
823 extern struct power_pmu power5_pmu;
824 extern struct power_pmu power5p_pmu;
825 extern struct power_pmu power6_pmu;
826
827 static int init_perf_counters(void)
828 {
829         unsigned long pvr;
830
831         /* XXX should get this from cputable */
832         pvr = mfspr(SPRN_PVR);
833         switch (PVR_VER(pvr)) {
834         case PV_POWER4:
835         case PV_POWER4p:
836                 ppmu = &power4_pmu;
837                 break;
838         case PV_970:
839         case PV_970FX:
840         case PV_970MP:
841                 ppmu = &ppc970_pmu;
842                 break;
843         case PV_POWER5:
844                 ppmu = &power5_pmu;
845                 break;
846         case PV_POWER5p:
847                 ppmu = &power5p_pmu;
848                 break;
849         case 0x3e:
850                 ppmu = &power6_pmu;
851                 break;
852         }
853
854         /*
855          * Use FCHV to ignore kernel events if MSR.HV is set.
856          */
857         if (mfmsr() & MSR_HV)
858                 freeze_counters_kernel = MMCR0_FCHV;
859
860         return 0;
861 }
862
863 arch_initcall(init_perf_counters);