2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
43 #include <linux/kprobes.h>
44 #include <linux/ptrace.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/hardirq.h>
48 #include <linux/preempt.h>
49 #include <linux/module.h>
50 #include <linux/kdebug.h>
52 #include <asm/cacheflush.h>
54 #include <asm/pgtable.h>
55 #include <asm/uaccess.h>
56 #include <asm/alternative.h>
58 void jprobe_return_end(void);
60 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
61 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
64 #define stack_addr(regs) ((unsigned long *)regs->sp)
67 * "®s->sp" looks wrong, but it's correct for x86_32. x86_32 CPUs
68 * don't save the ss and esp registers if the CPU is already in kernel
69 * mode when it traps. So for kprobes, regs->sp and regs->ss are not
70 * the [nonexistent] saved stack pointer and ss register, but rather
71 * the top 8 bytes of the pre-int3 stack. So ®s->sp happens to
72 * point to the top of the pre-int3 stack.
74 #define stack_addr(regs) ((unsigned long *)®s->sp)
77 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
78 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
79 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
80 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
81 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
84 * Undefined/reserved opcodes, conditional jump, Opcode Extension
85 * Groups, and some special opcodes can not boost.
87 static const u32 twobyte_is_boostable[256 / 32] = {
88 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
89 /* ---------------------------------------------- */
90 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
91 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
92 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
93 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
94 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
95 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
96 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
97 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
98 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
99 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
100 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
101 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
102 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
103 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
104 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
105 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
106 /* ----------------------------------------------- */
107 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
109 static const u32 onebyte_has_modrm[256 / 32] = {
110 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
111 /* ----------------------------------------------- */
112 W(0x00, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 00 */
113 W(0x10, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) , /* 10 */
114 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 20 */
115 W(0x30, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) , /* 30 */
116 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
117 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
118 W(0x60, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0) | /* 60 */
119 W(0x70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 70 */
120 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
121 W(0x90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 90 */
122 W(0xa0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* a0 */
123 W(0xb0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* b0 */
124 W(0xc0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) | /* c0 */
125 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
126 W(0xe0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* e0 */
127 W(0xf0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) /* f0 */
128 /* ----------------------------------------------- */
129 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
131 static const u32 twobyte_has_modrm[256 / 32] = {
132 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
133 /* ----------------------------------------------- */
134 W(0x00, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) | /* 0f */
135 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) , /* 1f */
136 W(0x20, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 2f */
137 W(0x30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 3f */
138 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 4f */
139 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 5f */
140 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 6f */
141 W(0x70, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1) , /* 7f */
142 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 8f */
143 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 9f */
144 W(0xa0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) | /* af */
145 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* bf */
146 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) | /* cf */
147 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* df */
148 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* ef */
149 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* ff */
150 /* ----------------------------------------------- */
151 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
155 struct kretprobe_blackpoint kretprobe_blacklist[] = {
156 {"__switch_to", }, /* This function switches only current task, but
157 doesn't switch kernel stack.*/
158 {NULL, NULL} /* Terminator */
160 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
162 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
163 static void __kprobes set_jmp_op(void *from, void *to)
165 struct __arch_jmp_op {
168 } __attribute__((packed)) * jop;
169 jop = (struct __arch_jmp_op *)from;
170 jop->raddr = (s32)((long)(to) - ((long)(from) + 5));
171 jop->op = RELATIVEJUMP_INSTRUCTION;
175 * Check for the REX prefix which can only exist on X86_64
176 * X86_32 always returns 0
178 static int __kprobes is_REX_prefix(kprobe_opcode_t *insn)
181 if ((*insn & 0xf0) == 0x40)
188 * Returns non-zero if opcode is boostable.
189 * RIP relative instructions are adjusted at copying time in 64 bits mode
191 static int __kprobes can_boost(kprobe_opcode_t *opcodes)
193 kprobe_opcode_t opcode;
194 kprobe_opcode_t *orig_opcodes = opcodes;
197 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
199 opcode = *(opcodes++);
201 /* 2nd-byte opcode */
202 if (opcode == 0x0f) {
203 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
205 return test_bit(*opcodes,
206 (unsigned long *)twobyte_is_boostable);
209 switch (opcode & 0xf0) {
212 goto retry; /* REX prefix is boostable */
215 if (0x63 < opcode && opcode < 0x67)
216 goto retry; /* prefixes */
217 /* can't boost Address-size override and bound */
218 return (opcode != 0x62 && opcode != 0x67);
220 return 0; /* can't boost conditional jump */
222 /* can't boost software-interruptions */
223 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
225 /* can boost AA* and XLAT */
226 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
228 /* can boost in/out and absolute jmps */
229 return ((opcode & 0x04) || opcode == 0xea);
231 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
232 goto retry; /* lock/rep(ne) prefix */
233 /* clear and set flags are boostable */
234 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
236 /* segment override prefixes are boostable */
237 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
238 goto retry; /* prefixes */
239 /* CS override prefix and call are not boostable */
240 return (opcode != 0x2e && opcode != 0x9a);
245 * Returns non-zero if opcode modifies the interrupt flag.
247 static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
252 case 0xcf: /* iret/iretd */
253 case 0x9d: /* popf/popfd */
258 * on X86_64, 0x40-0x4f are REX prefixes so we need to look
259 * at the next byte instead.. but of course not recurse infinitely
261 if (is_REX_prefix(insn))
262 return is_IF_modifier(++insn);
268 * Adjust the displacement if the instruction uses the %rip-relative
270 * If it does, Return the address of the 32-bit displacement word.
271 * If not, return null.
272 * Only applicable to 64-bit x86.
274 static void __kprobes fix_riprel(struct kprobe *p)
277 u8 *insn = p->ainsn.insn;
281 /* Skip legacy instruction prefixes. */
301 /* Skip REX instruction prefix. */
302 if (is_REX_prefix(insn))
306 /* Two-byte opcode. */
308 need_modrm = test_bit(*insn,
309 (unsigned long *)twobyte_has_modrm);
311 /* One-byte opcode. */
312 need_modrm = test_bit(*insn,
313 (unsigned long *)onebyte_has_modrm);
317 if ((modrm & 0xc7) == 0x05) {
318 /* %rip+disp32 addressing mode */
319 /* Displacement follows ModRM byte. */
322 * The copied instruction uses the %rip-relative
323 * addressing mode. Adjust the displacement for the
324 * difference between the original location of this
325 * instruction and the location of the copy that will
326 * actually be run. The tricky bit here is making sure
327 * that the sign extension happens correctly in this
328 * calculation, since we need a signed 32-bit result to
329 * be sign-extended to 64 bits when it's added to the
330 * %rip value and yield the same 64-bit result that the
331 * sign-extension of the original signed 32-bit
332 * displacement would have given.
334 disp = (u8 *) p->addr + *((s32 *) insn) -
335 (u8 *) p->ainsn.insn;
336 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
337 *(s32 *)insn = (s32) disp;
343 static void __kprobes arch_copy_kprobe(struct kprobe *p)
345 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
349 if (can_boost(p->addr))
350 p->ainsn.boostable = 0;
352 p->ainsn.boostable = -1;
354 p->opcode = *p->addr;
357 int __kprobes arch_prepare_kprobe(struct kprobe *p)
359 /* insn: must be on special executable page on x86. */
360 p->ainsn.insn = get_insn_slot();
367 void __kprobes arch_arm_kprobe(struct kprobe *p)
369 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
372 void __kprobes arch_disarm_kprobe(struct kprobe *p)
374 text_poke(p->addr, &p->opcode, 1);
377 void __kprobes arch_remove_kprobe(struct kprobe *p)
379 mutex_lock(&kprobe_mutex);
380 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
381 mutex_unlock(&kprobe_mutex);
384 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
386 kcb->prev_kprobe.kp = kprobe_running();
387 kcb->prev_kprobe.status = kcb->kprobe_status;
388 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
389 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
392 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
394 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
395 kcb->kprobe_status = kcb->prev_kprobe.status;
396 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
397 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
400 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
401 struct kprobe_ctlblk *kcb)
403 __get_cpu_var(current_kprobe) = p;
404 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
405 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
406 if (is_IF_modifier(p->ainsn.insn))
407 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
410 static void __kprobes clear_btf(void)
412 if (test_thread_flag(TIF_DEBUGCTLMSR))
413 update_debugctlmsr(0);
416 static void __kprobes restore_btf(void)
418 if (test_thread_flag(TIF_DEBUGCTLMSR))
419 update_debugctlmsr(current->thread.debugctlmsr);
422 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
425 regs->flags |= X86_EFLAGS_TF;
426 regs->flags &= ~X86_EFLAGS_IF;
427 /* single step inline if the instruction is an int3 */
428 if (p->opcode == BREAKPOINT_INSTRUCTION)
429 regs->ip = (unsigned long)p->addr;
431 regs->ip = (unsigned long)p->ainsn.insn;
434 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
435 struct pt_regs *regs)
437 unsigned long *sara = stack_addr(regs);
439 ri->ret_addr = (kprobe_opcode_t *) *sara;
441 /* Replace the return addr with trampoline addr */
442 *sara = (unsigned long) &kretprobe_trampoline;
445 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
446 struct kprobe_ctlblk *kcb)
448 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
449 if (p->ainsn.boostable == 1 && !p->post_handler) {
450 /* Boost up -- we can execute copied instructions directly */
451 reset_current_kprobe();
452 regs->ip = (unsigned long)p->ainsn.insn;
453 preempt_enable_no_resched();
457 prepare_singlestep(p, regs);
458 kcb->kprobe_status = KPROBE_HIT_SS;
462 * We have reentered the kprobe_handler(), since another probe was hit while
463 * within the handler. We save the original kprobes variables and just single
464 * step on the instruction of the new probe without calling any user handlers.
466 static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
467 struct kprobe_ctlblk *kcb)
469 switch (kcb->kprobe_status) {
470 case KPROBE_HIT_SSDONE:
472 /* TODO: Provide re-entrancy from post_kprobes_handler() and
473 * avoid exception stack corruption while single-stepping on
474 * the instruction of the new probe.
476 arch_disarm_kprobe(p);
477 regs->ip = (unsigned long)p->addr;
478 reset_current_kprobe();
479 preempt_enable_no_resched();
482 case KPROBE_HIT_ACTIVE:
483 save_previous_kprobe(kcb);
484 set_current_kprobe(p, regs, kcb);
485 kprobes_inc_nmissed_count(p);
486 prepare_singlestep(p, regs);
487 kcb->kprobe_status = KPROBE_REENTER;
490 if (p == kprobe_running()) {
491 regs->flags &= ~X86_EFLAGS_TF;
492 regs->flags |= kcb->kprobe_saved_flags;
495 /* A probe has been hit in the codepath leading up
496 * to, or just after, single-stepping of a probed
497 * instruction. This entire codepath should strictly
498 * reside in .kprobes.text section. Raise a warning
499 * to highlight this peculiar case.
503 /* impossible cases */
512 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
513 * remain disabled thorough out this function.
515 static int __kprobes kprobe_handler(struct pt_regs *regs)
517 kprobe_opcode_t *addr;
519 struct kprobe_ctlblk *kcb;
521 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
522 if (*addr != BREAKPOINT_INSTRUCTION) {
524 * The breakpoint instruction was removed right
525 * after we hit it. Another cpu has removed
526 * either a probepoint or a debugger breakpoint
527 * at this address. In either case, no further
528 * handling of this interrupt is appropriate.
529 * Back up over the (now missing) int3 and run
530 * the original instruction.
532 regs->ip = (unsigned long)addr;
537 * We don't want to be preempted for the entire
538 * duration of kprobe processing. We conditionally
539 * re-enable preemption at the end of this function,
540 * and also in reenter_kprobe() and setup_singlestep().
544 kcb = get_kprobe_ctlblk();
545 p = get_kprobe(addr);
548 if (kprobe_running()) {
549 if (reenter_kprobe(p, regs, kcb))
552 set_current_kprobe(p, regs, kcb);
553 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
556 * If we have no pre-handler or it returned 0, we
557 * continue with normal processing. If we have a
558 * pre-handler and it returned non-zero, it prepped
559 * for calling the break_handler below on re-entry
560 * for jprobe processing, so get out doing nothing
563 if (!p->pre_handler || !p->pre_handler(p, regs))
564 setup_singlestep(p, regs, kcb);
567 } else if (kprobe_running()) {
568 p = __get_cpu_var(current_kprobe);
569 if (p->break_handler && p->break_handler(p, regs)) {
570 setup_singlestep(p, regs, kcb);
573 } /* else: not a kprobe fault; let the kernel handle it */
575 preempt_enable_no_resched();
580 * When a retprobed function returns, this code saves registers and
581 * calls trampoline_handler() runs, which calls the kretprobe's handler.
583 static void __used __kprobes kretprobe_trampoline_holder(void)
586 ".global kretprobe_trampoline\n"
587 "kretprobe_trampoline: \n"
589 /* We don't bother saving the ss register */
593 * Skip cs, ip, orig_ax.
594 * trampoline_handler() will plug in these values
613 " call trampoline_handler\n"
614 /* Replace saved sp with true return address. */
615 " movq %rax, 152(%rsp)\n"
631 /* Skip orig_ax, ip, cs */
637 * Skip cs, ip, orig_ax.
638 * trampoline_handler() will plug in these values
652 " call trampoline_handler\n"
653 /* Move flags to cs */
654 " movl 52(%esp), %edx\n"
655 " movl %edx, 48(%esp)\n"
656 /* Replace saved flags with true return address. */
657 " movl %eax, 52(%esp)\n"
665 /* Skip ip, orig_ax, es, ds, fs */
673 * Called from kretprobe_trampoline
675 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
677 struct kretprobe_instance *ri = NULL;
678 struct hlist_head *head, empty_rp;
679 struct hlist_node *node, *tmp;
680 unsigned long flags, orig_ret_address = 0;
681 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
683 INIT_HLIST_HEAD(&empty_rp);
684 kretprobe_hash_lock(current, &head, &flags);
685 /* fixup registers */
687 regs->cs = __KERNEL_CS;
689 regs->cs = __KERNEL_CS | get_kernel_rpl();
691 regs->ip = trampoline_address;
692 regs->orig_ax = ~0UL;
695 * It is possible to have multiple instances associated with a given
696 * task either because multiple functions in the call path have
697 * return probes installed on them, and/or more then one
698 * return probe was registered for a target function.
700 * We can handle this because:
701 * - instances are always pushed into the head of the list
702 * - when multiple return probes are registered for the same
703 * function, the (chronologically) first instance's ret_addr
704 * will be the real return address, and all the rest will
705 * point to kretprobe_trampoline.
707 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
708 if (ri->task != current)
709 /* another task is sharing our hash bucket */
712 if (ri->rp && ri->rp->handler) {
713 __get_cpu_var(current_kprobe) = &ri->rp->kp;
714 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
715 ri->rp->handler(ri, regs);
716 __get_cpu_var(current_kprobe) = NULL;
719 orig_ret_address = (unsigned long)ri->ret_addr;
720 recycle_rp_inst(ri, &empty_rp);
722 if (orig_ret_address != trampoline_address)
724 * This is the real return address. Any other
725 * instances associated with this task are for
726 * other calls deeper on the call stack
731 kretprobe_assert(ri, orig_ret_address, trampoline_address);
733 kretprobe_hash_unlock(current, &flags);
735 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
736 hlist_del(&ri->hlist);
739 return (void *)orig_ret_address;
743 * Called after single-stepping. p->addr is the address of the
744 * instruction whose first byte has been replaced by the "int 3"
745 * instruction. To avoid the SMP problems that can occur when we
746 * temporarily put back the original opcode to single-step, we
747 * single-stepped a copy of the instruction. The address of this
748 * copy is p->ainsn.insn.
750 * This function prepares to return from the post-single-step
751 * interrupt. We have to fix up the stack as follows:
753 * 0) Except in the case of absolute or indirect jump or call instructions,
754 * the new ip is relative to the copied instruction. We need to make
755 * it relative to the original instruction.
757 * 1) If the single-stepped instruction was pushfl, then the TF and IF
758 * flags are set in the just-pushed flags, and may need to be cleared.
760 * 2) If the single-stepped instruction was a call, the return address
761 * that is atop the stack is the address following the copied instruction.
762 * We need to make it the address following the original instruction.
764 * If this is the first time we've single-stepped the instruction at
765 * this probepoint, and the instruction is boostable, boost it: add a
766 * jump instruction after the copied instruction, that jumps to the next
767 * instruction after the probepoint.
769 static void __kprobes resume_execution(struct kprobe *p,
770 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
772 unsigned long *tos = stack_addr(regs);
773 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
774 unsigned long orig_ip = (unsigned long)p->addr;
775 kprobe_opcode_t *insn = p->ainsn.insn;
777 /*skip the REX prefix*/
778 if (is_REX_prefix(insn))
781 regs->flags &= ~X86_EFLAGS_TF;
783 case 0x9c: /* pushfl */
784 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
785 *tos |= kcb->kprobe_old_flags;
787 case 0xc2: /* iret/ret/lret */
792 case 0xea: /* jmp absolute -- ip is correct */
793 /* ip is already adjusted, no more changes required */
794 p->ainsn.boostable = 1;
796 case 0xe8: /* call relative - Fix return addr */
797 *tos = orig_ip + (*tos - copy_ip);
800 case 0x9a: /* call absolute -- same as call absolute, indirect */
801 *tos = orig_ip + (*tos - copy_ip);
805 if ((insn[1] & 0x30) == 0x10) {
807 * call absolute, indirect
808 * Fix return addr; ip is correct.
809 * But this is not boostable
811 *tos = orig_ip + (*tos - copy_ip);
813 } else if (((insn[1] & 0x31) == 0x20) ||
814 ((insn[1] & 0x31) == 0x21)) {
816 * jmp near and far, absolute indirect
817 * ip is correct. And this is boostable
819 p->ainsn.boostable = 1;
826 if (p->ainsn.boostable == 0) {
827 if ((regs->ip > copy_ip) &&
828 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
830 * These instructions can be executed directly if it
831 * jumps back to correct address.
833 set_jmp_op((void *)regs->ip,
834 (void *)orig_ip + (regs->ip - copy_ip));
835 p->ainsn.boostable = 1;
837 p->ainsn.boostable = -1;
841 regs->ip += orig_ip - copy_ip;
848 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
849 * remain disabled thoroughout this function.
851 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
853 struct kprobe *cur = kprobe_running();
854 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
859 resume_execution(cur, regs, kcb);
860 regs->flags |= kcb->kprobe_saved_flags;
862 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
863 kcb->kprobe_status = KPROBE_HIT_SSDONE;
864 cur->post_handler(cur, regs, 0);
867 /* Restore back the original saved kprobes variables and continue. */
868 if (kcb->kprobe_status == KPROBE_REENTER) {
869 restore_previous_kprobe(kcb);
872 reset_current_kprobe();
874 preempt_enable_no_resched();
877 * if somebody else is singlestepping across a probe point, flags
878 * will have TF set, in which case, continue the remaining processing
879 * of do_debug, as if this is not a probe hit.
881 if (regs->flags & X86_EFLAGS_TF)
887 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
889 struct kprobe *cur = kprobe_running();
890 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
892 switch (kcb->kprobe_status) {
896 * We are here because the instruction being single
897 * stepped caused a page fault. We reset the current
898 * kprobe and the ip points back to the probe address
899 * and allow the page fault handler to continue as a
902 regs->ip = (unsigned long)cur->addr;
903 regs->flags |= kcb->kprobe_old_flags;
904 if (kcb->kprobe_status == KPROBE_REENTER)
905 restore_previous_kprobe(kcb);
907 reset_current_kprobe();
908 preempt_enable_no_resched();
910 case KPROBE_HIT_ACTIVE:
911 case KPROBE_HIT_SSDONE:
913 * We increment the nmissed count for accounting,
914 * we can also use npre/npostfault count for accounting
915 * these specific fault cases.
917 kprobes_inc_nmissed_count(cur);
920 * We come here because instructions in the pre/post
921 * handler caused the page_fault, this could happen
922 * if handler tries to access user space by
923 * copy_from_user(), get_user() etc. Let the
924 * user-specified handler try to fix it first.
926 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
930 * In case the user-specified fault handler returned
931 * zero, try to fix up.
933 if (fixup_exception(regs))
937 * fixup routine could not handle it,
938 * Let do_page_fault() fix it.
948 * Wrapper routine for handling exceptions.
950 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
951 unsigned long val, void *data)
953 struct die_args *args = data;
954 int ret = NOTIFY_DONE;
956 if (args->regs && user_mode_vm(args->regs))
961 if (kprobe_handler(args->regs))
965 if (post_kprobe_handler(args->regs))
970 * To be potentially processing a kprobe fault and to
971 * trust the result from kprobe_running(), we have
972 * be non-preemptible.
974 if (!preemptible() && kprobe_running() &&
975 kprobe_fault_handler(args->regs, args->trapnr))
984 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
986 struct jprobe *jp = container_of(p, struct jprobe, kp);
988 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
990 kcb->jprobe_saved_regs = *regs;
991 kcb->jprobe_saved_sp = stack_addr(regs);
992 addr = (unsigned long)(kcb->jprobe_saved_sp);
995 * As Linus pointed out, gcc assumes that the callee
996 * owns the argument space and could overwrite it, e.g.
997 * tailcall optimization. So, to be absolutely safe
998 * we also save and restore enough stack bytes to cover
1001 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1002 MIN_STACK_SIZE(addr));
1003 regs->flags &= ~X86_EFLAGS_IF;
1004 trace_hardirqs_off();
1005 regs->ip = (unsigned long)(jp->entry);
1009 void __kprobes jprobe_return(void)
1011 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1014 #ifdef CONFIG_X86_64
1015 " xchg %%rbx,%%rsp \n"
1017 " xchgl %%ebx,%%esp \n"
1020 " .globl jprobe_return_end\n"
1021 " jprobe_return_end: \n"
1023 (kcb->jprobe_saved_sp):"memory");
1026 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1028 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1029 u8 *addr = (u8 *) (regs->ip - 1);
1030 struct jprobe *jp = container_of(p, struct jprobe, kp);
1032 if ((addr > (u8 *) jprobe_return) &&
1033 (addr < (u8 *) jprobe_return_end)) {
1034 if (stack_addr(regs) != kcb->jprobe_saved_sp) {
1035 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1037 "current sp %p does not match saved sp %p\n",
1038 stack_addr(regs), kcb->jprobe_saved_sp);
1039 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1040 show_registers(saved_regs);
1041 printk(KERN_ERR "Current registers\n");
1042 show_registers(regs);
1045 *regs = kcb->jprobe_saved_regs;
1046 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1048 MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1049 preempt_enable_no_resched();
1055 int __init arch_init_kprobes(void)
1060 int __kprobes arch_trampoline_kprobe(struct kprobe *p)