orinoco: Storage class should be before const qualifier
[linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83
84 #include <asm/io.h>
85 #include <asm/irq.h>
86 #include <asm/uaccess.h>
87 #include <linux/module.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/crc32.h>
90 #include <linux/mii.h>
91 #include <linux/phy.h>
92 #include <linux/phy_fixed.h>
93 #include <linux/of.h>
94
95 #include "gianfar.h"
96 #include "fsl_pq_mdio.h"
97
98 #define TX_TIMEOUT      (1*HZ)
99 #undef BRIEF_GFAR_ERRORS
100 #undef VERBOSE_GFAR_ERRORS
101
102 const char gfar_driver_name[] = "Gianfar Ethernet";
103 const char gfar_driver_version[] = "1.3";
104
105 static int gfar_enet_open(struct net_device *dev);
106 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
107 static void gfar_reset_task(struct work_struct *work);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112                 struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct of_device *ofdev,
122                 const struct of_device_id *match);
123 static int gfar_remove(struct of_device *ofdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
131 #endif
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
135                               int amount_pull);
136 static void gfar_vlan_rx_register(struct net_device *netdev,
137                                 struct vlan_group *grp);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
143
144 MODULE_AUTHOR("Freescale Semiconductor, Inc");
145 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
146 MODULE_LICENSE("GPL");
147
148 /* Returns 1 if incoming frames use an FCB */
149 static inline int gfar_uses_fcb(struct gfar_private *priv)
150 {
151         return priv->vlgrp || priv->rx_csum_enable;
152 }
153
154 static int gfar_of_init(struct net_device *dev)
155 {
156         struct device_node *phy, *mdio;
157         const unsigned int *id;
158         const char *model;
159         const char *ctype;
160         const void *mac_addr;
161         const phandle *ph;
162         u64 addr, size;
163         int err = 0;
164         struct gfar_private *priv = netdev_priv(dev);
165         struct device_node *np = priv->node;
166         char bus_name[MII_BUS_ID_SIZE];
167         const u32 *stash;
168         const u32 *stash_len;
169         const u32 *stash_idx;
170
171         if (!np || !of_device_is_available(np))
172                 return -ENODEV;
173
174         /* get a pointer to the register memory */
175         addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
176         priv->regs = ioremap(addr, size);
177
178         if (priv->regs == NULL)
179                 return -ENOMEM;
180
181         priv->interruptTransmit = irq_of_parse_and_map(np, 0);
182
183         model = of_get_property(np, "model", NULL);
184
185         /* If we aren't the FEC we have multiple interrupts */
186         if (model && strcasecmp(model, "FEC")) {
187                 priv->interruptReceive = irq_of_parse_and_map(np, 1);
188
189                 priv->interruptError = irq_of_parse_and_map(np, 2);
190
191                 if (priv->interruptTransmit < 0 ||
192                                 priv->interruptReceive < 0 ||
193                                 priv->interruptError < 0) {
194                         err = -EINVAL;
195                         goto err_out;
196                 }
197         }
198
199         stash = of_get_property(np, "bd-stash", NULL);
200
201         if(stash) {
202                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
203                 priv->bd_stash_en = 1;
204         }
205
206         stash_len = of_get_property(np, "rx-stash-len", NULL);
207
208         if (stash_len)
209                 priv->rx_stash_size = *stash_len;
210
211         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
212
213         if (stash_idx)
214                 priv->rx_stash_index = *stash_idx;
215
216         if (stash_len || stash_idx)
217                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
218
219         mac_addr = of_get_mac_address(np);
220         if (mac_addr)
221                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
222
223         if (model && !strcasecmp(model, "TSEC"))
224                 priv->device_flags =
225                         FSL_GIANFAR_DEV_HAS_GIGABIT |
226                         FSL_GIANFAR_DEV_HAS_COALESCE |
227                         FSL_GIANFAR_DEV_HAS_RMON |
228                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
229         if (model && !strcasecmp(model, "eTSEC"))
230                 priv->device_flags =
231                         FSL_GIANFAR_DEV_HAS_GIGABIT |
232                         FSL_GIANFAR_DEV_HAS_COALESCE |
233                         FSL_GIANFAR_DEV_HAS_RMON |
234                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
235                         FSL_GIANFAR_DEV_HAS_PADDING |
236                         FSL_GIANFAR_DEV_HAS_CSUM |
237                         FSL_GIANFAR_DEV_HAS_VLAN |
238                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
239                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
240
241         ctype = of_get_property(np, "phy-connection-type", NULL);
242
243         /* We only care about rgmii-id.  The rest are autodetected */
244         if (ctype && !strcmp(ctype, "rgmii-id"))
245                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
246         else
247                 priv->interface = PHY_INTERFACE_MODE_MII;
248
249         if (of_get_property(np, "fsl,magic-packet", NULL))
250                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
251
252         ph = of_get_property(np, "phy-handle", NULL);
253         if (ph == NULL) {
254                 u32 *fixed_link;
255
256                 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
257                 if (!fixed_link) {
258                         err = -ENODEV;
259                         goto err_out;
260                 }
261
262                 snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id),
263                                 PHY_ID_FMT, "0", fixed_link[0]);
264         } else {
265                 phy = of_find_node_by_phandle(*ph);
266
267                 if (phy == NULL) {
268                         err = -ENODEV;
269                         goto err_out;
270                 }
271
272                 mdio = of_get_parent(phy);
273
274                 id = of_get_property(phy, "reg", NULL);
275
276                 of_node_put(phy);
277                 of_node_put(mdio);
278
279                 fsl_pq_mdio_bus_name(bus_name, mdio);
280                 snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id), "%s:%02x",
281                                 bus_name, *id);
282         }
283
284         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
285         ph = of_get_property(np, "tbi-handle", NULL);
286         if (ph) {
287                 struct device_node *tbi = of_find_node_by_phandle(*ph);
288                 struct of_device *ofdev;
289                 struct mii_bus *bus;
290
291                 if (!tbi)
292                         return 0;
293
294                 mdio = of_get_parent(tbi);
295                 if (!mdio)
296                         return 0;
297
298                 ofdev = of_find_device_by_node(mdio);
299
300                 of_node_put(mdio);
301
302                 id = of_get_property(tbi, "reg", NULL);
303                 if (!id)
304                         return 0;
305
306                 of_node_put(tbi);
307
308                 bus = dev_get_drvdata(&ofdev->dev);
309
310                 priv->tbiphy = bus->phy_map[*id];
311         }
312
313         return 0;
314
315 err_out:
316         iounmap(priv->regs);
317         return err;
318 }
319
320 /* Ioctl MII Interface */
321 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
322 {
323         struct gfar_private *priv = netdev_priv(dev);
324
325         if (!netif_running(dev))
326                 return -EINVAL;
327
328         if (!priv->phydev)
329                 return -ENODEV;
330
331         return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
332 }
333
334 /* Set up the ethernet device structure, private data,
335  * and anything else we need before we start */
336 static int gfar_probe(struct of_device *ofdev,
337                 const struct of_device_id *match)
338 {
339         u32 tempval;
340         struct net_device *dev = NULL;
341         struct gfar_private *priv = NULL;
342         DECLARE_MAC_BUF(mac);
343         int err = 0;
344         int len_devname;
345
346         /* Create an ethernet device instance */
347         dev = alloc_etherdev(sizeof (*priv));
348
349         if (NULL == dev)
350                 return -ENOMEM;
351
352         priv = netdev_priv(dev);
353         priv->dev = dev;
354         priv->node = ofdev->node;
355
356         err = gfar_of_init(dev);
357
358         if (err)
359                 goto regs_fail;
360
361         spin_lock_init(&priv->txlock);
362         spin_lock_init(&priv->rxlock);
363         spin_lock_init(&priv->bflock);
364         INIT_WORK(&priv->reset_task, gfar_reset_task);
365
366         dev_set_drvdata(&ofdev->dev, priv);
367
368         /* Stop the DMA engine now, in case it was running before */
369         /* (The firmware could have used it, and left it running). */
370         gfar_halt(dev);
371
372         /* Reset MAC layer */
373         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
374
375         /* We need to delay at least 3 TX clocks */
376         udelay(2);
377
378         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
379         gfar_write(&priv->regs->maccfg1, tempval);
380
381         /* Initialize MACCFG2. */
382         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
383
384         /* Initialize ECNTRL */
385         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
386
387         /* Set the dev->base_addr to the gfar reg region */
388         dev->base_addr = (unsigned long) (priv->regs);
389
390         SET_NETDEV_DEV(dev, &ofdev->dev);
391
392         /* Fill in the dev structure */
393         dev->open = gfar_enet_open;
394         dev->hard_start_xmit = gfar_start_xmit;
395         dev->tx_timeout = gfar_timeout;
396         dev->watchdog_timeo = TX_TIMEOUT;
397         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
398 #ifdef CONFIG_NET_POLL_CONTROLLER
399         dev->poll_controller = gfar_netpoll;
400 #endif
401         dev->stop = gfar_close;
402         dev->change_mtu = gfar_change_mtu;
403         dev->mtu = 1500;
404         dev->set_multicast_list = gfar_set_multi;
405
406         dev->ethtool_ops = &gfar_ethtool_ops;
407         dev->do_ioctl = gfar_ioctl;
408
409         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
410                 priv->rx_csum_enable = 1;
411                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
412         } else
413                 priv->rx_csum_enable = 0;
414
415         priv->vlgrp = NULL;
416
417         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
418                 dev->vlan_rx_register = gfar_vlan_rx_register;
419
420                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
421         }
422
423         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
424                 priv->extended_hash = 1;
425                 priv->hash_width = 9;
426
427                 priv->hash_regs[0] = &priv->regs->igaddr0;
428                 priv->hash_regs[1] = &priv->regs->igaddr1;
429                 priv->hash_regs[2] = &priv->regs->igaddr2;
430                 priv->hash_regs[3] = &priv->regs->igaddr3;
431                 priv->hash_regs[4] = &priv->regs->igaddr4;
432                 priv->hash_regs[5] = &priv->regs->igaddr5;
433                 priv->hash_regs[6] = &priv->regs->igaddr6;
434                 priv->hash_regs[7] = &priv->regs->igaddr7;
435                 priv->hash_regs[8] = &priv->regs->gaddr0;
436                 priv->hash_regs[9] = &priv->regs->gaddr1;
437                 priv->hash_regs[10] = &priv->regs->gaddr2;
438                 priv->hash_regs[11] = &priv->regs->gaddr3;
439                 priv->hash_regs[12] = &priv->regs->gaddr4;
440                 priv->hash_regs[13] = &priv->regs->gaddr5;
441                 priv->hash_regs[14] = &priv->regs->gaddr6;
442                 priv->hash_regs[15] = &priv->regs->gaddr7;
443
444         } else {
445                 priv->extended_hash = 0;
446                 priv->hash_width = 8;
447
448                 priv->hash_regs[0] = &priv->regs->gaddr0;
449                 priv->hash_regs[1] = &priv->regs->gaddr1;
450                 priv->hash_regs[2] = &priv->regs->gaddr2;
451                 priv->hash_regs[3] = &priv->regs->gaddr3;
452                 priv->hash_regs[4] = &priv->regs->gaddr4;
453                 priv->hash_regs[5] = &priv->regs->gaddr5;
454                 priv->hash_regs[6] = &priv->regs->gaddr6;
455                 priv->hash_regs[7] = &priv->regs->gaddr7;
456         }
457
458         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
459                 priv->padding = DEFAULT_PADDING;
460         else
461                 priv->padding = 0;
462
463         if (dev->features & NETIF_F_IP_CSUM)
464                 dev->hard_header_len += GMAC_FCB_LEN;
465
466         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
467         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
468         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
469         priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
470
471         priv->txcoalescing = DEFAULT_TX_COALESCE;
472         priv->txic = DEFAULT_TXIC;
473         priv->rxcoalescing = DEFAULT_RX_COALESCE;
474         priv->rxic = DEFAULT_RXIC;
475
476         /* Enable most messages by default */
477         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
478
479         /* Carrier starts down, phylib will bring it up */
480         netif_carrier_off(dev);
481
482         err = register_netdev(dev);
483
484         if (err) {
485                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
486                                 dev->name);
487                 goto register_fail;
488         }
489
490         device_init_wakeup(&dev->dev,
491                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
492
493         /* fill out IRQ number and name fields */
494         len_devname = strlen(dev->name);
495         strncpy(&priv->int_name_tx[0], dev->name, len_devname);
496         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
497                 strncpy(&priv->int_name_tx[len_devname],
498                         "_tx", sizeof("_tx") + 1);
499
500                 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
501                 strncpy(&priv->int_name_rx[len_devname],
502                         "_rx", sizeof("_rx") + 1);
503
504                 strncpy(&priv->int_name_er[0], dev->name, len_devname);
505                 strncpy(&priv->int_name_er[len_devname],
506                         "_er", sizeof("_er") + 1);
507         } else
508                 priv->int_name_tx[len_devname] = '\0';
509
510         /* Create all the sysfs files */
511         gfar_init_sysfs(dev);
512
513         /* Print out the device info */
514         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
515
516         /* Even more device info helps when determining which kernel */
517         /* provided which set of benchmarks. */
518         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
519         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
520                dev->name, priv->rx_ring_size, priv->tx_ring_size);
521
522         return 0;
523
524 register_fail:
525         iounmap(priv->regs);
526 regs_fail:
527         free_netdev(dev);
528         return err;
529 }
530
531 static int gfar_remove(struct of_device *ofdev)
532 {
533         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
534
535         dev_set_drvdata(&ofdev->dev, NULL);
536
537         iounmap(priv->regs);
538         free_netdev(priv->dev);
539
540         return 0;
541 }
542
543 #ifdef CONFIG_PM
544 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
545 {
546         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
547         struct net_device *dev = priv->dev;
548         unsigned long flags;
549         u32 tempval;
550
551         int magic_packet = priv->wol_en &&
552                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
553
554         netif_device_detach(dev);
555
556         if (netif_running(dev)) {
557                 spin_lock_irqsave(&priv->txlock, flags);
558                 spin_lock(&priv->rxlock);
559
560                 gfar_halt_nodisable(dev);
561
562                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
563                 tempval = gfar_read(&priv->regs->maccfg1);
564
565                 tempval &= ~MACCFG1_TX_EN;
566
567                 if (!magic_packet)
568                         tempval &= ~MACCFG1_RX_EN;
569
570                 gfar_write(&priv->regs->maccfg1, tempval);
571
572                 spin_unlock(&priv->rxlock);
573                 spin_unlock_irqrestore(&priv->txlock, flags);
574
575                 napi_disable(&priv->napi);
576
577                 if (magic_packet) {
578                         /* Enable interrupt on Magic Packet */
579                         gfar_write(&priv->regs->imask, IMASK_MAG);
580
581                         /* Enable Magic Packet mode */
582                         tempval = gfar_read(&priv->regs->maccfg2);
583                         tempval |= MACCFG2_MPEN;
584                         gfar_write(&priv->regs->maccfg2, tempval);
585                 } else {
586                         phy_stop(priv->phydev);
587                 }
588         }
589
590         return 0;
591 }
592
593 static int gfar_resume(struct of_device *ofdev)
594 {
595         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
596         struct net_device *dev = priv->dev;
597         unsigned long flags;
598         u32 tempval;
599         int magic_packet = priv->wol_en &&
600                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
601
602         if (!netif_running(dev)) {
603                 netif_device_attach(dev);
604                 return 0;
605         }
606
607         if (!magic_packet && priv->phydev)
608                 phy_start(priv->phydev);
609
610         /* Disable Magic Packet mode, in case something
611          * else woke us up.
612          */
613
614         spin_lock_irqsave(&priv->txlock, flags);
615         spin_lock(&priv->rxlock);
616
617         tempval = gfar_read(&priv->regs->maccfg2);
618         tempval &= ~MACCFG2_MPEN;
619         gfar_write(&priv->regs->maccfg2, tempval);
620
621         gfar_start(dev);
622
623         spin_unlock(&priv->rxlock);
624         spin_unlock_irqrestore(&priv->txlock, flags);
625
626         netif_device_attach(dev);
627
628         napi_enable(&priv->napi);
629
630         return 0;
631 }
632 #else
633 #define gfar_suspend NULL
634 #define gfar_resume NULL
635 #endif
636
637 /* Reads the controller's registers to determine what interface
638  * connects it to the PHY.
639  */
640 static phy_interface_t gfar_get_interface(struct net_device *dev)
641 {
642         struct gfar_private *priv = netdev_priv(dev);
643         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
644
645         if (ecntrl & ECNTRL_SGMII_MODE)
646                 return PHY_INTERFACE_MODE_SGMII;
647
648         if (ecntrl & ECNTRL_TBI_MODE) {
649                 if (ecntrl & ECNTRL_REDUCED_MODE)
650                         return PHY_INTERFACE_MODE_RTBI;
651                 else
652                         return PHY_INTERFACE_MODE_TBI;
653         }
654
655         if (ecntrl & ECNTRL_REDUCED_MODE) {
656                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
657                         return PHY_INTERFACE_MODE_RMII;
658                 else {
659                         phy_interface_t interface = priv->interface;
660
661                         /*
662                          * This isn't autodetected right now, so it must
663                          * be set by the device tree or platform code.
664                          */
665                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
666                                 return PHY_INTERFACE_MODE_RGMII_ID;
667
668                         return PHY_INTERFACE_MODE_RGMII;
669                 }
670         }
671
672         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
673                 return PHY_INTERFACE_MODE_GMII;
674
675         return PHY_INTERFACE_MODE_MII;
676 }
677
678
679 /* Initializes driver's PHY state, and attaches to the PHY.
680  * Returns 0 on success.
681  */
682 static int init_phy(struct net_device *dev)
683 {
684         struct gfar_private *priv = netdev_priv(dev);
685         uint gigabit_support =
686                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
687                 SUPPORTED_1000baseT_Full : 0;
688         struct phy_device *phydev;
689         phy_interface_t interface;
690
691         priv->oldlink = 0;
692         priv->oldspeed = 0;
693         priv->oldduplex = -1;
694
695         interface = gfar_get_interface(dev);
696
697         phydev = phy_connect(dev, priv->phy_bus_id, &adjust_link, 0, interface);
698
699         if (interface == PHY_INTERFACE_MODE_SGMII)
700                 gfar_configure_serdes(dev);
701
702         if (IS_ERR(phydev)) {
703                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
704                 return PTR_ERR(phydev);
705         }
706
707         /* Remove any features not supported by the controller */
708         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
709         phydev->advertising = phydev->supported;
710
711         priv->phydev = phydev;
712
713         return 0;
714 }
715
716 /*
717  * Initialize TBI PHY interface for communicating with the
718  * SERDES lynx PHY on the chip.  We communicate with this PHY
719  * through the MDIO bus on each controller, treating it as a
720  * "normal" PHY at the address found in the TBIPA register.  We assume
721  * that the TBIPA register is valid.  Either the MDIO bus code will set
722  * it to a value that doesn't conflict with other PHYs on the bus, or the
723  * value doesn't matter, as there are no other PHYs on the bus.
724  */
725 static void gfar_configure_serdes(struct net_device *dev)
726 {
727         struct gfar_private *priv = netdev_priv(dev);
728
729         if (!priv->tbiphy) {
730                 printk(KERN_WARNING "SGMII mode requires that the device "
731                                 "tree specify a tbi-handle\n");
732                 return;
733         }
734
735         /*
736          * If the link is already up, we must already be ok, and don't need to
737          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
738          * everything for us?  Resetting it takes the link down and requires
739          * several seconds for it to come back.
740          */
741         if (phy_read(priv->tbiphy, MII_BMSR) & BMSR_LSTATUS)
742                 return;
743
744         /* Single clk mode, mii mode off(for serdes communication) */
745         phy_write(priv->tbiphy, MII_TBICON, TBICON_CLK_SELECT);
746
747         phy_write(priv->tbiphy, MII_ADVERTISE,
748                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
749                         ADVERTISE_1000XPSE_ASYM);
750
751         phy_write(priv->tbiphy, MII_BMCR, BMCR_ANENABLE |
752                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
753 }
754
755 static void init_registers(struct net_device *dev)
756 {
757         struct gfar_private *priv = netdev_priv(dev);
758
759         /* Clear IEVENT */
760         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
761
762         /* Initialize IMASK */
763         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
764
765         /* Init hash registers to zero */
766         gfar_write(&priv->regs->igaddr0, 0);
767         gfar_write(&priv->regs->igaddr1, 0);
768         gfar_write(&priv->regs->igaddr2, 0);
769         gfar_write(&priv->regs->igaddr3, 0);
770         gfar_write(&priv->regs->igaddr4, 0);
771         gfar_write(&priv->regs->igaddr5, 0);
772         gfar_write(&priv->regs->igaddr6, 0);
773         gfar_write(&priv->regs->igaddr7, 0);
774
775         gfar_write(&priv->regs->gaddr0, 0);
776         gfar_write(&priv->regs->gaddr1, 0);
777         gfar_write(&priv->regs->gaddr2, 0);
778         gfar_write(&priv->regs->gaddr3, 0);
779         gfar_write(&priv->regs->gaddr4, 0);
780         gfar_write(&priv->regs->gaddr5, 0);
781         gfar_write(&priv->regs->gaddr6, 0);
782         gfar_write(&priv->regs->gaddr7, 0);
783
784         /* Zero out the rmon mib registers if it has them */
785         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
786                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
787
788                 /* Mask off the CAM interrupts */
789                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
790                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
791         }
792
793         /* Initialize the max receive buffer length */
794         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
795
796         /* Initialize the Minimum Frame Length Register */
797         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
798 }
799
800
801 /* Halt the receive and transmit queues */
802 static void gfar_halt_nodisable(struct net_device *dev)
803 {
804         struct gfar_private *priv = netdev_priv(dev);
805         struct gfar __iomem *regs = priv->regs;
806         u32 tempval;
807
808         /* Mask all interrupts */
809         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
810
811         /* Clear all interrupts */
812         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
813
814         /* Stop the DMA, and wait for it to stop */
815         tempval = gfar_read(&priv->regs->dmactrl);
816         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
817             != (DMACTRL_GRS | DMACTRL_GTS)) {
818                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
819                 gfar_write(&priv->regs->dmactrl, tempval);
820
821                 while (!(gfar_read(&priv->regs->ievent) &
822                          (IEVENT_GRSC | IEVENT_GTSC)))
823                         cpu_relax();
824         }
825 }
826
827 /* Halt the receive and transmit queues */
828 void gfar_halt(struct net_device *dev)
829 {
830         struct gfar_private *priv = netdev_priv(dev);
831         struct gfar __iomem *regs = priv->regs;
832         u32 tempval;
833
834         gfar_halt_nodisable(dev);
835
836         /* Disable Rx and Tx */
837         tempval = gfar_read(&regs->maccfg1);
838         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
839         gfar_write(&regs->maccfg1, tempval);
840 }
841
842 void stop_gfar(struct net_device *dev)
843 {
844         struct gfar_private *priv = netdev_priv(dev);
845         struct gfar __iomem *regs = priv->regs;
846         unsigned long flags;
847
848         phy_stop(priv->phydev);
849
850         /* Lock it down */
851         spin_lock_irqsave(&priv->txlock, flags);
852         spin_lock(&priv->rxlock);
853
854         gfar_halt(dev);
855
856         spin_unlock(&priv->rxlock);
857         spin_unlock_irqrestore(&priv->txlock, flags);
858
859         /* Free the IRQs */
860         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
861                 free_irq(priv->interruptError, dev);
862                 free_irq(priv->interruptTransmit, dev);
863                 free_irq(priv->interruptReceive, dev);
864         } else {
865                 free_irq(priv->interruptTransmit, dev);
866         }
867
868         free_skb_resources(priv);
869
870         dma_free_coherent(&dev->dev,
871                         sizeof(struct txbd8)*priv->tx_ring_size
872                         + sizeof(struct rxbd8)*priv->rx_ring_size,
873                         priv->tx_bd_base,
874                         gfar_read(&regs->tbase0));
875 }
876
877 /* If there are any tx skbs or rx skbs still around, free them.
878  * Then free tx_skbuff and rx_skbuff */
879 static void free_skb_resources(struct gfar_private *priv)
880 {
881         struct rxbd8 *rxbdp;
882         struct txbd8 *txbdp;
883         int i, j;
884
885         /* Go through all the buffer descriptors and free their data buffers */
886         txbdp = priv->tx_bd_base;
887
888         for (i = 0; i < priv->tx_ring_size; i++) {
889                 if (!priv->tx_skbuff[i])
890                         continue;
891
892                 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
893                                 txbdp->length, DMA_TO_DEVICE);
894                 txbdp->lstatus = 0;
895                 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
896                         txbdp++;
897                         dma_unmap_page(&priv->dev->dev, txbdp->bufPtr,
898                                         txbdp->length, DMA_TO_DEVICE);
899                 }
900                 txbdp++;
901                 dev_kfree_skb_any(priv->tx_skbuff[i]);
902                 priv->tx_skbuff[i] = NULL;
903         }
904
905         kfree(priv->tx_skbuff);
906
907         rxbdp = priv->rx_bd_base;
908
909         /* rx_skbuff is not guaranteed to be allocated, so only
910          * free it and its contents if it is allocated */
911         if(priv->rx_skbuff != NULL) {
912                 for (i = 0; i < priv->rx_ring_size; i++) {
913                         if (priv->rx_skbuff[i]) {
914                                 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
915                                                 priv->rx_buffer_size,
916                                                 DMA_FROM_DEVICE);
917
918                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
919                                 priv->rx_skbuff[i] = NULL;
920                         }
921
922                         rxbdp->lstatus = 0;
923                         rxbdp->bufPtr = 0;
924
925                         rxbdp++;
926                 }
927
928                 kfree(priv->rx_skbuff);
929         }
930 }
931
932 void gfar_start(struct net_device *dev)
933 {
934         struct gfar_private *priv = netdev_priv(dev);
935         struct gfar __iomem *regs = priv->regs;
936         u32 tempval;
937
938         /* Enable Rx and Tx in MACCFG1 */
939         tempval = gfar_read(&regs->maccfg1);
940         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
941         gfar_write(&regs->maccfg1, tempval);
942
943         /* Initialize DMACTRL to have WWR and WOP */
944         tempval = gfar_read(&priv->regs->dmactrl);
945         tempval |= DMACTRL_INIT_SETTINGS;
946         gfar_write(&priv->regs->dmactrl, tempval);
947
948         /* Make sure we aren't stopped */
949         tempval = gfar_read(&priv->regs->dmactrl);
950         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
951         gfar_write(&priv->regs->dmactrl, tempval);
952
953         /* Clear THLT/RHLT, so that the DMA starts polling now */
954         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
955         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
956
957         /* Unmask the interrupts we look for */
958         gfar_write(&regs->imask, IMASK_DEFAULT);
959
960         dev->trans_start = jiffies;
961 }
962
963 /* Bring the controller up and running */
964 int startup_gfar(struct net_device *dev)
965 {
966         struct txbd8 *txbdp;
967         struct rxbd8 *rxbdp;
968         dma_addr_t addr = 0;
969         unsigned long vaddr;
970         int i;
971         struct gfar_private *priv = netdev_priv(dev);
972         struct gfar __iomem *regs = priv->regs;
973         int err = 0;
974         u32 rctrl = 0;
975         u32 attrs = 0;
976
977         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
978
979         /* Allocate memory for the buffer descriptors */
980         vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
981                         sizeof (struct txbd8) * priv->tx_ring_size +
982                         sizeof (struct rxbd8) * priv->rx_ring_size,
983                         &addr, GFP_KERNEL);
984
985         if (vaddr == 0) {
986                 if (netif_msg_ifup(priv))
987                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
988                                         dev->name);
989                 return -ENOMEM;
990         }
991
992         priv->tx_bd_base = (struct txbd8 *) vaddr;
993
994         /* enet DMA only understands physical addresses */
995         gfar_write(&regs->tbase0, addr);
996
997         /* Start the rx descriptor ring where the tx ring leaves off */
998         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
999         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
1000         priv->rx_bd_base = (struct rxbd8 *) vaddr;
1001         gfar_write(&regs->rbase0, addr);
1002
1003         /* Setup the skbuff rings */
1004         priv->tx_skbuff =
1005             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
1006                                         priv->tx_ring_size, GFP_KERNEL);
1007
1008         if (NULL == priv->tx_skbuff) {
1009                 if (netif_msg_ifup(priv))
1010                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
1011                                         dev->name);
1012                 err = -ENOMEM;
1013                 goto tx_skb_fail;
1014         }
1015
1016         for (i = 0; i < priv->tx_ring_size; i++)
1017                 priv->tx_skbuff[i] = NULL;
1018
1019         priv->rx_skbuff =
1020             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
1021                                         priv->rx_ring_size, GFP_KERNEL);
1022
1023         if (NULL == priv->rx_skbuff) {
1024                 if (netif_msg_ifup(priv))
1025                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
1026                                         dev->name);
1027                 err = -ENOMEM;
1028                 goto rx_skb_fail;
1029         }
1030
1031         for (i = 0; i < priv->rx_ring_size; i++)
1032                 priv->rx_skbuff[i] = NULL;
1033
1034         /* Initialize some variables in our dev structure */
1035         priv->num_txbdfree = priv->tx_ring_size;
1036         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1037         priv->cur_rx = priv->rx_bd_base;
1038         priv->skb_curtx = priv->skb_dirtytx = 0;
1039         priv->skb_currx = 0;
1040
1041         /* Initialize Transmit Descriptor Ring */
1042         txbdp = priv->tx_bd_base;
1043         for (i = 0; i < priv->tx_ring_size; i++) {
1044                 txbdp->lstatus = 0;
1045                 txbdp->bufPtr = 0;
1046                 txbdp++;
1047         }
1048
1049         /* Set the last descriptor in the ring to indicate wrap */
1050         txbdp--;
1051         txbdp->status |= TXBD_WRAP;
1052
1053         rxbdp = priv->rx_bd_base;
1054         for (i = 0; i < priv->rx_ring_size; i++) {
1055                 struct sk_buff *skb;
1056
1057                 skb = gfar_new_skb(dev);
1058
1059                 if (!skb) {
1060                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1061                                         dev->name);
1062
1063                         goto err_rxalloc_fail;
1064                 }
1065
1066                 priv->rx_skbuff[i] = skb;
1067
1068                 gfar_new_rxbdp(dev, rxbdp, skb);
1069
1070                 rxbdp++;
1071         }
1072
1073         /* Set the last descriptor in the ring to wrap */
1074         rxbdp--;
1075         rxbdp->status |= RXBD_WRAP;
1076
1077         /* If the device has multiple interrupts, register for
1078          * them.  Otherwise, only register for the one */
1079         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1080                 /* Install our interrupt handlers for Error,
1081                  * Transmit, and Receive */
1082                 if (request_irq(priv->interruptError, gfar_error,
1083                                 0, priv->int_name_er, dev) < 0) {
1084                         if (netif_msg_intr(priv))
1085                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1086                                         dev->name, priv->interruptError);
1087
1088                         err = -1;
1089                         goto err_irq_fail;
1090                 }
1091
1092                 if (request_irq(priv->interruptTransmit, gfar_transmit,
1093                                 0, priv->int_name_tx, dev) < 0) {
1094                         if (netif_msg_intr(priv))
1095                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1096                                         dev->name, priv->interruptTransmit);
1097
1098                         err = -1;
1099
1100                         goto tx_irq_fail;
1101                 }
1102
1103                 if (request_irq(priv->interruptReceive, gfar_receive,
1104                                 0, priv->int_name_rx, dev) < 0) {
1105                         if (netif_msg_intr(priv))
1106                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1107                                                 dev->name, priv->interruptReceive);
1108
1109                         err = -1;
1110                         goto rx_irq_fail;
1111                 }
1112         } else {
1113                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1114                                 0, priv->int_name_tx, dev) < 0) {
1115                         if (netif_msg_intr(priv))
1116                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1117                                         dev->name, priv->interruptTransmit);
1118
1119                         err = -1;
1120                         goto err_irq_fail;
1121                 }
1122         }
1123
1124         phy_start(priv->phydev);
1125
1126         /* Configure the coalescing support */
1127         gfar_write(&regs->txic, 0);
1128         if (priv->txcoalescing)
1129                 gfar_write(&regs->txic, priv->txic);
1130
1131         gfar_write(&regs->rxic, 0);
1132         if (priv->rxcoalescing)
1133                 gfar_write(&regs->rxic, priv->rxic);
1134
1135         if (priv->rx_csum_enable)
1136                 rctrl |= RCTRL_CHECKSUMMING;
1137
1138         if (priv->extended_hash) {
1139                 rctrl |= RCTRL_EXTHASH;
1140
1141                 gfar_clear_exact_match(dev);
1142                 rctrl |= RCTRL_EMEN;
1143         }
1144
1145         if (priv->padding) {
1146                 rctrl &= ~RCTRL_PAL_MASK;
1147                 rctrl |= RCTRL_PADDING(priv->padding);
1148         }
1149
1150         /* Init rctrl based on our settings */
1151         gfar_write(&priv->regs->rctrl, rctrl);
1152
1153         if (dev->features & NETIF_F_IP_CSUM)
1154                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1155
1156         /* Set the extraction length and index */
1157         attrs = ATTRELI_EL(priv->rx_stash_size) |
1158                 ATTRELI_EI(priv->rx_stash_index);
1159
1160         gfar_write(&priv->regs->attreli, attrs);
1161
1162         /* Start with defaults, and add stashing or locking
1163          * depending on the approprate variables */
1164         attrs = ATTR_INIT_SETTINGS;
1165
1166         if (priv->bd_stash_en)
1167                 attrs |= ATTR_BDSTASH;
1168
1169         if (priv->rx_stash_size != 0)
1170                 attrs |= ATTR_BUFSTASH;
1171
1172         gfar_write(&priv->regs->attr, attrs);
1173
1174         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1175         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1176         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1177
1178         /* Start the controller */
1179         gfar_start(dev);
1180
1181         return 0;
1182
1183 rx_irq_fail:
1184         free_irq(priv->interruptTransmit, dev);
1185 tx_irq_fail:
1186         free_irq(priv->interruptError, dev);
1187 err_irq_fail:
1188 err_rxalloc_fail:
1189 rx_skb_fail:
1190         free_skb_resources(priv);
1191 tx_skb_fail:
1192         dma_free_coherent(&dev->dev,
1193                         sizeof(struct txbd8)*priv->tx_ring_size
1194                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1195                         priv->tx_bd_base,
1196                         gfar_read(&regs->tbase0));
1197
1198         return err;
1199 }
1200
1201 /* Called when something needs to use the ethernet device */
1202 /* Returns 0 for success. */
1203 static int gfar_enet_open(struct net_device *dev)
1204 {
1205         struct gfar_private *priv = netdev_priv(dev);
1206         int err;
1207
1208         napi_enable(&priv->napi);
1209
1210         skb_queue_head_init(&priv->rx_recycle);
1211
1212         /* Initialize a bunch of registers */
1213         init_registers(dev);
1214
1215         gfar_set_mac_address(dev);
1216
1217         err = init_phy(dev);
1218
1219         if(err) {
1220                 napi_disable(&priv->napi);
1221                 return err;
1222         }
1223
1224         err = startup_gfar(dev);
1225         if (err) {
1226                 napi_disable(&priv->napi);
1227                 return err;
1228         }
1229
1230         netif_start_queue(dev);
1231
1232         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1233
1234         return err;
1235 }
1236
1237 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1238 {
1239         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1240
1241         cacheable_memzero(fcb, GMAC_FCB_LEN);
1242
1243         return fcb;
1244 }
1245
1246 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1247 {
1248         u8 flags = 0;
1249
1250         /* If we're here, it's a IP packet with a TCP or UDP
1251          * payload.  We set it to checksum, using a pseudo-header
1252          * we provide
1253          */
1254         flags = TXFCB_DEFAULT;
1255
1256         /* Tell the controller what the protocol is */
1257         /* And provide the already calculated phcs */
1258         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1259                 flags |= TXFCB_UDP;
1260                 fcb->phcs = udp_hdr(skb)->check;
1261         } else
1262                 fcb->phcs = tcp_hdr(skb)->check;
1263
1264         /* l3os is the distance between the start of the
1265          * frame (skb->data) and the start of the IP hdr.
1266          * l4os is the distance between the start of the
1267          * l3 hdr and the l4 hdr */
1268         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1269         fcb->l4os = skb_network_header_len(skb);
1270
1271         fcb->flags = flags;
1272 }
1273
1274 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1275 {
1276         fcb->flags |= TXFCB_VLN;
1277         fcb->vlctl = vlan_tx_tag_get(skb);
1278 }
1279
1280 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1281                                struct txbd8 *base, int ring_size)
1282 {
1283         struct txbd8 *new_bd = bdp + stride;
1284
1285         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1286 }
1287
1288 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1289                 int ring_size)
1290 {
1291         return skip_txbd(bdp, 1, base, ring_size);
1292 }
1293
1294 /* This is called by the kernel when a frame is ready for transmission. */
1295 /* It is pointed to by the dev->hard_start_xmit function pointer */
1296 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1297 {
1298         struct gfar_private *priv = netdev_priv(dev);
1299         struct txfcb *fcb = NULL;
1300         struct txbd8 *txbdp, *txbdp_start, *base;
1301         u32 lstatus;
1302         int i;
1303         u32 bufaddr;
1304         unsigned long flags;
1305         unsigned int nr_frags, length;
1306
1307         base = priv->tx_bd_base;
1308
1309         /* total number of fragments in the SKB */
1310         nr_frags = skb_shinfo(skb)->nr_frags;
1311
1312         spin_lock_irqsave(&priv->txlock, flags);
1313
1314         /* check if there is space to queue this packet */
1315         if (nr_frags > priv->num_txbdfree) {
1316                 /* no space, stop the queue */
1317                 netif_stop_queue(dev);
1318                 dev->stats.tx_fifo_errors++;
1319                 spin_unlock_irqrestore(&priv->txlock, flags);
1320                 return NETDEV_TX_BUSY;
1321         }
1322
1323         /* Update transmit stats */
1324         dev->stats.tx_bytes += skb->len;
1325
1326         txbdp = txbdp_start = priv->cur_tx;
1327
1328         if (nr_frags == 0) {
1329                 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1330         } else {
1331                 /* Place the fragment addresses and lengths into the TxBDs */
1332                 for (i = 0; i < nr_frags; i++) {
1333                         /* Point at the next BD, wrapping as needed */
1334                         txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1335
1336                         length = skb_shinfo(skb)->frags[i].size;
1337
1338                         lstatus = txbdp->lstatus | length |
1339                                 BD_LFLAG(TXBD_READY);
1340
1341                         /* Handle the last BD specially */
1342                         if (i == nr_frags - 1)
1343                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1344
1345                         bufaddr = dma_map_page(&dev->dev,
1346                                         skb_shinfo(skb)->frags[i].page,
1347                                         skb_shinfo(skb)->frags[i].page_offset,
1348                                         length,
1349                                         DMA_TO_DEVICE);
1350
1351                         /* set the TxBD length and buffer pointer */
1352                         txbdp->bufPtr = bufaddr;
1353                         txbdp->lstatus = lstatus;
1354                 }
1355
1356                 lstatus = txbdp_start->lstatus;
1357         }
1358
1359         /* Set up checksumming */
1360         if (CHECKSUM_PARTIAL == skb->ip_summed) {
1361                 fcb = gfar_add_fcb(skb);
1362                 lstatus |= BD_LFLAG(TXBD_TOE);
1363                 gfar_tx_checksum(skb, fcb);
1364         }
1365
1366         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1367                 if (unlikely(NULL == fcb)) {
1368                         fcb = gfar_add_fcb(skb);
1369                         lstatus |= BD_LFLAG(TXBD_TOE);
1370                 }
1371
1372                 gfar_tx_vlan(skb, fcb);
1373         }
1374
1375         /* setup the TxBD length and buffer pointer for the first BD */
1376         priv->tx_skbuff[priv->skb_curtx] = skb;
1377         txbdp_start->bufPtr = dma_map_single(&dev->dev, skb->data,
1378                         skb_headlen(skb), DMA_TO_DEVICE);
1379
1380         lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1381
1382         /*
1383          * The powerpc-specific eieio() is used, as wmb() has too strong
1384          * semantics (it requires synchronization between cacheable and
1385          * uncacheable mappings, which eieio doesn't provide and which we
1386          * don't need), thus requiring a more expensive sync instruction.  At
1387          * some point, the set of architecture-independent barrier functions
1388          * should be expanded to include weaker barriers.
1389          */
1390         eieio();
1391
1392         txbdp_start->lstatus = lstatus;
1393
1394         /* Update the current skb pointer to the next entry we will use
1395          * (wrapping if necessary) */
1396         priv->skb_curtx = (priv->skb_curtx + 1) &
1397                 TX_RING_MOD_MASK(priv->tx_ring_size);
1398
1399         priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1400
1401         /* reduce TxBD free count */
1402         priv->num_txbdfree -= (nr_frags + 1);
1403
1404         dev->trans_start = jiffies;
1405
1406         /* If the next BD still needs to be cleaned up, then the bds
1407            are full.  We need to tell the kernel to stop sending us stuff. */
1408         if (!priv->num_txbdfree) {
1409                 netif_stop_queue(dev);
1410
1411                 dev->stats.tx_fifo_errors++;
1412         }
1413
1414         /* Tell the DMA to go go go */
1415         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1416
1417         /* Unlock priv */
1418         spin_unlock_irqrestore(&priv->txlock, flags);
1419
1420         return 0;
1421 }
1422
1423 /* Stops the kernel queue, and halts the controller */
1424 static int gfar_close(struct net_device *dev)
1425 {
1426         struct gfar_private *priv = netdev_priv(dev);
1427
1428         napi_disable(&priv->napi);
1429
1430         skb_queue_purge(&priv->rx_recycle);
1431         cancel_work_sync(&priv->reset_task);
1432         stop_gfar(dev);
1433
1434         /* Disconnect from the PHY */
1435         phy_disconnect(priv->phydev);
1436         priv->phydev = NULL;
1437
1438         netif_stop_queue(dev);
1439
1440         return 0;
1441 }
1442
1443 /* Changes the mac address if the controller is not running. */
1444 static int gfar_set_mac_address(struct net_device *dev)
1445 {
1446         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1447
1448         return 0;
1449 }
1450
1451
1452 /* Enables and disables VLAN insertion/extraction */
1453 static void gfar_vlan_rx_register(struct net_device *dev,
1454                 struct vlan_group *grp)
1455 {
1456         struct gfar_private *priv = netdev_priv(dev);
1457         unsigned long flags;
1458         u32 tempval;
1459
1460         spin_lock_irqsave(&priv->rxlock, flags);
1461
1462         priv->vlgrp = grp;
1463
1464         if (grp) {
1465                 /* Enable VLAN tag insertion */
1466                 tempval = gfar_read(&priv->regs->tctrl);
1467                 tempval |= TCTRL_VLINS;
1468
1469                 gfar_write(&priv->regs->tctrl, tempval);
1470
1471                 /* Enable VLAN tag extraction */
1472                 tempval = gfar_read(&priv->regs->rctrl);
1473                 tempval |= RCTRL_VLEX;
1474                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1475                 gfar_write(&priv->regs->rctrl, tempval);
1476         } else {
1477                 /* Disable VLAN tag insertion */
1478                 tempval = gfar_read(&priv->regs->tctrl);
1479                 tempval &= ~TCTRL_VLINS;
1480                 gfar_write(&priv->regs->tctrl, tempval);
1481
1482                 /* Disable VLAN tag extraction */
1483                 tempval = gfar_read(&priv->regs->rctrl);
1484                 tempval &= ~RCTRL_VLEX;
1485                 /* If parse is no longer required, then disable parser */
1486                 if (tempval & RCTRL_REQ_PARSER)
1487                         tempval |= RCTRL_PRSDEP_INIT;
1488                 else
1489                         tempval &= ~RCTRL_PRSDEP_INIT;
1490                 gfar_write(&priv->regs->rctrl, tempval);
1491         }
1492
1493         gfar_change_mtu(dev, dev->mtu);
1494
1495         spin_unlock_irqrestore(&priv->rxlock, flags);
1496 }
1497
1498 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1499 {
1500         int tempsize, tempval;
1501         struct gfar_private *priv = netdev_priv(dev);
1502         int oldsize = priv->rx_buffer_size;
1503         int frame_size = new_mtu + ETH_HLEN;
1504
1505         if (priv->vlgrp)
1506                 frame_size += VLAN_HLEN;
1507
1508         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1509                 if (netif_msg_drv(priv))
1510                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1511                                         dev->name);
1512                 return -EINVAL;
1513         }
1514
1515         if (gfar_uses_fcb(priv))
1516                 frame_size += GMAC_FCB_LEN;
1517
1518         frame_size += priv->padding;
1519
1520         tempsize =
1521             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1522             INCREMENTAL_BUFFER_SIZE;
1523
1524         /* Only stop and start the controller if it isn't already
1525          * stopped, and we changed something */
1526         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1527                 stop_gfar(dev);
1528
1529         priv->rx_buffer_size = tempsize;
1530
1531         dev->mtu = new_mtu;
1532
1533         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1534         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1535
1536         /* If the mtu is larger than the max size for standard
1537          * ethernet frames (ie, a jumbo frame), then set maccfg2
1538          * to allow huge frames, and to check the length */
1539         tempval = gfar_read(&priv->regs->maccfg2);
1540
1541         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1542                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1543         else
1544                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1545
1546         gfar_write(&priv->regs->maccfg2, tempval);
1547
1548         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1549                 startup_gfar(dev);
1550
1551         return 0;
1552 }
1553
1554 /* gfar_reset_task gets scheduled when a packet has not been
1555  * transmitted after a set amount of time.
1556  * For now, assume that clearing out all the structures, and
1557  * starting over will fix the problem.
1558  */
1559 static void gfar_reset_task(struct work_struct *work)
1560 {
1561         struct gfar_private *priv = container_of(work, struct gfar_private,
1562                         reset_task);
1563         struct net_device *dev = priv->dev;
1564
1565         if (dev->flags & IFF_UP) {
1566                 stop_gfar(dev);
1567                 startup_gfar(dev);
1568         }
1569
1570         netif_tx_schedule_all(dev);
1571 }
1572
1573 static void gfar_timeout(struct net_device *dev)
1574 {
1575         struct gfar_private *priv = netdev_priv(dev);
1576
1577         dev->stats.tx_errors++;
1578         schedule_work(&priv->reset_task);
1579 }
1580
1581 /* Interrupt Handler for Transmit complete */
1582 static int gfar_clean_tx_ring(struct net_device *dev)
1583 {
1584         struct gfar_private *priv = netdev_priv(dev);
1585         struct txbd8 *bdp;
1586         struct txbd8 *lbdp = NULL;
1587         struct txbd8 *base = priv->tx_bd_base;
1588         struct sk_buff *skb;
1589         int skb_dirtytx;
1590         int tx_ring_size = priv->tx_ring_size;
1591         int frags = 0;
1592         int i;
1593         int howmany = 0;
1594         u32 lstatus;
1595
1596         bdp = priv->dirty_tx;
1597         skb_dirtytx = priv->skb_dirtytx;
1598
1599         while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1600                 frags = skb_shinfo(skb)->nr_frags;
1601                 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1602
1603                 lstatus = lbdp->lstatus;
1604
1605                 /* Only clean completed frames */
1606                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1607                                 (lstatus & BD_LENGTH_MASK))
1608                         break;
1609
1610                 dma_unmap_single(&dev->dev,
1611                                 bdp->bufPtr,
1612                                 bdp->length,
1613                                 DMA_TO_DEVICE);
1614
1615                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1616                 bdp = next_txbd(bdp, base, tx_ring_size);
1617
1618                 for (i = 0; i < frags; i++) {
1619                         dma_unmap_page(&dev->dev,
1620                                         bdp->bufPtr,
1621                                         bdp->length,
1622                                         DMA_TO_DEVICE);
1623                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1624                         bdp = next_txbd(bdp, base, tx_ring_size);
1625                 }
1626
1627                 /*
1628                  * If there's room in the queue (limit it to rx_buffer_size)
1629                  * we add this skb back into the pool, if it's the right size
1630                  */
1631                 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
1632                                 skb_recycle_check(skb, priv->rx_buffer_size +
1633                                         RXBUF_ALIGNMENT))
1634                         __skb_queue_head(&priv->rx_recycle, skb);
1635                 else
1636                         dev_kfree_skb_any(skb);
1637
1638                 priv->tx_skbuff[skb_dirtytx] = NULL;
1639
1640                 skb_dirtytx = (skb_dirtytx + 1) &
1641                         TX_RING_MOD_MASK(tx_ring_size);
1642
1643                 howmany++;
1644                 priv->num_txbdfree += frags + 1;
1645         }
1646
1647         /* If we freed a buffer, we can restart transmission, if necessary */
1648         if (netif_queue_stopped(dev) && priv->num_txbdfree)
1649                 netif_wake_queue(dev);
1650
1651         /* Update dirty indicators */
1652         priv->skb_dirtytx = skb_dirtytx;
1653         priv->dirty_tx = bdp;
1654
1655         dev->stats.tx_packets += howmany;
1656
1657         return howmany;
1658 }
1659
1660 static void gfar_schedule_cleanup(struct net_device *dev)
1661 {
1662         struct gfar_private *priv = netdev_priv(dev);
1663         unsigned long flags;
1664
1665         spin_lock_irqsave(&priv->txlock, flags);
1666         spin_lock(&priv->rxlock);
1667
1668         if (napi_schedule_prep(&priv->napi)) {
1669                 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1670                 __napi_schedule(&priv->napi);
1671         } else {
1672                 /*
1673                  * Clear IEVENT, so interrupts aren't called again
1674                  * because of the packets that have already arrived.
1675                  */
1676                 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1677         }
1678
1679         spin_unlock(&priv->rxlock);
1680         spin_unlock_irqrestore(&priv->txlock, flags);
1681 }
1682
1683 /* Interrupt Handler for Transmit complete */
1684 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1685 {
1686         gfar_schedule_cleanup((struct net_device *)dev_id);
1687         return IRQ_HANDLED;
1688 }
1689
1690 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1691                 struct sk_buff *skb)
1692 {
1693         struct gfar_private *priv = netdev_priv(dev);
1694         u32 lstatus;
1695
1696         bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1697                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1698
1699         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1700
1701         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1702                 lstatus |= BD_LFLAG(RXBD_WRAP);
1703
1704         eieio();
1705
1706         bdp->lstatus = lstatus;
1707 }
1708
1709
1710 struct sk_buff * gfar_new_skb(struct net_device *dev)
1711 {
1712         unsigned int alignamount;
1713         struct gfar_private *priv = netdev_priv(dev);
1714         struct sk_buff *skb = NULL;
1715
1716         skb = __skb_dequeue(&priv->rx_recycle);
1717         if (!skb)
1718                 skb = netdev_alloc_skb(dev,
1719                                 priv->rx_buffer_size + RXBUF_ALIGNMENT);
1720
1721         if (!skb)
1722                 return NULL;
1723
1724         alignamount = RXBUF_ALIGNMENT -
1725                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1726
1727         /* We need the data buffer to be aligned properly.  We will reserve
1728          * as many bytes as needed to align the data properly
1729          */
1730         skb_reserve(skb, alignamount);
1731
1732         return skb;
1733 }
1734
1735 static inline void count_errors(unsigned short status, struct net_device *dev)
1736 {
1737         struct gfar_private *priv = netdev_priv(dev);
1738         struct net_device_stats *stats = &dev->stats;
1739         struct gfar_extra_stats *estats = &priv->extra_stats;
1740
1741         /* If the packet was truncated, none of the other errors
1742          * matter */
1743         if (status & RXBD_TRUNCATED) {
1744                 stats->rx_length_errors++;
1745
1746                 estats->rx_trunc++;
1747
1748                 return;
1749         }
1750         /* Count the errors, if there were any */
1751         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1752                 stats->rx_length_errors++;
1753
1754                 if (status & RXBD_LARGE)
1755                         estats->rx_large++;
1756                 else
1757                         estats->rx_short++;
1758         }
1759         if (status & RXBD_NONOCTET) {
1760                 stats->rx_frame_errors++;
1761                 estats->rx_nonoctet++;
1762         }
1763         if (status & RXBD_CRCERR) {
1764                 estats->rx_crcerr++;
1765                 stats->rx_crc_errors++;
1766         }
1767         if (status & RXBD_OVERRUN) {
1768                 estats->rx_overrun++;
1769                 stats->rx_crc_errors++;
1770         }
1771 }
1772
1773 irqreturn_t gfar_receive(int irq, void *dev_id)
1774 {
1775         gfar_schedule_cleanup((struct net_device *)dev_id);
1776         return IRQ_HANDLED;
1777 }
1778
1779 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1780 {
1781         /* If valid headers were found, and valid sums
1782          * were verified, then we tell the kernel that no
1783          * checksumming is necessary.  Otherwise, it is */
1784         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1785                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1786         else
1787                 skb->ip_summed = CHECKSUM_NONE;
1788 }
1789
1790
1791 /* gfar_process_frame() -- handle one incoming packet if skb
1792  * isn't NULL.  */
1793 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1794                               int amount_pull)
1795 {
1796         struct gfar_private *priv = netdev_priv(dev);
1797         struct rxfcb *fcb = NULL;
1798
1799         int ret;
1800
1801         /* fcb is at the beginning if exists */
1802         fcb = (struct rxfcb *)skb->data;
1803
1804         /* Remove the FCB from the skb */
1805         /* Remove the padded bytes, if there are any */
1806         if (amount_pull)
1807                 skb_pull(skb, amount_pull);
1808
1809         if (priv->rx_csum_enable)
1810                 gfar_rx_checksum(skb, fcb);
1811
1812         /* Tell the skb what kind of packet this is */
1813         skb->protocol = eth_type_trans(skb, dev);
1814
1815         /* Send the packet up the stack */
1816         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1817                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1818         else
1819                 ret = netif_receive_skb(skb);
1820
1821         if (NET_RX_DROP == ret)
1822                 priv->extra_stats.kernel_dropped++;
1823
1824         return 0;
1825 }
1826
1827 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1828  *   until the budget/quota has been reached. Returns the number
1829  *   of frames handled
1830  */
1831 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1832 {
1833         struct rxbd8 *bdp, *base;
1834         struct sk_buff *skb;
1835         int pkt_len;
1836         int amount_pull;
1837         int howmany = 0;
1838         struct gfar_private *priv = netdev_priv(dev);
1839
1840         /* Get the first full descriptor */
1841         bdp = priv->cur_rx;
1842         base = priv->rx_bd_base;
1843
1844         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1845                 priv->padding;
1846
1847         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1848                 struct sk_buff *newskb;
1849                 rmb();
1850
1851                 /* Add another skb for the future */
1852                 newskb = gfar_new_skb(dev);
1853
1854                 skb = priv->rx_skbuff[priv->skb_currx];
1855
1856                 dma_unmap_single(&priv->dev->dev, bdp->bufPtr,
1857                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
1858
1859                 /* We drop the frame if we failed to allocate a new buffer */
1860                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1861                                  bdp->status & RXBD_ERR)) {
1862                         count_errors(bdp->status, dev);
1863
1864                         if (unlikely(!newskb))
1865                                 newskb = skb;
1866                         else if (skb)
1867                                 __skb_queue_head(&priv->rx_recycle, skb);
1868                 } else {
1869                         /* Increment the number of packets */
1870                         dev->stats.rx_packets++;
1871                         howmany++;
1872
1873                         if (likely(skb)) {
1874                                 pkt_len = bdp->length - ETH_FCS_LEN;
1875                                 /* Remove the FCS from the packet length */
1876                                 skb_put(skb, pkt_len);
1877                                 dev->stats.rx_bytes += pkt_len;
1878
1879                                 if (in_irq() || irqs_disabled())
1880                                         printk("Interrupt problem!\n");
1881                                 gfar_process_frame(dev, skb, amount_pull);
1882
1883                         } else {
1884                                 if (netif_msg_rx_err(priv))
1885                                         printk(KERN_WARNING
1886                                                "%s: Missing skb!\n", dev->name);
1887                                 dev->stats.rx_dropped++;
1888                                 priv->extra_stats.rx_skbmissing++;
1889                         }
1890
1891                 }
1892
1893                 priv->rx_skbuff[priv->skb_currx] = newskb;
1894
1895                 /* Setup the new bdp */
1896                 gfar_new_rxbdp(dev, bdp, newskb);
1897
1898                 /* Update to the next pointer */
1899                 bdp = next_bd(bdp, base, priv->rx_ring_size);
1900
1901                 /* update to point at the next skb */
1902                 priv->skb_currx =
1903                     (priv->skb_currx + 1) &
1904                     RX_RING_MOD_MASK(priv->rx_ring_size);
1905         }
1906
1907         /* Update the current rxbd pointer to be the next one */
1908         priv->cur_rx = bdp;
1909
1910         return howmany;
1911 }
1912
1913 static int gfar_poll(struct napi_struct *napi, int budget)
1914 {
1915         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1916         struct net_device *dev = priv->dev;
1917         int tx_cleaned = 0;
1918         int rx_cleaned = 0;
1919         unsigned long flags;
1920
1921         /* Clear IEVENT, so interrupts aren't called again
1922          * because of the packets that have already arrived */
1923         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1924
1925         /* If we fail to get the lock, don't bother with the TX BDs */
1926         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1927                 tx_cleaned = gfar_clean_tx_ring(dev);
1928                 spin_unlock_irqrestore(&priv->txlock, flags);
1929         }
1930
1931         rx_cleaned = gfar_clean_rx_ring(dev, budget);
1932
1933         if (tx_cleaned)
1934                 return budget;
1935
1936         if (rx_cleaned < budget) {
1937                 napi_complete(napi);
1938
1939                 /* Clear the halt bit in RSTAT */
1940                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1941
1942                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1943
1944                 /* If we are coalescing interrupts, update the timer */
1945                 /* Otherwise, clear it */
1946                 if (likely(priv->rxcoalescing)) {
1947                         gfar_write(&priv->regs->rxic, 0);
1948                         gfar_write(&priv->regs->rxic, priv->rxic);
1949                 }
1950                 if (likely(priv->txcoalescing)) {
1951                         gfar_write(&priv->regs->txic, 0);
1952                         gfar_write(&priv->regs->txic, priv->txic);
1953                 }
1954         }
1955
1956         return rx_cleaned;
1957 }
1958
1959 #ifdef CONFIG_NET_POLL_CONTROLLER
1960 /*
1961  * Polling 'interrupt' - used by things like netconsole to send skbs
1962  * without having to re-enable interrupts. It's not called while
1963  * the interrupt routine is executing.
1964  */
1965 static void gfar_netpoll(struct net_device *dev)
1966 {
1967         struct gfar_private *priv = netdev_priv(dev);
1968
1969         /* If the device has multiple interrupts, run tx/rx */
1970         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1971                 disable_irq(priv->interruptTransmit);
1972                 disable_irq(priv->interruptReceive);
1973                 disable_irq(priv->interruptError);
1974                 gfar_interrupt(priv->interruptTransmit, dev);
1975                 enable_irq(priv->interruptError);
1976                 enable_irq(priv->interruptReceive);
1977                 enable_irq(priv->interruptTransmit);
1978         } else {
1979                 disable_irq(priv->interruptTransmit);
1980                 gfar_interrupt(priv->interruptTransmit, dev);
1981                 enable_irq(priv->interruptTransmit);
1982         }
1983 }
1984 #endif
1985
1986 /* The interrupt handler for devices with one interrupt */
1987 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1988 {
1989         struct net_device *dev = dev_id;
1990         struct gfar_private *priv = netdev_priv(dev);
1991
1992         /* Save ievent for future reference */
1993         u32 events = gfar_read(&priv->regs->ievent);
1994
1995         /* Check for reception */
1996         if (events & IEVENT_RX_MASK)
1997                 gfar_receive(irq, dev_id);
1998
1999         /* Check for transmit completion */
2000         if (events & IEVENT_TX_MASK)
2001                 gfar_transmit(irq, dev_id);
2002
2003         /* Check for errors */
2004         if (events & IEVENT_ERR_MASK)
2005                 gfar_error(irq, dev_id);
2006
2007         return IRQ_HANDLED;
2008 }
2009
2010 /* Called every time the controller might need to be made
2011  * aware of new link state.  The PHY code conveys this
2012  * information through variables in the phydev structure, and this
2013  * function converts those variables into the appropriate
2014  * register values, and can bring down the device if needed.
2015  */
2016 static void adjust_link(struct net_device *dev)
2017 {
2018         struct gfar_private *priv = netdev_priv(dev);
2019         struct gfar __iomem *regs = priv->regs;
2020         unsigned long flags;
2021         struct phy_device *phydev = priv->phydev;
2022         int new_state = 0;
2023
2024         spin_lock_irqsave(&priv->txlock, flags);
2025         if (phydev->link) {
2026                 u32 tempval = gfar_read(&regs->maccfg2);
2027                 u32 ecntrl = gfar_read(&regs->ecntrl);
2028
2029                 /* Now we make sure that we can be in full duplex mode.
2030                  * If not, we operate in half-duplex mode. */
2031                 if (phydev->duplex != priv->oldduplex) {
2032                         new_state = 1;
2033                         if (!(phydev->duplex))
2034                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2035                         else
2036                                 tempval |= MACCFG2_FULL_DUPLEX;
2037
2038                         priv->oldduplex = phydev->duplex;
2039                 }
2040
2041                 if (phydev->speed != priv->oldspeed) {
2042                         new_state = 1;
2043                         switch (phydev->speed) {
2044                         case 1000:
2045                                 tempval =
2046                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2047
2048                                 ecntrl &= ~(ECNTRL_R100);
2049                                 break;
2050                         case 100:
2051                         case 10:
2052                                 tempval =
2053                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2054
2055                                 /* Reduced mode distinguishes
2056                                  * between 10 and 100 */
2057                                 if (phydev->speed == SPEED_100)
2058                                         ecntrl |= ECNTRL_R100;
2059                                 else
2060                                         ecntrl &= ~(ECNTRL_R100);
2061                                 break;
2062                         default:
2063                                 if (netif_msg_link(priv))
2064                                         printk(KERN_WARNING
2065                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2066                                                 dev->name, phydev->speed);
2067                                 break;
2068                         }
2069
2070                         priv->oldspeed = phydev->speed;
2071                 }
2072
2073                 gfar_write(&regs->maccfg2, tempval);
2074                 gfar_write(&regs->ecntrl, ecntrl);
2075
2076                 if (!priv->oldlink) {
2077                         new_state = 1;
2078                         priv->oldlink = 1;
2079                 }
2080         } else if (priv->oldlink) {
2081                 new_state = 1;
2082                 priv->oldlink = 0;
2083                 priv->oldspeed = 0;
2084                 priv->oldduplex = -1;
2085         }
2086
2087         if (new_state && netif_msg_link(priv))
2088                 phy_print_status(phydev);
2089
2090         spin_unlock_irqrestore(&priv->txlock, flags);
2091 }
2092
2093 /* Update the hash table based on the current list of multicast
2094  * addresses we subscribe to.  Also, change the promiscuity of
2095  * the device based on the flags (this function is called
2096  * whenever dev->flags is changed */
2097 static void gfar_set_multi(struct net_device *dev)
2098 {
2099         struct dev_mc_list *mc_ptr;
2100         struct gfar_private *priv = netdev_priv(dev);
2101         struct gfar __iomem *regs = priv->regs;
2102         u32 tempval;
2103
2104         if(dev->flags & IFF_PROMISC) {
2105                 /* Set RCTRL to PROM */
2106                 tempval = gfar_read(&regs->rctrl);
2107                 tempval |= RCTRL_PROM;
2108                 gfar_write(&regs->rctrl, tempval);
2109         } else {
2110                 /* Set RCTRL to not PROM */
2111                 tempval = gfar_read(&regs->rctrl);
2112                 tempval &= ~(RCTRL_PROM);
2113                 gfar_write(&regs->rctrl, tempval);
2114         }
2115
2116         if(dev->flags & IFF_ALLMULTI) {
2117                 /* Set the hash to rx all multicast frames */
2118                 gfar_write(&regs->igaddr0, 0xffffffff);
2119                 gfar_write(&regs->igaddr1, 0xffffffff);
2120                 gfar_write(&regs->igaddr2, 0xffffffff);
2121                 gfar_write(&regs->igaddr3, 0xffffffff);
2122                 gfar_write(&regs->igaddr4, 0xffffffff);
2123                 gfar_write(&regs->igaddr5, 0xffffffff);
2124                 gfar_write(&regs->igaddr6, 0xffffffff);
2125                 gfar_write(&regs->igaddr7, 0xffffffff);
2126                 gfar_write(&regs->gaddr0, 0xffffffff);
2127                 gfar_write(&regs->gaddr1, 0xffffffff);
2128                 gfar_write(&regs->gaddr2, 0xffffffff);
2129                 gfar_write(&regs->gaddr3, 0xffffffff);
2130                 gfar_write(&regs->gaddr4, 0xffffffff);
2131                 gfar_write(&regs->gaddr5, 0xffffffff);
2132                 gfar_write(&regs->gaddr6, 0xffffffff);
2133                 gfar_write(&regs->gaddr7, 0xffffffff);
2134         } else {
2135                 int em_num;
2136                 int idx;
2137
2138                 /* zero out the hash */
2139                 gfar_write(&regs->igaddr0, 0x0);
2140                 gfar_write(&regs->igaddr1, 0x0);
2141                 gfar_write(&regs->igaddr2, 0x0);
2142                 gfar_write(&regs->igaddr3, 0x0);
2143                 gfar_write(&regs->igaddr4, 0x0);
2144                 gfar_write(&regs->igaddr5, 0x0);
2145                 gfar_write(&regs->igaddr6, 0x0);
2146                 gfar_write(&regs->igaddr7, 0x0);
2147                 gfar_write(&regs->gaddr0, 0x0);
2148                 gfar_write(&regs->gaddr1, 0x0);
2149                 gfar_write(&regs->gaddr2, 0x0);
2150                 gfar_write(&regs->gaddr3, 0x0);
2151                 gfar_write(&regs->gaddr4, 0x0);
2152                 gfar_write(&regs->gaddr5, 0x0);
2153                 gfar_write(&regs->gaddr6, 0x0);
2154                 gfar_write(&regs->gaddr7, 0x0);
2155
2156                 /* If we have extended hash tables, we need to
2157                  * clear the exact match registers to prepare for
2158                  * setting them */
2159                 if (priv->extended_hash) {
2160                         em_num = GFAR_EM_NUM + 1;
2161                         gfar_clear_exact_match(dev);
2162                         idx = 1;
2163                 } else {
2164                         idx = 0;
2165                         em_num = 0;
2166                 }
2167
2168                 if(dev->mc_count == 0)
2169                         return;
2170
2171                 /* Parse the list, and set the appropriate bits */
2172                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2173                         if (idx < em_num) {
2174                                 gfar_set_mac_for_addr(dev, idx,
2175                                                 mc_ptr->dmi_addr);
2176                                 idx++;
2177                         } else
2178                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2179                 }
2180         }
2181
2182         return;
2183 }
2184
2185
2186 /* Clears each of the exact match registers to zero, so they
2187  * don't interfere with normal reception */
2188 static void gfar_clear_exact_match(struct net_device *dev)
2189 {
2190         int idx;
2191         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2192
2193         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2194                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2195 }
2196
2197 /* Set the appropriate hash bit for the given addr */
2198 /* The algorithm works like so:
2199  * 1) Take the Destination Address (ie the multicast address), and
2200  * do a CRC on it (little endian), and reverse the bits of the
2201  * result.
2202  * 2) Use the 8 most significant bits as a hash into a 256-entry
2203  * table.  The table is controlled through 8 32-bit registers:
2204  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2205  * gaddr7.  This means that the 3 most significant bits in the
2206  * hash index which gaddr register to use, and the 5 other bits
2207  * indicate which bit (assuming an IBM numbering scheme, which
2208  * for PowerPC (tm) is usually the case) in the register holds
2209  * the entry. */
2210 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2211 {
2212         u32 tempval;
2213         struct gfar_private *priv = netdev_priv(dev);
2214         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2215         int width = priv->hash_width;
2216         u8 whichbit = (result >> (32 - width)) & 0x1f;
2217         u8 whichreg = result >> (32 - width + 5);
2218         u32 value = (1 << (31-whichbit));
2219
2220         tempval = gfar_read(priv->hash_regs[whichreg]);
2221         tempval |= value;
2222         gfar_write(priv->hash_regs[whichreg], tempval);
2223
2224         return;
2225 }
2226
2227
2228 /* There are multiple MAC Address register pairs on some controllers
2229  * This function sets the numth pair to a given address
2230  */
2231 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2232 {
2233         struct gfar_private *priv = netdev_priv(dev);
2234         int idx;
2235         char tmpbuf[MAC_ADDR_LEN];
2236         u32 tempval;
2237         u32 __iomem *macptr = &priv->regs->macstnaddr1;
2238
2239         macptr += num*2;
2240
2241         /* Now copy it into the mac registers backwards, cuz */
2242         /* little endian is silly */
2243         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2244                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2245
2246         gfar_write(macptr, *((u32 *) (tmpbuf)));
2247
2248         tempval = *((u32 *) (tmpbuf + 4));
2249
2250         gfar_write(macptr+1, tempval);
2251 }
2252
2253 /* GFAR error interrupt handler */
2254 static irqreturn_t gfar_error(int irq, void *dev_id)
2255 {
2256         struct net_device *dev = dev_id;
2257         struct gfar_private *priv = netdev_priv(dev);
2258
2259         /* Save ievent for future reference */
2260         u32 events = gfar_read(&priv->regs->ievent);
2261
2262         /* Clear IEVENT */
2263         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2264
2265         /* Magic Packet is not an error. */
2266         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2267             (events & IEVENT_MAG))
2268                 events &= ~IEVENT_MAG;
2269
2270         /* Hmm... */
2271         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2272                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2273                        dev->name, events, gfar_read(&priv->regs->imask));
2274
2275         /* Update the error counters */
2276         if (events & IEVENT_TXE) {
2277                 dev->stats.tx_errors++;
2278
2279                 if (events & IEVENT_LC)
2280                         dev->stats.tx_window_errors++;
2281                 if (events & IEVENT_CRL)
2282                         dev->stats.tx_aborted_errors++;
2283                 if (events & IEVENT_XFUN) {
2284                         if (netif_msg_tx_err(priv))
2285                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2286                                        "packet dropped.\n", dev->name);
2287                         dev->stats.tx_dropped++;
2288                         priv->extra_stats.tx_underrun++;
2289
2290                         /* Reactivate the Tx Queues */
2291                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2292                 }
2293                 if (netif_msg_tx_err(priv))
2294                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2295         }
2296         if (events & IEVENT_BSY) {
2297                 dev->stats.rx_errors++;
2298                 priv->extra_stats.rx_bsy++;
2299
2300                 gfar_receive(irq, dev_id);
2301
2302                 if (netif_msg_rx_err(priv))
2303                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2304                                dev->name, gfar_read(&priv->regs->rstat));
2305         }
2306         if (events & IEVENT_BABR) {
2307                 dev->stats.rx_errors++;
2308                 priv->extra_stats.rx_babr++;
2309
2310                 if (netif_msg_rx_err(priv))
2311                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2312         }
2313         if (events & IEVENT_EBERR) {
2314                 priv->extra_stats.eberr++;
2315                 if (netif_msg_rx_err(priv))
2316                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2317         }
2318         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2319                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2320
2321         if (events & IEVENT_BABT) {
2322                 priv->extra_stats.tx_babt++;
2323                 if (netif_msg_tx_err(priv))
2324                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2325         }
2326         return IRQ_HANDLED;
2327 }
2328
2329 /* work with hotplug and coldplug */
2330 MODULE_ALIAS("platform:fsl-gianfar");
2331
2332 static struct of_device_id gfar_match[] =
2333 {
2334         {
2335                 .type = "network",
2336                 .compatible = "gianfar",
2337         },
2338         {},
2339 };
2340
2341 /* Structure for a device driver */
2342 static struct of_platform_driver gfar_driver = {
2343         .name = "fsl-gianfar",
2344         .match_table = gfar_match,
2345
2346         .probe = gfar_probe,
2347         .remove = gfar_remove,
2348         .suspend = gfar_suspend,
2349         .resume = gfar_resume,
2350 };
2351
2352 static int __init gfar_init(void)
2353 {
2354         return of_register_platform_driver(&gfar_driver);
2355 }
2356
2357 static void __exit gfar_exit(void)
2358 {
2359         of_unregister_platform_driver(&gfar_driver);
2360 }
2361
2362 module_init(gfar_init);
2363 module_exit(gfar_exit);
2364