4 * vfs operations that deal with files
6 * Copyright (C) International Business Machines Corp., 2002,2007
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <asm/div64.h>
37 #include "cifsproto.h"
38 #include "cifs_unicode.h"
39 #include "cifs_debug.h"
40 #include "cifs_fs_sb.h"
42 static inline struct cifsFileInfo *cifs_init_private(
43 struct cifsFileInfo *private_data, struct inode *inode,
44 struct file *file, __u16 netfid)
46 memset(private_data, 0, sizeof(struct cifsFileInfo));
47 private_data->netfid = netfid;
48 private_data->pid = current->tgid;
49 init_MUTEX(&private_data->fh_sem);
50 mutex_init(&private_data->lock_mutex);
51 INIT_LIST_HEAD(&private_data->llist);
52 private_data->pfile = file; /* needed for writepage */
53 private_data->pInode = inode;
54 private_data->invalidHandle = FALSE;
55 private_data->closePend = FALSE;
56 /* we have to track num writers to the inode, since writepages
57 does not tell us which handle the write is for so there can
58 be a close (overlapping with write) of the filehandle that
59 cifs_writepages chose to use */
60 atomic_set(&private_data->wrtPending, 0);
65 static inline int cifs_convert_flags(unsigned int flags)
67 if ((flags & O_ACCMODE) == O_RDONLY)
69 else if ((flags & O_ACCMODE) == O_WRONLY)
71 else if ((flags & O_ACCMODE) == O_RDWR) {
72 /* GENERIC_ALL is too much permission to request
73 can cause unnecessary access denied on create */
74 /* return GENERIC_ALL; */
75 return (GENERIC_READ | GENERIC_WRITE);
81 static inline int cifs_get_disposition(unsigned int flags)
83 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
85 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
86 return FILE_OVERWRITE_IF;
87 else if ((flags & O_CREAT) == O_CREAT)
89 else if ((flags & O_TRUNC) == O_TRUNC)
90 return FILE_OVERWRITE;
95 /* all arguments to this function must be checked for validity in caller */
96 static inline int cifs_open_inode_helper(struct inode *inode, struct file *file,
97 struct cifsInodeInfo *pCifsInode, struct cifsFileInfo *pCifsFile,
98 struct cifsTconInfo *pTcon, int *oplock, FILE_ALL_INFO *buf,
99 char *full_path, int xid)
101 struct timespec temp;
104 /* want handles we can use to read with first
105 in the list so we do not have to walk the
106 list to search for one in prepare_write */
107 if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
108 list_add_tail(&pCifsFile->flist,
109 &pCifsInode->openFileList);
111 list_add(&pCifsFile->flist,
112 &pCifsInode->openFileList);
114 write_unlock(&GlobalSMBSeslock);
115 if (pCifsInode->clientCanCacheRead) {
116 /* we have the inode open somewhere else
117 no need to discard cache data */
118 goto client_can_cache;
121 /* BB need same check in cifs_create too? */
122 /* if not oplocked, invalidate inode pages if mtime or file
124 temp = cifs_NTtimeToUnix(le64_to_cpu(buf->LastWriteTime));
125 if (timespec_equal(&file->f_path.dentry->d_inode->i_mtime, &temp) &&
126 (file->f_path.dentry->d_inode->i_size ==
127 (loff_t)le64_to_cpu(buf->EndOfFile))) {
128 cFYI(1, ("inode unchanged on server"));
130 if (file->f_path.dentry->d_inode->i_mapping) {
131 /* BB no need to lock inode until after invalidate
132 since namei code should already have it locked? */
133 filemap_write_and_wait(file->f_path.dentry->d_inode->i_mapping);
135 cFYI(1, ("invalidating remote inode since open detected it "
137 invalidate_remote_inode(file->f_path.dentry->d_inode);
142 rc = cifs_get_inode_info_unix(&file->f_path.dentry->d_inode,
143 full_path, inode->i_sb, xid);
145 rc = cifs_get_inode_info(&file->f_path.dentry->d_inode,
146 full_path, buf, inode->i_sb, xid);
148 if ((*oplock & 0xF) == OPLOCK_EXCLUSIVE) {
149 pCifsInode->clientCanCacheAll = TRUE;
150 pCifsInode->clientCanCacheRead = TRUE;
151 cFYI(1, ("Exclusive Oplock granted on inode %p",
152 file->f_path.dentry->d_inode));
153 } else if ((*oplock & 0xF) == OPLOCK_READ)
154 pCifsInode->clientCanCacheRead = TRUE;
159 int cifs_open(struct inode *inode, struct file *file)
163 struct cifs_sb_info *cifs_sb;
164 struct cifsTconInfo *pTcon;
165 struct cifsFileInfo *pCifsFile;
166 struct cifsInodeInfo *pCifsInode;
167 struct list_head *tmp;
168 char *full_path = NULL;
172 FILE_ALL_INFO *buf = NULL;
176 cifs_sb = CIFS_SB(inode->i_sb);
177 pTcon = cifs_sb->tcon;
179 if (file->f_flags & O_CREAT) {
180 /* search inode for this file and fill in file->private_data */
181 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
182 read_lock(&GlobalSMBSeslock);
183 list_for_each(tmp, &pCifsInode->openFileList) {
184 pCifsFile = list_entry(tmp, struct cifsFileInfo,
186 if ((pCifsFile->pfile == NULL) &&
187 (pCifsFile->pid == current->tgid)) {
188 /* mode set in cifs_create */
190 /* needed for writepage */
191 pCifsFile->pfile = file;
193 file->private_data = pCifsFile;
197 read_unlock(&GlobalSMBSeslock);
198 if (file->private_data != NULL) {
203 if (file->f_flags & O_EXCL)
204 cERROR(1, ("could not find file instance for "
205 "new file %p", file));
209 full_path = build_path_from_dentry(file->f_path.dentry);
210 if (full_path == NULL) {
215 cFYI(1, ("inode = 0x%p file flags are 0x%x for %s",
216 inode, file->f_flags, full_path));
217 desiredAccess = cifs_convert_flags(file->f_flags);
219 /*********************************************************************
220 * open flag mapping table:
222 * POSIX Flag CIFS Disposition
223 * ---------- ----------------
224 * O_CREAT FILE_OPEN_IF
225 * O_CREAT | O_EXCL FILE_CREATE
226 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
227 * O_TRUNC FILE_OVERWRITE
228 * none of the above FILE_OPEN
230 * Note that there is not a direct match between disposition
231 * FILE_SUPERSEDE (ie create whether or not file exists although
232 * O_CREAT | O_TRUNC is similar but truncates the existing
233 * file rather than creating a new file as FILE_SUPERSEDE does
234 * (which uses the attributes / metadata passed in on open call)
236 *? O_SYNC is a reasonable match to CIFS writethrough flag
237 *? and the read write flags match reasonably. O_LARGEFILE
238 *? is irrelevant because largefile support is always used
239 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
240 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
241 *********************************************************************/
243 disposition = cifs_get_disposition(file->f_flags);
250 /* BB pass O_SYNC flag through on file attributes .. BB */
252 /* Also refresh inode by passing in file_info buf returned by SMBOpen
253 and calling get_inode_info with returned buf (at least helps
254 non-Unix server case) */
256 /* BB we can not do this if this is the second open of a file
257 and the first handle has writebehind data, we might be
258 able to simply do a filemap_fdatawrite/filemap_fdatawait first */
259 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
265 if (cifs_sb->tcon->ses->capabilities & CAP_NT_SMBS)
266 rc = CIFSSMBOpen(xid, pTcon, full_path, disposition,
267 desiredAccess, CREATE_NOT_DIR, &netfid, &oplock, buf,
268 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
269 & CIFS_MOUNT_MAP_SPECIAL_CHR);
271 rc = -EIO; /* no NT SMB support fall into legacy open below */
274 /* Old server, try legacy style OpenX */
275 rc = SMBLegacyOpen(xid, pTcon, full_path, disposition,
276 desiredAccess, CREATE_NOT_DIR, &netfid, &oplock, buf,
277 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
278 & CIFS_MOUNT_MAP_SPECIAL_CHR);
281 cFYI(1, ("cifs_open returned 0x%x", rc));
285 kmalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
286 if (file->private_data == NULL) {
290 pCifsFile = cifs_init_private(file->private_data, inode, file, netfid);
291 write_lock(&GlobalSMBSeslock);
292 list_add(&pCifsFile->tlist, &pTcon->openFileList);
294 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
296 rc = cifs_open_inode_helper(inode, file, pCifsInode,
298 &oplock, buf, full_path, xid);
300 write_unlock(&GlobalSMBSeslock);
303 if (oplock & CIFS_CREATE_ACTION) {
304 /* time to set mode which we can not set earlier due to
305 problems creating new read-only files */
306 if (pTcon->unix_ext) {
307 CIFSSMBUnixSetPerms(xid, pTcon, full_path,
309 (__u64)-1, (__u64)-1, 0 /* dev */,
311 cifs_sb->mnt_cifs_flags &
312 CIFS_MOUNT_MAP_SPECIAL_CHR);
314 /* BB implement via Windows security descriptors eg
315 CIFSSMBWinSetPerms(xid, pTcon, full_path, mode,
317 in the meantime could set r/o dos attribute when
318 perms are eg: mode & 0222 == 0 */
329 /* Try to reacquire byte range locks that were released when session */
330 /* to server was lost */
331 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
335 /* BB list all locks open on this file and relock */
340 static int cifs_reopen_file(struct file *file, int can_flush)
344 struct cifs_sb_info *cifs_sb;
345 struct cifsTconInfo *pTcon;
346 struct cifsFileInfo *pCifsFile;
347 struct cifsInodeInfo *pCifsInode;
349 char *full_path = NULL;
351 int disposition = FILE_OPEN;
354 if (file->private_data) {
355 pCifsFile = (struct cifsFileInfo *)file->private_data;
360 down(&pCifsFile->fh_sem);
361 if (pCifsFile->invalidHandle == FALSE) {
362 up(&pCifsFile->fh_sem);
367 if (file->f_path.dentry == NULL) {
368 cERROR(1, ("no valid name if dentry freed"));
371 goto reopen_error_exit;
374 inode = file->f_path.dentry->d_inode;
376 cERROR(1, ("inode not valid"));
379 goto reopen_error_exit;
382 cifs_sb = CIFS_SB(inode->i_sb);
383 pTcon = cifs_sb->tcon;
385 /* can not grab rename sem here because various ops, including
386 those that already have the rename sem can end up causing writepage
387 to get called and if the server was down that means we end up here,
388 and we can never tell if the caller already has the rename_sem */
389 full_path = build_path_from_dentry(file->f_path.dentry);
390 if (full_path == NULL) {
393 up(&pCifsFile->fh_sem);
398 cFYI(1, ("inode = 0x%p file flags 0x%x for %s",
399 inode, file->f_flags, full_path));
400 desiredAccess = cifs_convert_flags(file->f_flags);
407 /* Can not refresh inode by passing in file_info buf to be returned
408 by SMBOpen and then calling get_inode_info with returned buf
409 since file might have write behind data that needs to be flushed
410 and server version of file size can be stale. If we knew for sure
411 that inode was not dirty locally we could do this */
413 rc = CIFSSMBOpen(xid, pTcon, full_path, disposition, desiredAccess,
414 CREATE_NOT_DIR, &netfid, &oplock, NULL,
415 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
416 CIFS_MOUNT_MAP_SPECIAL_CHR);
418 up(&pCifsFile->fh_sem);
419 cFYI(1, ("cifs_open returned 0x%x", rc));
420 cFYI(1, ("oplock: %d", oplock));
422 pCifsFile->netfid = netfid;
423 pCifsFile->invalidHandle = FALSE;
424 up(&pCifsFile->fh_sem);
425 pCifsInode = CIFS_I(inode);
428 filemap_write_and_wait(inode->i_mapping);
429 /* temporarily disable caching while we
430 go to server to get inode info */
431 pCifsInode->clientCanCacheAll = FALSE;
432 pCifsInode->clientCanCacheRead = FALSE;
434 rc = cifs_get_inode_info_unix(&inode,
435 full_path, inode->i_sb, xid);
437 rc = cifs_get_inode_info(&inode,
438 full_path, NULL, inode->i_sb,
440 } /* else we are writing out data to server already
441 and could deadlock if we tried to flush data, and
442 since we do not know if we have data that would
443 invalidate the current end of file on the server
444 we can not go to the server to get the new inod
446 if ((oplock & 0xF) == OPLOCK_EXCLUSIVE) {
447 pCifsInode->clientCanCacheAll = TRUE;
448 pCifsInode->clientCanCacheRead = TRUE;
449 cFYI(1, ("Exclusive Oplock granted on inode %p",
450 file->f_path.dentry->d_inode));
451 } else if ((oplock & 0xF) == OPLOCK_READ) {
452 pCifsInode->clientCanCacheRead = TRUE;
453 pCifsInode->clientCanCacheAll = FALSE;
455 pCifsInode->clientCanCacheRead = FALSE;
456 pCifsInode->clientCanCacheAll = FALSE;
458 cifs_relock_file(pCifsFile);
467 int cifs_close(struct inode *inode, struct file *file)
471 struct cifs_sb_info *cifs_sb;
472 struct cifsTconInfo *pTcon;
473 struct cifsFileInfo *pSMBFile =
474 (struct cifsFileInfo *)file->private_data;
478 cifs_sb = CIFS_SB(inode->i_sb);
479 pTcon = cifs_sb->tcon;
481 struct cifsLockInfo *li, *tmp;
483 pSMBFile->closePend = TRUE;
485 /* no sense reconnecting to close a file that is
487 if (pTcon->tidStatus != CifsNeedReconnect) {
489 while ((atomic_read(&pSMBFile->wrtPending) != 0)
490 && (timeout <= 2048)) {
491 /* Give write a better chance to get to
492 server ahead of the close. We do not
493 want to add a wait_q here as it would
494 increase the memory utilization as
495 the struct would be in each open file,
496 but this should give enough time to
498 #ifdef CONFIG_CIFS_DEBUG2
499 cFYI(1, ("close delay, write pending"));
504 if (atomic_read(&pSMBFile->wrtPending))
506 ("close with pending writes"));
507 rc = CIFSSMBClose(xid, pTcon,
512 /* Delete any outstanding lock records.
513 We'll lose them when the file is closed anyway. */
514 mutex_lock(&pSMBFile->lock_mutex);
515 list_for_each_entry_safe(li, tmp, &pSMBFile->llist, llist) {
516 list_del(&li->llist);
519 mutex_unlock(&pSMBFile->lock_mutex);
521 write_lock(&GlobalSMBSeslock);
522 list_del(&pSMBFile->flist);
523 list_del(&pSMBFile->tlist);
524 write_unlock(&GlobalSMBSeslock);
526 /* We waited above to give the SMBWrite a chance to issue
527 on the wire (so we do not get SMBWrite returning EBADF
528 if writepages is racing with close. Note that writepages
529 does not specify a file handle, so it is possible for a file
530 to be opened twice, and the application close the "wrong"
531 file handle - in these cases we delay long enough to allow
532 the SMBWrite to get on the wire before the SMB Close.
533 We allow total wait here over 45 seconds, more than
534 oplock break time, and more than enough to allow any write
535 to complete on the server, or to time out on the client */
536 while ((atomic_read(&pSMBFile->wrtPending) != 0)
537 && (timeout <= 50000)) {
538 cERROR(1, ("writes pending, delay free of handle"));
542 kfree(pSMBFile->search_resume_name);
543 kfree(file->private_data);
544 file->private_data = NULL;
548 read_lock(&GlobalSMBSeslock);
549 if (list_empty(&(CIFS_I(inode)->openFileList))) {
550 cFYI(1, ("closing last open instance for inode %p", inode));
551 /* if the file is not open we do not know if we can cache info
552 on this inode, much less write behind and read ahead */
553 CIFS_I(inode)->clientCanCacheRead = FALSE;
554 CIFS_I(inode)->clientCanCacheAll = FALSE;
556 read_unlock(&GlobalSMBSeslock);
557 if ((rc == 0) && CIFS_I(inode)->write_behind_rc)
558 rc = CIFS_I(inode)->write_behind_rc;
563 int cifs_closedir(struct inode *inode, struct file *file)
567 struct cifsFileInfo *pCFileStruct =
568 (struct cifsFileInfo *)file->private_data;
571 cFYI(1, ("Closedir inode = 0x%p", inode));
576 struct cifsTconInfo *pTcon;
577 struct cifs_sb_info *cifs_sb =
578 CIFS_SB(file->f_path.dentry->d_sb);
580 pTcon = cifs_sb->tcon;
582 cFYI(1, ("Freeing private data in close dir"));
583 if ((pCFileStruct->srch_inf.endOfSearch == FALSE) &&
584 (pCFileStruct->invalidHandle == FALSE)) {
585 pCFileStruct->invalidHandle = TRUE;
586 rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
587 cFYI(1, ("Closing uncompleted readdir with rc %d",
589 /* not much we can do if it fails anyway, ignore rc */
592 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
594 cFYI(1, ("closedir free smb buf in srch struct"));
595 pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
596 if (pCFileStruct->srch_inf.smallBuf)
597 cifs_small_buf_release(ptmp);
599 cifs_buf_release(ptmp);
601 ptmp = pCFileStruct->search_resume_name;
603 cFYI(1, ("closedir free resume name"));
604 pCFileStruct->search_resume_name = NULL;
607 kfree(file->private_data);
608 file->private_data = NULL;
610 /* BB can we lock the filestruct while this is going on? */
615 static int store_file_lock(struct cifsFileInfo *fid, __u64 len,
616 __u64 offset, __u8 lockType)
618 struct cifsLockInfo *li =
619 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
625 mutex_lock(&fid->lock_mutex);
626 list_add(&li->llist, &fid->llist);
627 mutex_unlock(&fid->lock_mutex);
631 int cifs_lock(struct file *file, int cmd, struct file_lock *pfLock)
637 int wait_flag = FALSE;
638 struct cifs_sb_info *cifs_sb;
639 struct cifsTconInfo *pTcon;
641 __u8 lockType = LOCKING_ANDX_LARGE_FILES;
644 length = 1 + pfLock->fl_end - pfLock->fl_start;
648 cFYI(1, ("Lock parm: 0x%x flockflags: "
649 "0x%x flocktype: 0x%x start: %lld end: %lld",
650 cmd, pfLock->fl_flags, pfLock->fl_type, pfLock->fl_start,
653 if (pfLock->fl_flags & FL_POSIX)
655 if (pfLock->fl_flags & FL_FLOCK)
657 if (pfLock->fl_flags & FL_SLEEP) {
658 cFYI(1, ("Blocking lock"));
661 if (pfLock->fl_flags & FL_ACCESS)
662 cFYI(1, ("Process suspended by mandatory locking - "
663 "not implemented yet"));
664 if (pfLock->fl_flags & FL_LEASE)
665 cFYI(1, ("Lease on file - not implemented yet"));
666 if (pfLock->fl_flags &
667 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
668 cFYI(1, ("Unknown lock flags 0x%x", pfLock->fl_flags));
670 if (pfLock->fl_type == F_WRLCK) {
671 cFYI(1, ("F_WRLCK "));
673 } else if (pfLock->fl_type == F_UNLCK) {
674 cFYI(1, ("F_UNLCK"));
676 /* Check if unlock includes more than
678 } else if (pfLock->fl_type == F_RDLCK) {
679 cFYI(1, ("F_RDLCK"));
680 lockType |= LOCKING_ANDX_SHARED_LOCK;
682 } else if (pfLock->fl_type == F_EXLCK) {
683 cFYI(1, ("F_EXLCK"));
685 } else if (pfLock->fl_type == F_SHLCK) {
686 cFYI(1, ("F_SHLCK"));
687 lockType |= LOCKING_ANDX_SHARED_LOCK;
690 cFYI(1, ("Unknown type of lock"));
692 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
693 pTcon = cifs_sb->tcon;
695 if (file->private_data == NULL) {
699 netfid = ((struct cifsFileInfo *)file->private_data)->netfid;
701 posix_locking = (cifs_sb->tcon->ses->capabilities & CAP_UNIX) &&
702 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(cifs_sb->tcon->fsUnixInfo.Capability));
704 /* BB add code here to normalize offset and length to
705 account for negative length which we can not accept over the
710 if (lockType & LOCKING_ANDX_SHARED_LOCK)
711 posix_lock_type = CIFS_RDLCK;
713 posix_lock_type = CIFS_WRLCK;
714 rc = CIFSSMBPosixLock(xid, pTcon, netfid, 1 /* get */,
716 posix_lock_type, wait_flag);
721 /* BB we could chain these into one lock request BB */
722 rc = CIFSSMBLock(xid, pTcon, netfid, length, pfLock->fl_start,
723 0, 1, lockType, 0 /* wait flag */ );
725 rc = CIFSSMBLock(xid, pTcon, netfid, length,
726 pfLock->fl_start, 1 /* numUnlock */ ,
727 0 /* numLock */ , lockType,
729 pfLock->fl_type = F_UNLCK;
731 cERROR(1, ("Error unlocking previously locked "
732 "range %d during test of lock", rc));
736 /* if rc == ERR_SHARING_VIOLATION ? */
737 rc = 0; /* do not change lock type to unlock
738 since range in use */
745 if (!numLock && !numUnlock) {
746 /* if no lock or unlock then nothing
747 to do since we do not know what it is */
754 if (lockType & LOCKING_ANDX_SHARED_LOCK)
755 posix_lock_type = CIFS_RDLCK;
757 posix_lock_type = CIFS_WRLCK;
760 posix_lock_type = CIFS_UNLCK;
762 rc = CIFSSMBPosixLock(xid, pTcon, netfid, 0 /* set */,
764 posix_lock_type, wait_flag);
766 struct cifsFileInfo *fid =
767 (struct cifsFileInfo *)file->private_data;
770 rc = CIFSSMBLock(xid, pTcon, netfid, length,
772 0, numLock, lockType, wait_flag);
775 /* For Windows locks we must store them. */
776 rc = store_file_lock(fid, length,
777 pfLock->fl_start, lockType);
779 } else if (numUnlock) {
780 /* For each stored lock that this unlock overlaps
781 completely, unlock it. */
783 struct cifsLockInfo *li, *tmp;
786 mutex_lock(&fid->lock_mutex);
787 list_for_each_entry_safe(li, tmp, &fid->llist, llist) {
788 if (pfLock->fl_start <= li->offset &&
789 (pfLock->fl_start + length) >=
790 (li->offset + li->length)) {
791 stored_rc = CIFSSMBLock(xid, pTcon,
793 li->length, li->offset,
794 1, 0, li->type, FALSE);
798 list_del(&li->llist);
802 mutex_unlock(&fid->lock_mutex);
806 if (pfLock->fl_flags & FL_POSIX)
807 posix_lock_file_wait(file, pfLock);
812 ssize_t cifs_user_write(struct file *file, const char __user *write_data,
813 size_t write_size, loff_t *poffset)
816 unsigned int bytes_written = 0;
817 unsigned int total_written;
818 struct cifs_sb_info *cifs_sb;
819 struct cifsTconInfo *pTcon;
821 struct cifsFileInfo *open_file;
823 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
825 pTcon = cifs_sb->tcon;
828 (" write %d bytes to offset %lld of %s", write_size,
829 *poffset, file->f_path.dentry->d_name.name)); */
831 if (file->private_data == NULL)
833 open_file = (struct cifsFileInfo *) file->private_data;
837 if (*poffset > file->f_path.dentry->d_inode->i_size)
838 long_op = CIFS_VLONG_OP; /* writes past EOF take long time */
840 long_op = CIFS_LONG_OP;
842 for (total_written = 0; write_size > total_written;
843 total_written += bytes_written) {
845 while (rc == -EAGAIN) {
846 if (file->private_data == NULL) {
847 /* file has been closed on us */
849 /* if we have gotten here we have written some data
850 and blocked, and the file has been freed on us while
851 we blocked so return what we managed to write */
852 return total_written;
854 if (open_file->closePend) {
857 return total_written;
861 if (open_file->invalidHandle) {
862 /* we could deadlock if we called
863 filemap_fdatawait from here so tell
864 reopen_file not to flush data to server
866 rc = cifs_reopen_file(file, FALSE);
871 rc = CIFSSMBWrite(xid, pTcon,
873 min_t(const int, cifs_sb->wsize,
874 write_size - total_written),
875 *poffset, &bytes_written,
876 NULL, write_data + total_written, long_op);
878 if (rc || (bytes_written == 0)) {
886 *poffset += bytes_written;
887 long_op = CIFS_STD_OP; /* subsequent writes fast -
888 15 seconds is plenty */
891 cifs_stats_bytes_written(pTcon, total_written);
893 /* since the write may have blocked check these pointers again */
894 if ((file->f_path.dentry) && (file->f_path.dentry->d_inode)) {
895 struct inode *inode = file->f_path.dentry->d_inode;
896 /* Do not update local mtime - server will set its actual value on write
897 * inode->i_ctime = inode->i_mtime =
898 * current_fs_time(inode->i_sb);*/
899 if (total_written > 0) {
900 spin_lock(&inode->i_lock);
901 if (*poffset > file->f_path.dentry->d_inode->i_size)
902 i_size_write(file->f_path.dentry->d_inode,
904 spin_unlock(&inode->i_lock);
906 mark_inode_dirty_sync(file->f_path.dentry->d_inode);
909 return total_written;
912 static ssize_t cifs_write(struct file *file, const char *write_data,
913 size_t write_size, loff_t *poffset)
916 unsigned int bytes_written = 0;
917 unsigned int total_written;
918 struct cifs_sb_info *cifs_sb;
919 struct cifsTconInfo *pTcon;
921 struct cifsFileInfo *open_file;
923 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
925 pTcon = cifs_sb->tcon;
927 cFYI(1, ("write %zd bytes to offset %lld of %s", write_size,
928 *poffset, file->f_path.dentry->d_name.name));
930 if (file->private_data == NULL)
932 open_file = (struct cifsFileInfo *)file->private_data;
936 if (*poffset > file->f_path.dentry->d_inode->i_size)
937 long_op = CIFS_VLONG_OP; /* writes past EOF can be slow */
939 long_op = CIFS_LONG_OP;
941 for (total_written = 0; write_size > total_written;
942 total_written += bytes_written) {
944 while (rc == -EAGAIN) {
945 if (file->private_data == NULL) {
946 /* file has been closed on us */
948 /* if we have gotten here we have written some data
949 and blocked, and the file has been freed on us
950 while we blocked so return what we managed to
952 return total_written;
954 if (open_file->closePend) {
957 return total_written;
961 if (open_file->invalidHandle) {
962 /* we could deadlock if we called
963 filemap_fdatawait from here so tell
964 reopen_file not to flush data to
966 rc = cifs_reopen_file(file, FALSE);
970 if (experimEnabled || (pTcon->ses->server &&
971 ((pTcon->ses->server->secMode &
972 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
977 len = min((size_t)cifs_sb->wsize,
978 write_size - total_written);
979 /* iov[0] is reserved for smb header */
980 iov[1].iov_base = (char *)write_data +
982 iov[1].iov_len = len;
983 rc = CIFSSMBWrite2(xid, pTcon,
984 open_file->netfid, len,
985 *poffset, &bytes_written,
988 rc = CIFSSMBWrite(xid, pTcon,
990 min_t(const int, cifs_sb->wsize,
991 write_size - total_written),
992 *poffset, &bytes_written,
993 write_data + total_written,
996 if (rc || (bytes_written == 0)) {
1004 *poffset += bytes_written;
1005 long_op = CIFS_STD_OP; /* subsequent writes fast -
1006 15 seconds is plenty */
1009 cifs_stats_bytes_written(pTcon, total_written);
1011 /* since the write may have blocked check these pointers again */
1012 if ((file->f_path.dentry) && (file->f_path.dentry->d_inode)) {
1013 /*BB We could make this contingent on superblock ATIME flag too */
1014 /* file->f_path.dentry->d_inode->i_ctime =
1015 file->f_path.dentry->d_inode->i_mtime = CURRENT_TIME;*/
1016 if (total_written > 0) {
1017 spin_lock(&file->f_path.dentry->d_inode->i_lock);
1018 if (*poffset > file->f_path.dentry->d_inode->i_size)
1019 i_size_write(file->f_path.dentry->d_inode,
1021 spin_unlock(&file->f_path.dentry->d_inode->i_lock);
1023 mark_inode_dirty_sync(file->f_path.dentry->d_inode);
1026 return total_written;
1029 #ifdef CONFIG_CIFS_EXPERIMENTAL
1030 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode)
1032 struct cifsFileInfo *open_file = NULL;
1034 read_lock(&GlobalSMBSeslock);
1035 /* we could simply get the first_list_entry since write-only entries
1036 are always at the end of the list but since the first entry might
1037 have a close pending, we go through the whole list */
1038 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1039 if (open_file->closePend)
1041 if (open_file->pfile && ((open_file->pfile->f_flags & O_RDWR) ||
1042 (open_file->pfile->f_flags & O_RDONLY))) {
1043 if (!open_file->invalidHandle) {
1044 /* found a good file */
1045 /* lock it so it will not be closed on us */
1046 atomic_inc(&open_file->wrtPending);
1047 read_unlock(&GlobalSMBSeslock);
1049 } /* else might as well continue, and look for
1050 another, or simply have the caller reopen it
1051 again rather than trying to fix this handle */
1052 } else /* write only file */
1053 break; /* write only files are last so must be done */
1055 read_unlock(&GlobalSMBSeslock);
1060 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode)
1062 struct cifsFileInfo *open_file;
1065 /* Having a null inode here (because mapping->host was set to zero by
1066 the VFS or MM) should not happen but we had reports of on oops (due to
1067 it being zero) during stress testcases so we need to check for it */
1069 if (cifs_inode == NULL) {
1070 cERROR(1, ("Null inode passed to cifs_writeable_file"));
1075 read_lock(&GlobalSMBSeslock);
1077 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1078 if (open_file->closePend)
1080 if (open_file->pfile &&
1081 ((open_file->pfile->f_flags & O_RDWR) ||
1082 (open_file->pfile->f_flags & O_WRONLY))) {
1083 atomic_inc(&open_file->wrtPending);
1085 if (!open_file->invalidHandle) {
1086 /* found a good writable file */
1087 read_unlock(&GlobalSMBSeslock);
1091 read_unlock(&GlobalSMBSeslock);
1092 /* Had to unlock since following call can block */
1093 rc = cifs_reopen_file(open_file->pfile, FALSE);
1095 if (!open_file->closePend)
1097 else { /* start over in case this was deleted */
1098 /* since the list could be modified */
1099 read_lock(&GlobalSMBSeslock);
1100 atomic_dec(&open_file->wrtPending);
1101 goto refind_writable;
1105 /* if it fails, try another handle if possible -
1106 (we can not do this if closePending since
1107 loop could be modified - in which case we
1108 have to start at the beginning of the list
1109 again. Note that it would be bad
1110 to hold up writepages here (rather than
1111 in caller) with continuous retries */
1112 cFYI(1, ("wp failed on reopen file"));
1113 read_lock(&GlobalSMBSeslock);
1114 /* can not use this handle, no write
1115 pending on this one after all */
1116 atomic_dec(&open_file->wrtPending);
1118 if (open_file->closePend) /* list could have changed */
1119 goto refind_writable;
1120 /* else we simply continue to the next entry. Thus
1121 we do not loop on reopen errors. If we
1122 can not reopen the file, for example if we
1123 reconnected to a server with another client
1124 racing to delete or lock the file we would not
1125 make progress if we restarted before the beginning
1126 of the loop here. */
1129 read_unlock(&GlobalSMBSeslock);
1133 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1135 struct address_space *mapping = page->mapping;
1136 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1139 int bytes_written = 0;
1140 struct cifs_sb_info *cifs_sb;
1141 struct cifsTconInfo *pTcon;
1142 struct inode *inode;
1143 struct cifsFileInfo *open_file;
1145 if (!mapping || !mapping->host)
1148 inode = page->mapping->host;
1149 cifs_sb = CIFS_SB(inode->i_sb);
1150 pTcon = cifs_sb->tcon;
1152 offset += (loff_t)from;
1153 write_data = kmap(page);
1156 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1161 /* racing with truncate? */
1162 if (offset > mapping->host->i_size) {
1164 return 0; /* don't care */
1167 /* check to make sure that we are not extending the file */
1168 if (mapping->host->i_size - offset < (loff_t)to)
1169 to = (unsigned)(mapping->host->i_size - offset);
1171 open_file = find_writable_file(CIFS_I(mapping->host));
1173 bytes_written = cifs_write(open_file->pfile, write_data,
1175 atomic_dec(&open_file->wrtPending);
1176 /* Does mm or vfs already set times? */
1177 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1178 if ((bytes_written > 0) && (offset)) {
1180 } else if (bytes_written < 0) {
1185 cFYI(1, ("No writeable filehandles for inode"));
1193 static int cifs_writepages(struct address_space *mapping,
1194 struct writeback_control *wbc)
1196 struct backing_dev_info *bdi = mapping->backing_dev_info;
1197 unsigned int bytes_to_write;
1198 unsigned int bytes_written;
1199 struct cifs_sb_info *cifs_sb;
1203 int range_whole = 0;
1210 struct cifsFileInfo *open_file;
1212 struct pagevec pvec;
1217 cifs_sb = CIFS_SB(mapping->host->i_sb);
1220 * If wsize is smaller that the page cache size, default to writing
1221 * one page at a time via cifs_writepage
1223 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1224 return generic_writepages(mapping, wbc);
1226 if ((cifs_sb->tcon->ses) && (cifs_sb->tcon->ses->server))
1227 if (cifs_sb->tcon->ses->server->secMode &
1228 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
1229 if (!experimEnabled)
1230 return generic_writepages(mapping, wbc);
1232 iov = kmalloc(32 * sizeof(struct kvec), GFP_KERNEL);
1234 return generic_writepages(mapping, wbc);
1238 * BB: Is this meaningful for a non-block-device file system?
1239 * If it is, we should test it again after we do I/O
1241 if (wbc->nonblocking && bdi_write_congested(bdi)) {
1242 wbc->encountered_congestion = 1;
1249 pagevec_init(&pvec, 0);
1250 if (wbc->range_cyclic) {
1251 index = mapping->writeback_index; /* Start from prev offset */
1254 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1255 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1256 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1261 while (!done && (index <= end) &&
1262 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1263 PAGECACHE_TAG_DIRTY,
1264 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1))) {
1273 for (i = 0; i < nr_pages; i++) {
1274 page = pvec.pages[i];
1276 * At this point we hold neither mapping->tree_lock nor
1277 * lock on the page itself: the page may be truncated or
1278 * invalidated (changing page->mapping to NULL), or even
1279 * swizzled back from swapper_space to tmpfs file
1285 else if (TestSetPageLocked(page))
1288 if (unlikely(page->mapping != mapping)) {
1293 if (!wbc->range_cyclic && page->index > end) {
1299 if (next && (page->index != next)) {
1300 /* Not next consecutive page */
1305 if (wbc->sync_mode != WB_SYNC_NONE)
1306 wait_on_page_writeback(page);
1308 if (PageWriteback(page) ||
1309 !clear_page_dirty_for_io(page)) {
1315 * This actually clears the dirty bit in the radix tree.
1316 * See cifs_writepage() for more commentary.
1318 set_page_writeback(page);
1320 if (page_offset(page) >= mapping->host->i_size) {
1323 end_page_writeback(page);
1328 * BB can we get rid of this? pages are held by pvec
1330 page_cache_get(page);
1332 len = min(mapping->host->i_size - page_offset(page),
1333 (loff_t)PAGE_CACHE_SIZE);
1335 /* reserve iov[0] for the smb header */
1337 iov[n_iov].iov_base = kmap(page);
1338 iov[n_iov].iov_len = len;
1339 bytes_to_write += len;
1343 offset = page_offset(page);
1345 next = page->index + 1;
1346 if (bytes_to_write + PAGE_CACHE_SIZE > cifs_sb->wsize)
1350 /* Search for a writable handle every time we call
1351 * CIFSSMBWrite2. We can't rely on the last handle
1352 * we used to still be valid
1354 open_file = find_writable_file(CIFS_I(mapping->host));
1356 cERROR(1, ("No writable handles for inode"));
1359 rc = CIFSSMBWrite2(xid, cifs_sb->tcon,
1361 bytes_to_write, offset,
1362 &bytes_written, iov, n_iov,
1364 atomic_dec(&open_file->wrtPending);
1365 if (rc || bytes_written < bytes_to_write) {
1366 cERROR(1, ("Write2 ret %d, wrote %d",
1367 rc, bytes_written));
1368 /* BB what if continued retry is
1369 requested via mount flags? */
1370 set_bit(AS_EIO, &mapping->flags);
1372 cifs_stats_bytes_written(cifs_sb->tcon,
1376 for (i = 0; i < n_iov; i++) {
1377 page = pvec.pages[first + i];
1378 /* Should we also set page error on
1379 success rc but too little data written? */
1380 /* BB investigate retry logic on temporary
1381 server crash cases and how recovery works
1382 when page marked as error */
1387 end_page_writeback(page);
1388 page_cache_release(page);
1390 if ((wbc->nr_to_write -= n_iov) <= 0)
1394 pagevec_release(&pvec);
1396 if (!scanned && !done) {
1398 * We hit the last page and there is more work to be done: wrap
1399 * back to the start of the file
1405 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1406 mapping->writeback_index = index;
1413 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1419 /* BB add check for wbc flags */
1420 page_cache_get(page);
1421 if (!PageUptodate(page)) {
1422 cFYI(1, ("ppw - page not up to date"));
1426 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1428 * A writepage() implementation always needs to do either this,
1429 * or re-dirty the page with "redirty_page_for_writepage()" in
1430 * the case of a failure.
1432 * Just unlocking the page will cause the radix tree tag-bits
1433 * to fail to update with the state of the page correctly.
1435 set_page_writeback(page);
1436 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1437 SetPageUptodate(page); /* BB add check for error and Clearuptodate? */
1439 end_page_writeback(page);
1440 page_cache_release(page);
1445 static int cifs_commit_write(struct file *file, struct page *page,
1446 unsigned offset, unsigned to)
1450 struct inode *inode = page->mapping->host;
1451 loff_t position = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1455 cFYI(1, ("commit write for page %p up to position %lld for %d",
1456 page, position, to));
1457 spin_lock(&inode->i_lock);
1458 if (position > inode->i_size) {
1459 i_size_write(inode, position);
1461 spin_unlock(&inode->i_lock);
1462 if (!PageUptodate(page)) {
1463 position = ((loff_t)page->index << PAGE_CACHE_SHIFT) + offset;
1464 /* can not rely on (or let) writepage write this data */
1466 cFYI(1, ("Illegal offsets, can not copy from %d to %d",
1471 /* this is probably better than directly calling
1472 partialpage_write since in this function the file handle is
1473 known which we might as well leverage */
1474 /* BB check if anything else missing out of ppw
1475 such as updating last write time */
1476 page_data = kmap(page);
1477 rc = cifs_write(file, page_data + offset, to-offset,
1481 /* else if (rc < 0) should we set writebehind rc? */
1484 set_page_dirty(page);
1491 int cifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1495 struct inode *inode = file->f_path.dentry->d_inode;
1499 cFYI(1, ("Sync file - name: %s datasync: 0x%x",
1500 dentry->d_name.name, datasync));
1502 rc = filemap_fdatawrite(inode->i_mapping);
1504 CIFS_I(inode)->write_behind_rc = 0;
1509 /* static void cifs_sync_page(struct page *page)
1511 struct address_space *mapping;
1512 struct inode *inode;
1513 unsigned long index = page->index;
1514 unsigned int rpages = 0;
1517 cFYI(1, ("sync page %p",page));
1518 mapping = page->mapping;
1521 inode = mapping->host;
1525 /* fill in rpages then
1526 result = cifs_pagein_inode(inode, index, rpages); */ /* BB finish */
1528 /* cFYI(1, ("rpages is %d for sync page of Index %ld", rpages, index));
1538 * As file closes, flush all cached write data for this inode checking
1539 * for write behind errors.
1541 int cifs_flush(struct file *file, fl_owner_t id)
1543 struct inode *inode = file->f_path.dentry->d_inode;
1546 /* Rather than do the steps manually:
1547 lock the inode for writing
1548 loop through pages looking for write behind data (dirty pages)
1549 coalesce into contiguous 16K (or smaller) chunks to write to server
1550 send to server (prefer in parallel)
1551 deal with writebehind errors
1552 unlock inode for writing
1553 filemapfdatawrite appears easier for the time being */
1555 rc = filemap_fdatawrite(inode->i_mapping);
1556 if (!rc) /* reset wb rc if we were able to write out dirty pages */
1557 CIFS_I(inode)->write_behind_rc = 0;
1559 cFYI(1, ("Flush inode %p file %p rc %d", inode, file, rc));
1564 ssize_t cifs_user_read(struct file *file, char __user *read_data,
1565 size_t read_size, loff_t *poffset)
1568 unsigned int bytes_read = 0;
1569 unsigned int total_read = 0;
1570 unsigned int current_read_size;
1571 struct cifs_sb_info *cifs_sb;
1572 struct cifsTconInfo *pTcon;
1574 struct cifsFileInfo *open_file;
1575 char *smb_read_data;
1576 char __user *current_offset;
1577 struct smb_com_read_rsp *pSMBr;
1580 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1581 pTcon = cifs_sb->tcon;
1583 if (file->private_data == NULL) {
1587 open_file = (struct cifsFileInfo *)file->private_data;
1589 if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
1590 cFYI(1, ("attempting read on write only file instance"));
1592 for (total_read = 0, current_offset = read_data;
1593 read_size > total_read;
1594 total_read += bytes_read, current_offset += bytes_read) {
1595 current_read_size = min_t(const int, read_size - total_read,
1598 smb_read_data = NULL;
1599 while (rc == -EAGAIN) {
1600 int buf_type = CIFS_NO_BUFFER;
1601 if ((open_file->invalidHandle) &&
1602 (!open_file->closePend)) {
1603 rc = cifs_reopen_file(file, TRUE);
1607 rc = CIFSSMBRead(xid, pTcon,
1609 current_read_size, *poffset,
1610 &bytes_read, &smb_read_data,
1612 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
1613 if (smb_read_data) {
1614 if (copy_to_user(current_offset,
1616 4 /* RFC1001 length field */ +
1617 le16_to_cpu(pSMBr->DataOffset),
1622 if (buf_type == CIFS_SMALL_BUFFER)
1623 cifs_small_buf_release(smb_read_data);
1624 else if (buf_type == CIFS_LARGE_BUFFER)
1625 cifs_buf_release(smb_read_data);
1626 smb_read_data = NULL;
1629 if (rc || (bytes_read == 0)) {
1637 cifs_stats_bytes_read(pTcon, bytes_read);
1638 *poffset += bytes_read;
1646 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
1650 unsigned int bytes_read = 0;
1651 unsigned int total_read;
1652 unsigned int current_read_size;
1653 struct cifs_sb_info *cifs_sb;
1654 struct cifsTconInfo *pTcon;
1656 char *current_offset;
1657 struct cifsFileInfo *open_file;
1658 int buf_type = CIFS_NO_BUFFER;
1661 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1662 pTcon = cifs_sb->tcon;
1664 if (file->private_data == NULL) {
1668 open_file = (struct cifsFileInfo *)file->private_data;
1670 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1671 cFYI(1, ("attempting read on write only file instance"));
1673 for (total_read = 0, current_offset = read_data;
1674 read_size > total_read;
1675 total_read += bytes_read, current_offset += bytes_read) {
1676 current_read_size = min_t(const int, read_size - total_read,
1678 /* For windows me and 9x we do not want to request more
1679 than it negotiated since it will refuse the read then */
1681 !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
1682 current_read_size = min_t(const int, current_read_size,
1683 pTcon->ses->server->maxBuf - 128);
1686 while (rc == -EAGAIN) {
1687 if ((open_file->invalidHandle) &&
1688 (!open_file->closePend)) {
1689 rc = cifs_reopen_file(file, TRUE);
1693 rc = CIFSSMBRead(xid, pTcon,
1695 current_read_size, *poffset,
1696 &bytes_read, ¤t_offset,
1699 if (rc || (bytes_read == 0)) {
1707 cifs_stats_bytes_read(pTcon, total_read);
1708 *poffset += bytes_read;
1715 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1717 struct dentry *dentry = file->f_path.dentry;
1721 rc = cifs_revalidate(dentry);
1723 cFYI(1, ("Validation prior to mmap failed, error=%d", rc));
1727 rc = generic_file_mmap(file, vma);
1733 static void cifs_copy_cache_pages(struct address_space *mapping,
1734 struct list_head *pages, int bytes_read, char *data,
1735 struct pagevec *plru_pvec)
1740 while (bytes_read > 0) {
1741 if (list_empty(pages))
1744 page = list_entry(pages->prev, struct page, lru);
1745 list_del(&page->lru);
1747 if (add_to_page_cache(page, mapping, page->index,
1749 page_cache_release(page);
1750 cFYI(1, ("Add page cache failed"));
1751 data += PAGE_CACHE_SIZE;
1752 bytes_read -= PAGE_CACHE_SIZE;
1756 target = kmap_atomic(page, KM_USER0);
1758 if (PAGE_CACHE_SIZE > bytes_read) {
1759 memcpy(target, data, bytes_read);
1760 /* zero the tail end of this partial page */
1761 memset(target + bytes_read, 0,
1762 PAGE_CACHE_SIZE - bytes_read);
1765 memcpy(target, data, PAGE_CACHE_SIZE);
1766 bytes_read -= PAGE_CACHE_SIZE;
1768 kunmap_atomic(target, KM_USER0);
1770 flush_dcache_page(page);
1771 SetPageUptodate(page);
1773 if (!pagevec_add(plru_pvec, page))
1774 __pagevec_lru_add(plru_pvec);
1775 data += PAGE_CACHE_SIZE;
1780 static int cifs_readpages(struct file *file, struct address_space *mapping,
1781 struct list_head *page_list, unsigned num_pages)
1787 struct cifs_sb_info *cifs_sb;
1788 struct cifsTconInfo *pTcon;
1789 unsigned int bytes_read = 0;
1790 unsigned int read_size, i;
1791 char *smb_read_data = NULL;
1792 struct smb_com_read_rsp *pSMBr;
1793 struct pagevec lru_pvec;
1794 struct cifsFileInfo *open_file;
1795 int buf_type = CIFS_NO_BUFFER;
1798 if (file->private_data == NULL) {
1802 open_file = (struct cifsFileInfo *)file->private_data;
1803 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1804 pTcon = cifs_sb->tcon;
1806 pagevec_init(&lru_pvec, 0);
1807 #ifdef CONFIG_CIFS_DEBUG2
1808 cFYI(1, ("rpages: num pages %d", num_pages));
1810 for (i = 0; i < num_pages; ) {
1811 unsigned contig_pages;
1812 struct page *tmp_page;
1813 unsigned long expected_index;
1815 if (list_empty(page_list))
1818 page = list_entry(page_list->prev, struct page, lru);
1819 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1821 /* count adjacent pages that we will read into */
1824 list_entry(page_list->prev, struct page, lru)->index;
1825 list_for_each_entry_reverse(tmp_page, page_list, lru) {
1826 if (tmp_page->index == expected_index) {
1832 if (contig_pages + i > num_pages)
1833 contig_pages = num_pages - i;
1835 /* for reads over a certain size could initiate async
1838 read_size = contig_pages * PAGE_CACHE_SIZE;
1839 /* Read size needs to be in multiples of one page */
1840 read_size = min_t(const unsigned int, read_size,
1841 cifs_sb->rsize & PAGE_CACHE_MASK);
1842 #ifdef CONFIG_CIFS_DEBUG2
1843 cFYI(1, ("rpages: read size 0x%x contiguous pages %d",
1844 read_size, contig_pages));
1847 while (rc == -EAGAIN) {
1848 if ((open_file->invalidHandle) &&
1849 (!open_file->closePend)) {
1850 rc = cifs_reopen_file(file, TRUE);
1855 rc = CIFSSMBRead(xid, pTcon,
1858 &bytes_read, &smb_read_data,
1860 /* BB more RC checks ? */
1861 if (rc == -EAGAIN) {
1862 if (smb_read_data) {
1863 if (buf_type == CIFS_SMALL_BUFFER)
1864 cifs_small_buf_release(smb_read_data);
1865 else if (buf_type == CIFS_LARGE_BUFFER)
1866 cifs_buf_release(smb_read_data);
1867 smb_read_data = NULL;
1871 if ((rc < 0) || (smb_read_data == NULL)) {
1872 cFYI(1, ("Read error in readpages: %d", rc));
1874 } else if (bytes_read > 0) {
1875 task_io_account_read(bytes_read);
1876 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
1877 cifs_copy_cache_pages(mapping, page_list, bytes_read,
1878 smb_read_data + 4 /* RFC1001 hdr */ +
1879 le16_to_cpu(pSMBr->DataOffset), &lru_pvec);
1881 i += bytes_read >> PAGE_CACHE_SHIFT;
1882 cifs_stats_bytes_read(pTcon, bytes_read);
1883 if ((bytes_read & PAGE_CACHE_MASK) != bytes_read) {
1884 i++; /* account for partial page */
1886 /* server copy of file can have smaller size
1888 /* BB do we need to verify this common case ?
1889 this case is ok - if we are at server EOF
1890 we will hit it on next read */
1895 cFYI(1, ("No bytes read (%d) at offset %lld . "
1896 "Cleaning remaining pages from readahead list",
1897 bytes_read, offset));
1898 /* BB turn off caching and do new lookup on
1899 file size at server? */
1902 if (smb_read_data) {
1903 if (buf_type == CIFS_SMALL_BUFFER)
1904 cifs_small_buf_release(smb_read_data);
1905 else if (buf_type == CIFS_LARGE_BUFFER)
1906 cifs_buf_release(smb_read_data);
1907 smb_read_data = NULL;
1912 pagevec_lru_add(&lru_pvec);
1914 /* need to free smb_read_data buf before exit */
1915 if (smb_read_data) {
1916 if (buf_type == CIFS_SMALL_BUFFER)
1917 cifs_small_buf_release(smb_read_data);
1918 else if (buf_type == CIFS_LARGE_BUFFER)
1919 cifs_buf_release(smb_read_data);
1920 smb_read_data = NULL;
1927 static int cifs_readpage_worker(struct file *file, struct page *page,
1933 page_cache_get(page);
1934 read_data = kmap(page);
1935 /* for reads over a certain size could initiate async read ahead */
1937 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
1942 cFYI(1, ("Bytes read %d", rc));
1944 file->f_path.dentry->d_inode->i_atime =
1945 current_fs_time(file->f_path.dentry->d_inode->i_sb);
1947 if (PAGE_CACHE_SIZE > rc)
1948 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
1950 flush_dcache_page(page);
1951 SetPageUptodate(page);
1956 page_cache_release(page);
1960 static int cifs_readpage(struct file *file, struct page *page)
1962 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1968 if (file->private_data == NULL) {
1973 cFYI(1, ("readpage %p at offset %d 0x%x\n",
1974 page, (int)offset, (int)offset));
1976 rc = cifs_readpage_worker(file, page, &offset);
1984 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
1986 struct cifsFileInfo *open_file;
1988 read_lock(&GlobalSMBSeslock);
1989 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1990 if (open_file->closePend)
1992 if (open_file->pfile &&
1993 ((open_file->pfile->f_flags & O_RDWR) ||
1994 (open_file->pfile->f_flags & O_WRONLY))) {
1995 read_unlock(&GlobalSMBSeslock);
1999 read_unlock(&GlobalSMBSeslock);
2003 /* We do not want to update the file size from server for inodes
2004 open for write - to avoid races with writepage extending
2005 the file - in the future we could consider allowing
2006 refreshing the inode only on increases in the file size
2007 but this is tricky to do without racing with writebehind
2008 page caching in the current Linux kernel design */
2009 int is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
2014 if (is_inode_writable(cifsInode)) {
2015 /* This inode is open for write at least once */
2016 struct cifs_sb_info *cifs_sb;
2018 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
2019 if ( cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO ) {
2020 /* since no page cache to corrupt on directio
2021 we can change size safely */
2025 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
2033 static int cifs_prepare_write(struct file *file, struct page *page,
2034 unsigned from, unsigned to)
2040 cFYI(1, ("prepare write for page %p from %d to %d", page, from, to));
2041 if (PageUptodate(page))
2044 /* If we are writing a full page it will be up to date,
2045 no need to read from the server */
2046 if ((to == PAGE_CACHE_SIZE) && (from == 0)) {
2047 SetPageUptodate(page);
2051 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2052 i_size = i_size_read(page->mapping->host);
2054 if ((offset >= i_size) ||
2055 ((from == 0) && (offset + to) >= i_size)) {
2057 * We don't need to read data beyond the end of the file.
2058 * zero it, and set the page uptodate
2060 simple_prepare_write(file, page, from, to);
2061 SetPageUptodate(page);
2062 } else if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
2063 /* might as well read a page, it is fast enough */
2064 rc = cifs_readpage_worker(file, page, &offset);
2066 /* we could try using another file handle if there is one -
2067 but how would we lock it to prevent close of that handle
2068 racing with this read? In any case
2069 this will be written out by commit_write so is fine */
2072 /* we do not need to pass errors back
2073 e.g. if we do not have read access to the file
2074 because cifs_commit_write will do the right thing. -- shaggy */
2079 const struct address_space_operations cifs_addr_ops = {
2080 .readpage = cifs_readpage,
2081 .readpages = cifs_readpages,
2082 .writepage = cifs_writepage,
2083 .writepages = cifs_writepages,
2084 .prepare_write = cifs_prepare_write,
2085 .commit_write = cifs_commit_write,
2086 .set_page_dirty = __set_page_dirty_nobuffers,
2087 /* .sync_page = cifs_sync_page, */
2092 * cifs_readpages requires the server to support a buffer large enough to
2093 * contain the header plus one complete page of data. Otherwise, we need
2094 * to leave cifs_readpages out of the address space operations.
2096 const struct address_space_operations cifs_addr_ops_smallbuf = {
2097 .readpage = cifs_readpage,
2098 .writepage = cifs_writepage,
2099 .writepages = cifs_writepages,
2100 .prepare_write = cifs_prepare_write,
2101 .commit_write = cifs_commit_write,
2102 .set_page_dirty = __set_page_dirty_nobuffers,
2103 /* .sync_page = cifs_sync_page, */