[Bug 339] Fix ipw2100 iwconfig set/get txpower.
[linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "1.1.1"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW_DEBUG */
223
224 #ifdef CONFIG_IPW_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static inline void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static inline void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static inline void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_work(priv->workqueue, &priv->reset_work);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static inline int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         down(&priv->adapter_sem);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         up(&priv->adapter_sem);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standy if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         down(&priv->adapter_sem);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         up(&priv->adapter_sem);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1676 {
1677         unsigned long flags;
1678         int rc = 0;
1679         u32 lock;
1680         u32 ord_len = sizeof(lock);
1681
1682         /* Quite if manually disabled. */
1683         if (priv->status & STATUS_RF_KILL_SW) {
1684                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1685                                "switch\n", priv->net_dev->name);
1686                 return 0;
1687         }
1688
1689         /* If the interrupt is enabled, turn it off... */
1690         spin_lock_irqsave(&priv->low_lock, flags);
1691         ipw2100_disable_interrupts(priv);
1692
1693         /* Reset any fatal_error conditions */
1694         ipw2100_reset_fatalerror(priv);
1695         spin_unlock_irqrestore(&priv->low_lock, flags);
1696
1697         if (priv->status & STATUS_POWERED ||
1698             (priv->status & STATUS_RESET_PENDING)) {
1699                 /* Power cycle the card ... */
1700                 if (ipw2100_power_cycle_adapter(priv)) {
1701                         printk(KERN_WARNING DRV_NAME
1702                                ": %s: Could not cycle adapter.\n",
1703                                priv->net_dev->name);
1704                         rc = 1;
1705                         goto exit;
1706                 }
1707         } else
1708                 priv->status |= STATUS_POWERED;
1709
1710         /* Load the firmware, start the clocks, etc. */
1711         if (ipw2100_start_adapter(priv)) {
1712                 printk(KERN_ERR DRV_NAME
1713                        ": %s: Failed to start the firmware.\n",
1714                        priv->net_dev->name);
1715                 rc = 1;
1716                 goto exit;
1717         }
1718
1719         ipw2100_initialize_ordinals(priv);
1720
1721         /* Determine capabilities of this particular HW configuration */
1722         if (ipw2100_get_hw_features(priv)) {
1723                 printk(KERN_ERR DRV_NAME
1724                        ": %s: Failed to determine HW features.\n",
1725                        priv->net_dev->name);
1726                 rc = 1;
1727                 goto exit;
1728         }
1729
1730         lock = LOCK_NONE;
1731         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1732                 printk(KERN_ERR DRV_NAME
1733                        ": %s: Failed to clear ordinal lock.\n",
1734                        priv->net_dev->name);
1735                 rc = 1;
1736                 goto exit;
1737         }
1738
1739         priv->status &= ~STATUS_SCANNING;
1740
1741         if (rf_kill_active(priv)) {
1742                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1743                        priv->net_dev->name);
1744
1745                 if (priv->stop_rf_kill) {
1746                         priv->stop_rf_kill = 0;
1747                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1748                 }
1749
1750                 deferred = 1;
1751         }
1752
1753         /* Turn on the interrupt so that commands can be processed */
1754         ipw2100_enable_interrupts(priv);
1755
1756         /* Send all of the commands that must be sent prior to
1757          * HOST_COMPLETE */
1758         if (ipw2100_adapter_setup(priv)) {
1759                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1760                        priv->net_dev->name);
1761                 rc = 1;
1762                 goto exit;
1763         }
1764
1765         if (!deferred) {
1766                 /* Enable the adapter - sends HOST_COMPLETE */
1767                 if (ipw2100_enable_adapter(priv)) {
1768                         printk(KERN_ERR DRV_NAME ": "
1769                                "%s: failed in call to enable adapter.\n",
1770                                priv->net_dev->name);
1771                         ipw2100_hw_stop_adapter(priv);
1772                         rc = 1;
1773                         goto exit;
1774                 }
1775
1776                 /* Start a scan . . . */
1777                 ipw2100_set_scan_options(priv);
1778                 ipw2100_start_scan(priv);
1779         }
1780
1781       exit:
1782         return rc;
1783 }
1784
1785 /* Called by register_netdev() */
1786 static int ipw2100_net_init(struct net_device *dev)
1787 {
1788         struct ipw2100_priv *priv = ieee80211_priv(dev);
1789         return ipw2100_up(priv, 1);
1790 }
1791
1792 static void ipw2100_down(struct ipw2100_priv *priv)
1793 {
1794         unsigned long flags;
1795         union iwreq_data wrqu = {
1796                 .ap_addr = {
1797                             .sa_family = ARPHRD_ETHER}
1798         };
1799         int associated = priv->status & STATUS_ASSOCIATED;
1800
1801         /* Kill the RF switch timer */
1802         if (!priv->stop_rf_kill) {
1803                 priv->stop_rf_kill = 1;
1804                 cancel_delayed_work(&priv->rf_kill);
1805         }
1806
1807         /* Kill the firmare hang check timer */
1808         if (!priv->stop_hang_check) {
1809                 priv->stop_hang_check = 1;
1810                 cancel_delayed_work(&priv->hang_check);
1811         }
1812
1813         /* Kill any pending resets */
1814         if (priv->status & STATUS_RESET_PENDING)
1815                 cancel_delayed_work(&priv->reset_work);
1816
1817         /* Make sure the interrupt is on so that FW commands will be
1818          * processed correctly */
1819         spin_lock_irqsave(&priv->low_lock, flags);
1820         ipw2100_enable_interrupts(priv);
1821         spin_unlock_irqrestore(&priv->low_lock, flags);
1822
1823         if (ipw2100_hw_stop_adapter(priv))
1824                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1825                        priv->net_dev->name);
1826
1827         /* Do not disable the interrupt until _after_ we disable
1828          * the adaptor.  Otherwise the CARD_DISABLE command will never
1829          * be ack'd by the firmware */
1830         spin_lock_irqsave(&priv->low_lock, flags);
1831         ipw2100_disable_interrupts(priv);
1832         spin_unlock_irqrestore(&priv->low_lock, flags);
1833
1834 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1835         if (priv->config & CFG_C3_DISABLED) {
1836                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1837                 acpi_set_cstate_limit(priv->cstate_limit);
1838                 priv->config &= ~CFG_C3_DISABLED;
1839         }
1840 #endif
1841
1842         /* We have to signal any supplicant if we are disassociating */
1843         if (associated)
1844                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1845
1846         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1847         netif_carrier_off(priv->net_dev);
1848         netif_stop_queue(priv->net_dev);
1849 }
1850
1851 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1852 {
1853         unsigned long flags;
1854         union iwreq_data wrqu = {
1855                 .ap_addr = {
1856                             .sa_family = ARPHRD_ETHER}
1857         };
1858         int associated = priv->status & STATUS_ASSOCIATED;
1859
1860         spin_lock_irqsave(&priv->low_lock, flags);
1861         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1862         priv->resets++;
1863         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1864         priv->status |= STATUS_SECURITY_UPDATED;
1865
1866         /* Force a power cycle even if interface hasn't been opened
1867          * yet */
1868         cancel_delayed_work(&priv->reset_work);
1869         priv->status |= STATUS_RESET_PENDING;
1870         spin_unlock_irqrestore(&priv->low_lock, flags);
1871
1872         down(&priv->action_sem);
1873         /* stop timed checks so that they don't interfere with reset */
1874         priv->stop_hang_check = 1;
1875         cancel_delayed_work(&priv->hang_check);
1876
1877         /* We have to signal any supplicant if we are disassociating */
1878         if (associated)
1879                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1880
1881         ipw2100_up(priv, 0);
1882         up(&priv->action_sem);
1883
1884 }
1885
1886 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1887 {
1888
1889 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1890         int ret, len, essid_len;
1891         char essid[IW_ESSID_MAX_SIZE];
1892         u32 txrate;
1893         u32 chan;
1894         char *txratename;
1895         u8 bssid[ETH_ALEN];
1896
1897         /*
1898          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1899          *      an actual MAC of the AP. Seems like FW sets this
1900          *      address too late. Read it later and expose through
1901          *      /proc or schedule a later task to query and update
1902          */
1903
1904         essid_len = IW_ESSID_MAX_SIZE;
1905         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1906                                   essid, &essid_len);
1907         if (ret) {
1908                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1909                                __LINE__);
1910                 return;
1911         }
1912
1913         len = sizeof(u32);
1914         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1915         if (ret) {
1916                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1917                                __LINE__);
1918                 return;
1919         }
1920
1921         len = sizeof(u32);
1922         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1923         if (ret) {
1924                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1925                                __LINE__);
1926                 return;
1927         }
1928         len = ETH_ALEN;
1929         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1930         if (ret) {
1931                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1932                                __LINE__);
1933                 return;
1934         }
1935         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1936
1937         switch (txrate) {
1938         case TX_RATE_1_MBIT:
1939                 txratename = "1Mbps";
1940                 break;
1941         case TX_RATE_2_MBIT:
1942                 txratename = "2Mbsp";
1943                 break;
1944         case TX_RATE_5_5_MBIT:
1945                 txratename = "5.5Mbps";
1946                 break;
1947         case TX_RATE_11_MBIT:
1948                 txratename = "11Mbps";
1949                 break;
1950         default:
1951                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1952                 txratename = "unknown rate";
1953                 break;
1954         }
1955
1956         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1957                        MAC_FMT ")\n",
1958                        priv->net_dev->name, escape_essid(essid, essid_len),
1959                        txratename, chan, MAC_ARG(bssid));
1960
1961         /* now we copy read ssid into dev */
1962         if (!(priv->config & CFG_STATIC_ESSID)) {
1963                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1964                 memcpy(priv->essid, essid, priv->essid_len);
1965         }
1966         priv->channel = chan;
1967         memcpy(priv->bssid, bssid, ETH_ALEN);
1968
1969         priv->status |= STATUS_ASSOCIATING;
1970         priv->connect_start = get_seconds();
1971
1972         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1973 }
1974
1975 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1976                              int length, int batch_mode)
1977 {
1978         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1979         struct host_command cmd = {
1980                 .host_command = SSID,
1981                 .host_command_sequence = 0,
1982                 .host_command_length = ssid_len
1983         };
1984         int err;
1985
1986         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
1987
1988         if (ssid_len)
1989                 memcpy(cmd.host_command_parameters, essid, ssid_len);
1990
1991         if (!batch_mode) {
1992                 err = ipw2100_disable_adapter(priv);
1993                 if (err)
1994                         return err;
1995         }
1996
1997         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
1998          * disable auto association -- so we cheat by setting a bogus SSID */
1999         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2000                 int i;
2001                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2002                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2003                         bogus[i] = 0x18 + i;
2004                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2005         }
2006
2007         /* NOTE:  We always send the SSID command even if the provided ESSID is
2008          * the same as what we currently think is set. */
2009
2010         err = ipw2100_hw_send_command(priv, &cmd);
2011         if (!err) {
2012                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2013                 memcpy(priv->essid, essid, ssid_len);
2014                 priv->essid_len = ssid_len;
2015         }
2016
2017         if (!batch_mode) {
2018                 if (ipw2100_enable_adapter(priv))
2019                         err = -EIO;
2020         }
2021
2022         return err;
2023 }
2024
2025 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2026 {
2027         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2028                   "disassociated: '%s' " MAC_FMT " \n",
2029                   escape_essid(priv->essid, priv->essid_len),
2030                   MAC_ARG(priv->bssid));
2031
2032         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2033
2034         if (priv->status & STATUS_STOPPING) {
2035                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2036                 return;
2037         }
2038
2039         memset(priv->bssid, 0, ETH_ALEN);
2040         memset(priv->ieee->bssid, 0, ETH_ALEN);
2041
2042         netif_carrier_off(priv->net_dev);
2043         netif_stop_queue(priv->net_dev);
2044
2045         if (!(priv->status & STATUS_RUNNING))
2046                 return;
2047
2048         if (priv->status & STATUS_SECURITY_UPDATED)
2049                 queue_work(priv->workqueue, &priv->security_work);
2050
2051         queue_work(priv->workqueue, &priv->wx_event_work);
2052 }
2053
2054 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2055 {
2056         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2057                        priv->net_dev->name);
2058
2059         /* RF_KILL is now enabled (else we wouldn't be here) */
2060         priv->status |= STATUS_RF_KILL_HW;
2061
2062 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2063         if (priv->config & CFG_C3_DISABLED) {
2064                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2065                 acpi_set_cstate_limit(priv->cstate_limit);
2066                 priv->config &= ~CFG_C3_DISABLED;
2067         }
2068 #endif
2069
2070         /* Make sure the RF Kill check timer is running */
2071         priv->stop_rf_kill = 0;
2072         cancel_delayed_work(&priv->rf_kill);
2073         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2074 }
2075
2076 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2077 {
2078         IPW_DEBUG_SCAN("scan complete\n");
2079         /* Age the scan results... */
2080         priv->ieee->scans++;
2081         priv->status &= ~STATUS_SCANNING;
2082 }
2083
2084 #ifdef CONFIG_IPW_DEBUG
2085 #define IPW2100_HANDLER(v, f) { v, f, # v }
2086 struct ipw2100_status_indicator {
2087         int status;
2088         void (*cb) (struct ipw2100_priv * priv, u32 status);
2089         char *name;
2090 };
2091 #else
2092 #define IPW2100_HANDLER(v, f) { v, f }
2093 struct ipw2100_status_indicator {
2094         int status;
2095         void (*cb) (struct ipw2100_priv * priv, u32 status);
2096 };
2097 #endif                          /* CONFIG_IPW_DEBUG */
2098
2099 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2100 {
2101         IPW_DEBUG_SCAN("Scanning...\n");
2102         priv->status |= STATUS_SCANNING;
2103 }
2104
2105 static const struct ipw2100_status_indicator status_handlers[] = {
2106         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2107         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2108         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2109         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2110         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2111         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2112         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2113         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2114         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2115         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2116         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2117         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2118         IPW2100_HANDLER(-1, NULL)
2119 };
2120
2121 static void isr_status_change(struct ipw2100_priv *priv, int status)
2122 {
2123         int i;
2124
2125         if (status == IPW_STATE_SCANNING &&
2126             priv->status & STATUS_ASSOCIATED &&
2127             !(priv->status & STATUS_SCANNING)) {
2128                 IPW_DEBUG_INFO("Scan detected while associated, with "
2129                                "no scan request.  Restarting firmware.\n");
2130
2131                 /* Wake up any sleeping jobs */
2132                 schedule_reset(priv);
2133         }
2134
2135         for (i = 0; status_handlers[i].status != -1; i++) {
2136                 if (status == status_handlers[i].status) {
2137                         IPW_DEBUG_NOTIF("Status change: %s\n",
2138                                         status_handlers[i].name);
2139                         if (status_handlers[i].cb)
2140                                 status_handlers[i].cb(priv, status);
2141                         priv->wstats.status = status;
2142                         return;
2143                 }
2144         }
2145
2146         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2147 }
2148
2149 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2150                                     struct ipw2100_cmd_header *cmd)
2151 {
2152 #ifdef CONFIG_IPW_DEBUG
2153         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2154                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2155                              command_types[cmd->host_command_reg],
2156                              cmd->host_command_reg);
2157         }
2158 #endif
2159         if (cmd->host_command_reg == HOST_COMPLETE)
2160                 priv->status |= STATUS_ENABLED;
2161
2162         if (cmd->host_command_reg == CARD_DISABLE)
2163                 priv->status &= ~STATUS_ENABLED;
2164
2165         priv->status &= ~STATUS_CMD_ACTIVE;
2166
2167         wake_up_interruptible(&priv->wait_command_queue);
2168 }
2169
2170 #ifdef CONFIG_IPW_DEBUG
2171 static const char *frame_types[] = {
2172         "COMMAND_STATUS_VAL",
2173         "STATUS_CHANGE_VAL",
2174         "P80211_DATA_VAL",
2175         "P8023_DATA_VAL",
2176         "HOST_NOTIFICATION_VAL"
2177 };
2178 #endif
2179
2180 static inline int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2181                                     struct ipw2100_rx_packet *packet)
2182 {
2183         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2184         if (!packet->skb)
2185                 return -ENOMEM;
2186
2187         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2188         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2189                                           sizeof(struct ipw2100_rx),
2190                                           PCI_DMA_FROMDEVICE);
2191         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2192          *       dma_addr */
2193
2194         return 0;
2195 }
2196
2197 #define SEARCH_ERROR   0xffffffff
2198 #define SEARCH_FAIL    0xfffffffe
2199 #define SEARCH_SUCCESS 0xfffffff0
2200 #define SEARCH_DISCARD 0
2201 #define SEARCH_SNAPSHOT 1
2202
2203 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2204 static inline int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2205 {
2206         int i;
2207         if (priv->snapshot[0])
2208                 return 1;
2209         for (i = 0; i < 0x30; i++) {
2210                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2211                 if (!priv->snapshot[i]) {
2212                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2213                                        "buffer %d\n", priv->net_dev->name, i);
2214                         while (i > 0)
2215                                 kfree(priv->snapshot[--i]);
2216                         priv->snapshot[0] = NULL;
2217                         return 0;
2218                 }
2219         }
2220
2221         return 1;
2222 }
2223
2224 static inline void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2225 {
2226         int i;
2227         if (!priv->snapshot[0])
2228                 return;
2229         for (i = 0; i < 0x30; i++)
2230                 kfree(priv->snapshot[i]);
2231         priv->snapshot[0] = NULL;
2232 }
2233
2234 static inline u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2235                                     size_t len, int mode)
2236 {
2237         u32 i, j;
2238         u32 tmp;
2239         u8 *s, *d;
2240         u32 ret;
2241
2242         s = in_buf;
2243         if (mode == SEARCH_SNAPSHOT) {
2244                 if (!ipw2100_snapshot_alloc(priv))
2245                         mode = SEARCH_DISCARD;
2246         }
2247
2248         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2249                 read_nic_dword(priv->net_dev, i, &tmp);
2250                 if (mode == SEARCH_SNAPSHOT)
2251                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2252                 if (ret == SEARCH_FAIL) {
2253                         d = (u8 *) & tmp;
2254                         for (j = 0; j < 4; j++) {
2255                                 if (*s != *d) {
2256                                         s = in_buf;
2257                                         continue;
2258                                 }
2259
2260                                 s++;
2261                                 d++;
2262
2263                                 if ((s - in_buf) == len)
2264                                         ret = (i + j) - len + 1;
2265                         }
2266                 } else if (mode == SEARCH_DISCARD)
2267                         return ret;
2268         }
2269
2270         return ret;
2271 }
2272
2273 /*
2274  *
2275  * 0) Disconnect the SKB from the firmware (just unmap)
2276  * 1) Pack the ETH header into the SKB
2277  * 2) Pass the SKB to the network stack
2278  *
2279  * When packet is provided by the firmware, it contains the following:
2280  *
2281  * .  ieee80211_hdr
2282  * .  ieee80211_snap_hdr
2283  *
2284  * The size of the constructed ethernet
2285  *
2286  */
2287 #ifdef CONFIG_IPW2100_RX_DEBUG
2288 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2289 #endif
2290
2291 static inline void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2292 {
2293 #ifdef CONFIG_IPW_DEBUG_C3
2294         struct ipw2100_status *status = &priv->status_queue.drv[i];
2295         u32 match, reg;
2296         int j;
2297 #endif
2298 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2299         int limit;
2300 #endif
2301
2302         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2303                        i * sizeof(struct ipw2100_status));
2304
2305 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2306         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2307         limit = acpi_get_cstate_limit();
2308         if (limit > 2) {
2309                 priv->cstate_limit = limit;
2310                 acpi_set_cstate_limit(2);
2311                 priv->config |= CFG_C3_DISABLED;
2312         }
2313 #endif
2314
2315 #ifdef CONFIG_IPW_DEBUG_C3
2316         /* Halt the fimrware so we can get a good image */
2317         write_register(priv->net_dev, IPW_REG_RESET_REG,
2318                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2319         j = 5;
2320         do {
2321                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2322                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2323
2324                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2325                         break;
2326         } while (j--);
2327
2328         match = ipw2100_match_buf(priv, (u8 *) status,
2329                                   sizeof(struct ipw2100_status),
2330                                   SEARCH_SNAPSHOT);
2331         if (match < SEARCH_SUCCESS)
2332                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2333                                "offset 0x%06X, length %d:\n",
2334                                priv->net_dev->name, match,
2335                                sizeof(struct ipw2100_status));
2336         else
2337                 IPW_DEBUG_INFO("%s: No DMA status match in "
2338                                "Firmware.\n", priv->net_dev->name);
2339
2340         printk_buf((u8 *) priv->status_queue.drv,
2341                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2342 #endif
2343
2344         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2345         priv->ieee->stats.rx_errors++;
2346         schedule_reset(priv);
2347 }
2348
2349 static inline void isr_rx(struct ipw2100_priv *priv, int i,
2350                           struct ieee80211_rx_stats *stats)
2351 {
2352         struct ipw2100_status *status = &priv->status_queue.drv[i];
2353         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2354
2355         IPW_DEBUG_RX("Handler...\n");
2356
2357         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2358                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2359                                "  Dropping.\n",
2360                                priv->net_dev->name,
2361                                status->frame_size, skb_tailroom(packet->skb));
2362                 priv->ieee->stats.rx_errors++;
2363                 return;
2364         }
2365
2366         if (unlikely(!netif_running(priv->net_dev))) {
2367                 priv->ieee->stats.rx_errors++;
2368                 priv->wstats.discard.misc++;
2369                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2370                 return;
2371         }
2372 #ifdef CONFIG_IPW2100_MONITOR
2373         if (unlikely(priv->ieee->iw_mode == IW_MODE_MONITOR &&
2374                      priv->config & CFG_CRC_CHECK &&
2375                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2376                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2377                 priv->ieee->stats.rx_errors++;
2378                 return;
2379         }
2380 #endif
2381
2382         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2383                      !(priv->status & STATUS_ASSOCIATED))) {
2384                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2385                 priv->wstats.discard.misc++;
2386                 return;
2387         }
2388
2389         pci_unmap_single(priv->pci_dev,
2390                          packet->dma_addr,
2391                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2392
2393         skb_put(packet->skb, status->frame_size);
2394
2395 #ifdef CONFIG_IPW2100_RX_DEBUG
2396         /* Make a copy of the frame so we can dump it to the logs if
2397          * ieee80211_rx fails */
2398         memcpy(packet_data, packet->skb->data,
2399                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2400 #endif
2401
2402         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2403 #ifdef CONFIG_IPW2100_RX_DEBUG
2404                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2405                                priv->net_dev->name);
2406                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2407 #endif
2408                 priv->ieee->stats.rx_errors++;
2409
2410                 /* ieee80211_rx failed, so it didn't free the SKB */
2411                 dev_kfree_skb_any(packet->skb);
2412                 packet->skb = NULL;
2413         }
2414
2415         /* We need to allocate a new SKB and attach it to the RDB. */
2416         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2417                 printk(KERN_WARNING DRV_NAME ": "
2418                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2419                        "adapter.\n", priv->net_dev->name);
2420                 /* TODO: schedule adapter shutdown */
2421                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2422         }
2423
2424         /* Update the RDB entry */
2425         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2426 }
2427
2428 static inline int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2429 {
2430         struct ipw2100_status *status = &priv->status_queue.drv[i];
2431         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2432         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2433
2434         switch (frame_type) {
2435         case COMMAND_STATUS_VAL:
2436                 return (status->frame_size != sizeof(u->rx_data.command));
2437         case STATUS_CHANGE_VAL:
2438                 return (status->frame_size != sizeof(u->rx_data.status));
2439         case HOST_NOTIFICATION_VAL:
2440                 return (status->frame_size < sizeof(u->rx_data.notification));
2441         case P80211_DATA_VAL:
2442         case P8023_DATA_VAL:
2443 #ifdef CONFIG_IPW2100_MONITOR
2444                 return 0;
2445 #else
2446                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2447                 case IEEE80211_FTYPE_MGMT:
2448                 case IEEE80211_FTYPE_CTL:
2449                         return 0;
2450                 case IEEE80211_FTYPE_DATA:
2451                         return (status->frame_size >
2452                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2453                 }
2454 #endif
2455         }
2456
2457         return 1;
2458 }
2459
2460 /*
2461  * ipw2100 interrupts are disabled at this point, and the ISR
2462  * is the only code that calls this method.  So, we do not need
2463  * to play with any locks.
2464  *
2465  * RX Queue works as follows:
2466  *
2467  * Read index - firmware places packet in entry identified by the
2468  *              Read index and advances Read index.  In this manner,
2469  *              Read index will always point to the next packet to
2470  *              be filled--but not yet valid.
2471  *
2472  * Write index - driver fills this entry with an unused RBD entry.
2473  *               This entry has not filled by the firmware yet.
2474  *
2475  * In between the W and R indexes are the RBDs that have been received
2476  * but not yet processed.
2477  *
2478  * The process of handling packets will start at WRITE + 1 and advance
2479  * until it reaches the READ index.
2480  *
2481  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2482  *
2483  */
2484 static inline void __ipw2100_rx_process(struct ipw2100_priv *priv)
2485 {
2486         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2487         struct ipw2100_status_queue *sq = &priv->status_queue;
2488         struct ipw2100_rx_packet *packet;
2489         u16 frame_type;
2490         u32 r, w, i, s;
2491         struct ipw2100_rx *u;
2492         struct ieee80211_rx_stats stats = {
2493                 .mac_time = jiffies,
2494         };
2495
2496         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2497         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2498
2499         if (r >= rxq->entries) {
2500                 IPW_DEBUG_RX("exit - bad read index\n");
2501                 return;
2502         }
2503
2504         i = (rxq->next + 1) % rxq->entries;
2505         s = i;
2506         while (i != r) {
2507                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2508                    r, rxq->next, i); */
2509
2510                 packet = &priv->rx_buffers[i];
2511
2512                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2513                  * the correct values */
2514                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2515                                             sq->nic +
2516                                             sizeof(struct ipw2100_status) * i,
2517                                             sizeof(struct ipw2100_status),
2518                                             PCI_DMA_FROMDEVICE);
2519
2520                 /* Sync the DMA for the RX buffer so CPU is sure to get
2521                  * the correct values */
2522                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2523                                             sizeof(struct ipw2100_rx),
2524                                             PCI_DMA_FROMDEVICE);
2525
2526                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2527                         ipw2100_corruption_detected(priv, i);
2528                         goto increment;
2529                 }
2530
2531                 u = packet->rxp;
2532                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2533                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2534                 stats.len = sq->drv[i].frame_size;
2535
2536                 stats.mask = 0;
2537                 if (stats.rssi != 0)
2538                         stats.mask |= IEEE80211_STATMASK_RSSI;
2539                 stats.freq = IEEE80211_24GHZ_BAND;
2540
2541                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2542                              priv->net_dev->name, frame_types[frame_type],
2543                              stats.len);
2544
2545                 switch (frame_type) {
2546                 case COMMAND_STATUS_VAL:
2547                         /* Reset Rx watchdog */
2548                         isr_rx_complete_command(priv, &u->rx_data.command);
2549                         break;
2550
2551                 case STATUS_CHANGE_VAL:
2552                         isr_status_change(priv, u->rx_data.status);
2553                         break;
2554
2555                 case P80211_DATA_VAL:
2556                 case P8023_DATA_VAL:
2557 #ifdef CONFIG_IPW2100_MONITOR
2558                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2559                                 isr_rx(priv, i, &stats);
2560                                 break;
2561                         }
2562 #endif
2563                         if (stats.len < sizeof(u->rx_data.header))
2564                                 break;
2565                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2566                         case IEEE80211_FTYPE_MGMT:
2567                                 ieee80211_rx_mgt(priv->ieee,
2568                                                  &u->rx_data.header, &stats);
2569                                 break;
2570
2571                         case IEEE80211_FTYPE_CTL:
2572                                 break;
2573
2574                         case IEEE80211_FTYPE_DATA:
2575                                 isr_rx(priv, i, &stats);
2576                                 break;
2577
2578                         }
2579                         break;
2580                 }
2581
2582               increment:
2583                 /* clear status field associated with this RBD */
2584                 rxq->drv[i].status.info.field = 0;
2585
2586                 i = (i + 1) % rxq->entries;
2587         }
2588
2589         if (i != s) {
2590                 /* backtrack one entry, wrapping to end if at 0 */
2591                 rxq->next = (i ? i : rxq->entries) - 1;
2592
2593                 write_register(priv->net_dev,
2594                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2595         }
2596 }
2597
2598 /*
2599  * __ipw2100_tx_process
2600  *
2601  * This routine will determine whether the next packet on
2602  * the fw_pend_list has been processed by the firmware yet.
2603  *
2604  * If not, then it does nothing and returns.
2605  *
2606  * If so, then it removes the item from the fw_pend_list, frees
2607  * any associated storage, and places the item back on the
2608  * free list of its source (either msg_free_list or tx_free_list)
2609  *
2610  * TX Queue works as follows:
2611  *
2612  * Read index - points to the next TBD that the firmware will
2613  *              process.  The firmware will read the data, and once
2614  *              done processing, it will advance the Read index.
2615  *
2616  * Write index - driver fills this entry with an constructed TBD
2617  *               entry.  The Write index is not advanced until the
2618  *               packet has been configured.
2619  *
2620  * In between the W and R indexes are the TBDs that have NOT been
2621  * processed.  Lagging behind the R index are packets that have
2622  * been processed but have not been freed by the driver.
2623  *
2624  * In order to free old storage, an internal index will be maintained
2625  * that points to the next packet to be freed.  When all used
2626  * packets have been freed, the oldest index will be the same as the
2627  * firmware's read index.
2628  *
2629  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2630  *
2631  * Because the TBD structure can not contain arbitrary data, the
2632  * driver must keep an internal queue of cached allocations such that
2633  * it can put that data back into the tx_free_list and msg_free_list
2634  * for use by future command and data packets.
2635  *
2636  */
2637 static inline int __ipw2100_tx_process(struct ipw2100_priv *priv)
2638 {
2639         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2640         struct ipw2100_bd *tbd;
2641         struct list_head *element;
2642         struct ipw2100_tx_packet *packet;
2643         int descriptors_used;
2644         int e, i;
2645         u32 r, w, frag_num = 0;
2646
2647         if (list_empty(&priv->fw_pend_list))
2648                 return 0;
2649
2650         element = priv->fw_pend_list.next;
2651
2652         packet = list_entry(element, struct ipw2100_tx_packet, list);
2653         tbd = &txq->drv[packet->index];
2654
2655         /* Determine how many TBD entries must be finished... */
2656         switch (packet->type) {
2657         case COMMAND:
2658                 /* COMMAND uses only one slot; don't advance */
2659                 descriptors_used = 1;
2660                 e = txq->oldest;
2661                 break;
2662
2663         case DATA:
2664                 /* DATA uses two slots; advance and loop position. */
2665                 descriptors_used = tbd->num_fragments;
2666                 frag_num = tbd->num_fragments - 1;
2667                 e = txq->oldest + frag_num;
2668                 e %= txq->entries;
2669                 break;
2670
2671         default:
2672                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2673                        priv->net_dev->name);
2674                 return 0;
2675         }
2676
2677         /* if the last TBD is not done by NIC yet, then packet is
2678          * not ready to be released.
2679          *
2680          */
2681         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2682                       &r);
2683         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2684                       &w);
2685         if (w != txq->next)
2686                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2687                        priv->net_dev->name);
2688
2689         /*
2690          * txq->next is the index of the last packet written txq->oldest is
2691          * the index of the r is the index of the next packet to be read by
2692          * firmware
2693          */
2694
2695         /*
2696          * Quick graphic to help you visualize the following
2697          * if / else statement
2698          *
2699          * ===>|                     s---->|===============
2700          *                               e>|
2701          * | a | b | c | d | e | f | g | h | i | j | k | l
2702          *       r---->|
2703          *               w
2704          *
2705          * w - updated by driver
2706          * r - updated by firmware
2707          * s - start of oldest BD entry (txq->oldest)
2708          * e - end of oldest BD entry
2709          *
2710          */
2711         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2712                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2713                 return 0;
2714         }
2715
2716         list_del(element);
2717         DEC_STAT(&priv->fw_pend_stat);
2718
2719 #ifdef CONFIG_IPW_DEBUG
2720         {
2721                 int i = txq->oldest;
2722                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2723                              &txq->drv[i],
2724                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2725                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2726
2727                 if (packet->type == DATA) {
2728                         i = (i + 1) % txq->entries;
2729
2730                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2731                                      &txq->drv[i],
2732                                      (u32) (txq->nic + i *
2733                                             sizeof(struct ipw2100_bd)),
2734                                      (u32) txq->drv[i].host_addr,
2735                                      txq->drv[i].buf_length);
2736                 }
2737         }
2738 #endif
2739
2740         switch (packet->type) {
2741         case DATA:
2742                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2743                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2744                                "Expecting DATA TBD but pulled "
2745                                "something else: ids %d=%d.\n",
2746                                priv->net_dev->name, txq->oldest, packet->index);
2747
2748                 /* DATA packet; we have to unmap and free the SKB */
2749                 for (i = 0; i < frag_num; i++) {
2750                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2751
2752                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2753                                      (packet->index + 1 + i) % txq->entries,
2754                                      tbd->host_addr, tbd->buf_length);
2755
2756                         pci_unmap_single(priv->pci_dev,
2757                                          tbd->host_addr,
2758                                          tbd->buf_length, PCI_DMA_TODEVICE);
2759                 }
2760
2761                 ieee80211_txb_free(packet->info.d_struct.txb);
2762                 packet->info.d_struct.txb = NULL;
2763
2764                 list_add_tail(element, &priv->tx_free_list);
2765                 INC_STAT(&priv->tx_free_stat);
2766
2767                 /* We have a free slot in the Tx queue, so wake up the
2768                  * transmit layer if it is stopped. */
2769                 if (priv->status & STATUS_ASSOCIATED)
2770                         netif_wake_queue(priv->net_dev);
2771
2772                 /* A packet was processed by the hardware, so update the
2773                  * watchdog */
2774                 priv->net_dev->trans_start = jiffies;
2775
2776                 break;
2777
2778         case COMMAND:
2779                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2780                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2781                                "Expecting COMMAND TBD but pulled "
2782                                "something else: ids %d=%d.\n",
2783                                priv->net_dev->name, txq->oldest, packet->index);
2784
2785 #ifdef CONFIG_IPW_DEBUG
2786                 if (packet->info.c_struct.cmd->host_command_reg <
2787                     sizeof(command_types) / sizeof(*command_types))
2788                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2789                                      command_types[packet->info.c_struct.cmd->
2790                                                    host_command_reg],
2791                                      packet->info.c_struct.cmd->
2792                                      host_command_reg,
2793                                      packet->info.c_struct.cmd->cmd_status_reg);
2794 #endif
2795
2796                 list_add_tail(element, &priv->msg_free_list);
2797                 INC_STAT(&priv->msg_free_stat);
2798                 break;
2799         }
2800
2801         /* advance oldest used TBD pointer to start of next entry */
2802         txq->oldest = (e + 1) % txq->entries;
2803         /* increase available TBDs number */
2804         txq->available += descriptors_used;
2805         SET_STAT(&priv->txq_stat, txq->available);
2806
2807         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2808                      jiffies - packet->jiffy_start);
2809
2810         return (!list_empty(&priv->fw_pend_list));
2811 }
2812
2813 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2814 {
2815         int i = 0;
2816
2817         while (__ipw2100_tx_process(priv) && i < 200)
2818                 i++;
2819
2820         if (i == 200) {
2821                 printk(KERN_WARNING DRV_NAME ": "
2822                        "%s: Driver is running slow (%d iters).\n",
2823                        priv->net_dev->name, i);
2824         }
2825 }
2826
2827 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2828 {
2829         struct list_head *element;
2830         struct ipw2100_tx_packet *packet;
2831         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2832         struct ipw2100_bd *tbd;
2833         int next = txq->next;
2834
2835         while (!list_empty(&priv->msg_pend_list)) {
2836                 /* if there isn't enough space in TBD queue, then
2837                  * don't stuff a new one in.
2838                  * NOTE: 3 are needed as a command will take one,
2839                  *       and there is a minimum of 2 that must be
2840                  *       maintained between the r and w indexes
2841                  */
2842                 if (txq->available <= 3) {
2843                         IPW_DEBUG_TX("no room in tx_queue\n");
2844                         break;
2845                 }
2846
2847                 element = priv->msg_pend_list.next;
2848                 list_del(element);
2849                 DEC_STAT(&priv->msg_pend_stat);
2850
2851                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2852
2853                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2854                              &txq->drv[txq->next],
2855                              (void *)(txq->nic + txq->next *
2856                                       sizeof(struct ipw2100_bd)));
2857
2858                 packet->index = txq->next;
2859
2860                 tbd = &txq->drv[txq->next];
2861
2862                 /* initialize TBD */
2863                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2864                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2865                 /* not marking number of fragments causes problems
2866                  * with f/w debug version */
2867                 tbd->num_fragments = 1;
2868                 tbd->status.info.field =
2869                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2870                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2871
2872                 /* update TBD queue counters */
2873                 txq->next++;
2874                 txq->next %= txq->entries;
2875                 txq->available--;
2876                 DEC_STAT(&priv->txq_stat);
2877
2878                 list_add_tail(element, &priv->fw_pend_list);
2879                 INC_STAT(&priv->fw_pend_stat);
2880         }
2881
2882         if (txq->next != next) {
2883                 /* kick off the DMA by notifying firmware the
2884                  * write index has moved; make sure TBD stores are sync'd */
2885                 wmb();
2886                 write_register(priv->net_dev,
2887                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2888                                txq->next);
2889         }
2890 }
2891
2892 /*
2893  * ipw2100_tx_send_data
2894  *
2895  */
2896 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2897 {
2898         struct list_head *element;
2899         struct ipw2100_tx_packet *packet;
2900         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2901         struct ipw2100_bd *tbd;
2902         int next = txq->next;
2903         int i = 0;
2904         struct ipw2100_data_header *ipw_hdr;
2905         struct ieee80211_hdr_3addr *hdr;
2906
2907         while (!list_empty(&priv->tx_pend_list)) {
2908                 /* if there isn't enough space in TBD queue, then
2909                  * don't stuff a new one in.
2910                  * NOTE: 4 are needed as a data will take two,
2911                  *       and there is a minimum of 2 that must be
2912                  *       maintained between the r and w indexes
2913                  */
2914                 element = priv->tx_pend_list.next;
2915                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2916
2917                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
2918                              IPW_MAX_BDS)) {
2919                         /* TODO: Support merging buffers if more than
2920                          * IPW_MAX_BDS are used */
2921                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
2922                                        "Increase fragmentation level.\n",
2923                                        priv->net_dev->name);
2924                 }
2925
2926                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
2927                         IPW_DEBUG_TX("no room in tx_queue\n");
2928                         break;
2929                 }
2930
2931                 list_del(element);
2932                 DEC_STAT(&priv->tx_pend_stat);
2933
2934                 tbd = &txq->drv[txq->next];
2935
2936                 packet->index = txq->next;
2937
2938                 ipw_hdr = packet->info.d_struct.data;
2939                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
2940                     fragments[0]->data;
2941
2942                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
2943                         /* To DS: Addr1 = BSSID, Addr2 = SA,
2944                            Addr3 = DA */
2945                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2946                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
2947                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
2948                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
2949                            Addr3 = BSSID */
2950                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2951                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
2952                 }
2953
2954                 ipw_hdr->host_command_reg = SEND;
2955                 ipw_hdr->host_command_reg1 = 0;
2956
2957                 /* For now we only support host based encryption */
2958                 ipw_hdr->needs_encryption = 0;
2959                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
2960                 if (packet->info.d_struct.txb->nr_frags > 1)
2961                         ipw_hdr->fragment_size =
2962                             packet->info.d_struct.txb->frag_size -
2963                             IEEE80211_3ADDR_LEN;
2964                 else
2965                         ipw_hdr->fragment_size = 0;
2966
2967                 tbd->host_addr = packet->info.d_struct.data_phys;
2968                 tbd->buf_length = sizeof(struct ipw2100_data_header);
2969                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
2970                 tbd->status.info.field =
2971                     IPW_BD_STATUS_TX_FRAME_802_3 |
2972                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2973                 txq->next++;
2974                 txq->next %= txq->entries;
2975
2976                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
2977                              packet->index, tbd->host_addr, tbd->buf_length);
2978 #ifdef CONFIG_IPW_DEBUG
2979                 if (packet->info.d_struct.txb->nr_frags > 1)
2980                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
2981                                        packet->info.d_struct.txb->nr_frags);
2982 #endif
2983
2984                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
2985                         tbd = &txq->drv[txq->next];
2986                         if (i == packet->info.d_struct.txb->nr_frags - 1)
2987                                 tbd->status.info.field =
2988                                     IPW_BD_STATUS_TX_FRAME_802_3 |
2989                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2990                         else
2991                                 tbd->status.info.field =
2992                                     IPW_BD_STATUS_TX_FRAME_802_3 |
2993                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2994
2995                         tbd->buf_length = packet->info.d_struct.txb->
2996                             fragments[i]->len - IEEE80211_3ADDR_LEN;
2997
2998                         tbd->host_addr = pci_map_single(priv->pci_dev,
2999                                                         packet->info.d_struct.
3000                                                         txb->fragments[i]->
3001                                                         data +
3002                                                         IEEE80211_3ADDR_LEN,
3003                                                         tbd->buf_length,
3004                                                         PCI_DMA_TODEVICE);
3005
3006                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3007                                      txq->next, tbd->host_addr,
3008                                      tbd->buf_length);
3009
3010                         pci_dma_sync_single_for_device(priv->pci_dev,
3011                                                        tbd->host_addr,
3012                                                        tbd->buf_length,
3013                                                        PCI_DMA_TODEVICE);
3014
3015                         txq->next++;
3016                         txq->next %= txq->entries;
3017                 }
3018
3019                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3020                 SET_STAT(&priv->txq_stat, txq->available);
3021
3022                 list_add_tail(element, &priv->fw_pend_list);
3023                 INC_STAT(&priv->fw_pend_stat);
3024         }
3025
3026         if (txq->next != next) {
3027                 /* kick off the DMA by notifying firmware the
3028                  * write index has moved; make sure TBD stores are sync'd */
3029                 write_register(priv->net_dev,
3030                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3031                                txq->next);
3032         }
3033         return;
3034 }
3035
3036 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3037 {
3038         struct net_device *dev = priv->net_dev;
3039         unsigned long flags;
3040         u32 inta, tmp;
3041
3042         spin_lock_irqsave(&priv->low_lock, flags);
3043         ipw2100_disable_interrupts(priv);
3044
3045         read_register(dev, IPW_REG_INTA, &inta);
3046
3047         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3048                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3049
3050         priv->in_isr++;
3051         priv->interrupts++;
3052
3053         /* We do not loop and keep polling for more interrupts as this
3054          * is frowned upon and doesn't play nicely with other potentially
3055          * chained IRQs */
3056         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3057                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3058
3059         if (inta & IPW2100_INTA_FATAL_ERROR) {
3060                 printk(KERN_WARNING DRV_NAME
3061                        ": Fatal interrupt. Scheduling firmware restart.\n");
3062                 priv->inta_other++;
3063                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3064
3065                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3066                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3067                                priv->net_dev->name, priv->fatal_error);
3068
3069                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3070                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3071                                priv->net_dev->name, tmp);
3072
3073                 /* Wake up any sleeping jobs */
3074                 schedule_reset(priv);
3075         }
3076
3077         if (inta & IPW2100_INTA_PARITY_ERROR) {
3078                 printk(KERN_ERR DRV_NAME
3079                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3080                 priv->inta_other++;
3081                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3082         }
3083
3084         if (inta & IPW2100_INTA_RX_TRANSFER) {
3085                 IPW_DEBUG_ISR("RX interrupt\n");
3086
3087                 priv->rx_interrupts++;
3088
3089                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3090
3091                 __ipw2100_rx_process(priv);
3092                 __ipw2100_tx_complete(priv);
3093         }
3094
3095         if (inta & IPW2100_INTA_TX_TRANSFER) {
3096                 IPW_DEBUG_ISR("TX interrupt\n");
3097
3098                 priv->tx_interrupts++;
3099
3100                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3101
3102                 __ipw2100_tx_complete(priv);
3103                 ipw2100_tx_send_commands(priv);
3104                 ipw2100_tx_send_data(priv);
3105         }
3106
3107         if (inta & IPW2100_INTA_TX_COMPLETE) {
3108                 IPW_DEBUG_ISR("TX complete\n");
3109                 priv->inta_other++;
3110                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3111
3112                 __ipw2100_tx_complete(priv);
3113         }
3114
3115         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3116                 /* ipw2100_handle_event(dev); */
3117                 priv->inta_other++;
3118                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3119         }
3120
3121         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3122                 IPW_DEBUG_ISR("FW init done interrupt\n");
3123                 priv->inta_other++;
3124
3125                 read_register(dev, IPW_REG_INTA, &tmp);
3126                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3127                            IPW2100_INTA_PARITY_ERROR)) {
3128                         write_register(dev, IPW_REG_INTA,
3129                                        IPW2100_INTA_FATAL_ERROR |
3130                                        IPW2100_INTA_PARITY_ERROR);
3131                 }
3132
3133                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3134         }
3135
3136         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3137                 IPW_DEBUG_ISR("Status change interrupt\n");
3138                 priv->inta_other++;
3139                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3140         }
3141
3142         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3143                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3144                 priv->inta_other++;
3145                 write_register(dev, IPW_REG_INTA,
3146                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3147         }
3148
3149         priv->in_isr--;
3150         ipw2100_enable_interrupts(priv);
3151
3152         spin_unlock_irqrestore(&priv->low_lock, flags);
3153
3154         IPW_DEBUG_ISR("exit\n");
3155 }
3156
3157 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3158 {
3159         struct ipw2100_priv *priv = data;
3160         u32 inta, inta_mask;
3161
3162         if (!data)
3163                 return IRQ_NONE;
3164
3165         spin_lock(&priv->low_lock);
3166
3167         /* We check to see if we should be ignoring interrupts before
3168          * we touch the hardware.  During ucode load if we try and handle
3169          * an interrupt we can cause keyboard problems as well as cause
3170          * the ucode to fail to initialize */
3171         if (!(priv->status & STATUS_INT_ENABLED)) {
3172                 /* Shared IRQ */
3173                 goto none;
3174         }
3175
3176         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3177         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3178
3179         if (inta == 0xFFFFFFFF) {
3180                 /* Hardware disappeared */
3181                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3182                 goto none;
3183         }
3184
3185         inta &= IPW_INTERRUPT_MASK;
3186
3187         if (!(inta & inta_mask)) {
3188                 /* Shared interrupt */
3189                 goto none;
3190         }
3191
3192         /* We disable the hardware interrupt here just to prevent unneeded
3193          * calls to be made.  We disable this again within the actual
3194          * work tasklet, so if another part of the code re-enables the
3195          * interrupt, that is fine */
3196         ipw2100_disable_interrupts(priv);
3197
3198         tasklet_schedule(&priv->irq_tasklet);
3199         spin_unlock(&priv->low_lock);
3200
3201         return IRQ_HANDLED;
3202       none:
3203         spin_unlock(&priv->low_lock);
3204         return IRQ_NONE;
3205 }
3206
3207 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3208                       int pri)
3209 {
3210         struct ipw2100_priv *priv = ieee80211_priv(dev);
3211         struct list_head *element;
3212         struct ipw2100_tx_packet *packet;
3213         unsigned long flags;
3214
3215         spin_lock_irqsave(&priv->low_lock, flags);
3216
3217         if (!(priv->status & STATUS_ASSOCIATED)) {
3218                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3219                 priv->ieee->stats.tx_carrier_errors++;
3220                 netif_stop_queue(dev);
3221                 goto fail_unlock;
3222         }
3223
3224         if (list_empty(&priv->tx_free_list))
3225                 goto fail_unlock;
3226
3227         element = priv->tx_free_list.next;
3228         packet = list_entry(element, struct ipw2100_tx_packet, list);
3229
3230         packet->info.d_struct.txb = txb;
3231
3232         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3233         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3234
3235         packet->jiffy_start = jiffies;
3236
3237         list_del(element);
3238         DEC_STAT(&priv->tx_free_stat);
3239
3240         list_add_tail(element, &priv->tx_pend_list);
3241         INC_STAT(&priv->tx_pend_stat);
3242
3243         ipw2100_tx_send_data(priv);
3244
3245         spin_unlock_irqrestore(&priv->low_lock, flags);
3246         return 0;
3247
3248       fail_unlock:
3249         netif_stop_queue(dev);
3250         spin_unlock_irqrestore(&priv->low_lock, flags);
3251         return 1;
3252 }
3253
3254 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3255 {
3256         int i, j, err = -EINVAL;
3257         void *v;
3258         dma_addr_t p;
3259
3260         priv->msg_buffers =
3261             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3262                                                 sizeof(struct
3263                                                        ipw2100_tx_packet),
3264                                                 GFP_KERNEL);
3265         if (!priv->msg_buffers) {
3266                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3267                        "buffers.\n", priv->net_dev->name);
3268                 return -ENOMEM;
3269         }
3270
3271         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3272                 v = pci_alloc_consistent(priv->pci_dev,
3273                                          sizeof(struct ipw2100_cmd_header), &p);
3274                 if (!v) {
3275                         printk(KERN_ERR DRV_NAME ": "
3276                                "%s: PCI alloc failed for msg "
3277                                "buffers.\n", priv->net_dev->name);
3278                         err = -ENOMEM;
3279                         break;
3280                 }
3281
3282                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3283
3284                 priv->msg_buffers[i].type = COMMAND;
3285                 priv->msg_buffers[i].info.c_struct.cmd =
3286                     (struct ipw2100_cmd_header *)v;
3287                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3288         }
3289
3290         if (i == IPW_COMMAND_POOL_SIZE)
3291                 return 0;
3292
3293         for (j = 0; j < i; j++) {
3294                 pci_free_consistent(priv->pci_dev,
3295                                     sizeof(struct ipw2100_cmd_header),
3296                                     priv->msg_buffers[j].info.c_struct.cmd,
3297                                     priv->msg_buffers[j].info.c_struct.
3298                                     cmd_phys);
3299         }
3300
3301         kfree(priv->msg_buffers);
3302         priv->msg_buffers = NULL;
3303
3304         return err;
3305 }
3306
3307 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3308 {
3309         int i;
3310
3311         INIT_LIST_HEAD(&priv->msg_free_list);
3312         INIT_LIST_HEAD(&priv->msg_pend_list);
3313
3314         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3315                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3316         SET_STAT(&priv->msg_free_stat, i);
3317
3318         return 0;
3319 }
3320
3321 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3322 {
3323         int i;
3324
3325         if (!priv->msg_buffers)
3326                 return;
3327
3328         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3329                 pci_free_consistent(priv->pci_dev,
3330                                     sizeof(struct ipw2100_cmd_header),
3331                                     priv->msg_buffers[i].info.c_struct.cmd,
3332                                     priv->msg_buffers[i].info.c_struct.
3333                                     cmd_phys);
3334         }
3335
3336         kfree(priv->msg_buffers);
3337         priv->msg_buffers = NULL;
3338 }
3339
3340 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3341                         char *buf)
3342 {
3343         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3344         char *out = buf;
3345         int i, j;
3346         u32 val;
3347
3348         for (i = 0; i < 16; i++) {
3349                 out += sprintf(out, "[%08X] ", i * 16);
3350                 for (j = 0; j < 16; j += 4) {
3351                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3352                         out += sprintf(out, "%08X ", val);
3353                 }
3354                 out += sprintf(out, "\n");
3355         }
3356
3357         return out - buf;
3358 }
3359
3360 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3361
3362 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3363                         char *buf)
3364 {
3365         struct ipw2100_priv *p = d->driver_data;
3366         return sprintf(buf, "0x%08x\n", (int)p->config);
3367 }
3368
3369 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3370
3371 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3372                            char *buf)
3373 {
3374         struct ipw2100_priv *p = d->driver_data;
3375         return sprintf(buf, "0x%08x\n", (int)p->status);
3376 }
3377
3378 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3379
3380 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3381                                char *buf)
3382 {
3383         struct ipw2100_priv *p = d->driver_data;
3384         return sprintf(buf, "0x%08x\n", (int)p->capability);
3385 }
3386
3387 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3388
3389 #define IPW2100_REG(x) { IPW_ ##x, #x }
3390 static const struct {
3391         u32 addr;
3392         const char *name;
3393 } hw_data[] = {
3394 IPW2100_REG(REG_GP_CNTRL),
3395             IPW2100_REG(REG_GPIO),
3396             IPW2100_REG(REG_INTA),
3397             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3398 #define IPW2100_NIC(x, s) { x, #x, s }
3399 static const struct {
3400         u32 addr;
3401         const char *name;
3402         size_t size;
3403 } nic_data[] = {
3404 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3405             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3406 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3407 static const struct {
3408         u8 index;
3409         const char *name;
3410         const char *desc;
3411 } ord_data[] = {
3412 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3413             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3414                                 "successful Host Tx's (MSDU)"),
3415             IPW2100_ORD(STAT_TX_DIR_DATA,
3416                                 "successful Directed Tx's (MSDU)"),
3417             IPW2100_ORD(STAT_TX_DIR_DATA1,
3418                                 "successful Directed Tx's (MSDU) @ 1MB"),
3419             IPW2100_ORD(STAT_TX_DIR_DATA2,
3420                                 "successful Directed Tx's (MSDU) @ 2MB"),
3421             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3422                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3423             IPW2100_ORD(STAT_TX_DIR_DATA11,
3424                                 "successful Directed Tx's (MSDU) @ 11MB"),
3425             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3426                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3427             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3428                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3429             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3430                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3431             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3432                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3433             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3434             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3435             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3436             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3437             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3438             IPW2100_ORD(STAT_TX_ASSN_RESP,
3439                                 "successful Association response Tx's"),
3440             IPW2100_ORD(STAT_TX_REASSN,
3441                                 "successful Reassociation Tx's"),
3442             IPW2100_ORD(STAT_TX_REASSN_RESP,
3443                                 "successful Reassociation response Tx's"),
3444             IPW2100_ORD(STAT_TX_PROBE,
3445                                 "probes successfully transmitted"),
3446             IPW2100_ORD(STAT_TX_PROBE_RESP,
3447                                 "probe responses successfully transmitted"),
3448             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3449             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3450             IPW2100_ORD(STAT_TX_DISASSN,
3451                                 "successful Disassociation TX"),
3452             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3453             IPW2100_ORD(STAT_TX_DEAUTH,
3454                                 "successful Deauthentication TX"),
3455             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3456                                 "Total successful Tx data bytes"),
3457             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3458             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3459             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3460             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3461             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3462             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3463             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3464                                 "times max tries in a hop failed"),
3465             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3466                                 "times disassociation failed"),
3467             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3468             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3469             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3470             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3471             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3472             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3473             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3474                                 "directed packets at 5.5MB"),
3475             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3476             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3477             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3478                                 "nondirected packets at 1MB"),
3479             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3480                                 "nondirected packets at 2MB"),
3481             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3482                                 "nondirected packets at 5.5MB"),
3483             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3484                                 "nondirected packets at 11MB"),
3485             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3486             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3487                                                                     "Rx CTS"),
3488             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3489             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3490             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3491             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3492             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3493             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3494             IPW2100_ORD(STAT_RX_REASSN_RESP,
3495                                 "Reassociation response Rx's"),
3496             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3497             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3498             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3499             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3500             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3501             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3502             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3503             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3504                                 "Total rx data bytes received"),
3505             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3506             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3507             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3508             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3509             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3510             IPW2100_ORD(STAT_RX_DUPLICATE1,
3511                                 "duplicate rx packets at 1MB"),
3512             IPW2100_ORD(STAT_RX_DUPLICATE2,
3513                                 "duplicate rx packets at 2MB"),
3514             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3515                                 "duplicate rx packets at 5.5MB"),
3516             IPW2100_ORD(STAT_RX_DUPLICATE11,
3517                                 "duplicate rx packets at 11MB"),
3518             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3519             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3520             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3521             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3522             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3523                                 "rx frames with invalid protocol"),
3524             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3525             IPW2100_ORD(STAT_RX_NO_BUFFER,
3526                                 "rx frames rejected due to no buffer"),
3527             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3528                                 "rx frames dropped due to missing fragment"),
3529             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3530                                 "rx frames dropped due to non-sequential fragment"),
3531             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3532                                 "rx frames dropped due to unmatched 1st frame"),
3533             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3534                                 "rx frames dropped due to uncompleted frame"),
3535             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3536                                 "ICV errors during decryption"),
3537             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3538             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3539             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3540                                 "poll response timeouts"),
3541             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3542                                 "timeouts waiting for last {broad,multi}cast pkt"),
3543             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3544             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3545             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3546             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3547             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3548                                 "current calculation of % missed beacons"),
3549             IPW2100_ORD(STAT_PERCENT_RETRIES,
3550                                 "current calculation of % missed tx retries"),
3551             IPW2100_ORD(ASSOCIATED_AP_PTR,
3552                                 "0 if not associated, else pointer to AP table entry"),
3553             IPW2100_ORD(AVAILABLE_AP_CNT,
3554                                 "AP's decsribed in the AP table"),
3555             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3556             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3557             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3558             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3559                                 "failures due to response fail"),
3560             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3561             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3562             IPW2100_ORD(STAT_ROAM_INHIBIT,
3563                                 "times roaming was inhibited due to activity"),
3564             IPW2100_ORD(RSSI_AT_ASSN,
3565                                 "RSSI of associated AP at time of association"),
3566             IPW2100_ORD(STAT_ASSN_CAUSE1,
3567                                 "reassociation: no probe response or TX on hop"),
3568             IPW2100_ORD(STAT_ASSN_CAUSE2,
3569                                 "reassociation: poor tx/rx quality"),
3570             IPW2100_ORD(STAT_ASSN_CAUSE3,
3571                                 "reassociation: tx/rx quality (excessive AP load"),
3572             IPW2100_ORD(STAT_ASSN_CAUSE4,
3573                                 "reassociation: AP RSSI level"),
3574             IPW2100_ORD(STAT_ASSN_CAUSE5,
3575                                 "reassociations due to load leveling"),
3576             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3577             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3578                                 "times authentication response failed"),
3579             IPW2100_ORD(STATION_TABLE_CNT,
3580                                 "entries in association table"),
3581             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3582             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3583             IPW2100_ORD(COUNTRY_CODE,
3584                                 "IEEE country code as recv'd from beacon"),
3585             IPW2100_ORD(COUNTRY_CHANNELS,
3586                                 "channels suported by country"),
3587             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3588             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3589             IPW2100_ORD(ANTENNA_DIVERSITY,
3590                                 "TRUE if antenna diversity is disabled"),
3591             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3592             IPW2100_ORD(OUR_FREQ,
3593                                 "current radio freq lower digits - channel ID"),
3594             IPW2100_ORD(RTC_TIME, "current RTC time"),
3595             IPW2100_ORD(PORT_TYPE, "operating mode"),
3596             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3597             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3598             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3599             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3600             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3601             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3602             IPW2100_ORD(CAPABILITIES,
3603                                 "Management frame capability field"),
3604             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3605             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3606             IPW2100_ORD(RTS_THRESHOLD,
3607                                 "Min packet length for RTS handshaking"),
3608             IPW2100_ORD(INT_MODE, "International mode"),
3609             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3610                                 "protocol frag threshold"),
3611             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3612                                 "EEPROM offset in SRAM"),
3613             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3614                                 "EEPROM size in SRAM"),
3615             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3616             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3617                                 "EEPROM IBSS 11b channel set"),
3618             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3619             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3620             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3621             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3622             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3623
3624 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3625                               char *buf)
3626 {
3627         int i;
3628         struct ipw2100_priv *priv = dev_get_drvdata(d);
3629         struct net_device *dev = priv->net_dev;
3630         char *out = buf;
3631         u32 val = 0;
3632
3633         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3634
3635         for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3636                 read_register(dev, hw_data[i].addr, &val);
3637                 out += sprintf(out, "%30s [%08X] : %08X\n",
3638                                hw_data[i].name, hw_data[i].addr, val);
3639         }
3640
3641         return out - buf;
3642 }
3643
3644 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3645
3646 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3647                              char *buf)
3648 {
3649         struct ipw2100_priv *priv = dev_get_drvdata(d);
3650         struct net_device *dev = priv->net_dev;
3651         char *out = buf;
3652         int i;
3653
3654         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3655
3656         for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3657                 u8 tmp8;
3658                 u16 tmp16;
3659                 u32 tmp32;
3660
3661                 switch (nic_data[i].size) {
3662                 case 1:
3663                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3664                         out += sprintf(out, "%30s [%08X] : %02X\n",
3665                                        nic_data[i].name, nic_data[i].addr,
3666                                        tmp8);
3667                         break;
3668                 case 2:
3669                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3670                         out += sprintf(out, "%30s [%08X] : %04X\n",
3671                                        nic_data[i].name, nic_data[i].addr,
3672                                        tmp16);
3673                         break;
3674                 case 4:
3675                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3676                         out += sprintf(out, "%30s [%08X] : %08X\n",
3677                                        nic_data[i].name, nic_data[i].addr,
3678                                        tmp32);
3679                         break;
3680                 }
3681         }
3682         return out - buf;
3683 }
3684
3685 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3686
3687 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3688                            char *buf)
3689 {
3690         struct ipw2100_priv *priv = dev_get_drvdata(d);
3691         struct net_device *dev = priv->net_dev;
3692         static unsigned long loop = 0;
3693         int len = 0;
3694         u32 buffer[4];
3695         int i;
3696         char line[81];
3697
3698         if (loop >= 0x30000)
3699                 loop = 0;
3700
3701         /* sysfs provides us PAGE_SIZE buffer */
3702         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3703
3704                 if (priv->snapshot[0])
3705                         for (i = 0; i < 4; i++)
3706                                 buffer[i] =
3707                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3708                 else
3709                         for (i = 0; i < 4; i++)
3710                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3711
3712                 if (priv->dump_raw)
3713                         len += sprintf(buf + len,
3714                                        "%c%c%c%c"
3715                                        "%c%c%c%c"
3716                                        "%c%c%c%c"
3717                                        "%c%c%c%c",
3718                                        ((u8 *) buffer)[0x0],
3719                                        ((u8 *) buffer)[0x1],
3720                                        ((u8 *) buffer)[0x2],
3721                                        ((u8 *) buffer)[0x3],
3722                                        ((u8 *) buffer)[0x4],
3723                                        ((u8 *) buffer)[0x5],
3724                                        ((u8 *) buffer)[0x6],
3725                                        ((u8 *) buffer)[0x7],
3726                                        ((u8 *) buffer)[0x8],
3727                                        ((u8 *) buffer)[0x9],
3728                                        ((u8 *) buffer)[0xa],
3729                                        ((u8 *) buffer)[0xb],
3730                                        ((u8 *) buffer)[0xc],
3731                                        ((u8 *) buffer)[0xd],
3732                                        ((u8 *) buffer)[0xe],
3733                                        ((u8 *) buffer)[0xf]);
3734                 else
3735                         len += sprintf(buf + len, "%s\n",
3736                                        snprint_line(line, sizeof(line),
3737                                                     (u8 *) buffer, 16, loop));
3738                 loop += 16;
3739         }
3740
3741         return len;
3742 }
3743
3744 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3745                             const char *buf, size_t count)
3746 {
3747         struct ipw2100_priv *priv = dev_get_drvdata(d);
3748         struct net_device *dev = priv->net_dev;
3749         const char *p = buf;
3750
3751         if (count < 1)
3752                 return count;
3753
3754         if (p[0] == '1' ||
3755             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3756                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3757                                dev->name);
3758                 priv->dump_raw = 1;
3759
3760         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3761                                    tolower(p[1]) == 'f')) {
3762                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3763                                dev->name);
3764                 priv->dump_raw = 0;
3765
3766         } else if (tolower(p[0]) == 'r') {
3767                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3768                 ipw2100_snapshot_free(priv);
3769
3770         } else
3771                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3772                                "reset = clear memory snapshot\n", dev->name);
3773
3774         return count;
3775 }
3776
3777 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3778
3779 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3780                              char *buf)
3781 {
3782         struct ipw2100_priv *priv = dev_get_drvdata(d);
3783         u32 val = 0;
3784         int len = 0;
3785         u32 val_len;
3786         static int loop = 0;
3787
3788         if (priv->status & STATUS_RF_KILL_MASK)
3789                 return 0;
3790
3791         if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3792                 loop = 0;
3793
3794         /* sysfs provides us PAGE_SIZE buffer */
3795         while (len < PAGE_SIZE - 128 &&
3796                loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3797
3798                 val_len = sizeof(u32);
3799
3800                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3801                                         &val_len))
3802                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3803                                        ord_data[loop].index,
3804                                        ord_data[loop].desc);
3805                 else
3806                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3807                                        ord_data[loop].index, val,
3808                                        ord_data[loop].desc);
3809                 loop++;
3810         }
3811
3812         return len;
3813 }
3814
3815 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3816
3817 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3818                           char *buf)
3819 {
3820         struct ipw2100_priv *priv = dev_get_drvdata(d);
3821         char *out = buf;
3822
3823         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3824                        priv->interrupts, priv->tx_interrupts,
3825                        priv->rx_interrupts, priv->inta_other);
3826         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3827         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3828 #ifdef CONFIG_IPW_DEBUG
3829         out += sprintf(out, "packet mismatch image: %s\n",
3830                        priv->snapshot[0] ? "YES" : "NO");
3831 #endif
3832
3833         return out - buf;
3834 }
3835
3836 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3837
3838 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3839 {
3840         int err;
3841
3842         if (mode == priv->ieee->iw_mode)
3843                 return 0;
3844
3845         err = ipw2100_disable_adapter(priv);
3846         if (err) {
3847                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3848                        priv->net_dev->name, err);
3849                 return err;
3850         }
3851
3852         switch (mode) {
3853         case IW_MODE_INFRA:
3854                 priv->net_dev->type = ARPHRD_ETHER;
3855                 break;
3856         case IW_MODE_ADHOC:
3857                 priv->net_dev->type = ARPHRD_ETHER;
3858                 break;
3859 #ifdef CONFIG_IPW2100_MONITOR
3860         case IW_MODE_MONITOR:
3861                 priv->last_mode = priv->ieee->iw_mode;
3862                 priv->net_dev->type = ARPHRD_IEEE80211;
3863                 break;
3864 #endif                          /* CONFIG_IPW2100_MONITOR */
3865         }
3866
3867         priv->ieee->iw_mode = mode;
3868
3869 #ifdef CONFIG_PM
3870         /* Indicate ipw2100_download_firmware download firmware
3871          * from disk instead of memory. */
3872         ipw2100_firmware.version = 0;
3873 #endif
3874
3875         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3876         priv->reset_backoff = 0;
3877         schedule_reset(priv);
3878
3879         return 0;
3880 }
3881
3882 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3883                               char *buf)
3884 {
3885         struct ipw2100_priv *priv = dev_get_drvdata(d);
3886         int len = 0;
3887
3888 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3889
3890         if (priv->status & STATUS_ASSOCIATED)
3891                 len += sprintf(buf + len, "connected: %lu\n",
3892                                get_seconds() - priv->connect_start);
3893         else
3894                 len += sprintf(buf + len, "not connected\n");
3895
3896         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3897         DUMP_VAR(status, "08lx");
3898         DUMP_VAR(config, "08lx");
3899         DUMP_VAR(capability, "08lx");
3900
3901         len +=
3902             sprintf(buf + len, "last_rtc: %lu\n",
3903                     (unsigned long)priv->last_rtc);
3904
3905         DUMP_VAR(fatal_error, "d");
3906         DUMP_VAR(stop_hang_check, "d");
3907         DUMP_VAR(stop_rf_kill, "d");
3908         DUMP_VAR(messages_sent, "d");
3909
3910         DUMP_VAR(tx_pend_stat.value, "d");
3911         DUMP_VAR(tx_pend_stat.hi, "d");
3912
3913         DUMP_VAR(tx_free_stat.value, "d");
3914         DUMP_VAR(tx_free_stat.lo, "d");
3915
3916         DUMP_VAR(msg_free_stat.value, "d");
3917         DUMP_VAR(msg_free_stat.lo, "d");
3918
3919         DUMP_VAR(msg_pend_stat.value, "d");
3920         DUMP_VAR(msg_pend_stat.hi, "d");
3921
3922         DUMP_VAR(fw_pend_stat.value, "d");
3923         DUMP_VAR(fw_pend_stat.hi, "d");
3924
3925         DUMP_VAR(txq_stat.value, "d");
3926         DUMP_VAR(txq_stat.lo, "d");
3927
3928         DUMP_VAR(ieee->scans, "d");
3929         DUMP_VAR(reset_backoff, "d");
3930
3931         return len;
3932 }
3933
3934 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
3935
3936 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
3937                             char *buf)
3938 {
3939         struct ipw2100_priv *priv = dev_get_drvdata(d);
3940         char essid[IW_ESSID_MAX_SIZE + 1];
3941         u8 bssid[ETH_ALEN];
3942         u32 chan = 0;
3943         char *out = buf;
3944         int length;
3945         int ret;
3946
3947         if (priv->status & STATUS_RF_KILL_MASK)
3948                 return 0;
3949
3950         memset(essid, 0, sizeof(essid));
3951         memset(bssid, 0, sizeof(bssid));
3952
3953         length = IW_ESSID_MAX_SIZE;
3954         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
3955         if (ret)
3956                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3957                                __LINE__);
3958
3959         length = sizeof(bssid);
3960         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
3961                                   bssid, &length);
3962         if (ret)
3963                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3964                                __LINE__);
3965
3966         length = sizeof(u32);
3967         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
3968         if (ret)
3969                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3970                                __LINE__);
3971
3972         out += sprintf(out, "ESSID: %s\n", essid);
3973         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
3974                        bssid[0], bssid[1], bssid[2],
3975                        bssid[3], bssid[4], bssid[5]);
3976         out += sprintf(out, "Channel: %d\n", chan);
3977
3978         return out - buf;
3979 }
3980
3981 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
3982
3983 #ifdef CONFIG_IPW_DEBUG
3984 static ssize_t show_debug_level(struct device_driver *d, char *buf)
3985 {
3986         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
3987 }
3988
3989 static ssize_t store_debug_level(struct device_driver *d,
3990                                  const char *buf, size_t count)
3991 {
3992         char *p = (char *)buf;
3993         u32 val;
3994
3995         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
3996                 p++;
3997                 if (p[0] == 'x' || p[0] == 'X')
3998                         p++;
3999                 val = simple_strtoul(p, &p, 16);
4000         } else
4001                 val = simple_strtoul(p, &p, 10);
4002         if (p == buf)
4003                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4004         else
4005                 ipw2100_debug_level = val;
4006
4007         return strnlen(buf, count);
4008 }
4009
4010 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4011                    store_debug_level);
4012 #endif                          /* CONFIG_IPW_DEBUG */
4013
4014 static ssize_t show_fatal_error(struct device *d,
4015                                 struct device_attribute *attr, char *buf)
4016 {
4017         struct ipw2100_priv *priv = dev_get_drvdata(d);
4018         char *out = buf;
4019         int i;
4020
4021         if (priv->fatal_error)
4022                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4023         else
4024                 out += sprintf(out, "0\n");
4025
4026         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4027                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4028                                         IPW2100_ERROR_QUEUE])
4029                         continue;
4030
4031                 out += sprintf(out, "%d. 0x%08X\n", i,
4032                                priv->fatal_errors[(priv->fatal_index - i) %
4033                                                   IPW2100_ERROR_QUEUE]);
4034         }
4035
4036         return out - buf;
4037 }
4038
4039 static ssize_t store_fatal_error(struct device *d,
4040                                  struct device_attribute *attr, const char *buf,
4041                                  size_t count)
4042 {
4043         struct ipw2100_priv *priv = dev_get_drvdata(d);
4044         schedule_reset(priv);
4045         return count;
4046 }
4047
4048 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4049                    store_fatal_error);
4050
4051 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4052                              char *buf)
4053 {
4054         struct ipw2100_priv *priv = dev_get_drvdata(d);
4055         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4056 }
4057
4058 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4059                               const char *buf, size_t count)
4060 {
4061         struct ipw2100_priv *priv = dev_get_drvdata(d);
4062         struct net_device *dev = priv->net_dev;
4063         char buffer[] = "00000000";
4064         unsigned long len =
4065             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4066         unsigned long val;
4067         char *p = buffer;
4068
4069         IPW_DEBUG_INFO("enter\n");
4070
4071         strncpy(buffer, buf, len);
4072         buffer[len] = 0;
4073
4074         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4075                 p++;
4076                 if (p[0] == 'x' || p[0] == 'X')
4077                         p++;
4078                 val = simple_strtoul(p, &p, 16);
4079         } else
4080                 val = simple_strtoul(p, &p, 10);
4081         if (p == buffer) {
4082                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4083         } else {
4084                 priv->ieee->scan_age = val;
4085                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4086         }
4087
4088         IPW_DEBUG_INFO("exit\n");
4089         return len;
4090 }
4091
4092 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4093
4094 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4095                             char *buf)
4096 {
4097         /* 0 - RF kill not enabled
4098            1 - SW based RF kill active (sysfs)
4099            2 - HW based RF kill active
4100            3 - Both HW and SW baed RF kill active */
4101         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4102         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4103             (rf_kill_active(priv) ? 0x2 : 0x0);
4104         return sprintf(buf, "%i\n", val);
4105 }
4106
4107 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4108 {
4109         if ((disable_radio ? 1 : 0) ==
4110             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4111                 return 0;
4112
4113         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4114                           disable_radio ? "OFF" : "ON");
4115
4116         down(&priv->action_sem);
4117
4118         if (disable_radio) {
4119                 priv->status |= STATUS_RF_KILL_SW;
4120                 ipw2100_down(priv);
4121         } else {
4122                 priv->status &= ~STATUS_RF_KILL_SW;
4123                 if (rf_kill_active(priv)) {
4124                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4125                                           "disabled by HW switch\n");
4126                         /* Make sure the RF_KILL check timer is running */
4127                         priv->stop_rf_kill = 0;
4128                         cancel_delayed_work(&priv->rf_kill);
4129                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4130                 } else
4131                         schedule_reset(priv);
4132         }
4133
4134         up(&priv->action_sem);
4135         return 1;
4136 }
4137
4138 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4139                              const char *buf, size_t count)
4140 {
4141         struct ipw2100_priv *priv = dev_get_drvdata(d);
4142         ipw_radio_kill_sw(priv, buf[0] == '1');
4143         return count;
4144 }
4145
4146 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4147
4148 static struct attribute *ipw2100_sysfs_entries[] = {
4149         &dev_attr_hardware.attr,
4150         &dev_attr_registers.attr,
4151         &dev_attr_ordinals.attr,
4152         &dev_attr_pci.attr,
4153         &dev_attr_stats.attr,
4154         &dev_attr_internals.attr,
4155         &dev_attr_bssinfo.attr,
4156         &dev_attr_memory.attr,
4157         &dev_attr_scan_age.attr,
4158         &dev_attr_fatal_error.attr,
4159         &dev_attr_rf_kill.attr,
4160         &dev_attr_cfg.attr,
4161         &dev_attr_status.attr,
4162         &dev_attr_capability.attr,
4163         NULL,
4164 };
4165
4166 static struct attribute_group ipw2100_attribute_group = {
4167         .attrs = ipw2100_sysfs_entries,
4168 };
4169
4170 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4171 {
4172         struct ipw2100_status_queue *q = &priv->status_queue;
4173
4174         IPW_DEBUG_INFO("enter\n");
4175
4176         q->size = entries * sizeof(struct ipw2100_status);
4177         q->drv =
4178             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4179                                                           q->size, &q->nic);
4180         if (!q->drv) {
4181                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4182                 return -ENOMEM;
4183         }
4184
4185         memset(q->drv, 0, q->size);
4186
4187         IPW_DEBUG_INFO("exit\n");
4188
4189         return 0;
4190 }
4191
4192 static void status_queue_free(struct ipw2100_priv *priv)
4193 {
4194         IPW_DEBUG_INFO("enter\n");
4195
4196         if (priv->status_queue.drv) {
4197                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4198                                     priv->status_queue.drv,
4199                                     priv->status_queue.nic);
4200                 priv->status_queue.drv = NULL;
4201         }
4202
4203         IPW_DEBUG_INFO("exit\n");
4204 }
4205
4206 static int bd_queue_allocate(struct ipw2100_priv *priv,
4207                              struct ipw2100_bd_queue *q, int entries)
4208 {
4209         IPW_DEBUG_INFO("enter\n");
4210
4211         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4212
4213         q->entries = entries;
4214         q->size = entries * sizeof(struct ipw2100_bd);
4215         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4216         if (!q->drv) {
4217                 IPW_DEBUG_INFO
4218                     ("can't allocate shared memory for buffer descriptors\n");
4219                 return -ENOMEM;
4220         }
4221         memset(q->drv, 0, q->size);
4222
4223         IPW_DEBUG_INFO("exit\n");
4224
4225         return 0;
4226 }
4227
4228 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4229 {
4230         IPW_DEBUG_INFO("enter\n");
4231
4232         if (!q)
4233                 return;
4234
4235         if (q->drv) {
4236                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4237                 q->drv = NULL;
4238         }
4239
4240         IPW_DEBUG_INFO("exit\n");
4241 }
4242
4243 static void bd_queue_initialize(struct ipw2100_priv *priv,
4244                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4245                                 u32 r, u32 w)
4246 {
4247         IPW_DEBUG_INFO("enter\n");
4248
4249         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4250                        (u32) q->nic);
4251
4252         write_register(priv->net_dev, base, q->nic);
4253         write_register(priv->net_dev, size, q->entries);
4254         write_register(priv->net_dev, r, q->oldest);
4255         write_register(priv->net_dev, w, q->next);
4256
4257         IPW_DEBUG_INFO("exit\n");
4258 }
4259
4260 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4261 {
4262         if (priv->workqueue) {
4263                 priv->stop_rf_kill = 1;
4264                 priv->stop_hang_check = 1;
4265                 cancel_delayed_work(&priv->reset_work);
4266                 cancel_delayed_work(&priv->security_work);
4267                 cancel_delayed_work(&priv->wx_event_work);
4268                 cancel_delayed_work(&priv->hang_check);
4269                 cancel_delayed_work(&priv->rf_kill);
4270                 destroy_workqueue(priv->workqueue);
4271                 priv->workqueue = NULL;
4272         }
4273 }
4274
4275 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4276 {
4277         int i, j, err = -EINVAL;
4278         void *v;
4279         dma_addr_t p;
4280
4281         IPW_DEBUG_INFO("enter\n");
4282
4283         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4284         if (err) {
4285                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4286                                 priv->net_dev->name);
4287                 return err;
4288         }
4289
4290         priv->tx_buffers =
4291             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4292                                                 sizeof(struct
4293                                                        ipw2100_tx_packet),
4294                                                 GFP_ATOMIC);
4295         if (!priv->tx_buffers) {
4296                 printk(KERN_ERR DRV_NAME
4297                        ": %s: alloc failed form tx buffers.\n",
4298                        priv->net_dev->name);
4299                 bd_queue_free(priv, &priv->tx_queue);
4300                 return -ENOMEM;
4301         }
4302
4303         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4304                 v = pci_alloc_consistent(priv->pci_dev,
4305                                          sizeof(struct ipw2100_data_header),
4306                                          &p);
4307                 if (!v) {
4308                         printk(KERN_ERR DRV_NAME
4309                                ": %s: PCI alloc failed for tx " "buffers.\n",
4310                                priv->net_dev->name);
4311                         err = -ENOMEM;
4312                         break;
4313                 }
4314
4315                 priv->tx_buffers[i].type = DATA;
4316                 priv->tx_buffers[i].info.d_struct.data =
4317                     (struct ipw2100_data_header *)v;
4318                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4319                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4320         }
4321
4322         if (i == TX_PENDED_QUEUE_LENGTH)
4323                 return 0;
4324
4325         for (j = 0; j < i; j++) {
4326                 pci_free_consistent(priv->pci_dev,
4327                                     sizeof(struct ipw2100_data_header),
4328                                     priv->tx_buffers[j].info.d_struct.data,
4329                                     priv->tx_buffers[j].info.d_struct.
4330                                     data_phys);
4331         }
4332
4333         kfree(priv->tx_buffers);
4334         priv->tx_buffers = NULL;
4335
4336         return err;
4337 }
4338
4339 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4340 {
4341         int i;
4342
4343         IPW_DEBUG_INFO("enter\n");
4344
4345         /*
4346          * reinitialize packet info lists
4347          */
4348         INIT_LIST_HEAD(&priv->fw_pend_list);
4349         INIT_STAT(&priv->fw_pend_stat);
4350
4351         /*
4352          * reinitialize lists
4353          */
4354         INIT_LIST_HEAD(&priv->tx_pend_list);
4355         INIT_LIST_HEAD(&priv->tx_free_list);
4356         INIT_STAT(&priv->tx_pend_stat);
4357         INIT_STAT(&priv->tx_free_stat);
4358
4359         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4360                 /* We simply drop any SKBs that have been queued for
4361                  * transmit */
4362                 if (priv->tx_buffers[i].info.d_struct.txb) {
4363                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4364                                            txb);
4365                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4366                 }
4367
4368                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4369         }
4370
4371         SET_STAT(&priv->tx_free_stat, i);
4372
4373         priv->tx_queue.oldest = 0;
4374         priv->tx_queue.available = priv->tx_queue.entries;
4375         priv->tx_queue.next = 0;
4376         INIT_STAT(&priv->txq_stat);
4377         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4378
4379         bd_queue_initialize(priv, &priv->tx_queue,
4380                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4381                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4382                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4383                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4384
4385         IPW_DEBUG_INFO("exit\n");
4386
4387 }
4388
4389 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4390 {
4391         int i;
4392
4393         IPW_DEBUG_INFO("enter\n");
4394
4395         bd_queue_free(priv, &priv->tx_queue);
4396
4397         if (!priv->tx_buffers)
4398                 return;
4399
4400         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4401                 if (priv->tx_buffers[i].info.d_struct.txb) {
4402                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4403                                            txb);
4404                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4405                 }
4406                 if (priv->tx_buffers[i].info.d_struct.data)
4407                         pci_free_consistent(priv->pci_dev,
4408                                             sizeof(struct ipw2100_data_header),
4409                                             priv->tx_buffers[i].info.d_struct.
4410                                             data,
4411                                             priv->tx_buffers[i].info.d_struct.
4412                                             data_phys);
4413         }
4414
4415         kfree(priv->tx_buffers);
4416         priv->tx_buffers = NULL;
4417
4418         IPW_DEBUG_INFO("exit\n");
4419 }
4420
4421 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4422 {
4423         int i, j, err = -EINVAL;
4424
4425         IPW_DEBUG_INFO("enter\n");
4426
4427         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4428         if (err) {
4429                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4430                 return err;
4431         }
4432
4433         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4434         if (err) {
4435                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4436                 bd_queue_free(priv, &priv->rx_queue);
4437                 return err;
4438         }
4439
4440         /*
4441          * allocate packets
4442          */
4443         priv->rx_buffers = (struct ipw2100_rx_packet *)
4444             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4445                     GFP_KERNEL);
4446         if (!priv->rx_buffers) {
4447                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4448
4449                 bd_queue_free(priv, &priv->rx_queue);
4450
4451                 status_queue_free(priv);
4452
4453                 return -ENOMEM;
4454         }
4455
4456         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4457                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4458
4459                 err = ipw2100_alloc_skb(priv, packet);
4460                 if (unlikely(err)) {
4461                         err = -ENOMEM;
4462                         break;
4463                 }
4464
4465                 /* The BD holds the cache aligned address */
4466                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4467                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4468                 priv->status_queue.drv[i].status_fields = 0;
4469         }
4470
4471         if (i == RX_QUEUE_LENGTH)
4472                 return 0;
4473
4474         for (j = 0; j < i; j++) {
4475                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4476                                  sizeof(struct ipw2100_rx_packet),
4477                                  PCI_DMA_FROMDEVICE);
4478                 dev_kfree_skb(priv->rx_buffers[j].skb);
4479         }
4480
4481         kfree(priv->rx_buffers);
4482         priv->rx_buffers = NULL;
4483
4484         bd_queue_free(priv, &priv->rx_queue);
4485
4486         status_queue_free(priv);
4487
4488         return err;
4489 }
4490
4491 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4492 {
4493         IPW_DEBUG_INFO("enter\n");
4494
4495         priv->rx_queue.oldest = 0;
4496         priv->rx_queue.available = priv->rx_queue.entries - 1;
4497         priv->rx_queue.next = priv->rx_queue.entries - 1;
4498
4499         INIT_STAT(&priv->rxq_stat);
4500         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4501
4502         bd_queue_initialize(priv, &priv->rx_queue,
4503                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4504                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4505                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4506                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4507
4508         /* set up the status queue */
4509         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4510                        priv->status_queue.nic);
4511
4512         IPW_DEBUG_INFO("exit\n");
4513 }
4514
4515 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4516 {
4517         int i;
4518
4519         IPW_DEBUG_INFO("enter\n");
4520
4521         bd_queue_free(priv, &priv->rx_queue);
4522         status_queue_free(priv);
4523
4524         if (!priv->rx_buffers)
4525                 return;
4526
4527         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4528                 if (priv->rx_buffers[i].rxp) {
4529                         pci_unmap_single(priv->pci_dev,
4530                                          priv->rx_buffers[i].dma_addr,
4531                                          sizeof(struct ipw2100_rx),
4532                                          PCI_DMA_FROMDEVICE);
4533                         dev_kfree_skb(priv->rx_buffers[i].skb);
4534                 }
4535         }
4536
4537         kfree(priv->rx_buffers);
4538         priv->rx_buffers = NULL;
4539
4540         IPW_DEBUG_INFO("exit\n");
4541 }
4542
4543 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4544 {
4545         u32 length = ETH_ALEN;
4546         u8 mac[ETH_ALEN];
4547
4548         int err;
4549
4550         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4551         if (err) {
4552                 IPW_DEBUG_INFO("MAC address read failed\n");
4553                 return -EIO;
4554         }
4555         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4556                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4557
4558         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4559
4560         return 0;
4561 }
4562
4563 /********************************************************************
4564  *
4565  * Firmware Commands
4566  *
4567  ********************************************************************/
4568
4569 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4570 {
4571         struct host_command cmd = {
4572                 .host_command = ADAPTER_ADDRESS,
4573                 .host_command_sequence = 0,
4574                 .host_command_length = ETH_ALEN
4575         };
4576         int err;
4577
4578         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4579
4580         IPW_DEBUG_INFO("enter\n");
4581
4582         if (priv->config & CFG_CUSTOM_MAC) {
4583                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4584                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4585         } else
4586                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4587                        ETH_ALEN);
4588
4589         err = ipw2100_hw_send_command(priv, &cmd);
4590
4591         IPW_DEBUG_INFO("exit\n");
4592         return err;
4593 }
4594
4595 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4596                                  int batch_mode)
4597 {
4598         struct host_command cmd = {
4599                 .host_command = PORT_TYPE,
4600                 .host_command_sequence = 0,
4601                 .host_command_length = sizeof(u32)
4602         };
4603         int err;
4604
4605         switch (port_type) {
4606         case IW_MODE_INFRA:
4607                 cmd.host_command_parameters[0] = IPW_BSS;
4608                 break;
4609         case IW_MODE_ADHOC:
4610                 cmd.host_command_parameters[0] = IPW_IBSS;
4611                 break;
4612         }
4613
4614         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4615                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4616
4617         if (!batch_mode) {
4618                 err = ipw2100_disable_adapter(priv);
4619                 if (err) {
4620                         printk(KERN_ERR DRV_NAME
4621                                ": %s: Could not disable adapter %d\n",
4622                                priv->net_dev->name, err);
4623                         return err;
4624                 }
4625         }
4626
4627         /* send cmd to firmware */
4628         err = ipw2100_hw_send_command(priv, &cmd);
4629
4630         if (!batch_mode)
4631                 ipw2100_enable_adapter(priv);
4632
4633         return err;
4634 }
4635
4636 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4637                                int batch_mode)
4638 {
4639         struct host_command cmd = {
4640                 .host_command = CHANNEL,
4641                 .host_command_sequence = 0,
4642                 .host_command_length = sizeof(u32)
4643         };
4644         int err;
4645
4646         cmd.host_command_parameters[0] = channel;
4647
4648         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4649
4650         /* If BSS then we don't support channel selection */
4651         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4652                 return 0;
4653
4654         if ((channel != 0) &&
4655             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4656                 return -EINVAL;
4657
4658         if (!batch_mode) {
4659                 err = ipw2100_disable_adapter(priv);
4660                 if (err)
4661                         return err;
4662         }
4663
4664         err = ipw2100_hw_send_command(priv, &cmd);
4665         if (err) {
4666                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4667                 return err;
4668         }
4669
4670         if (channel)
4671                 priv->config |= CFG_STATIC_CHANNEL;
4672         else
4673                 priv->config &= ~CFG_STATIC_CHANNEL;
4674
4675         priv->channel = channel;
4676
4677         if (!batch_mode) {
4678                 err = ipw2100_enable_adapter(priv);
4679                 if (err)
4680                         return err;
4681         }
4682
4683         return 0;
4684 }
4685
4686 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4687 {
4688         struct host_command cmd = {
4689                 .host_command = SYSTEM_CONFIG,
4690                 .host_command_sequence = 0,
4691                 .host_command_length = 12,
4692         };
4693         u32 ibss_mask, len = sizeof(u32);
4694         int err;
4695
4696         /* Set system configuration */
4697
4698         if (!batch_mode) {
4699                 err = ipw2100_disable_adapter(priv);
4700                 if (err)
4701                         return err;
4702         }
4703
4704         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4705                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4706
4707         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4708             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4709
4710         if (!(priv->config & CFG_LONG_PREAMBLE))
4711                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4712
4713         err = ipw2100_get_ordinal(priv,
4714                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4715                                   &ibss_mask, &len);
4716         if (err)
4717                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4718
4719         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4720         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4721
4722         /* 11b only */
4723         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4724
4725         err = ipw2100_hw_send_command(priv, &cmd);
4726         if (err)
4727                 return err;
4728
4729 /* If IPv6 is configured in the kernel then we don't want to filter out all
4730  * of the multicast packets as IPv6 needs some. */
4731 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4732         cmd.host_command = ADD_MULTICAST;
4733         cmd.host_command_sequence = 0;
4734         cmd.host_command_length = 0;
4735
4736         ipw2100_hw_send_command(priv, &cmd);
4737 #endif
4738         if (!batch_mode) {
4739                 err = ipw2100_enable_adapter(priv);
4740                 if (err)
4741                         return err;
4742         }
4743
4744         return 0;
4745 }
4746
4747 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4748                                 int batch_mode)
4749 {
4750         struct host_command cmd = {
4751                 .host_command = BASIC_TX_RATES,
4752                 .host_command_sequence = 0,
4753                 .host_command_length = 4
4754         };
4755         int err;
4756
4757         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4758
4759         if (!batch_mode) {
4760                 err = ipw2100_disable_adapter(priv);
4761                 if (err)
4762                         return err;
4763         }
4764
4765         /* Set BASIC TX Rate first */
4766         ipw2100_hw_send_command(priv, &cmd);
4767
4768         /* Set TX Rate */
4769         cmd.host_command = TX_RATES;
4770         ipw2100_hw_send_command(priv, &cmd);
4771
4772         /* Set MSDU TX Rate */
4773         cmd.host_command = MSDU_TX_RATES;
4774         ipw2100_hw_send_command(priv, &cmd);
4775
4776         if (!batch_mode) {
4777                 err = ipw2100_enable_adapter(priv);
4778                 if (err)
4779                         return err;
4780         }
4781
4782         priv->tx_rates = rate;
4783
4784         return 0;
4785 }
4786
4787 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4788 {
4789         struct host_command cmd = {
4790                 .host_command = POWER_MODE,
4791                 .host_command_sequence = 0,
4792                 .host_command_length = 4
4793         };
4794         int err;
4795
4796         cmd.host_command_parameters[0] = power_level;
4797
4798         err = ipw2100_hw_send_command(priv, &cmd);
4799         if (err)
4800                 return err;
4801
4802         if (power_level == IPW_POWER_MODE_CAM)
4803                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4804         else
4805                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4806
4807 #ifdef CONFIG_IPW2100_TX_POWER
4808         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4809                 /* Set beacon interval */
4810                 cmd.host_command = TX_POWER_INDEX;
4811                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4812
4813                 err = ipw2100_hw_send_command(priv, &cmd);
4814                 if (err)
4815                         return err;
4816         }
4817 #endif
4818
4819         return 0;
4820 }
4821
4822 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4823 {
4824         struct host_command cmd = {
4825                 .host_command = RTS_THRESHOLD,
4826                 .host_command_sequence = 0,
4827                 .host_command_length = 4
4828         };
4829         int err;
4830
4831         if (threshold & RTS_DISABLED)
4832                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4833         else
4834                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4835
4836         err = ipw2100_hw_send_command(priv, &cmd);
4837         if (err)
4838                 return err;
4839
4840         priv->rts_threshold = threshold;
4841
4842         return 0;
4843 }
4844
4845 #if 0
4846 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4847                                         u32 threshold, int batch_mode)
4848 {
4849         struct host_command cmd = {
4850                 .host_command = FRAG_THRESHOLD,
4851                 .host_command_sequence = 0,
4852                 .host_command_length = 4,
4853                 .host_command_parameters[0] = 0,
4854         };
4855         int err;
4856
4857         if (!batch_mode) {
4858                 err = ipw2100_disable_adapter(priv);
4859                 if (err)
4860                         return err;
4861         }
4862
4863         if (threshold == 0)
4864                 threshold = DEFAULT_FRAG_THRESHOLD;
4865         else {
4866                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4867                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4868         }
4869
4870         cmd.host_command_parameters[0] = threshold;
4871
4872         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4873
4874         err = ipw2100_hw_send_command(priv, &cmd);
4875
4876         if (!batch_mode)
4877                 ipw2100_enable_adapter(priv);
4878
4879         if (!err)
4880                 priv->frag_threshold = threshold;
4881
4882         return err;
4883 }
4884 #endif
4885
4886 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4887 {
4888         struct host_command cmd = {
4889                 .host_command = SHORT_RETRY_LIMIT,
4890                 .host_command_sequence = 0,
4891                 .host_command_length = 4
4892         };
4893         int err;
4894
4895         cmd.host_command_parameters[0] = retry;
4896
4897         err = ipw2100_hw_send_command(priv, &cmd);
4898         if (err)
4899                 return err;
4900
4901         priv->short_retry_limit = retry;
4902
4903         return 0;
4904 }
4905
4906 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
4907 {
4908         struct host_command cmd = {
4909                 .host_command = LONG_RETRY_LIMIT,
4910                 .host_command_sequence = 0,
4911                 .host_command_length = 4
4912         };
4913         int err;
4914
4915         cmd.host_command_parameters[0] = retry;
4916
4917         err = ipw2100_hw_send_command(priv, &cmd);
4918         if (err)
4919                 return err;
4920
4921         priv->long_retry_limit = retry;
4922
4923         return 0;
4924 }
4925
4926 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
4927                                        int batch_mode)
4928 {
4929         struct host_command cmd = {
4930                 .host_command = MANDATORY_BSSID,
4931                 .host_command_sequence = 0,
4932                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
4933         };
4934         int err;
4935
4936 #ifdef CONFIG_IPW_DEBUG
4937         if (bssid != NULL)
4938                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
4939                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
4940                              bssid[5]);
4941         else
4942                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
4943 #endif
4944         /* if BSSID is empty then we disable mandatory bssid mode */
4945         if (bssid != NULL)
4946                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
4947
4948         if (!batch_mode) {
4949                 err = ipw2100_disable_adapter(priv);
4950                 if (err)
4951                         return err;
4952         }
4953
4954         err = ipw2100_hw_send_command(priv, &cmd);
4955
4956         if (!batch_mode)
4957                 ipw2100_enable_adapter(priv);
4958
4959         return err;
4960 }
4961
4962 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
4963 {
4964         struct host_command cmd = {
4965                 .host_command = DISASSOCIATION_BSSID,
4966                 .host_command_sequence = 0,
4967                 .host_command_length = ETH_ALEN
4968         };
4969         int err;
4970         int len;
4971
4972         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
4973
4974         len = ETH_ALEN;
4975         /* The Firmware currently ignores the BSSID and just disassociates from
4976          * the currently associated AP -- but in the off chance that a future
4977          * firmware does use the BSSID provided here, we go ahead and try and
4978          * set it to the currently associated AP's BSSID */
4979         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
4980
4981         err = ipw2100_hw_send_command(priv, &cmd);
4982
4983         return err;
4984 }
4985
4986 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
4987                               struct ipw2100_wpa_assoc_frame *, int)
4988     __attribute__ ((unused));
4989
4990 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
4991                               struct ipw2100_wpa_assoc_frame *wpa_frame,
4992                               int batch_mode)
4993 {
4994         struct host_command cmd = {
4995                 .host_command = SET_WPA_IE,
4996                 .host_command_sequence = 0,
4997                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
4998         };
4999         int err;
5000
5001         IPW_DEBUG_HC("SET_WPA_IE\n");
5002
5003         if (!batch_mode) {
5004                 err = ipw2100_disable_adapter(priv);
5005                 if (err)
5006                         return err;
5007         }
5008
5009         memcpy(cmd.host_command_parameters, wpa_frame,
5010                sizeof(struct ipw2100_wpa_assoc_frame));
5011
5012         err = ipw2100_hw_send_command(priv, &cmd);
5013
5014         if (!batch_mode) {
5015                 if (ipw2100_enable_adapter(priv))
5016                         err = -EIO;
5017         }
5018
5019         return err;
5020 }
5021
5022 struct security_info_params {
5023         u32 allowed_ciphers;
5024         u16 version;
5025         u8 auth_mode;
5026         u8 replay_counters_number;
5027         u8 unicast_using_group;
5028 } __attribute__ ((packed));
5029
5030 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5031                                             int auth_mode,
5032                                             int security_level,
5033                                             int unicast_using_group,
5034                                             int batch_mode)
5035 {
5036         struct host_command cmd = {
5037                 .host_command = SET_SECURITY_INFORMATION,
5038                 .host_command_sequence = 0,
5039                 .host_command_length = sizeof(struct security_info_params)
5040         };
5041         struct security_info_params *security =
5042             (struct security_info_params *)&cmd.host_command_parameters;
5043         int err;
5044         memset(security, 0, sizeof(*security));
5045
5046         /* If shared key AP authentication is turned on, then we need to
5047          * configure the firmware to try and use it.
5048          *
5049          * Actual data encryption/decryption is handled by the host. */
5050         security->auth_mode = auth_mode;
5051         security->unicast_using_group = unicast_using_group;
5052
5053         switch (security_level) {
5054         default:
5055         case SEC_LEVEL_0:
5056                 security->allowed_ciphers = IPW_NONE_CIPHER;
5057                 break;
5058         case SEC_LEVEL_1:
5059                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5060                     IPW_WEP104_CIPHER;
5061                 break;
5062         case SEC_LEVEL_2:
5063                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5064                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5065                 break;
5066         case SEC_LEVEL_2_CKIP:
5067                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5068                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5069                 break;
5070         case SEC_LEVEL_3:
5071                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5072                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5073                 break;
5074         }
5075
5076         IPW_DEBUG_HC
5077             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5078              security->auth_mode, security->allowed_ciphers, security_level);
5079
5080         security->replay_counters_number = 0;
5081
5082         if (!batch_mode) {
5083                 err = ipw2100_disable_adapter(priv);
5084                 if (err)
5085                         return err;
5086         }
5087
5088         err = ipw2100_hw_send_command(priv, &cmd);
5089
5090         if (!batch_mode)
5091                 ipw2100_enable_adapter(priv);
5092
5093         return err;
5094 }
5095
5096 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5097 {
5098         struct host_command cmd = {
5099                 .host_command = TX_POWER_INDEX,
5100                 .host_command_sequence = 0,
5101                 .host_command_length = 4
5102         };
5103         int err = 0;
5104
5105         if (tx_power != IPW_TX_POWER_DEFAULT)
5106                 tx_power = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5107                     (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5108
5109         cmd.host_command_parameters[0] = tx_power;
5110
5111         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5112                 err = ipw2100_hw_send_command(priv, &cmd);
5113         if (!err)
5114                 priv->tx_power = tx_power;
5115
5116         return 0;
5117 }
5118
5119 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5120                                             u32 interval, int batch_mode)
5121 {
5122         struct host_command cmd = {
5123                 .host_command = BEACON_INTERVAL,
5124                 .host_command_sequence = 0,
5125                 .host_command_length = 4
5126         };
5127         int err;
5128
5129         cmd.host_command_parameters[0] = interval;
5130
5131         IPW_DEBUG_INFO("enter\n");
5132
5133         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5134                 if (!batch_mode) {
5135                         err = ipw2100_disable_adapter(priv);
5136                         if (err)
5137                                 return err;
5138                 }
5139
5140                 ipw2100_hw_send_command(priv, &cmd);
5141
5142                 if (!batch_mode) {
5143                         err = ipw2100_enable_adapter(priv);
5144                         if (err)
5145                                 return err;
5146                 }
5147         }
5148
5149         IPW_DEBUG_INFO("exit\n");
5150
5151         return 0;
5152 }
5153
5154 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5155 {
5156         ipw2100_tx_initialize(priv);
5157         ipw2100_rx_initialize(priv);
5158         ipw2100_msg_initialize(priv);
5159 }
5160
5161 void ipw2100_queues_free(struct ipw2100_priv *priv)
5162 {
5163         ipw2100_tx_free(priv);
5164         ipw2100_rx_free(priv);
5165         ipw2100_msg_free(priv);
5166 }
5167
5168 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5169 {
5170         if (ipw2100_tx_allocate(priv) ||
5171             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5172                 goto fail;
5173
5174         return 0;
5175
5176       fail:
5177         ipw2100_tx_free(priv);
5178         ipw2100_rx_free(priv);
5179         ipw2100_msg_free(priv);
5180         return -ENOMEM;
5181 }
5182
5183 #define IPW_PRIVACY_CAPABLE 0x0008
5184
5185 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5186                                  int batch_mode)
5187 {
5188         struct host_command cmd = {
5189                 .host_command = WEP_FLAGS,
5190                 .host_command_sequence = 0,
5191                 .host_command_length = 4
5192         };
5193         int err;
5194
5195         cmd.host_command_parameters[0] = flags;
5196
5197         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5198
5199         if (!batch_mode) {
5200                 err = ipw2100_disable_adapter(priv);
5201                 if (err) {
5202                         printk(KERN_ERR DRV_NAME
5203                                ": %s: Could not disable adapter %d\n",
5204                                priv->net_dev->name, err);
5205                         return err;
5206                 }
5207         }
5208
5209         /* send cmd to firmware */
5210         err = ipw2100_hw_send_command(priv, &cmd);
5211
5212         if (!batch_mode)
5213                 ipw2100_enable_adapter(priv);
5214
5215         return err;
5216 }
5217
5218 struct ipw2100_wep_key {
5219         u8 idx;
5220         u8 len;
5221         u8 key[13];
5222 };
5223
5224 /* Macros to ease up priting WEP keys */
5225 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5226 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5227 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5228 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5229
5230 /**
5231  * Set a the wep key
5232  *
5233  * @priv: struct to work on
5234  * @idx: index of the key we want to set
5235  * @key: ptr to the key data to set
5236  * @len: length of the buffer at @key
5237  * @batch_mode: FIXME perform the operation in batch mode, not
5238  *              disabling the device.
5239  *
5240  * @returns 0 if OK, < 0 errno code on error.
5241  *
5242  * Fill out a command structure with the new wep key, length an
5243  * index and send it down the wire.
5244  */
5245 static int ipw2100_set_key(struct ipw2100_priv *priv,
5246                            int idx, char *key, int len, int batch_mode)
5247 {
5248         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5249         struct host_command cmd = {
5250                 .host_command = WEP_KEY_INFO,
5251                 .host_command_sequence = 0,
5252                 .host_command_length = sizeof(struct ipw2100_wep_key),
5253         };
5254         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5255         int err;
5256
5257         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5258                      idx, keylen, len);
5259
5260         /* NOTE: We don't check cached values in case the firmware was reset
5261          * or some other problem is occuring.  If the user is setting the key,
5262          * then we push the change */
5263
5264         wep_key->idx = idx;
5265         wep_key->len = keylen;
5266
5267         if (keylen) {
5268                 memcpy(wep_key->key, key, len);
5269                 memset(wep_key->key + len, 0, keylen - len);
5270         }
5271
5272         /* Will be optimized out on debug not being configured in */
5273         if (keylen == 0)
5274                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5275                               priv->net_dev->name, wep_key->idx);
5276         else if (keylen == 5)
5277                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5278                               priv->net_dev->name, wep_key->idx, wep_key->len,
5279                               WEP_STR_64(wep_key->key));
5280         else
5281                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5282                               "\n",
5283                               priv->net_dev->name, wep_key->idx, wep_key->len,
5284                               WEP_STR_128(wep_key->key));
5285
5286         if (!batch_mode) {
5287                 err = ipw2100_disable_adapter(priv);
5288                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5289                 if (err) {
5290                         printk(KERN_ERR DRV_NAME
5291                                ": %s: Could not disable adapter %d\n",
5292                                priv->net_dev->name, err);
5293                         return err;
5294                 }
5295         }
5296
5297         /* send cmd to firmware */
5298         err = ipw2100_hw_send_command(priv, &cmd);
5299
5300         if (!batch_mode) {
5301                 int err2 = ipw2100_enable_adapter(priv);
5302                 if (err == 0)
5303                         err = err2;
5304         }
5305         return err;
5306 }
5307
5308 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5309                                  int idx, int batch_mode)
5310 {
5311         struct host_command cmd = {
5312                 .host_command = WEP_KEY_INDEX,
5313                 .host_command_sequence = 0,
5314                 .host_command_length = 4,
5315                 .host_command_parameters = {idx},
5316         };
5317         int err;
5318
5319         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5320
5321         if (idx < 0 || idx > 3)
5322                 return -EINVAL;
5323
5324         if (!batch_mode) {
5325                 err = ipw2100_disable_adapter(priv);
5326                 if (err) {
5327                         printk(KERN_ERR DRV_NAME
5328                                ": %s: Could not disable adapter %d\n",
5329                                priv->net_dev->name, err);
5330                         return err;
5331                 }
5332         }
5333
5334         /* send cmd to firmware */
5335         err = ipw2100_hw_send_command(priv, &cmd);
5336
5337         if (!batch_mode)
5338                 ipw2100_enable_adapter(priv);
5339
5340         return err;
5341 }
5342
5343 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5344 {
5345         int i, err, auth_mode, sec_level, use_group;
5346
5347         if (!(priv->status & STATUS_RUNNING))
5348                 return 0;
5349
5350         if (!batch_mode) {
5351                 err = ipw2100_disable_adapter(priv);
5352                 if (err)
5353                         return err;
5354         }
5355
5356         if (!priv->ieee->sec.enabled) {
5357                 err =
5358                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5359                                                      SEC_LEVEL_0, 0, 1);
5360         } else {
5361                 auth_mode = IPW_AUTH_OPEN;
5362                 if ((priv->ieee->sec.flags & SEC_AUTH_MODE) &&
5363                     (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY))
5364                         auth_mode = IPW_AUTH_SHARED;
5365
5366                 sec_level = SEC_LEVEL_0;
5367                 if (priv->ieee->sec.flags & SEC_LEVEL)
5368                         sec_level = priv->ieee->sec.level;
5369
5370                 use_group = 0;
5371                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5372                         use_group = priv->ieee->sec.unicast_uses_group;
5373
5374                 err =
5375                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5376                                                      use_group, 1);
5377         }
5378
5379         if (err)
5380                 goto exit;
5381
5382         if (priv->ieee->sec.enabled) {
5383                 for (i = 0; i < 4; i++) {
5384                         if (!(priv->ieee->sec.flags & (1 << i))) {
5385                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5386                                 priv->ieee->sec.key_sizes[i] = 0;
5387                         } else {
5388                                 err = ipw2100_set_key(priv, i,
5389                                                       priv->ieee->sec.keys[i],
5390                                                       priv->ieee->sec.
5391                                                       key_sizes[i], 1);
5392                                 if (err)
5393                                         goto exit;
5394                         }
5395                 }
5396
5397                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5398         }
5399
5400         /* Always enable privacy so the Host can filter WEP packets if
5401          * encrypted data is sent up */
5402         err =
5403             ipw2100_set_wep_flags(priv,
5404                                   priv->ieee->sec.
5405                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5406         if (err)
5407                 goto exit;
5408
5409         priv->status &= ~STATUS_SECURITY_UPDATED;
5410
5411       exit:
5412         if (!batch_mode)
5413                 ipw2100_enable_adapter(priv);
5414
5415         return err;
5416 }
5417
5418 static void ipw2100_security_work(struct ipw2100_priv *priv)
5419 {
5420         /* If we happen to have reconnected before we get a chance to
5421          * process this, then update the security settings--which causes
5422          * a disassociation to occur */
5423         if (!(priv->status & STATUS_ASSOCIATED) &&
5424             priv->status & STATUS_SECURITY_UPDATED)
5425                 ipw2100_configure_security(priv, 0);
5426 }
5427
5428 static void shim__set_security(struct net_device *dev,
5429                                struct ieee80211_security *sec)
5430 {
5431         struct ipw2100_priv *priv = ieee80211_priv(dev);
5432         int i, force_update = 0;
5433
5434         down(&priv->action_sem);
5435         if (!(priv->status & STATUS_INITIALIZED))
5436                 goto done;
5437
5438         for (i = 0; i < 4; i++) {
5439                 if (sec->flags & (1 << i)) {
5440                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5441                         if (sec->key_sizes[i] == 0)
5442                                 priv->ieee->sec.flags &= ~(1 << i);
5443                         else
5444                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5445                                        sec->key_sizes[i]);
5446                         priv->ieee->sec.flags |= (1 << i);
5447                         priv->status |= STATUS_SECURITY_UPDATED;
5448                 }
5449         }
5450
5451         if ((sec->flags & SEC_ACTIVE_KEY) &&
5452             priv->ieee->sec.active_key != sec->active_key) {
5453                 if (sec->active_key <= 3) {
5454                         priv->ieee->sec.active_key = sec->active_key;
5455                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5456                 } else
5457                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5458
5459                 priv->status |= STATUS_SECURITY_UPDATED;
5460         }
5461
5462         if ((sec->flags & SEC_AUTH_MODE) &&
5463             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5464                 priv->ieee->sec.auth_mode = sec->auth_mode;
5465                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5466                 priv->status |= STATUS_SECURITY_UPDATED;
5467         }
5468
5469         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5470                 priv->ieee->sec.flags |= SEC_ENABLED;
5471                 priv->ieee->sec.enabled = sec->enabled;
5472                 priv->status |= STATUS_SECURITY_UPDATED;
5473                 force_update = 1;
5474         }
5475
5476         if (sec->flags & SEC_ENCRYPT)
5477                 priv->ieee->sec.encrypt = sec->encrypt;
5478
5479         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5480                 priv->ieee->sec.level = sec->level;
5481                 priv->ieee->sec.flags |= SEC_LEVEL;
5482                 priv->status |= STATUS_SECURITY_UPDATED;
5483         }
5484
5485         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5486                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5487                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5488                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5489                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5490                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5491                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5492                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5493                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5494                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5495
5496 /* As a temporary work around to enable WPA until we figure out why
5497  * wpa_supplicant toggles the security capability of the driver, which
5498  * forces a disassocation with force_update...
5499  *
5500  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5501         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5502                 ipw2100_configure_security(priv, 0);
5503       done:
5504         up(&priv->action_sem);
5505 }
5506
5507 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5508 {
5509         int err;
5510         int batch_mode = 1;
5511         u8 *bssid;
5512
5513         IPW_DEBUG_INFO("enter\n");
5514
5515         err = ipw2100_disable_adapter(priv);
5516         if (err)
5517                 return err;
5518 #ifdef CONFIG_IPW2100_MONITOR
5519         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5520                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5521                 if (err)
5522                         return err;
5523
5524                 IPW_DEBUG_INFO("exit\n");
5525
5526                 return 0;
5527         }
5528 #endif                          /* CONFIG_IPW2100_MONITOR */
5529
5530         err = ipw2100_read_mac_address(priv);
5531         if (err)
5532                 return -EIO;
5533
5534         err = ipw2100_set_mac_address(priv, batch_mode);
5535         if (err)
5536                 return err;
5537
5538         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5539         if (err)
5540                 return err;
5541
5542         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5543                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5544                 if (err)
5545                         return err;
5546         }
5547
5548         err = ipw2100_system_config(priv, batch_mode);
5549         if (err)
5550                 return err;
5551
5552         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5553         if (err)
5554                 return err;
5555
5556         /* Default to power mode OFF */
5557         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5558         if (err)
5559                 return err;
5560
5561         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5562         if (err)
5563                 return err;
5564
5565         if (priv->config & CFG_STATIC_BSSID)
5566                 bssid = priv->bssid;
5567         else
5568                 bssid = NULL;
5569         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5570         if (err)
5571                 return err;
5572
5573         if (priv->config & CFG_STATIC_ESSID)
5574                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5575                                         batch_mode);
5576         else
5577                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5578         if (err)
5579                 return err;
5580
5581         err = ipw2100_configure_security(priv, batch_mode);
5582         if (err)
5583                 return err;
5584
5585         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5586                 err =
5587                     ipw2100_set_ibss_beacon_interval(priv,
5588                                                      priv->beacon_interval,
5589                                                      batch_mode);
5590                 if (err)
5591                         return err;
5592
5593                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5594                 if (err)
5595                         return err;
5596         }
5597
5598         /*
5599            err = ipw2100_set_fragmentation_threshold(
5600            priv, priv->frag_threshold, batch_mode);
5601            if (err)
5602            return err;
5603          */
5604
5605         IPW_DEBUG_INFO("exit\n");
5606
5607         return 0;
5608 }
5609
5610 /*************************************************************************
5611  *
5612  * EXTERNALLY CALLED METHODS
5613  *
5614  *************************************************************************/
5615
5616 /* This method is called by the network layer -- not to be confused with
5617  * ipw2100_set_mac_address() declared above called by this driver (and this
5618  * method as well) to talk to the firmware */
5619 static int ipw2100_set_address(struct net_device *dev, void *p)
5620 {
5621         struct ipw2100_priv *priv = ieee80211_priv(dev);
5622         struct sockaddr *addr = p;
5623         int err = 0;
5624
5625         if (!is_valid_ether_addr(addr->sa_data))
5626                 return -EADDRNOTAVAIL;
5627
5628         down(&priv->action_sem);
5629
5630         priv->config |= CFG_CUSTOM_MAC;
5631         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5632
5633         err = ipw2100_set_mac_address(priv, 0);
5634         if (err)
5635                 goto done;
5636
5637         priv->reset_backoff = 0;
5638         up(&priv->action_sem);
5639         ipw2100_reset_adapter(priv);
5640         return 0;
5641
5642       done:
5643         up(&priv->action_sem);
5644         return err;
5645 }
5646
5647 static int ipw2100_open(struct net_device *dev)
5648 {
5649         struct ipw2100_priv *priv = ieee80211_priv(dev);
5650         unsigned long flags;
5651         IPW_DEBUG_INFO("dev->open\n");
5652
5653         spin_lock_irqsave(&priv->low_lock, flags);
5654         if (priv->status & STATUS_ASSOCIATED) {
5655                 netif_carrier_on(dev);
5656                 netif_start_queue(dev);
5657         }
5658         spin_unlock_irqrestore(&priv->low_lock, flags);
5659
5660         return 0;
5661 }
5662
5663 static int ipw2100_close(struct net_device *dev)
5664 {
5665         struct ipw2100_priv *priv = ieee80211_priv(dev);
5666         unsigned long flags;
5667         struct list_head *element;
5668         struct ipw2100_tx_packet *packet;
5669
5670         IPW_DEBUG_INFO("enter\n");
5671
5672         spin_lock_irqsave(&priv->low_lock, flags);
5673
5674         if (priv->status & STATUS_ASSOCIATED)
5675                 netif_carrier_off(dev);
5676         netif_stop_queue(dev);
5677
5678         /* Flush the TX queue ... */
5679         while (!list_empty(&priv->tx_pend_list)) {
5680                 element = priv->tx_pend_list.next;
5681                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5682
5683                 list_del(element);
5684                 DEC_STAT(&priv->tx_pend_stat);
5685
5686                 ieee80211_txb_free(packet->info.d_struct.txb);
5687                 packet->info.d_struct.txb = NULL;
5688
5689                 list_add_tail(element, &priv->tx_free_list);
5690                 INC_STAT(&priv->tx_free_stat);
5691         }
5692         spin_unlock_irqrestore(&priv->low_lock, flags);
5693
5694         IPW_DEBUG_INFO("exit\n");
5695
5696         return 0;
5697 }
5698
5699 /*
5700  * TODO:  Fix this function... its just wrong
5701  */
5702 static void ipw2100_tx_timeout(struct net_device *dev)
5703 {
5704         struct ipw2100_priv *priv = ieee80211_priv(dev);
5705
5706         priv->ieee->stats.tx_errors++;
5707
5708 #ifdef CONFIG_IPW2100_MONITOR
5709         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5710                 return;
5711 #endif
5712
5713         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5714                        dev->name);
5715         schedule_reset(priv);
5716 }
5717
5718 /*
5719  * TODO: reimplement it so that it reads statistics
5720  *       from the adapter using ordinal tables
5721  *       instead of/in addition to collecting them
5722  *       in the driver
5723  */
5724 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5725 {
5726         struct ipw2100_priv *priv = ieee80211_priv(dev);
5727
5728         return &priv->ieee->stats;
5729 }
5730
5731 #if WIRELESS_EXT < 18
5732 /* Support for wpa_supplicant before WE-18, deprecated. */
5733
5734 /* following definitions must match definitions in driver_ipw.c */
5735
5736 #define IPW2100_IOCTL_WPA_SUPPLICANT            SIOCIWFIRSTPRIV+30
5737
5738 #define IPW2100_CMD_SET_WPA_PARAM               1
5739 #define IPW2100_CMD_SET_WPA_IE                  2
5740 #define IPW2100_CMD_SET_ENCRYPTION              3
5741 #define IPW2100_CMD_MLME                        4
5742
5743 #define IPW2100_PARAM_WPA_ENABLED               1
5744 #define IPW2100_PARAM_TKIP_COUNTERMEASURES      2
5745 #define IPW2100_PARAM_DROP_UNENCRYPTED          3
5746 #define IPW2100_PARAM_PRIVACY_INVOKED           4
5747 #define IPW2100_PARAM_AUTH_ALGS                 5
5748 #define IPW2100_PARAM_IEEE_802_1X               6
5749
5750 #define IPW2100_MLME_STA_DEAUTH                 1
5751 #define IPW2100_MLME_STA_DISASSOC               2
5752
5753 #define IPW2100_CRYPT_ERR_UNKNOWN_ALG           2
5754 #define IPW2100_CRYPT_ERR_UNKNOWN_ADDR          3
5755 #define IPW2100_CRYPT_ERR_CRYPT_INIT_FAILED     4
5756 #define IPW2100_CRYPT_ERR_KEY_SET_FAILED        5
5757 #define IPW2100_CRYPT_ERR_TX_KEY_SET_FAILED     6
5758 #define IPW2100_CRYPT_ERR_CARD_CONF_FAILED      7
5759
5760 #define IPW2100_CRYPT_ALG_NAME_LEN              16
5761
5762 struct ipw2100_param {
5763         u32 cmd;
5764         u8 sta_addr[ETH_ALEN];
5765         union {
5766                 struct {
5767                         u8 name;
5768                         u32 value;
5769                 } wpa_param;
5770                 struct {
5771                         u32 len;
5772                         u8 reserved[32];
5773                         u8 data[0];
5774                 } wpa_ie;
5775                 struct {
5776                         u32 command;
5777                         u32 reason_code;
5778                 } mlme;
5779                 struct {
5780                         u8 alg[IPW2100_CRYPT_ALG_NAME_LEN];
5781                         u8 set_tx;
5782                         u32 err;
5783                         u8 idx;
5784                         u8 seq[8];      /* sequence counter (set: RX, get: TX) */
5785                         u16 key_len;
5786                         u8 key[0];
5787                 } crypt;
5788
5789         } u;
5790 };
5791
5792 /* end of driver_ipw.c code */
5793 #endif                          /* WIRELESS_EXT < 18 */
5794
5795 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5796 {
5797         /* This is called when wpa_supplicant loads and closes the driver
5798          * interface. */
5799         priv->ieee->wpa_enabled = value;
5800         return 0;
5801 }
5802
5803 #if WIRELESS_EXT < 18
5804 #define IW_AUTH_ALG_OPEN_SYSTEM                 0x1
5805 #define IW_AUTH_ALG_SHARED_KEY                  0x2
5806 #endif
5807
5808 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5809 {
5810
5811         struct ieee80211_device *ieee = priv->ieee;
5812         struct ieee80211_security sec = {
5813                 .flags = SEC_AUTH_MODE,
5814         };
5815         int ret = 0;
5816
5817         if (value & IW_AUTH_ALG_SHARED_KEY) {
5818                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5819                 ieee->open_wep = 0;
5820         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5821                 sec.auth_mode = WLAN_AUTH_OPEN;
5822                 ieee->open_wep = 1;
5823         } else
5824                 return -EINVAL;
5825
5826         if (ieee->set_security)
5827                 ieee->set_security(ieee->dev, &sec);
5828         else
5829                 ret = -EOPNOTSUPP;
5830
5831         return ret;
5832 }
5833
5834 void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5835                              char *wpa_ie, int wpa_ie_len)
5836 {
5837
5838         struct ipw2100_wpa_assoc_frame frame;
5839
5840         frame.fixed_ie_mask = 0;
5841
5842         /* copy WPA IE */
5843         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5844         frame.var_ie_len = wpa_ie_len;
5845
5846         /* make sure WPA is enabled */
5847         ipw2100_wpa_enable(priv, 1);
5848         ipw2100_set_wpa_ie(priv, &frame, 0);
5849 }
5850
5851 #if WIRELESS_EXT < 18
5852 static int ipw2100_wpa_set_param(struct net_device *dev, u8 name, u32 value)
5853 {
5854         struct ipw2100_priv *priv = ieee80211_priv(dev);
5855         struct ieee80211_crypt_data *crypt;
5856         unsigned long flags;
5857         int ret = 0;
5858
5859         switch (name) {
5860         case IPW2100_PARAM_WPA_ENABLED:
5861                 ret = ipw2100_wpa_enable(priv, value);
5862                 break;
5863
5864         case IPW2100_PARAM_TKIP_COUNTERMEASURES:
5865                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
5866                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) {
5867                         IPW_DEBUG_WARNING("Can't set TKIP countermeasures: "
5868                                           "crypt not set!\n");
5869                         break;
5870                 }
5871
5872                 flags = crypt->ops->get_flags(crypt->priv);
5873
5874                 if (value)
5875                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
5876                 else
5877                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
5878
5879                 crypt->ops->set_flags(flags, crypt->priv);
5880
5881                 break;
5882
5883         case IPW2100_PARAM_DROP_UNENCRYPTED:
5884                 priv->ieee->drop_unencrypted = value;
5885                 break;
5886
5887         case IPW2100_PARAM_PRIVACY_INVOKED:
5888                 priv->ieee->privacy_invoked = value;
5889                 break;
5890
5891         case IPW2100_PARAM_AUTH_ALGS:
5892                 ret = ipw2100_wpa_set_auth_algs(priv, value);
5893                 break;
5894
5895         case IPW2100_PARAM_IEEE_802_1X:
5896                 priv->ieee->ieee802_1x = value;
5897                 break;
5898
5899         default:
5900                 printk(KERN_ERR DRV_NAME ": %s: Unknown WPA param: %d\n",
5901                        dev->name, name);
5902                 ret = -EOPNOTSUPP;
5903         }
5904
5905         return ret;
5906 }
5907
5908 static int ipw2100_wpa_mlme(struct net_device *dev, int command, int reason)
5909 {
5910
5911         struct ipw2100_priv *priv = ieee80211_priv(dev);
5912         int ret = 0;
5913
5914         switch (command) {
5915         case IPW2100_MLME_STA_DEAUTH:
5916                 // silently ignore
5917                 break;
5918
5919         case IPW2100_MLME_STA_DISASSOC:
5920                 ipw2100_disassociate_bssid(priv);
5921                 break;
5922
5923         default:
5924                 printk(KERN_ERR DRV_NAME ": %s: Unknown MLME request: %d\n",
5925                        dev->name, command);
5926                 ret = -EOPNOTSUPP;
5927         }
5928
5929         return ret;
5930 }
5931
5932 static int ipw2100_wpa_set_wpa_ie(struct net_device *dev,
5933                                   struct ipw2100_param *param, int plen)
5934 {
5935
5936         struct ipw2100_priv *priv = ieee80211_priv(dev);
5937         struct ieee80211_device *ieee = priv->ieee;
5938         u8 *buf;
5939
5940         if (!ieee->wpa_enabled)
5941                 return -EOPNOTSUPP;
5942
5943         if (param->u.wpa_ie.len > MAX_WPA_IE_LEN ||
5944             (param->u.wpa_ie.len && param->u.wpa_ie.data == NULL))
5945                 return -EINVAL;
5946
5947         if (param->u.wpa_ie.len) {
5948                 buf = kmalloc(param->u.wpa_ie.len, GFP_KERNEL);
5949                 if (buf == NULL)
5950                         return -ENOMEM;
5951
5952                 memcpy(buf, param->u.wpa_ie.data, param->u.wpa_ie.len);
5953
5954                 kfree(ieee->wpa_ie);
5955                 ieee->wpa_ie = buf;
5956                 ieee->wpa_ie_len = param->u.wpa_ie.len;
5957
5958         } else {
5959                 kfree(ieee->wpa_ie);
5960                 ieee->wpa_ie = NULL;
5961                 ieee->wpa_ie_len = 0;
5962         }
5963
5964         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
5965
5966         return 0;
5967 }
5968
5969 /* implementation borrowed from hostap driver */
5970
5971 static int ipw2100_wpa_set_encryption(struct net_device *dev,
5972                                       struct ipw2100_param *param,
5973                                       int param_len)
5974 {
5975         int ret = 0;
5976         struct ipw2100_priv *priv = ieee80211_priv(dev);
5977         struct ieee80211_device *ieee = priv->ieee;
5978         struct ieee80211_crypto_ops *ops;
5979         struct ieee80211_crypt_data **crypt;
5980
5981         struct ieee80211_security sec = {
5982                 .flags = 0,
5983         };
5984
5985         param->u.crypt.err = 0;
5986         param->u.crypt.alg[IPW2100_CRYPT_ALG_NAME_LEN - 1] = '\0';
5987
5988         if (param_len !=
5989             (int)((char *)param->u.crypt.key - (char *)param) +
5990             param->u.crypt.key_len) {
5991                 IPW_DEBUG_INFO("Len mismatch %d, %d\n", param_len,
5992                                param->u.crypt.key_len);
5993                 return -EINVAL;
5994         }
5995         if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
5996             param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
5997             param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff) {
5998                 if (param->u.crypt.idx >= WEP_KEYS)
5999                         return -EINVAL;
6000                 crypt = &ieee->crypt[param->u.crypt.idx];
6001         } else {
6002                 return -EINVAL;
6003         }
6004
6005         sec.flags |= SEC_ENABLED | SEC_ENCRYPT;
6006         if (strcmp(param->u.crypt.alg, "none") == 0) {
6007                 if (crypt) {
6008                         sec.enabled = 0;
6009                         sec.encrypt = 0;
6010                         sec.level = SEC_LEVEL_0;
6011                         sec.flags |= SEC_LEVEL;
6012                         ieee80211_crypt_delayed_deinit(ieee, crypt);
6013                 }
6014                 goto done;
6015         }
6016         sec.enabled = 1;
6017         sec.encrypt = 1;
6018
6019         ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6020         if (ops == NULL && strcmp(param->u.crypt.alg, "WEP") == 0) {
6021                 request_module("ieee80211_crypt_wep");
6022                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6023         } else if (ops == NULL && strcmp(param->u.crypt.alg, "TKIP") == 0) {
6024                 request_module("ieee80211_crypt_tkip");
6025                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6026         } else if (ops == NULL && strcmp(param->u.crypt.alg, "CCMP") == 0) {
6027                 request_module("ieee80211_crypt_ccmp");
6028                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6029         }
6030         if (ops == NULL) {
6031                 IPW_DEBUG_INFO("%s: unknown crypto alg '%s'\n",
6032                                dev->name, param->u.crypt.alg);
6033                 param->u.crypt.err = IPW2100_CRYPT_ERR_UNKNOWN_ALG;
6034                 ret = -EINVAL;
6035                 goto done;
6036         }
6037
6038         if (*crypt == NULL || (*crypt)->ops != ops) {
6039                 struct ieee80211_crypt_data *new_crypt;
6040
6041                 ieee80211_crypt_delayed_deinit(ieee, crypt);
6042
6043                 new_crypt = (struct ieee80211_crypt_data *)
6044                     kmalloc(sizeof(struct ieee80211_crypt_data), GFP_KERNEL);
6045                 if (new_crypt == NULL) {
6046                         ret = -ENOMEM;
6047                         goto done;
6048                 }
6049                 memset(new_crypt, 0, sizeof(struct ieee80211_crypt_data));
6050                 new_crypt->ops = ops;
6051                 if (new_crypt->ops && try_module_get(new_crypt->ops->owner))
6052                         new_crypt->priv =
6053                             new_crypt->ops->init(param->u.crypt.idx);
6054
6055                 if (new_crypt->priv == NULL) {
6056                         kfree(new_crypt);
6057                         param->u.crypt.err =
6058                             IPW2100_CRYPT_ERR_CRYPT_INIT_FAILED;
6059                         ret = -EINVAL;
6060                         goto done;
6061                 }
6062
6063                 *crypt = new_crypt;
6064         }
6065
6066         if (param->u.crypt.key_len > 0 && (*crypt)->ops->set_key &&
6067             (*crypt)->ops->set_key(param->u.crypt.key,
6068                                    param->u.crypt.key_len, param->u.crypt.seq,
6069                                    (*crypt)->priv) < 0) {
6070                 IPW_DEBUG_INFO("%s: key setting failed\n", dev->name);
6071                 param->u.crypt.err = IPW2100_CRYPT_ERR_KEY_SET_FAILED;
6072                 ret = -EINVAL;
6073                 goto done;
6074         }
6075
6076         if (param->u.crypt.set_tx) {
6077                 ieee->tx_keyidx = param->u.crypt.idx;
6078                 sec.active_key = param->u.crypt.idx;
6079                 sec.flags |= SEC_ACTIVE_KEY;
6080         }
6081
6082         if (ops->name != NULL) {
6083
6084                 if (strcmp(ops->name, "WEP") == 0) {
6085                         memcpy(sec.keys[param->u.crypt.idx],
6086                                param->u.crypt.key, param->u.crypt.key_len);
6087                         sec.key_sizes[param->u.crypt.idx] =
6088                             param->u.crypt.key_len;
6089                         sec.flags |= (1 << param->u.crypt.idx);
6090                         sec.flags |= SEC_LEVEL;
6091                         sec.level = SEC_LEVEL_1;
6092                 } else if (strcmp(ops->name, "TKIP") == 0) {
6093                         sec.flags |= SEC_LEVEL;
6094                         sec.level = SEC_LEVEL_2;
6095                 } else if (strcmp(ops->name, "CCMP") == 0) {
6096                         sec.flags |= SEC_LEVEL;
6097                         sec.level = SEC_LEVEL_3;
6098                 }
6099         }
6100       done:
6101         if (ieee->set_security)
6102                 ieee->set_security(ieee->dev, &sec);
6103
6104         /* Do not reset port if card is in Managed mode since resetting will
6105          * generate new IEEE 802.11 authentication which may end up in looping
6106          * with IEEE 802.1X.  If your hardware requires a reset after WEP
6107          * configuration (for example... Prism2), implement the reset_port in
6108          * the callbacks structures used to initialize the 802.11 stack. */
6109         if (ieee->reset_on_keychange &&
6110             ieee->iw_mode != IW_MODE_INFRA &&
6111             ieee->reset_port && ieee->reset_port(dev)) {
6112                 IPW_DEBUG_INFO("%s: reset_port failed\n", dev->name);
6113                 param->u.crypt.err = IPW2100_CRYPT_ERR_CARD_CONF_FAILED;
6114                 return -EINVAL;
6115         }
6116
6117         return ret;
6118 }
6119
6120 static int ipw2100_wpa_supplicant(struct net_device *dev, struct iw_point *p)
6121 {
6122
6123         struct ipw2100_param *param;
6124         int ret = 0;
6125
6126         IPW_DEBUG_IOCTL("wpa_supplicant: len=%d\n", p->length);
6127
6128         if (p->length < sizeof(struct ipw2100_param) || !p->pointer)
6129                 return -EINVAL;
6130
6131         param = (struct ipw2100_param *)kmalloc(p->length, GFP_KERNEL);
6132         if (param == NULL)
6133                 return -ENOMEM;
6134
6135         if (copy_from_user(param, p->pointer, p->length)) {
6136                 kfree(param);
6137                 return -EFAULT;
6138         }
6139
6140         switch (param->cmd) {
6141
6142         case IPW2100_CMD_SET_WPA_PARAM:
6143                 ret = ipw2100_wpa_set_param(dev, param->u.wpa_param.name,
6144                                             param->u.wpa_param.value);
6145                 break;
6146
6147         case IPW2100_CMD_SET_WPA_IE:
6148                 ret = ipw2100_wpa_set_wpa_ie(dev, param, p->length);
6149                 break;
6150
6151         case IPW2100_CMD_SET_ENCRYPTION:
6152                 ret = ipw2100_wpa_set_encryption(dev, param, p->length);
6153                 break;
6154
6155         case IPW2100_CMD_MLME:
6156                 ret = ipw2100_wpa_mlme(dev, param->u.mlme.command,
6157                                        param->u.mlme.reason_code);
6158                 break;
6159
6160         default:
6161                 printk(KERN_ERR DRV_NAME
6162                        ": %s: Unknown WPA supplicant request: %d\n", dev->name,
6163                        param->cmd);
6164                 ret = -EOPNOTSUPP;
6165
6166         }
6167
6168         if (ret == 0 && copy_to_user(p->pointer, param, p->length))
6169                 ret = -EFAULT;
6170
6171         kfree(param);
6172         return ret;
6173 }
6174
6175 static int ipw2100_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6176 {
6177         struct iwreq *wrq = (struct iwreq *)rq;
6178         int ret = -1;
6179         switch (cmd) {
6180         case IPW2100_IOCTL_WPA_SUPPLICANT:
6181                 ret = ipw2100_wpa_supplicant(dev, &wrq->u.data);
6182                 return ret;
6183
6184         default:
6185                 return -EOPNOTSUPP;
6186         }
6187
6188         return -EOPNOTSUPP;
6189 }
6190 #endif                          /* WIRELESS_EXT < 18 */
6191
6192 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
6193                                     struct ethtool_drvinfo *info)
6194 {
6195         struct ipw2100_priv *priv = ieee80211_priv(dev);
6196         char fw_ver[64], ucode_ver[64];
6197
6198         strcpy(info->driver, DRV_NAME);
6199         strcpy(info->version, DRV_VERSION);
6200
6201         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
6202         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
6203
6204         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
6205                  fw_ver, priv->eeprom_version, ucode_ver);
6206
6207         strcpy(info->bus_info, pci_name(priv->pci_dev));
6208 }
6209
6210 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6211 {
6212         struct ipw2100_priv *priv = ieee80211_priv(dev);
6213         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6214 }
6215
6216 static struct ethtool_ops ipw2100_ethtool_ops = {
6217         .get_link = ipw2100_ethtool_get_link,
6218         .get_drvinfo = ipw_ethtool_get_drvinfo,
6219 };
6220
6221 static void ipw2100_hang_check(void *adapter)
6222 {
6223         struct ipw2100_priv *priv = adapter;
6224         unsigned long flags;
6225         u32 rtc = 0xa5a5a5a5;
6226         u32 len = sizeof(rtc);
6227         int restart = 0;
6228
6229         spin_lock_irqsave(&priv->low_lock, flags);
6230
6231         if (priv->fatal_error != 0) {
6232                 /* If fatal_error is set then we need to restart */
6233                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6234                                priv->net_dev->name);
6235
6236                 restart = 1;
6237         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6238                    (rtc == priv->last_rtc)) {
6239                 /* Check if firmware is hung */
6240                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6241                                priv->net_dev->name);
6242
6243                 restart = 1;
6244         }
6245
6246         if (restart) {
6247                 /* Kill timer */
6248                 priv->stop_hang_check = 1;
6249                 priv->hangs++;
6250
6251                 /* Restart the NIC */
6252                 schedule_reset(priv);
6253         }
6254
6255         priv->last_rtc = rtc;
6256
6257         if (!priv->stop_hang_check)
6258                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
6259
6260         spin_unlock_irqrestore(&priv->low_lock, flags);
6261 }
6262
6263 static void ipw2100_rf_kill(void *adapter)
6264 {
6265         struct ipw2100_priv *priv = adapter;
6266         unsigned long flags;
6267
6268         spin_lock_irqsave(&priv->low_lock, flags);
6269
6270         if (rf_kill_active(priv)) {
6271                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6272                 if (!priv->stop_rf_kill)
6273                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
6274                 goto exit_unlock;
6275         }
6276
6277         /* RF Kill is now disabled, so bring the device back up */
6278
6279         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6280                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6281                                   "device\n");
6282                 schedule_reset(priv);
6283         } else
6284                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6285                                   "enabled\n");
6286
6287       exit_unlock:
6288         spin_unlock_irqrestore(&priv->low_lock, flags);
6289 }
6290
6291 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6292
6293 /* Look into using netdev destructor to shutdown ieee80211? */
6294
6295 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6296                                                void __iomem * base_addr,
6297                                                unsigned long mem_start,
6298                                                unsigned long mem_len)
6299 {
6300         struct ipw2100_priv *priv;
6301         struct net_device *dev;
6302
6303         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6304         if (!dev)
6305                 return NULL;
6306         priv = ieee80211_priv(dev);
6307         priv->ieee = netdev_priv(dev);
6308         priv->pci_dev = pci_dev;
6309         priv->net_dev = dev;
6310
6311         priv->ieee->hard_start_xmit = ipw2100_tx;
6312         priv->ieee->set_security = shim__set_security;
6313
6314         priv->ieee->perfect_rssi = -20;
6315         priv->ieee->worst_rssi = -85;
6316
6317         dev->open = ipw2100_open;
6318         dev->stop = ipw2100_close;
6319         dev->init = ipw2100_net_init;
6320 #if WIRELESS_EXT < 18
6321         dev->do_ioctl = ipw2100_ioctl;
6322 #endif
6323         dev->get_stats = ipw2100_stats;
6324         dev->ethtool_ops = &ipw2100_ethtool_ops;
6325         dev->tx_timeout = ipw2100_tx_timeout;
6326         dev->wireless_handlers = &ipw2100_wx_handler_def;
6327         dev->get_wireless_stats = ipw2100_wx_wireless_stats;
6328         dev->set_mac_address = ipw2100_set_address;
6329         dev->watchdog_timeo = 3 * HZ;
6330         dev->irq = 0;
6331
6332         dev->base_addr = (unsigned long)base_addr;
6333         dev->mem_start = mem_start;
6334         dev->mem_end = dev->mem_start + mem_len - 1;
6335
6336         /* NOTE: We don't use the wireless_handlers hook
6337          * in dev as the system will start throwing WX requests
6338          * to us before we're actually initialized and it just
6339          * ends up causing problems.  So, we just handle
6340          * the WX extensions through the ipw2100_ioctl interface */
6341
6342         /* memset() puts everything to 0, so we only have explicitely set
6343          * those values that need to be something else */
6344
6345         /* If power management is turned on, default to AUTO mode */
6346         priv->power_mode = IPW_POWER_AUTO;
6347
6348 #ifdef CONFIG_IPW2100_MONITOR
6349         priv->config |= CFG_CRC_CHECK;
6350 #endif
6351         priv->ieee->wpa_enabled = 0;
6352         priv->ieee->drop_unencrypted = 0;
6353         priv->ieee->privacy_invoked = 0;
6354         priv->ieee->ieee802_1x = 1;
6355
6356         /* Set module parameters */
6357         switch (mode) {
6358         case 1:
6359                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6360                 break;
6361 #ifdef CONFIG_IPW2100_MONITOR
6362         case 2:
6363                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6364                 break;
6365 #endif
6366         default:
6367         case 0:
6368                 priv->ieee->iw_mode = IW_MODE_INFRA;
6369                 break;
6370         }
6371
6372         if (disable == 1)
6373                 priv->status |= STATUS_RF_KILL_SW;
6374
6375         if (channel != 0 &&
6376             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6377                 priv->config |= CFG_STATIC_CHANNEL;
6378                 priv->channel = channel;
6379         }
6380
6381         if (associate)
6382                 priv->config |= CFG_ASSOCIATE;
6383
6384         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6385         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6386         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6387         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6388         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6389         priv->tx_power = IPW_TX_POWER_DEFAULT;
6390         priv->tx_rates = DEFAULT_TX_RATES;
6391
6392         strcpy(priv->nick, "ipw2100");
6393
6394         spin_lock_init(&priv->low_lock);
6395         sema_init(&priv->action_sem, 1);
6396         sema_init(&priv->adapter_sem, 1);
6397
6398         init_waitqueue_head(&priv->wait_command_queue);
6399
6400         netif_carrier_off(dev);
6401
6402         INIT_LIST_HEAD(&priv->msg_free_list);
6403         INIT_LIST_HEAD(&priv->msg_pend_list);
6404         INIT_STAT(&priv->msg_free_stat);
6405         INIT_STAT(&priv->msg_pend_stat);
6406
6407         INIT_LIST_HEAD(&priv->tx_free_list);
6408         INIT_LIST_HEAD(&priv->tx_pend_list);
6409         INIT_STAT(&priv->tx_free_stat);
6410         INIT_STAT(&priv->tx_pend_stat);
6411
6412         INIT_LIST_HEAD(&priv->fw_pend_list);
6413         INIT_STAT(&priv->fw_pend_stat);
6414
6415 #ifdef PF_SYNCTHREAD
6416         priv->workqueue = create_workqueue(DRV_NAME, 0);
6417 #else
6418         priv->workqueue = create_workqueue(DRV_NAME);
6419 #endif
6420         INIT_WORK(&priv->reset_work,
6421                   (void (*)(void *))ipw2100_reset_adapter, priv);
6422         INIT_WORK(&priv->security_work,
6423                   (void (*)(void *))ipw2100_security_work, priv);
6424         INIT_WORK(&priv->wx_event_work,
6425                   (void (*)(void *))ipw2100_wx_event_work, priv);
6426         INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6427         INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6428
6429         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6430                      ipw2100_irq_tasklet, (unsigned long)priv);
6431
6432         /* NOTE:  We do not start the deferred work for status checks yet */
6433         priv->stop_rf_kill = 1;
6434         priv->stop_hang_check = 1;
6435
6436         return dev;
6437 }
6438
6439 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6440                                 const struct pci_device_id *ent)
6441 {
6442         unsigned long mem_start, mem_len, mem_flags;
6443         void __iomem *base_addr = NULL;
6444         struct net_device *dev = NULL;
6445         struct ipw2100_priv *priv = NULL;
6446         int err = 0;
6447         int registered = 0;
6448         u32 val;
6449
6450         IPW_DEBUG_INFO("enter\n");
6451
6452         mem_start = pci_resource_start(pci_dev, 0);
6453         mem_len = pci_resource_len(pci_dev, 0);
6454         mem_flags = pci_resource_flags(pci_dev, 0);
6455
6456         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6457                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6458                 err = -ENODEV;
6459                 goto fail;
6460         }
6461
6462         base_addr = ioremap_nocache(mem_start, mem_len);
6463         if (!base_addr) {
6464                 printk(KERN_WARNING DRV_NAME
6465                        "Error calling ioremap_nocache.\n");
6466                 err = -EIO;
6467                 goto fail;
6468         }
6469
6470         /* allocate and initialize our net_device */
6471         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6472         if (!dev) {
6473                 printk(KERN_WARNING DRV_NAME
6474                        "Error calling ipw2100_alloc_device.\n");
6475                 err = -ENOMEM;
6476                 goto fail;
6477         }
6478
6479         /* set up PCI mappings for device */
6480         err = pci_enable_device(pci_dev);
6481         if (err) {
6482                 printk(KERN_WARNING DRV_NAME
6483                        "Error calling pci_enable_device.\n");
6484                 return err;
6485         }
6486
6487         priv = ieee80211_priv(dev);
6488
6489         pci_set_master(pci_dev);
6490         pci_set_drvdata(pci_dev, priv);
6491
6492         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6493         if (err) {
6494                 printk(KERN_WARNING DRV_NAME
6495                        "Error calling pci_set_dma_mask.\n");
6496                 pci_disable_device(pci_dev);
6497                 return err;
6498         }
6499
6500         err = pci_request_regions(pci_dev, DRV_NAME);
6501         if (err) {
6502                 printk(KERN_WARNING DRV_NAME
6503                        "Error calling pci_request_regions.\n");
6504                 pci_disable_device(pci_dev);
6505                 return err;
6506         }
6507
6508         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6509          * PCI Tx retries from interfering with C3 CPU state */
6510         pci_read_config_dword(pci_dev, 0x40, &val);
6511         if ((val & 0x0000ff00) != 0)
6512                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6513
6514         pci_set_power_state(pci_dev, PCI_D0);
6515
6516         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6517                 printk(KERN_WARNING DRV_NAME
6518                        "Device not found via register read.\n");
6519                 err = -ENODEV;
6520                 goto fail;
6521         }
6522
6523         SET_NETDEV_DEV(dev, &pci_dev->dev);
6524
6525         /* Force interrupts to be shut off on the device */
6526         priv->status |= STATUS_INT_ENABLED;
6527         ipw2100_disable_interrupts(priv);
6528
6529         /* Allocate and initialize the Tx/Rx queues and lists */
6530         if (ipw2100_queues_allocate(priv)) {
6531                 printk(KERN_WARNING DRV_NAME
6532                        "Error calilng ipw2100_queues_allocate.\n");
6533                 err = -ENOMEM;
6534                 goto fail;
6535         }
6536         ipw2100_queues_initialize(priv);
6537
6538         err = request_irq(pci_dev->irq,
6539                           ipw2100_interrupt, SA_SHIRQ, dev->name, priv);
6540         if (err) {
6541                 printk(KERN_WARNING DRV_NAME
6542                        "Error calling request_irq: %d.\n", pci_dev->irq);
6543                 goto fail;
6544         }
6545         dev->irq = pci_dev->irq;
6546
6547         IPW_DEBUG_INFO("Attempting to register device...\n");
6548
6549         SET_MODULE_OWNER(dev);
6550
6551         printk(KERN_INFO DRV_NAME
6552                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6553
6554         /* Bring up the interface.  Pre 0.46, after we registered the
6555          * network device we would call ipw2100_up.  This introduced a race
6556          * condition with newer hotplug configurations (network was coming
6557          * up and making calls before the device was initialized).
6558          *
6559          * If we called ipw2100_up before we registered the device, then the
6560          * device name wasn't registered.  So, we instead use the net_dev->init
6561          * member to call a function that then just turns and calls ipw2100_up.
6562          * net_dev->init is called after name allocation but before the
6563          * notifier chain is called */
6564         down(&priv->action_sem);
6565         err = register_netdev(dev);
6566         if (err) {
6567                 printk(KERN_WARNING DRV_NAME
6568                        "Error calling register_netdev.\n");
6569                 goto fail_unlock;
6570         }
6571         registered = 1;
6572
6573         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6574
6575         /* perform this after register_netdev so that dev->name is set */
6576         sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6577
6578         /* If the RF Kill switch is disabled, go ahead and complete the
6579          * startup sequence */
6580         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6581                 /* Enable the adapter - sends HOST_COMPLETE */
6582                 if (ipw2100_enable_adapter(priv)) {
6583                         printk(KERN_WARNING DRV_NAME
6584                                ": %s: failed in call to enable adapter.\n",
6585                                priv->net_dev->name);
6586                         ipw2100_hw_stop_adapter(priv);
6587                         err = -EIO;
6588                         goto fail_unlock;
6589                 }
6590
6591                 /* Start a scan . . . */
6592                 ipw2100_set_scan_options(priv);
6593                 ipw2100_start_scan(priv);
6594         }
6595
6596         IPW_DEBUG_INFO("exit\n");
6597
6598         priv->status |= STATUS_INITIALIZED;
6599
6600         up(&priv->action_sem);
6601
6602         return 0;
6603
6604       fail_unlock:
6605         up(&priv->action_sem);
6606
6607       fail:
6608         if (dev) {
6609                 if (registered)
6610                         unregister_netdev(dev);
6611
6612                 ipw2100_hw_stop_adapter(priv);
6613
6614                 ipw2100_disable_interrupts(priv);
6615
6616                 if (dev->irq)
6617                         free_irq(dev->irq, priv);
6618
6619                 ipw2100_kill_workqueue(priv);
6620
6621                 /* These are safe to call even if they weren't allocated */
6622                 ipw2100_queues_free(priv);
6623                 sysfs_remove_group(&pci_dev->dev.kobj,
6624                                    &ipw2100_attribute_group);
6625
6626                 free_ieee80211(dev);
6627                 pci_set_drvdata(pci_dev, NULL);
6628         }
6629
6630         if (base_addr)
6631                 iounmap(base_addr);
6632
6633         pci_release_regions(pci_dev);
6634         pci_disable_device(pci_dev);
6635
6636         return err;
6637 }
6638
6639 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6640 {
6641         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6642         struct net_device *dev;
6643
6644         if (priv) {
6645                 down(&priv->action_sem);
6646
6647                 priv->status &= ~STATUS_INITIALIZED;
6648
6649                 dev = priv->net_dev;
6650                 sysfs_remove_group(&pci_dev->dev.kobj,
6651                                    &ipw2100_attribute_group);
6652
6653 #ifdef CONFIG_PM
6654                 if (ipw2100_firmware.version)
6655                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6656 #endif
6657                 /* Take down the hardware */
6658                 ipw2100_down(priv);
6659
6660                 /* Release the semaphore so that the network subsystem can
6661                  * complete any needed calls into the driver... */
6662                 up(&priv->action_sem);
6663
6664                 /* Unregister the device first - this results in close()
6665                  * being called if the device is open.  If we free storage
6666                  * first, then close() will crash. */
6667                 unregister_netdev(dev);
6668
6669                 /* ipw2100_down will ensure that there is no more pending work
6670                  * in the workqueue's, so we can safely remove them now. */
6671                 ipw2100_kill_workqueue(priv);
6672
6673                 ipw2100_queues_free(priv);
6674
6675                 /* Free potential debugging firmware snapshot */
6676                 ipw2100_snapshot_free(priv);
6677
6678                 if (dev->irq)
6679                         free_irq(dev->irq, priv);
6680
6681                 if (dev->base_addr)
6682                         iounmap((void __iomem *)dev->base_addr);
6683
6684                 free_ieee80211(dev);
6685         }
6686
6687         pci_release_regions(pci_dev);
6688         pci_disable_device(pci_dev);
6689
6690         IPW_DEBUG_INFO("exit\n");
6691 }
6692
6693 #ifdef CONFIG_PM
6694 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,11)
6695 static int ipw2100_suspend(struct pci_dev *pci_dev, u32 state)
6696 #else
6697 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6698 #endif
6699 {
6700         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6701         struct net_device *dev = priv->net_dev;
6702
6703         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6704
6705         down(&priv->action_sem);
6706         if (priv->status & STATUS_INITIALIZED) {
6707                 /* Take down the device; powers it off, etc. */
6708                 ipw2100_down(priv);
6709         }
6710
6711         /* Remove the PRESENT state of the device */
6712         netif_device_detach(dev);
6713
6714         pci_save_state(pci_dev);
6715         pci_disable_device(pci_dev);
6716         pci_set_power_state(pci_dev, PCI_D3hot);
6717
6718         up(&priv->action_sem);
6719
6720         return 0;
6721 }
6722
6723 static int ipw2100_resume(struct pci_dev *pci_dev)
6724 {
6725         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6726         struct net_device *dev = priv->net_dev;
6727         u32 val;
6728
6729         if (IPW2100_PM_DISABLED)
6730                 return 0;
6731
6732         down(&priv->action_sem);
6733
6734         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6735
6736         pci_set_power_state(pci_dev, PCI_D0);
6737         pci_enable_device(pci_dev);
6738         pci_restore_state(pci_dev);
6739
6740         /*
6741          * Suspend/Resume resets the PCI configuration space, so we have to
6742          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6743          * from interfering with C3 CPU state. pci_restore_state won't help
6744          * here since it only restores the first 64 bytes pci config header.
6745          */
6746         pci_read_config_dword(pci_dev, 0x40, &val);
6747         if ((val & 0x0000ff00) != 0)
6748                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6749
6750         /* Set the device back into the PRESENT state; this will also wake
6751          * the queue of needed */
6752         netif_device_attach(dev);
6753
6754         /* Bring the device back up */
6755         if (!(priv->status & STATUS_RF_KILL_SW))
6756                 ipw2100_up(priv, 0);
6757
6758         up(&priv->action_sem);
6759
6760         return 0;
6761 }
6762 #endif
6763
6764 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6765
6766 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6767         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6768         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6769         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6770         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6771         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6772         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6773         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6774         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6775         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6776         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6777         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6778         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6779         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6780
6781         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6782         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6783         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6784         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6785         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6786
6787         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6788         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6789         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6790         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6791         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6792         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6793         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6794
6795         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6796
6797         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6798         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6799         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6800         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6801         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6802         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6803         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6804
6805         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6806         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6807         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6808         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6809         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6810         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6811
6812         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6813         {0,},
6814 };
6815
6816 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6817
6818 static struct pci_driver ipw2100_pci_driver = {
6819         .name = DRV_NAME,
6820         .id_table = ipw2100_pci_id_table,
6821         .probe = ipw2100_pci_init_one,
6822         .remove = __devexit_p(ipw2100_pci_remove_one),
6823 #ifdef CONFIG_PM
6824         .suspend = ipw2100_suspend,
6825         .resume = ipw2100_resume,
6826 #endif
6827 };
6828
6829 /**
6830  * Initialize the ipw2100 driver/module
6831  *
6832  * @returns 0 if ok, < 0 errno node con error.
6833  *
6834  * Note: we cannot init the /proc stuff until the PCI driver is there,
6835  * or we risk an unlikely race condition on someone accessing
6836  * uninitialized data in the PCI dev struct through /proc.
6837  */
6838 static int __init ipw2100_init(void)
6839 {
6840         int ret;
6841
6842         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6843         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6844
6845         ret = pci_module_init(&ipw2100_pci_driver);
6846
6847 #ifdef CONFIG_IPW_DEBUG
6848         ipw2100_debug_level = debug;
6849         driver_create_file(&ipw2100_pci_driver.driver,
6850                            &driver_attr_debug_level);
6851 #endif
6852
6853         return ret;
6854 }
6855
6856 /**
6857  * Cleanup ipw2100 driver registration
6858  */
6859 static void __exit ipw2100_exit(void)
6860 {
6861         /* FIXME: IPG: check that we have no instances of the devices open */
6862 #ifdef CONFIG_IPW_DEBUG
6863         driver_remove_file(&ipw2100_pci_driver.driver,
6864                            &driver_attr_debug_level);
6865 #endif
6866         pci_unregister_driver(&ipw2100_pci_driver);
6867 }
6868
6869 module_init(ipw2100_init);
6870 module_exit(ipw2100_exit);
6871
6872 #define WEXT_USECHANNELS 1
6873
6874 static const long ipw2100_frequencies[] = {
6875         2412, 2417, 2422, 2427,
6876         2432, 2437, 2442, 2447,
6877         2452, 2457, 2462, 2467,
6878         2472, 2484
6879 };
6880
6881 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6882                     sizeof(ipw2100_frequencies[0]))
6883
6884 static const long ipw2100_rates_11b[] = {
6885         1000000,
6886         2000000,
6887         5500000,
6888         11000000
6889 };
6890
6891 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6892
6893 static int ipw2100_wx_get_name(struct net_device *dev,
6894                                struct iw_request_info *info,
6895                                union iwreq_data *wrqu, char *extra)
6896 {
6897         /*
6898          * This can be called at any time.  No action lock required
6899          */
6900
6901         struct ipw2100_priv *priv = ieee80211_priv(dev);
6902         if (!(priv->status & STATUS_ASSOCIATED))
6903                 strcpy(wrqu->name, "unassociated");
6904         else
6905                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6906
6907         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6908         return 0;
6909 }
6910
6911 static int ipw2100_wx_set_freq(struct net_device *dev,
6912                                struct iw_request_info *info,
6913                                union iwreq_data *wrqu, char *extra)
6914 {
6915         struct ipw2100_priv *priv = ieee80211_priv(dev);
6916         struct iw_freq *fwrq = &wrqu->freq;
6917         int err = 0;
6918
6919         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6920                 return -EOPNOTSUPP;
6921
6922         down(&priv->action_sem);
6923         if (!(priv->status & STATUS_INITIALIZED)) {
6924                 err = -EIO;
6925                 goto done;
6926         }
6927
6928         /* if setting by freq convert to channel */
6929         if (fwrq->e == 1) {
6930                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6931                         int f = fwrq->m / 100000;
6932                         int c = 0;
6933
6934                         while ((c < REG_MAX_CHANNEL) &&
6935                                (f != ipw2100_frequencies[c]))
6936                                 c++;
6937
6938                         /* hack to fall through */
6939                         fwrq->e = 0;
6940                         fwrq->m = c + 1;
6941                 }
6942         }
6943
6944         if (fwrq->e > 0 || fwrq->m > 1000) {
6945                 err = -EOPNOTSUPP;
6946                 goto done;
6947         } else {                /* Set the channel */
6948                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6949                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6950         }
6951
6952       done:
6953         up(&priv->action_sem);
6954         return err;
6955 }
6956
6957 static int ipw2100_wx_get_freq(struct net_device *dev,
6958                                struct iw_request_info *info,
6959                                union iwreq_data *wrqu, char *extra)
6960 {
6961         /*
6962          * This can be called at any time.  No action lock required
6963          */
6964
6965         struct ipw2100_priv *priv = ieee80211_priv(dev);
6966
6967         wrqu->freq.e = 0;
6968
6969         /* If we are associated, trying to associate, or have a statically
6970          * configured CHANNEL then return that; otherwise return ANY */
6971         if (priv->config & CFG_STATIC_CHANNEL ||
6972             priv->status & STATUS_ASSOCIATED)
6973                 wrqu->freq.m = priv->channel;
6974         else
6975                 wrqu->freq.m = 0;
6976
6977         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6978         return 0;
6979
6980 }
6981
6982 static int ipw2100_wx_set_mode(struct net_device *dev,
6983                                struct iw_request_info *info,
6984                                union iwreq_data *wrqu, char *extra)
6985 {
6986         struct ipw2100_priv *priv = ieee80211_priv(dev);
6987         int err = 0;
6988
6989         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6990
6991         if (wrqu->mode == priv->ieee->iw_mode)
6992                 return 0;
6993
6994         down(&priv->action_sem);
6995         if (!(priv->status & STATUS_INITIALIZED)) {
6996                 err = -EIO;
6997                 goto done;
6998         }
6999
7000         switch (wrqu->mode) {
7001 #ifdef CONFIG_IPW2100_MONITOR
7002         case IW_MODE_MONITOR:
7003                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7004                 break;
7005 #endif                          /* CONFIG_IPW2100_MONITOR */
7006         case IW_MODE_ADHOC:
7007                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
7008                 break;
7009         case IW_MODE_INFRA:
7010         case IW_MODE_AUTO:
7011         default:
7012                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
7013                 break;
7014         }
7015
7016       done:
7017         up(&priv->action_sem);
7018         return err;
7019 }
7020
7021 static int ipw2100_wx_get_mode(struct net_device *dev,
7022                                struct iw_request_info *info,
7023                                union iwreq_data *wrqu, char *extra)
7024 {
7025         /*
7026          * This can be called at any time.  No action lock required
7027          */
7028
7029         struct ipw2100_priv *priv = ieee80211_priv(dev);
7030
7031         wrqu->mode = priv->ieee->iw_mode;
7032         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
7033
7034         return 0;
7035 }
7036
7037 #define POWER_MODES 5
7038
7039 /* Values are in microsecond */
7040 static const s32 timeout_duration[POWER_MODES] = {
7041         350000,
7042         250000,
7043         75000,
7044         37000,
7045         25000,
7046 };
7047
7048 static const s32 period_duration[POWER_MODES] = {
7049         400000,
7050         700000,
7051         1000000,
7052         1000000,
7053         1000000
7054 };
7055
7056 static int ipw2100_wx_get_range(struct net_device *dev,
7057                                 struct iw_request_info *info,
7058                                 union iwreq_data *wrqu, char *extra)
7059 {
7060         /*
7061          * This can be called at any time.  No action lock required
7062          */
7063
7064         struct ipw2100_priv *priv = ieee80211_priv(dev);
7065         struct iw_range *range = (struct iw_range *)extra;
7066         u16 val;
7067         int i, level;
7068
7069         wrqu->data.length = sizeof(*range);
7070         memset(range, 0, sizeof(*range));
7071
7072         /* Let's try to keep this struct in the same order as in
7073          * linux/include/wireless.h
7074          */
7075
7076         /* TODO: See what values we can set, and remove the ones we can't
7077          * set, or fill them with some default data.
7078          */
7079
7080         /* ~5 Mb/s real (802.11b) */
7081         range->throughput = 5 * 1000 * 1000;
7082
7083 //      range->sensitivity;     /* signal level threshold range */
7084
7085         range->max_qual.qual = 100;
7086         /* TODO: Find real max RSSI and stick here */
7087         range->max_qual.level = 0;
7088         range->max_qual.noise = 0;
7089         range->max_qual.updated = 7;    /* Updated all three */
7090
7091         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
7092         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
7093         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
7094         range->avg_qual.noise = 0;
7095         range->avg_qual.updated = 7;    /* Updated all three */
7096
7097         range->num_bitrates = RATE_COUNT;
7098
7099         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
7100                 range->bitrate[i] = ipw2100_rates_11b[i];
7101         }
7102
7103         range->min_rts = MIN_RTS_THRESHOLD;
7104         range->max_rts = MAX_RTS_THRESHOLD;
7105         range->min_frag = MIN_FRAG_THRESHOLD;
7106         range->max_frag = MAX_FRAG_THRESHOLD;
7107
7108         range->min_pmp = period_duration[0];    /* Minimal PM period */
7109         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
7110         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
7111         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
7112
7113         /* How to decode max/min PM period */
7114         range->pmp_flags = IW_POWER_PERIOD;
7115         /* How to decode max/min PM period */
7116         range->pmt_flags = IW_POWER_TIMEOUT;
7117         /* What PM options are supported */
7118         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
7119
7120         range->encoding_size[0] = 5;
7121         range->encoding_size[1] = 13;   /* Different token sizes */
7122         range->num_encoding_sizes = 2;  /* Number of entry in the list */
7123         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
7124 //      range->encoding_login_index;            /* token index for login token */
7125
7126         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7127                 range->txpower_capa = IW_TXPOW_DBM;
7128                 range->num_txpower = IW_MAX_TXPOWER;
7129                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
7130                      i < IW_MAX_TXPOWER;
7131                      i++, level -=
7132                      ((IPW_TX_POWER_MAX_DBM -
7133                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
7134                         range->txpower[i] = level / 16;
7135         } else {
7136                 range->txpower_capa = 0;
7137                 range->num_txpower = 0;
7138         }
7139
7140         /* Set the Wireless Extension versions */
7141         range->we_version_compiled = WIRELESS_EXT;
7142         range->we_version_source = 16;
7143
7144 //      range->retry_capa;      /* What retry options are supported */
7145 //      range->retry_flags;     /* How to decode max/min retry limit */
7146 //      range->r_time_flags;    /* How to decode max/min retry life */
7147 //      range->min_retry;       /* Minimal number of retries */
7148 //      range->max_retry;       /* Maximal number of retries */
7149 //      range->min_r_time;      /* Minimal retry lifetime */
7150 //      range->max_r_time;      /* Maximal retry lifetime */
7151
7152         range->num_channels = FREQ_COUNT;
7153
7154         val = 0;
7155         for (i = 0; i < FREQ_COUNT; i++) {
7156                 // TODO: Include only legal frequencies for some countries
7157 //              if (local->channel_mask & (1 << i)) {
7158                 range->freq[val].i = i + 1;
7159                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
7160                 range->freq[val].e = 1;
7161                 val++;
7162 //              }
7163                 if (val == IW_MAX_FREQUENCIES)
7164                         break;
7165         }
7166         range->num_frequency = val;
7167
7168         IPW_DEBUG_WX("GET Range\n");
7169
7170         return 0;
7171 }
7172
7173 static int ipw2100_wx_set_wap(struct net_device *dev,
7174                               struct iw_request_info *info,
7175                               union iwreq_data *wrqu, char *extra)
7176 {
7177         struct ipw2100_priv *priv = ieee80211_priv(dev);
7178         int err = 0;
7179
7180         static const unsigned char any[] = {
7181                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
7182         };
7183         static const unsigned char off[] = {
7184                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
7185         };
7186
7187         // sanity checks
7188         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
7189                 return -EINVAL;
7190
7191         down(&priv->action_sem);
7192         if (!(priv->status & STATUS_INITIALIZED)) {
7193                 err = -EIO;
7194                 goto done;
7195         }
7196
7197         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
7198             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
7199                 /* we disable mandatory BSSID association */
7200                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
7201                 priv->config &= ~CFG_STATIC_BSSID;
7202                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
7203                 goto done;
7204         }
7205
7206         priv->config |= CFG_STATIC_BSSID;
7207         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7208
7209         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7210
7211         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
7212                      wrqu->ap_addr.sa_data[0] & 0xff,
7213                      wrqu->ap_addr.sa_data[1] & 0xff,
7214                      wrqu->ap_addr.sa_data[2] & 0xff,
7215                      wrqu->ap_addr.sa_data[3] & 0xff,
7216                      wrqu->ap_addr.sa_data[4] & 0xff,
7217                      wrqu->ap_addr.sa_data[5] & 0xff);
7218
7219       done:
7220         up(&priv->action_sem);
7221         return err;
7222 }
7223
7224 static int ipw2100_wx_get_wap(struct net_device *dev,
7225                               struct iw_request_info *info,
7226                               union iwreq_data *wrqu, char *extra)
7227 {
7228         /*
7229          * This can be called at any time.  No action lock required
7230          */
7231
7232         struct ipw2100_priv *priv = ieee80211_priv(dev);
7233
7234         /* If we are associated, trying to associate, or have a statically
7235          * configured BSSID then return that; otherwise return ANY */
7236         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7237                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7238                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7239         } else
7240                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7241
7242         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
7243                      MAC_ARG(wrqu->ap_addr.sa_data));
7244         return 0;
7245 }
7246
7247 static int ipw2100_wx_set_essid(struct net_device *dev,
7248                                 struct iw_request_info *info,
7249                                 union iwreq_data *wrqu, char *extra)
7250 {
7251         struct ipw2100_priv *priv = ieee80211_priv(dev);
7252         char *essid = "";       /* ANY */
7253         int length = 0;
7254         int err = 0;
7255
7256         down(&priv->action_sem);
7257         if (!(priv->status & STATUS_INITIALIZED)) {
7258                 err = -EIO;
7259                 goto done;
7260         }
7261
7262         if (wrqu->essid.flags && wrqu->essid.length) {
7263                 length = wrqu->essid.length - 1;
7264                 essid = extra;
7265         }
7266
7267         if (length == 0) {
7268                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7269                 priv->config &= ~CFG_STATIC_ESSID;
7270                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7271                 goto done;
7272         }
7273
7274         length = min(length, IW_ESSID_MAX_SIZE);
7275
7276         priv->config |= CFG_STATIC_ESSID;
7277
7278         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7279                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7280                 err = 0;
7281                 goto done;
7282         }
7283
7284         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
7285                      length);
7286
7287         priv->essid_len = length;
7288         memcpy(priv->essid, essid, priv->essid_len);
7289
7290         err = ipw2100_set_essid(priv, essid, length, 0);
7291
7292       done:
7293         up(&priv->action_sem);
7294         return err;
7295 }
7296
7297 static int ipw2100_wx_get_essid(struct net_device *dev,
7298                                 struct iw_request_info *info,
7299                                 union iwreq_data *wrqu, char *extra)
7300 {
7301         /*
7302          * This can be called at any time.  No action lock required
7303          */
7304
7305         struct ipw2100_priv *priv = ieee80211_priv(dev);
7306
7307         /* If we are associated, trying to associate, or have a statically
7308          * configured ESSID then return that; otherwise return ANY */
7309         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7310                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7311                              escape_essid(priv->essid, priv->essid_len));
7312                 memcpy(extra, priv->essid, priv->essid_len);
7313                 wrqu->essid.length = priv->essid_len;
7314                 wrqu->essid.flags = 1;  /* active */
7315         } else {
7316                 IPW_DEBUG_WX("Getting essid: ANY\n");
7317                 wrqu->essid.length = 0;
7318                 wrqu->essid.flags = 0;  /* active */
7319         }
7320
7321         return 0;
7322 }
7323
7324 static int ipw2100_wx_set_nick(struct net_device *dev,
7325                                struct iw_request_info *info,
7326                                union iwreq_data *wrqu, char *extra)
7327 {
7328         /*
7329          * This can be called at any time.  No action lock required
7330          */
7331
7332         struct ipw2100_priv *priv = ieee80211_priv(dev);
7333
7334         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7335                 return -E2BIG;
7336
7337         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7338         memset(priv->nick, 0, sizeof(priv->nick));
7339         memcpy(priv->nick, extra, wrqu->data.length);
7340
7341         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7342
7343         return 0;
7344 }
7345
7346 static int ipw2100_wx_get_nick(struct net_device *dev,
7347                                struct iw_request_info *info,
7348                                union iwreq_data *wrqu, char *extra)
7349 {
7350         /*
7351          * This can be called at any time.  No action lock required
7352          */
7353
7354         struct ipw2100_priv *priv = ieee80211_priv(dev);
7355
7356         wrqu->data.length = strlen(priv->nick) + 1;
7357         memcpy(extra, priv->nick, wrqu->data.length);
7358         wrqu->data.flags = 1;   /* active */
7359
7360         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7361
7362         return 0;
7363 }
7364
7365 static int ipw2100_wx_set_rate(struct net_device *dev,
7366                                struct iw_request_info *info,
7367                                union iwreq_data *wrqu, char *extra)
7368 {
7369         struct ipw2100_priv *priv = ieee80211_priv(dev);
7370         u32 target_rate = wrqu->bitrate.value;
7371         u32 rate;
7372         int err = 0;
7373
7374         down(&priv->action_sem);
7375         if (!(priv->status & STATUS_INITIALIZED)) {
7376                 err = -EIO;
7377                 goto done;
7378         }
7379
7380         rate = 0;
7381
7382         if (target_rate == 1000000 ||
7383             (!wrqu->bitrate.fixed && target_rate > 1000000))
7384                 rate |= TX_RATE_1_MBIT;
7385         if (target_rate == 2000000 ||
7386             (!wrqu->bitrate.fixed && target_rate > 2000000))
7387                 rate |= TX_RATE_2_MBIT;
7388         if (target_rate == 5500000 ||
7389             (!wrqu->bitrate.fixed && target_rate > 5500000))
7390                 rate |= TX_RATE_5_5_MBIT;
7391         if (target_rate == 11000000 ||
7392             (!wrqu->bitrate.fixed && target_rate > 11000000))
7393                 rate |= TX_RATE_11_MBIT;
7394         if (rate == 0)
7395                 rate = DEFAULT_TX_RATES;
7396
7397         err = ipw2100_set_tx_rates(priv, rate, 0);
7398
7399         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7400       done:
7401         up(&priv->action_sem);
7402         return err;
7403 }
7404
7405 static int ipw2100_wx_get_rate(struct net_device *dev,
7406                                struct iw_request_info *info,
7407                                union iwreq_data *wrqu, char *extra)
7408 {
7409         struct ipw2100_priv *priv = ieee80211_priv(dev);
7410         int val;
7411         int len = sizeof(val);
7412         int err = 0;
7413
7414         if (!(priv->status & STATUS_ENABLED) ||
7415             priv->status & STATUS_RF_KILL_MASK ||
7416             !(priv->status & STATUS_ASSOCIATED)) {
7417                 wrqu->bitrate.value = 0;
7418                 return 0;
7419         }
7420
7421         down(&priv->action_sem);
7422         if (!(priv->status & STATUS_INITIALIZED)) {
7423                 err = -EIO;
7424                 goto done;
7425         }
7426
7427         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7428         if (err) {
7429                 IPW_DEBUG_WX("failed querying ordinals.\n");
7430                 return err;
7431         }
7432
7433         switch (val & TX_RATE_MASK) {
7434         case TX_RATE_1_MBIT:
7435                 wrqu->bitrate.value = 1000000;
7436                 break;
7437         case TX_RATE_2_MBIT:
7438                 wrqu->bitrate.value = 2000000;
7439                 break;
7440         case TX_RATE_5_5_MBIT:
7441                 wrqu->bitrate.value = 5500000;
7442                 break;
7443         case TX_RATE_11_MBIT:
7444                 wrqu->bitrate.value = 11000000;
7445                 break;
7446         default:
7447                 wrqu->bitrate.value = 0;
7448         }
7449
7450         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7451
7452       done:
7453         up(&priv->action_sem);
7454         return err;
7455 }
7456
7457 static int ipw2100_wx_set_rts(struct net_device *dev,
7458                               struct iw_request_info *info,
7459                               union iwreq_data *wrqu, char *extra)
7460 {
7461         struct ipw2100_priv *priv = ieee80211_priv(dev);
7462         int value, err;
7463
7464         /* Auto RTS not yet supported */
7465         if (wrqu->rts.fixed == 0)
7466                 return -EINVAL;
7467
7468         down(&priv->action_sem);
7469         if (!(priv->status & STATUS_INITIALIZED)) {
7470                 err = -EIO;
7471                 goto done;
7472         }
7473
7474         if (wrqu->rts.disabled)
7475                 value = priv->rts_threshold | RTS_DISABLED;
7476         else {
7477                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7478                         err = -EINVAL;
7479                         goto done;
7480                 }
7481                 value = wrqu->rts.value;
7482         }
7483
7484         err = ipw2100_set_rts_threshold(priv, value);
7485
7486         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7487       done:
7488         up(&priv->action_sem);
7489         return err;
7490 }
7491
7492 static int ipw2100_wx_get_rts(struct net_device *dev,
7493                               struct iw_request_info *info,
7494                               union iwreq_data *wrqu, char *extra)
7495 {
7496         /*
7497          * This can be called at any time.  No action lock required
7498          */
7499
7500         struct ipw2100_priv *priv = ieee80211_priv(dev);
7501
7502         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7503         wrqu->rts.fixed = 1;    /* no auto select */
7504
7505         /* If RTS is set to the default value, then it is disabled */
7506         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7507
7508         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7509
7510         return 0;
7511 }
7512
7513 static int ipw2100_wx_set_txpow(struct net_device *dev,
7514                                 struct iw_request_info *info,
7515                                 union iwreq_data *wrqu, char *extra)
7516 {
7517         struct ipw2100_priv *priv = ieee80211_priv(dev);
7518         int err = 0, value;
7519
7520         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7521                 return -EINVAL;
7522
7523         if (wrqu->txpower.disabled == 1 || wrqu->txpower.fixed == 0)
7524                 value = IPW_TX_POWER_DEFAULT;
7525         else {
7526                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7527                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7528                         return -EINVAL;
7529
7530                 value = wrqu->txpower.value;
7531         }
7532
7533         down(&priv->action_sem);
7534         if (!(priv->status & STATUS_INITIALIZED)) {
7535                 err = -EIO;
7536                 goto done;
7537         }
7538
7539         err = ipw2100_set_tx_power(priv, value);
7540
7541         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7542
7543       done:
7544         up(&priv->action_sem);
7545         return err;
7546 }
7547
7548 static int ipw2100_wx_get_txpow(struct net_device *dev,
7549                                 struct iw_request_info *info,
7550                                 union iwreq_data *wrqu, char *extra)
7551 {
7552         /*
7553          * This can be called at any time.  No action lock required
7554          */
7555
7556         struct ipw2100_priv *priv = ieee80211_priv(dev);
7557
7558         if (priv->ieee->iw_mode != IW_MODE_ADHOC) {
7559                 wrqu->power.disabled = 1;
7560                 return 0;
7561         }
7562
7563         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7564                 wrqu->power.fixed = 0;
7565                 wrqu->power.value = IPW_TX_POWER_MAX_DBM;
7566                 wrqu->power.disabled = 1;
7567         } else {
7568                 wrqu->power.disabled = 0;
7569                 wrqu->power.fixed = 1;
7570                 wrqu->power.value = priv->tx_power;
7571         }
7572
7573         wrqu->power.flags = IW_TXPOW_DBM;
7574
7575         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->power.value);
7576
7577         return 0;
7578 }
7579
7580 static int ipw2100_wx_set_frag(struct net_device *dev,
7581                                struct iw_request_info *info,
7582                                union iwreq_data *wrqu, char *extra)
7583 {
7584         /*
7585          * This can be called at any time.  No action lock required
7586          */
7587
7588         struct ipw2100_priv *priv = ieee80211_priv(dev);
7589
7590         if (!wrqu->frag.fixed)
7591                 return -EINVAL;
7592
7593         if (wrqu->frag.disabled) {
7594                 priv->frag_threshold |= FRAG_DISABLED;
7595                 priv->ieee->fts = DEFAULT_FTS;
7596         } else {
7597                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7598                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7599                         return -EINVAL;
7600
7601                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7602                 priv->frag_threshold = priv->ieee->fts;
7603         }
7604
7605         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7606
7607         return 0;
7608 }
7609
7610 static int ipw2100_wx_get_frag(struct net_device *dev,
7611                                struct iw_request_info *info,
7612                                union iwreq_data *wrqu, char *extra)
7613 {
7614         /*
7615          * This can be called at any time.  No action lock required
7616          */
7617
7618         struct ipw2100_priv *priv = ieee80211_priv(dev);
7619         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7620         wrqu->frag.fixed = 0;   /* no auto select */
7621         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7622
7623         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7624
7625         return 0;
7626 }
7627
7628 static int ipw2100_wx_set_retry(struct net_device *dev,
7629                                 struct iw_request_info *info,
7630                                 union iwreq_data *wrqu, char *extra)
7631 {
7632         struct ipw2100_priv *priv = ieee80211_priv(dev);
7633         int err = 0;
7634
7635         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7636                 return -EINVAL;
7637
7638         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7639                 return 0;
7640
7641         down(&priv->action_sem);
7642         if (!(priv->status & STATUS_INITIALIZED)) {
7643                 err = -EIO;
7644                 goto done;
7645         }
7646
7647         if (wrqu->retry.flags & IW_RETRY_MIN) {
7648                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7649                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7650                              wrqu->retry.value);
7651                 goto done;
7652         }
7653
7654         if (wrqu->retry.flags & IW_RETRY_MAX) {
7655                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7656                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7657                              wrqu->retry.value);
7658                 goto done;
7659         }
7660
7661         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7662         if (!err)
7663                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7664
7665         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7666
7667       done:
7668         up(&priv->action_sem);
7669         return err;
7670 }
7671
7672 static int ipw2100_wx_get_retry(struct net_device *dev,
7673                                 struct iw_request_info *info,
7674                                 union iwreq_data *wrqu, char *extra)
7675 {
7676         /*
7677          * This can be called at any time.  No action lock required
7678          */
7679
7680         struct ipw2100_priv *priv = ieee80211_priv(dev);
7681
7682         wrqu->retry.disabled = 0;       /* can't be disabled */
7683
7684         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7685                 return -EINVAL;
7686
7687         if (wrqu->retry.flags & IW_RETRY_MAX) {
7688                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7689                 wrqu->retry.value = priv->long_retry_limit;
7690         } else {
7691                 wrqu->retry.flags =
7692                     (priv->short_retry_limit !=
7693                      priv->long_retry_limit) ?
7694                     IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7695
7696                 wrqu->retry.value = priv->short_retry_limit;
7697         }
7698
7699         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7700
7701         return 0;
7702 }
7703
7704 static int ipw2100_wx_set_scan(struct net_device *dev,
7705                                struct iw_request_info *info,
7706                                union iwreq_data *wrqu, char *extra)
7707 {
7708         struct ipw2100_priv *priv = ieee80211_priv(dev);
7709         int err = 0;
7710
7711         down(&priv->action_sem);
7712         if (!(priv->status & STATUS_INITIALIZED)) {
7713                 err = -EIO;
7714                 goto done;
7715         }
7716
7717         IPW_DEBUG_WX("Initiating scan...\n");
7718         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7719                 IPW_DEBUG_WX("Start scan failed.\n");
7720
7721                 /* TODO: Mark a scan as pending so when hardware initialized
7722                  *       a scan starts */
7723         }
7724
7725       done:
7726         up(&priv->action_sem);
7727         return err;
7728 }
7729
7730 static int ipw2100_wx_get_scan(struct net_device *dev,
7731                                struct iw_request_info *info,
7732                                union iwreq_data *wrqu, char *extra)
7733 {
7734         /*
7735          * This can be called at any time.  No action lock required
7736          */
7737
7738         struct ipw2100_priv *priv = ieee80211_priv(dev);
7739         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7740 }
7741
7742 /*
7743  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7744  */
7745 static int ipw2100_wx_set_encode(struct net_device *dev,
7746                                  struct iw_request_info *info,
7747                                  union iwreq_data *wrqu, char *key)
7748 {
7749         /*
7750          * No check of STATUS_INITIALIZED required
7751          */
7752
7753         struct ipw2100_priv *priv = ieee80211_priv(dev);
7754         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7755 }
7756
7757 static int ipw2100_wx_get_encode(struct net_device *dev,
7758                                  struct iw_request_info *info,
7759                                  union iwreq_data *wrqu, char *key)
7760 {
7761         /*
7762          * This can be called at any time.  No action lock required
7763          */
7764
7765         struct ipw2100_priv *priv = ieee80211_priv(dev);
7766         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7767 }
7768
7769 static int ipw2100_wx_set_power(struct net_device *dev,
7770                                 struct iw_request_info *info,
7771                                 union iwreq_data *wrqu, char *extra)
7772 {
7773         struct ipw2100_priv *priv = ieee80211_priv(dev);
7774         int err = 0;
7775
7776         down(&priv->action_sem);
7777         if (!(priv->status & STATUS_INITIALIZED)) {
7778                 err = -EIO;
7779                 goto done;
7780         }
7781
7782         if (wrqu->power.disabled) {
7783                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7784                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7785                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7786                 goto done;
7787         }
7788
7789         switch (wrqu->power.flags & IW_POWER_MODE) {
7790         case IW_POWER_ON:       /* If not specified */
7791         case IW_POWER_MODE:     /* If set all mask */
7792         case IW_POWER_ALL_R:    /* If explicitely state all */
7793                 break;
7794         default:                /* Otherwise we don't support it */
7795                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7796                              wrqu->power.flags);
7797                 err = -EOPNOTSUPP;
7798                 goto done;
7799         }
7800
7801         /* If the user hasn't specified a power management mode yet, default
7802          * to BATTERY */
7803         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7804         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7805
7806         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7807
7808       done:
7809         up(&priv->action_sem);
7810         return err;
7811
7812 }
7813
7814 static int ipw2100_wx_get_power(struct net_device *dev,
7815                                 struct iw_request_info *info,
7816                                 union iwreq_data *wrqu, char *extra)
7817 {
7818         /*
7819          * This can be called at any time.  No action lock required
7820          */
7821
7822         struct ipw2100_priv *priv = ieee80211_priv(dev);
7823
7824         if (!(priv->power_mode & IPW_POWER_ENABLED))
7825                 wrqu->power.disabled = 1;
7826         else {
7827                 wrqu->power.disabled = 0;
7828                 wrqu->power.flags = 0;
7829         }
7830
7831         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7832
7833         return 0;
7834 }
7835
7836 #if WIRELESS_EXT > 17
7837 /*
7838  * WE-18 WPA support
7839  */
7840
7841 /* SIOCSIWGENIE */
7842 static int ipw2100_wx_set_genie(struct net_device *dev,
7843                                 struct iw_request_info *info,
7844                                 union iwreq_data *wrqu, char *extra)
7845 {
7846
7847         struct ipw2100_priv *priv = ieee80211_priv(dev);
7848         struct ieee80211_device *ieee = priv->ieee;
7849         u8 *buf;
7850
7851         if (!ieee->wpa_enabled)
7852                 return -EOPNOTSUPP;
7853
7854         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7855             (wrqu->data.length && extra == NULL))
7856                 return -EINVAL;
7857
7858         if (wrqu->data.length) {
7859                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7860                 if (buf == NULL)
7861                         return -ENOMEM;
7862
7863                 memcpy(buf, extra, wrqu->data.length);
7864                 kfree(ieee->wpa_ie);
7865                 ieee->wpa_ie = buf;
7866                 ieee->wpa_ie_len = wrqu->data.length;
7867         } else {
7868                 kfree(ieee->wpa_ie);
7869                 ieee->wpa_ie = NULL;
7870                 ieee->wpa_ie_len = 0;
7871         }
7872
7873         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7874
7875         return 0;
7876 }
7877
7878 /* SIOCGIWGENIE */
7879 static int ipw2100_wx_get_genie(struct net_device *dev,
7880                                 struct iw_request_info *info,
7881                                 union iwreq_data *wrqu, char *extra)
7882 {
7883         struct ipw2100_priv *priv = ieee80211_priv(dev);
7884         struct ieee80211_device *ieee = priv->ieee;
7885
7886         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7887                 wrqu->data.length = 0;
7888                 return 0;
7889         }
7890
7891         if (wrqu->data.length < ieee->wpa_ie_len)
7892                 return -E2BIG;
7893
7894         wrqu->data.length = ieee->wpa_ie_len;
7895         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7896
7897         return 0;
7898 }
7899
7900 /* SIOCSIWAUTH */
7901 static int ipw2100_wx_set_auth(struct net_device *dev,
7902                                struct iw_request_info *info,
7903                                union iwreq_data *wrqu, char *extra)
7904 {
7905         struct ipw2100_priv *priv = ieee80211_priv(dev);
7906         struct ieee80211_device *ieee = priv->ieee;
7907         struct iw_param *param = &wrqu->param;
7908         struct ieee80211_crypt_data *crypt;
7909         unsigned long flags;
7910         int ret = 0;
7911
7912         switch (param->flags & IW_AUTH_INDEX) {
7913         case IW_AUTH_WPA_VERSION:
7914         case IW_AUTH_CIPHER_PAIRWISE:
7915         case IW_AUTH_CIPHER_GROUP:
7916         case IW_AUTH_KEY_MGMT:
7917                 /*
7918                  * ipw2200 does not use these parameters
7919                  */
7920                 break;
7921
7922         case IW_AUTH_TKIP_COUNTERMEASURES:
7923                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7924                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) {
7925                         IPW_DEBUG_WARNING("Can't set TKIP countermeasures: "
7926                                           "crypt not set!\n");
7927                         break;
7928                 }
7929
7930                 flags = crypt->ops->get_flags(crypt->priv);
7931
7932                 if (param->value)
7933                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7934                 else
7935                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7936
7937                 crypt->ops->set_flags(flags, crypt->priv);
7938
7939                 break;
7940
7941         case IW_AUTH_DROP_UNENCRYPTED:{
7942                         /* HACK:
7943                          *
7944                          * wpa_supplicant calls set_wpa_enabled when the driver
7945                          * is loaded and unloaded, regardless of if WPA is being
7946                          * used.  No other calls are made which can be used to
7947                          * determine if encryption will be used or not prior to
7948                          * association being expected.  If encryption is not being
7949                          * used, drop_unencrypted is set to false, else true -- we
7950                          * can use this to determine if the CAP_PRIVACY_ON bit should
7951                          * be set.
7952                          */
7953                         struct ieee80211_security sec = {
7954                                 .flags = SEC_ENABLED,
7955                                 .enabled = param->value,
7956                         };
7957                         priv->ieee->drop_unencrypted = param->value;
7958                         /* We only change SEC_LEVEL for open mode. Others
7959                          * are set by ipw_wpa_set_encryption.
7960                          */
7961                         if (!param->value) {
7962                                 sec.flags |= SEC_LEVEL;
7963                                 sec.level = SEC_LEVEL_0;
7964                         } else {
7965                                 sec.flags |= SEC_LEVEL;
7966                                 sec.level = SEC_LEVEL_1;
7967                         }
7968                         if (priv->ieee->set_security)
7969                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7970                         break;
7971                 }
7972
7973         case IW_AUTH_80211_AUTH_ALG:
7974                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7975                 break;
7976
7977         case IW_AUTH_WPA_ENABLED:
7978                 ret = ipw2100_wpa_enable(priv, param->value);
7979                 break;
7980
7981         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7982                 ieee->ieee802_1x = param->value;
7983                 break;
7984
7985                 //case IW_AUTH_ROAMING_CONTROL:
7986         case IW_AUTH_PRIVACY_INVOKED:
7987                 ieee->privacy_invoked = param->value;
7988                 break;
7989
7990         default:
7991                 return -EOPNOTSUPP;
7992         }
7993         return ret;
7994 }
7995
7996 /* SIOCGIWAUTH */
7997 static int ipw2100_wx_get_auth(struct net_device *dev,
7998                                struct iw_request_info *info,
7999                                union iwreq_data *wrqu, char *extra)
8000 {
8001         struct ipw2100_priv *priv = ieee80211_priv(dev);
8002         struct ieee80211_device *ieee = priv->ieee;
8003         struct ieee80211_crypt_data *crypt;
8004         struct iw_param *param = &wrqu->param;
8005         int ret = 0;
8006
8007         switch (param->flags & IW_AUTH_INDEX) {
8008         case IW_AUTH_WPA_VERSION:
8009         case IW_AUTH_CIPHER_PAIRWISE:
8010         case IW_AUTH_CIPHER_GROUP:
8011         case IW_AUTH_KEY_MGMT:
8012                 /*
8013                  * wpa_supplicant will control these internally
8014                  */
8015                 ret = -EOPNOTSUPP;
8016                 break;
8017
8018         case IW_AUTH_TKIP_COUNTERMEASURES:
8019                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
8020                 if (!crypt || !crypt->ops->get_flags) {
8021                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
8022                                           "crypt not set!\n");
8023                         break;
8024                 }
8025
8026                 param->value = (crypt->ops->get_flags(crypt->priv) &
8027                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
8028
8029                 break;
8030
8031         case IW_AUTH_DROP_UNENCRYPTED:
8032                 param->value = ieee->drop_unencrypted;
8033                 break;
8034
8035         case IW_AUTH_80211_AUTH_ALG:
8036                 param->value = priv->ieee->sec.auth_mode;
8037                 break;
8038
8039         case IW_AUTH_WPA_ENABLED:
8040                 param->value = ieee->wpa_enabled;
8041                 break;
8042
8043         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
8044                 param->value = ieee->ieee802_1x;
8045                 break;
8046
8047         case IW_AUTH_ROAMING_CONTROL:
8048         case IW_AUTH_PRIVACY_INVOKED:
8049                 param->value = ieee->privacy_invoked;
8050                 break;
8051
8052         default:
8053                 return -EOPNOTSUPP;
8054         }
8055         return 0;
8056 }
8057
8058 /* SIOCSIWENCODEEXT */
8059 static int ipw2100_wx_set_encodeext(struct net_device *dev,
8060                                     struct iw_request_info *info,
8061                                     union iwreq_data *wrqu, char *extra)
8062 {
8063         struct ipw2100_priv *priv = ieee80211_priv(dev);
8064         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
8065 }
8066
8067 /* SIOCGIWENCODEEXT */
8068 static int ipw2100_wx_get_encodeext(struct net_device *dev,
8069                                     struct iw_request_info *info,
8070                                     union iwreq_data *wrqu, char *extra)
8071 {
8072         struct ipw2100_priv *priv = ieee80211_priv(dev);
8073         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
8074 }
8075
8076 /* SIOCSIWMLME */
8077 static int ipw2100_wx_set_mlme(struct net_device *dev,
8078                                struct iw_request_info *info,
8079                                union iwreq_data *wrqu, char *extra)
8080 {
8081         struct ipw2100_priv *priv = ieee80211_priv(dev);
8082         struct iw_mlme *mlme = (struct iw_mlme *)extra;
8083         u16 reason;
8084
8085         reason = cpu_to_le16(mlme->reason_code);
8086
8087         switch (mlme->cmd) {
8088         case IW_MLME_DEAUTH:
8089                 // silently ignore
8090                 break;
8091
8092         case IW_MLME_DISASSOC:
8093                 ipw2100_disassociate_bssid(priv);
8094                 break;
8095
8096         default:
8097                 return -EOPNOTSUPP;
8098         }
8099         return 0;
8100 }
8101 #endif                          /* WIRELESS_EXT > 17 */
8102
8103 /*
8104  *
8105  * IWPRIV handlers
8106  *
8107  */
8108 #ifdef CONFIG_IPW2100_MONITOR
8109 static int ipw2100_wx_set_promisc(struct net_device *dev,
8110                                   struct iw_request_info *info,
8111                                   union iwreq_data *wrqu, char *extra)
8112 {
8113         struct ipw2100_priv *priv = ieee80211_priv(dev);
8114         int *parms = (int *)extra;
8115         int enable = (parms[0] > 0);
8116         int err = 0;
8117
8118         down(&priv->action_sem);
8119         if (!(priv->status & STATUS_INITIALIZED)) {
8120                 err = -EIO;
8121                 goto done;
8122         }
8123
8124         if (enable) {
8125                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8126                         err = ipw2100_set_channel(priv, parms[1], 0);
8127                         goto done;
8128                 }
8129                 priv->channel = parms[1];
8130                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
8131         } else {
8132                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8133                         err = ipw2100_switch_mode(priv, priv->last_mode);
8134         }
8135       done:
8136         up(&priv->action_sem);
8137         return err;
8138 }
8139
8140 static int ipw2100_wx_reset(struct net_device *dev,
8141                             struct iw_request_info *info,
8142                             union iwreq_data *wrqu, char *extra)
8143 {
8144         struct ipw2100_priv *priv = ieee80211_priv(dev);
8145         if (priv->status & STATUS_INITIALIZED)
8146                 schedule_reset(priv);
8147         return 0;
8148 }
8149
8150 #endif
8151
8152 static int ipw2100_wx_set_powermode(struct net_device *dev,
8153                                     struct iw_request_info *info,
8154                                     union iwreq_data *wrqu, char *extra)
8155 {
8156         struct ipw2100_priv *priv = ieee80211_priv(dev);
8157         int err = 0, mode = *(int *)extra;
8158
8159         down(&priv->action_sem);
8160         if (!(priv->status & STATUS_INITIALIZED)) {
8161                 err = -EIO;
8162                 goto done;
8163         }
8164
8165         if ((mode < 1) || (mode > POWER_MODES))
8166                 mode = IPW_POWER_AUTO;
8167
8168         if (priv->power_mode != mode)
8169                 err = ipw2100_set_power_mode(priv, mode);
8170       done:
8171         up(&priv->action_sem);
8172         return err;
8173 }
8174
8175 #define MAX_POWER_STRING 80
8176 static int ipw2100_wx_get_powermode(struct net_device *dev,
8177                                     struct iw_request_info *info,
8178                                     union iwreq_data *wrqu, char *extra)
8179 {
8180         /*
8181          * This can be called at any time.  No action lock required
8182          */
8183
8184         struct ipw2100_priv *priv = ieee80211_priv(dev);
8185         int level = IPW_POWER_LEVEL(priv->power_mode);
8186         s32 timeout, period;
8187
8188         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
8189                 snprintf(extra, MAX_POWER_STRING,
8190                          "Power save level: %d (Off)", level);
8191         } else {
8192                 switch (level) {
8193                 case IPW_POWER_MODE_CAM:
8194                         snprintf(extra, MAX_POWER_STRING,
8195                                  "Power save level: %d (None)", level);
8196                         break;
8197                 case IPW_POWER_AUTO:
8198                         snprintf(extra, MAX_POWER_STRING,
8199                                  "Power save level: %d (Auto)", 0);
8200                         break;
8201                 default:
8202                         timeout = timeout_duration[level - 1] / 1000;
8203                         period = period_duration[level - 1] / 1000;
8204                         snprintf(extra, MAX_POWER_STRING,
8205                                  "Power save level: %d "
8206                                  "(Timeout %dms, Period %dms)",
8207                                  level, timeout, period);
8208                 }
8209         }
8210
8211         wrqu->data.length = strlen(extra) + 1;
8212
8213         return 0;
8214 }
8215
8216 static int ipw2100_wx_set_preamble(struct net_device *dev,
8217                                    struct iw_request_info *info,
8218                                    union iwreq_data *wrqu, char *extra)
8219 {
8220         struct ipw2100_priv *priv = ieee80211_priv(dev);
8221         int err, mode = *(int *)extra;
8222
8223         down(&priv->action_sem);
8224         if (!(priv->status & STATUS_INITIALIZED)) {
8225                 err = -EIO;
8226                 goto done;
8227         }
8228
8229         if (mode == 1)
8230                 priv->config |= CFG_LONG_PREAMBLE;
8231         else if (mode == 0)
8232                 priv->config &= ~CFG_LONG_PREAMBLE;
8233         else {
8234                 err = -EINVAL;
8235                 goto done;
8236         }
8237
8238         err = ipw2100_system_config(priv, 0);
8239
8240       done:
8241         up(&priv->action_sem);
8242         return err;
8243 }
8244
8245 static int ipw2100_wx_get_preamble(struct net_device *dev,
8246                                    struct iw_request_info *info,
8247                                    union iwreq_data *wrqu, char *extra)
8248 {
8249         /*
8250          * This can be called at any time.  No action lock required
8251          */
8252
8253         struct ipw2100_priv *priv = ieee80211_priv(dev);
8254
8255         if (priv->config & CFG_LONG_PREAMBLE)
8256                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8257         else
8258                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8259
8260         return 0;
8261 }
8262
8263 #ifdef CONFIG_IPW2100_MONITOR
8264 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8265                                     struct iw_request_info *info,
8266                                     union iwreq_data *wrqu, char *extra)
8267 {
8268         struct ipw2100_priv *priv = ieee80211_priv(dev);
8269         int err, mode = *(int *)extra;
8270
8271         down(&priv->action_sem);
8272         if (!(priv->status & STATUS_INITIALIZED)) {
8273                 err = -EIO;
8274                 goto done;
8275         }
8276
8277         if (mode == 1)
8278                 priv->config |= CFG_CRC_CHECK;
8279         else if (mode == 0)
8280                 priv->config &= ~CFG_CRC_CHECK;
8281         else {
8282                 err = -EINVAL;
8283                 goto done;
8284         }
8285         err = 0;
8286
8287       done:
8288         up(&priv->action_sem);
8289         return err;
8290 }
8291
8292 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8293                                     struct iw_request_info *info,
8294                                     union iwreq_data *wrqu, char *extra)
8295 {
8296         /*
8297          * This can be called at any time.  No action lock required
8298          */
8299
8300         struct ipw2100_priv *priv = ieee80211_priv(dev);
8301
8302         if (priv->config & CFG_CRC_CHECK)
8303                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8304         else
8305                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8306
8307         return 0;
8308 }
8309 #endif                          /* CONFIG_IPW2100_MONITOR */
8310
8311 static iw_handler ipw2100_wx_handlers[] = {
8312         NULL,                   /* SIOCSIWCOMMIT */
8313         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8314         NULL,                   /* SIOCSIWNWID */
8315         NULL,                   /* SIOCGIWNWID */
8316         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8317         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8318         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8319         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8320         NULL,                   /* SIOCSIWSENS */
8321         NULL,                   /* SIOCGIWSENS */
8322         NULL,                   /* SIOCSIWRANGE */
8323         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8324         NULL,                   /* SIOCSIWPRIV */
8325         NULL,                   /* SIOCGIWPRIV */
8326         NULL,                   /* SIOCSIWSTATS */
8327         NULL,                   /* SIOCGIWSTATS */
8328         NULL,                   /* SIOCSIWSPY */
8329         NULL,                   /* SIOCGIWSPY */
8330         NULL,                   /* SIOCGIWTHRSPY */
8331         NULL,                   /* SIOCWIWTHRSPY */
8332         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8333         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8334 #if WIRELESS_EXT > 17
8335         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8336 #else
8337         NULL,                   /* -- hole -- */
8338 #endif
8339         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8340         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8341         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8342         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8343         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8344         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8345         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8346         NULL,                   /* -- hole -- */
8347         NULL,                   /* -- hole -- */
8348         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8349         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8350         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8351         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8352         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8353         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8354         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8355         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8356         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8357         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8358         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8359         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8360         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8361         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8362 #if WIRELESS_EXT > 17
8363         NULL,                   /* -- hole -- */
8364         NULL,                   /* -- hole -- */
8365         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8366         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8367         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8368         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8369         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8370         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8371         NULL,                   /* SIOCSIWPMKSA */
8372 #endif
8373 };
8374
8375 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8376 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8377 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8378 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8379 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8380 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8381 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8382 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8383
8384 static const struct iw_priv_args ipw2100_private_args[] = {
8385
8386 #ifdef CONFIG_IPW2100_MONITOR
8387         {
8388          IPW2100_PRIV_SET_MONITOR,
8389          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8390         {
8391          IPW2100_PRIV_RESET,
8392          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8393 #endif                          /* CONFIG_IPW2100_MONITOR */
8394
8395         {
8396          IPW2100_PRIV_SET_POWER,
8397          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8398         {
8399          IPW2100_PRIV_GET_POWER,
8400          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8401          "get_power"},
8402         {
8403          IPW2100_PRIV_SET_LONGPREAMBLE,
8404          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8405         {
8406          IPW2100_PRIV_GET_LONGPREAMBLE,
8407          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8408 #ifdef CONFIG_IPW2100_MONITOR
8409         {
8410          IPW2100_PRIV_SET_CRC_CHECK,
8411          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8412         {
8413          IPW2100_PRIV_GET_CRC_CHECK,
8414          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8415 #endif                          /* CONFIG_IPW2100_MONITOR */
8416 };
8417
8418 static iw_handler ipw2100_private_handler[] = {
8419 #ifdef CONFIG_IPW2100_MONITOR
8420         ipw2100_wx_set_promisc,
8421         ipw2100_wx_reset,
8422 #else                           /* CONFIG_IPW2100_MONITOR */
8423         NULL,
8424         NULL,
8425 #endif                          /* CONFIG_IPW2100_MONITOR */
8426         ipw2100_wx_set_powermode,
8427         ipw2100_wx_get_powermode,
8428         ipw2100_wx_set_preamble,
8429         ipw2100_wx_get_preamble,
8430 #ifdef CONFIG_IPW2100_MONITOR
8431         ipw2100_wx_set_crc_check,
8432         ipw2100_wx_get_crc_check,
8433 #else                           /* CONFIG_IPW2100_MONITOR */
8434         NULL,
8435         NULL,
8436 #endif                          /* CONFIG_IPW2100_MONITOR */
8437 };
8438
8439 static struct iw_handler_def ipw2100_wx_handler_def = {
8440         .standard = ipw2100_wx_handlers,
8441         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8442         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8443         .num_private_args = sizeof(ipw2100_private_args) /
8444             sizeof(struct iw_priv_args),
8445         .private = (iw_handler *) ipw2100_private_handler,
8446         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8447 };
8448
8449 /*
8450  * Get wireless statistics.
8451  * Called by /proc/net/wireless
8452  * Also called by SIOCGIWSTATS
8453  */
8454 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8455 {
8456         enum {
8457                 POOR = 30,
8458                 FAIR = 60,
8459                 GOOD = 80,
8460                 VERY_GOOD = 90,
8461                 EXCELLENT = 95,
8462                 PERFECT = 100
8463         };
8464         int rssi_qual;
8465         int tx_qual;
8466         int beacon_qual;
8467
8468         struct ipw2100_priv *priv = ieee80211_priv(dev);
8469         struct iw_statistics *wstats;
8470         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8471         u32 ord_len = sizeof(u32);
8472
8473         if (!priv)
8474                 return (struct iw_statistics *)NULL;
8475
8476         wstats = &priv->wstats;
8477
8478         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8479          * ipw2100_wx_wireless_stats seems to be called before fw is
8480          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8481          * and associated; if not associcated, the values are all meaningless
8482          * anyway, so set them all to NULL and INVALID */
8483         if (!(priv->status & STATUS_ASSOCIATED)) {
8484                 wstats->miss.beacon = 0;
8485                 wstats->discard.retries = 0;
8486                 wstats->qual.qual = 0;
8487                 wstats->qual.level = 0;
8488                 wstats->qual.noise = 0;
8489                 wstats->qual.updated = 7;
8490                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8491                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8492                 return wstats;
8493         }
8494
8495         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8496                                 &missed_beacons, &ord_len))
8497                 goto fail_get_ordinal;
8498
8499         /* If we don't have a connection the quality and level is 0 */
8500         if (!(priv->status & STATUS_ASSOCIATED)) {
8501                 wstats->qual.qual = 0;
8502                 wstats->qual.level = 0;
8503         } else {
8504                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8505                                         &rssi, &ord_len))
8506                         goto fail_get_ordinal;
8507                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8508                 if (rssi < 10)
8509                         rssi_qual = rssi * POOR / 10;
8510                 else if (rssi < 15)
8511                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8512                 else if (rssi < 20)
8513                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8514                 else if (rssi < 30)
8515                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8516                             10 + GOOD;
8517                 else
8518                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8519                             10 + VERY_GOOD;
8520
8521                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8522                                         &tx_retries, &ord_len))
8523                         goto fail_get_ordinal;
8524
8525                 if (tx_retries > 75)
8526                         tx_qual = (90 - tx_retries) * POOR / 15;
8527                 else if (tx_retries > 70)
8528                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8529                 else if (tx_retries > 65)
8530                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8531                 else if (tx_retries > 50)
8532                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8533                             15 + GOOD;
8534                 else
8535                         tx_qual = (50 - tx_retries) *
8536                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8537
8538                 if (missed_beacons > 50)
8539                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8540                 else if (missed_beacons > 40)
8541                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8542                             10 + POOR;
8543                 else if (missed_beacons > 32)
8544                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8545                             18 + FAIR;
8546                 else if (missed_beacons > 20)
8547                         beacon_qual = (32 - missed_beacons) *
8548                             (VERY_GOOD - GOOD) / 20 + GOOD;
8549                 else
8550                         beacon_qual = (20 - missed_beacons) *
8551                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8552
8553                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8554
8555 #ifdef CONFIG_IPW_DEBUG
8556                 if (beacon_qual == quality)
8557                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8558                 else if (tx_qual == quality)
8559                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8560                 else if (quality != 100)
8561                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8562                 else
8563                         IPW_DEBUG_WX("Quality not clamped.\n");
8564 #endif
8565
8566                 wstats->qual.qual = quality;
8567                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8568         }
8569
8570         wstats->qual.noise = 0;
8571         wstats->qual.updated = 7;
8572         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8573
8574         /* FIXME: this is percent and not a # */
8575         wstats->miss.beacon = missed_beacons;
8576
8577         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8578                                 &tx_failures, &ord_len))
8579                 goto fail_get_ordinal;
8580         wstats->discard.retries = tx_failures;
8581
8582         return wstats;
8583
8584       fail_get_ordinal:
8585         IPW_DEBUG_WX("failed querying ordinals.\n");
8586
8587         return (struct iw_statistics *)NULL;
8588 }
8589
8590 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8591 {
8592         union iwreq_data wrqu;
8593         int len = ETH_ALEN;
8594
8595         if (priv->status & STATUS_STOPPING)
8596                 return;
8597
8598         down(&priv->action_sem);
8599
8600         IPW_DEBUG_WX("enter\n");
8601
8602         up(&priv->action_sem);
8603
8604         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8605
8606         /* Fetch BSSID from the hardware */
8607         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8608             priv->status & STATUS_RF_KILL_MASK ||
8609             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8610                                 &priv->bssid, &len)) {
8611                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8612         } else {
8613                 /* We now have the BSSID, so can finish setting to the full
8614                  * associated state */
8615                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8616                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8617                 priv->status &= ~STATUS_ASSOCIATING;
8618                 priv->status |= STATUS_ASSOCIATED;
8619                 netif_carrier_on(priv->net_dev);
8620                 netif_wake_queue(priv->net_dev);
8621         }
8622
8623         if (!(priv->status & STATUS_ASSOCIATED)) {
8624                 IPW_DEBUG_WX("Configuring ESSID\n");
8625                 down(&priv->action_sem);
8626                 /* This is a disassociation event, so kick the firmware to
8627                  * look for another AP */
8628                 if (priv->config & CFG_STATIC_ESSID)
8629                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8630                                           0);
8631                 else
8632                         ipw2100_set_essid(priv, NULL, 0, 0);
8633                 up(&priv->action_sem);
8634         }
8635
8636         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8637 }
8638
8639 #define IPW2100_FW_MAJOR_VERSION 1
8640 #define IPW2100_FW_MINOR_VERSION 3
8641
8642 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8643 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8644
8645 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8646                              IPW2100_FW_MAJOR_VERSION)
8647
8648 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8649 "." __stringify(IPW2100_FW_MINOR_VERSION)
8650
8651 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8652
8653 /*
8654
8655 BINARY FIRMWARE HEADER FORMAT
8656
8657 offset      length   desc
8658 0           2        version
8659 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8660 4           4        fw_len
8661 8           4        uc_len
8662 C           fw_len   firmware data
8663 12 + fw_len uc_len   microcode data
8664
8665 */
8666
8667 struct ipw2100_fw_header {
8668         short version;
8669         short mode;
8670         unsigned int fw_size;
8671         unsigned int uc_size;
8672 } __attribute__ ((packed));
8673
8674 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8675 {
8676         struct ipw2100_fw_header *h =
8677             (struct ipw2100_fw_header *)fw->fw_entry->data;
8678
8679         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8680                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8681                        "(detected version id of %u). "
8682                        "See Documentation/networking/README.ipw2100\n",
8683                        h->version);
8684                 return 1;
8685         }
8686
8687         fw->version = h->version;
8688         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8689         fw->fw.size = h->fw_size;
8690         fw->uc.data = fw->fw.data + h->fw_size;
8691         fw->uc.size = h->uc_size;
8692
8693         return 0;
8694 }
8695
8696 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8697                                 struct ipw2100_fw *fw)
8698 {
8699         char *fw_name;
8700         int rc;
8701
8702         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8703                        priv->net_dev->name);
8704
8705         switch (priv->ieee->iw_mode) {
8706         case IW_MODE_ADHOC:
8707                 fw_name = IPW2100_FW_NAME("-i");
8708                 break;
8709 #ifdef CONFIG_IPW2100_MONITOR
8710         case IW_MODE_MONITOR:
8711                 fw_name = IPW2100_FW_NAME("-p");
8712                 break;
8713 #endif
8714         case IW_MODE_INFRA:
8715         default:
8716                 fw_name = IPW2100_FW_NAME("");
8717                 break;
8718         }
8719
8720         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8721
8722         if (rc < 0) {
8723                 printk(KERN_ERR DRV_NAME ": "
8724                        "%s: Firmware '%s' not available or load failed.\n",
8725                        priv->net_dev->name, fw_name);
8726                 return rc;
8727         }
8728         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8729                        fw->fw_entry->size);
8730
8731         ipw2100_mod_firmware_load(fw);
8732
8733         return 0;
8734 }
8735
8736 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8737                                      struct ipw2100_fw *fw)
8738 {
8739         fw->version = 0;
8740         if (fw->fw_entry)
8741                 release_firmware(fw->fw_entry);
8742         fw->fw_entry = NULL;
8743 }
8744
8745 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8746                                  size_t max)
8747 {
8748         char ver[MAX_FW_VERSION_LEN];
8749         u32 len = MAX_FW_VERSION_LEN;
8750         u32 tmp;
8751         int i;
8752         /* firmware version is an ascii string (max len of 14) */
8753         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8754                 return -EIO;
8755         tmp = max;
8756         if (len >= max)
8757                 len = max - 1;
8758         for (i = 0; i < len; i++)
8759                 buf[i] = ver[i];
8760         buf[i] = '\0';
8761         return tmp;
8762 }
8763
8764 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8765                                     size_t max)
8766 {
8767         u32 ver;
8768         u32 len = sizeof(ver);
8769         /* microcode version is a 32 bit integer */
8770         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8771                 return -EIO;
8772         return snprintf(buf, max, "%08X", ver);
8773 }
8774
8775 /*
8776  * On exit, the firmware will have been freed from the fw list
8777  */
8778 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8779 {
8780         /* firmware is constructed of N contiguous entries, each entry is
8781          * structured as:
8782          *
8783          * offset    sie         desc
8784          * 0         4           address to write to
8785          * 4         2           length of data run
8786          * 6         length      data
8787          */
8788         unsigned int addr;
8789         unsigned short len;
8790
8791         const unsigned char *firmware_data = fw->fw.data;
8792         unsigned int firmware_data_left = fw->fw.size;
8793
8794         while (firmware_data_left > 0) {
8795                 addr = *(u32 *) (firmware_data);
8796                 firmware_data += 4;
8797                 firmware_data_left -= 4;
8798
8799                 len = *(u16 *) (firmware_data);
8800                 firmware_data += 2;
8801                 firmware_data_left -= 2;
8802
8803                 if (len > 32) {
8804                         printk(KERN_ERR DRV_NAME ": "
8805                                "Invalid firmware run-length of %d bytes\n",
8806                                len);
8807                         return -EINVAL;
8808                 }
8809
8810                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8811                 firmware_data += len;
8812                 firmware_data_left -= len;
8813         }
8814
8815         return 0;
8816 }
8817
8818 struct symbol_alive_response {
8819         u8 cmd_id;
8820         u8 seq_num;
8821         u8 ucode_rev;
8822         u8 eeprom_valid;
8823         u16 valid_flags;
8824         u8 IEEE_addr[6];
8825         u16 flags;
8826         u16 pcb_rev;
8827         u16 clock_settle_time;  // 1us LSB
8828         u16 powerup_settle_time;        // 1us LSB
8829         u16 hop_settle_time;    // 1us LSB
8830         u8 date[3];             // month, day, year
8831         u8 time[2];             // hours, minutes
8832         u8 ucode_valid;
8833 };
8834
8835 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8836                                   struct ipw2100_fw *fw)
8837 {
8838         struct net_device *dev = priv->net_dev;
8839         const unsigned char *microcode_data = fw->uc.data;
8840         unsigned int microcode_data_left = fw->uc.size;
8841         void __iomem *reg = (void __iomem *)dev->base_addr;
8842
8843         struct symbol_alive_response response;
8844         int i, j;
8845         u8 data;
8846
8847         /* Symbol control */
8848         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8849         readl(reg);
8850         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8851         readl(reg);
8852
8853         /* HW config */
8854         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8855         readl(reg);
8856         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8857         readl(reg);
8858
8859         /* EN_CS_ACCESS bit to reset control store pointer */
8860         write_nic_byte(dev, 0x210000, 0x40);
8861         readl(reg);
8862         write_nic_byte(dev, 0x210000, 0x0);
8863         readl(reg);
8864         write_nic_byte(dev, 0x210000, 0x40);
8865         readl(reg);
8866
8867         /* copy microcode from buffer into Symbol */
8868
8869         while (microcode_data_left > 0) {
8870                 write_nic_byte(dev, 0x210010, *microcode_data++);
8871                 write_nic_byte(dev, 0x210010, *microcode_data++);
8872                 microcode_data_left -= 2;
8873         }
8874
8875         /* EN_CS_ACCESS bit to reset the control store pointer */
8876         write_nic_byte(dev, 0x210000, 0x0);
8877         readl(reg);
8878
8879         /* Enable System (Reg 0)
8880          * first enable causes garbage in RX FIFO */
8881         write_nic_byte(dev, 0x210000, 0x0);
8882         readl(reg);
8883         write_nic_byte(dev, 0x210000, 0x80);
8884         readl(reg);
8885
8886         /* Reset External Baseband Reg */
8887         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8888         readl(reg);
8889         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8890         readl(reg);
8891
8892         /* HW Config (Reg 5) */
8893         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8894         readl(reg);
8895         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8896         readl(reg);
8897
8898         /* Enable System (Reg 0)
8899          * second enable should be OK */
8900         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8901         readl(reg);
8902         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8903
8904         /* check Symbol is enabled - upped this from 5 as it wasn't always
8905          * catching the update */
8906         for (i = 0; i < 10; i++) {
8907                 udelay(10);
8908
8909                 /* check Dino is enabled bit */
8910                 read_nic_byte(dev, 0x210000, &data);
8911                 if (data & 0x1)
8912                         break;
8913         }
8914
8915         if (i == 10) {
8916                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8917                        dev->name);
8918                 return -EIO;
8919         }
8920
8921         /* Get Symbol alive response */
8922         for (i = 0; i < 30; i++) {
8923                 /* Read alive response structure */
8924                 for (j = 0;
8925                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8926                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8927
8928                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8929                         break;
8930                 udelay(10);
8931         }
8932
8933         if (i == 30) {
8934                 printk(KERN_ERR DRV_NAME
8935                        ": %s: No response from Symbol - hw not alive\n",
8936                        dev->name);
8937                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8938                 return -EIO;
8939         }
8940
8941         return 0;
8942 }