2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/devfs_fs_kernel.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/suspend.h>
45 #include <linux/init.h>
47 #include <linux/file.h>
50 #include <linux/kmod.h>
53 #include <asm/unaligned.h>
55 #define MAJOR_NR MD_MAJOR
58 /* 63 partitions with the alternate major number (mdp) */
59 #define MdpMinorShift 6
62 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66 static void autostart_arrays (int part);
69 static mdk_personality_t *pers[MAX_PERSONALITY];
70 static DEFINE_SPINLOCK(pers_lock);
73 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
74 * is 1000 KB/sec, so the extra system load does not show up that much.
75 * Increase it if you want to have more _guaranteed_ speed. Note that
76 * the RAID driver will use the maximum available bandwith if the IO
77 * subsystem is idle. There is also an 'absolute maximum' reconstruction
78 * speed limit - in case reconstruction slows down your system despite
81 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84 static int sysctl_speed_limit_min = 1000;
85 static int sysctl_speed_limit_max = 200000;
87 static struct ctl_table_header *raid_table_header;
89 static ctl_table raid_table[] = {
91 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
92 .procname = "speed_limit_min",
93 .data = &sysctl_speed_limit_min,
94 .maxlen = sizeof(int),
96 .proc_handler = &proc_dointvec,
99 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
100 .procname = "speed_limit_max",
101 .data = &sysctl_speed_limit_max,
102 .maxlen = sizeof(int),
104 .proc_handler = &proc_dointvec,
109 static ctl_table raid_dir_table[] = {
111 .ctl_name = DEV_RAID,
120 static ctl_table raid_root_table[] = {
126 .child = raid_dir_table,
131 static struct block_device_operations md_fops;
134 * Enables to iterate over all existing md arrays
135 * all_mddevs_lock protects this list.
137 static LIST_HEAD(all_mddevs);
138 static DEFINE_SPINLOCK(all_mddevs_lock);
142 * iterates through all used mddevs in the system.
143 * We take care to grab the all_mddevs_lock whenever navigating
144 * the list, and to always hold a refcount when unlocked.
145 * Any code which breaks out of this loop while own
146 * a reference to the current mddev and must mddev_put it.
148 #define ITERATE_MDDEV(mddev,tmp) \
150 for (({ spin_lock(&all_mddevs_lock); \
151 tmp = all_mddevs.next; \
153 ({ if (tmp != &all_mddevs) \
154 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
155 spin_unlock(&all_mddevs_lock); \
156 if (mddev) mddev_put(mddev); \
157 mddev = list_entry(tmp, mddev_t, all_mddevs); \
158 tmp != &all_mddevs;}); \
159 ({ spin_lock(&all_mddevs_lock); \
164 static int md_fail_request (request_queue_t *q, struct bio *bio)
166 bio_io_error(bio, bio->bi_size);
170 static inline mddev_t *mddev_get(mddev_t *mddev)
172 atomic_inc(&mddev->active);
176 static void mddev_put(mddev_t *mddev)
178 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
180 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
181 list_del(&mddev->all_mddevs);
182 blk_put_queue(mddev->queue);
185 spin_unlock(&all_mddevs_lock);
188 static mddev_t * mddev_find(dev_t unit)
190 mddev_t *mddev, *new = NULL;
193 spin_lock(&all_mddevs_lock);
194 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
195 if (mddev->unit == unit) {
197 spin_unlock(&all_mddevs_lock);
203 list_add(&new->all_mddevs, &all_mddevs);
204 spin_unlock(&all_mddevs_lock);
207 spin_unlock(&all_mddevs_lock);
209 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
213 memset(new, 0, sizeof(*new));
216 if (MAJOR(unit) == MD_MAJOR)
217 new->md_minor = MINOR(unit);
219 new->md_minor = MINOR(unit) >> MdpMinorShift;
221 init_MUTEX(&new->reconfig_sem);
222 INIT_LIST_HEAD(&new->disks);
223 INIT_LIST_HEAD(&new->all_mddevs);
224 init_timer(&new->safemode_timer);
225 atomic_set(&new->active, 1);
226 spin_lock_init(&new->write_lock);
227 init_waitqueue_head(&new->sb_wait);
229 new->queue = blk_alloc_queue(GFP_KERNEL);
235 blk_queue_make_request(new->queue, md_fail_request);
240 static inline int mddev_lock(mddev_t * mddev)
242 return down_interruptible(&mddev->reconfig_sem);
245 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
247 down(&mddev->reconfig_sem);
250 static inline int mddev_trylock(mddev_t * mddev)
252 return down_trylock(&mddev->reconfig_sem);
255 static inline void mddev_unlock(mddev_t * mddev)
257 up(&mddev->reconfig_sem);
260 md_wakeup_thread(mddev->thread);
263 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
266 struct list_head *tmp;
268 ITERATE_RDEV(mddev,rdev,tmp) {
269 if (rdev->desc_nr == nr)
275 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
277 struct list_head *tmp;
280 ITERATE_RDEV(mddev,rdev,tmp) {
281 if (rdev->bdev->bd_dev == dev)
287 inline static sector_t calc_dev_sboffset(struct block_device *bdev)
289 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
290 return MD_NEW_SIZE_BLOCKS(size);
293 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
297 size = rdev->sb_offset;
300 size &= ~((sector_t)chunk_size/1024 - 1);
304 static int alloc_disk_sb(mdk_rdev_t * rdev)
309 rdev->sb_page = alloc_page(GFP_KERNEL);
310 if (!rdev->sb_page) {
311 printk(KERN_ALERT "md: out of memory.\n");
318 static void free_disk_sb(mdk_rdev_t * rdev)
321 page_cache_release(rdev->sb_page);
323 rdev->sb_page = NULL;
330 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
332 mdk_rdev_t *rdev = bio->bi_private;
336 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
337 md_error(rdev->mddev, rdev);
339 if (atomic_dec_and_test(&rdev->mddev->pending_writes))
340 wake_up(&rdev->mddev->sb_wait);
345 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
346 sector_t sector, int size, struct page *page)
348 /* write first size bytes of page to sector of rdev
349 * Increment mddev->pending_writes before returning
350 * and decrement it on completion, waking up sb_wait
351 * if zero is reached.
352 * If an error occurred, call md_error
354 struct bio *bio = bio_alloc(GFP_NOIO, 1);
356 bio->bi_bdev = rdev->bdev;
357 bio->bi_sector = sector;
358 bio_add_page(bio, page, size, 0);
359 bio->bi_private = rdev;
360 bio->bi_end_io = super_written;
361 atomic_inc(&mddev->pending_writes);
362 submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
365 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
370 complete((struct completion*)bio->bi_private);
374 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
375 struct page *page, int rw)
377 struct bio *bio = bio_alloc(GFP_NOIO, 1);
378 struct completion event;
381 rw |= (1 << BIO_RW_SYNC);
384 bio->bi_sector = sector;
385 bio_add_page(bio, page, size, 0);
386 init_completion(&event);
387 bio->bi_private = &event;
388 bio->bi_end_io = bi_complete;
390 wait_for_completion(&event);
392 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
397 static int read_disk_sb(mdk_rdev_t * rdev)
399 char b[BDEVNAME_SIZE];
400 if (!rdev->sb_page) {
408 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
414 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
415 bdevname(rdev->bdev,b));
419 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
421 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
422 (sb1->set_uuid1 == sb2->set_uuid1) &&
423 (sb1->set_uuid2 == sb2->set_uuid2) &&
424 (sb1->set_uuid3 == sb2->set_uuid3))
432 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
435 mdp_super_t *tmp1, *tmp2;
437 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
438 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
440 if (!tmp1 || !tmp2) {
442 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
450 * nr_disks is not constant
455 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
466 static unsigned int calc_sb_csum(mdp_super_t * sb)
468 unsigned int disk_csum, csum;
470 disk_csum = sb->sb_csum;
472 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
473 sb->sb_csum = disk_csum;
479 * Handle superblock details.
480 * We want to be able to handle multiple superblock formats
481 * so we have a common interface to them all, and an array of
482 * different handlers.
483 * We rely on user-space to write the initial superblock, and support
484 * reading and updating of superblocks.
485 * Interface methods are:
486 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
487 * loads and validates a superblock on dev.
488 * if refdev != NULL, compare superblocks on both devices
490 * 0 - dev has a superblock that is compatible with refdev
491 * 1 - dev has a superblock that is compatible and newer than refdev
492 * so dev should be used as the refdev in future
493 * -EINVAL superblock incompatible or invalid
494 * -othererror e.g. -EIO
496 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
497 * Verify that dev is acceptable into mddev.
498 * The first time, mddev->raid_disks will be 0, and data from
499 * dev should be merged in. Subsequent calls check that dev
500 * is new enough. Return 0 or -EINVAL
502 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
503 * Update the superblock for rdev with data in mddev
504 * This does not write to disc.
510 struct module *owner;
511 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
512 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
513 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
517 * load_super for 0.90.0
519 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
521 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
527 * Calculate the position of the superblock,
528 * it's at the end of the disk.
530 * It also happens to be a multiple of 4Kb.
532 sb_offset = calc_dev_sboffset(rdev->bdev);
533 rdev->sb_offset = sb_offset;
535 ret = read_disk_sb(rdev);
540 bdevname(rdev->bdev, b);
541 sb = (mdp_super_t*)page_address(rdev->sb_page);
543 if (sb->md_magic != MD_SB_MAGIC) {
544 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
549 if (sb->major_version != 0 ||
550 sb->minor_version != 90) {
551 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
552 sb->major_version, sb->minor_version,
557 if (sb->raid_disks <= 0)
560 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
561 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
566 rdev->preferred_minor = sb->md_minor;
567 rdev->data_offset = 0;
569 if (sb->level == LEVEL_MULTIPATH)
572 rdev->desc_nr = sb->this_disk.number;
578 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
579 if (!uuid_equal(refsb, sb)) {
580 printk(KERN_WARNING "md: %s has different UUID to %s\n",
581 b, bdevname(refdev->bdev,b2));
584 if (!sb_equal(refsb, sb)) {
585 printk(KERN_WARNING "md: %s has same UUID"
586 " but different superblock to %s\n",
587 b, bdevname(refdev->bdev, b2));
591 ev2 = md_event(refsb);
597 rdev->size = calc_dev_size(rdev, sb->chunk_size);
604 * validate_super for 0.90.0
606 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
609 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
611 rdev->raid_disk = -1;
613 if (mddev->raid_disks == 0) {
614 mddev->major_version = 0;
615 mddev->minor_version = sb->minor_version;
616 mddev->patch_version = sb->patch_version;
617 mddev->persistent = ! sb->not_persistent;
618 mddev->chunk_size = sb->chunk_size;
619 mddev->ctime = sb->ctime;
620 mddev->utime = sb->utime;
621 mddev->level = sb->level;
622 mddev->layout = sb->layout;
623 mddev->raid_disks = sb->raid_disks;
624 mddev->size = sb->size;
625 mddev->events = md_event(sb);
627 if (sb->state & (1<<MD_SB_CLEAN))
628 mddev->recovery_cp = MaxSector;
630 if (sb->events_hi == sb->cp_events_hi &&
631 sb->events_lo == sb->cp_events_lo) {
632 mddev->recovery_cp = sb->recovery_cp;
634 mddev->recovery_cp = 0;
637 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
638 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
639 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
640 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
642 mddev->max_disks = MD_SB_DISKS;
644 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
645 mddev->bitmap_file == NULL) {
646 if (mddev->level != 1) {
647 /* FIXME use a better test */
648 printk(KERN_WARNING "md: bitmaps only support for raid1\n");
651 mddev->bitmap_offset = (MD_SB_BYTES >> 9);
654 } else if (mddev->pers == NULL) {
655 /* Insist on good event counter while assembling */
656 __u64 ev1 = md_event(sb);
658 if (ev1 < mddev->events)
660 } else if (mddev->bitmap) {
661 /* if adding to array with a bitmap, then we can accept an
662 * older device ... but not too old.
664 __u64 ev1 = md_event(sb);
665 if (ev1 < mddev->bitmap->events_cleared)
667 } else /* just a hot-add of a new device, leave raid_disk at -1 */
670 if (mddev->level != LEVEL_MULTIPATH) {
672 desc = sb->disks + rdev->desc_nr;
674 if (desc->state & (1<<MD_DISK_FAULTY))
676 else if (desc->state & (1<<MD_DISK_SYNC) &&
677 desc->raid_disk < mddev->raid_disks) {
679 rdev->raid_disk = desc->raid_disk;
681 } else /* MULTIPATH are always insync */
687 * sync_super for 0.90.0
689 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
692 struct list_head *tmp;
694 int next_spare = mddev->raid_disks;
696 /* make rdev->sb match mddev data..
699 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
700 * 3/ any empty disks < next_spare become removed
702 * disks[0] gets initialised to REMOVED because
703 * we cannot be sure from other fields if it has
704 * been initialised or not.
707 int active=0, working=0,failed=0,spare=0,nr_disks=0;
709 sb = (mdp_super_t*)page_address(rdev->sb_page);
711 memset(sb, 0, sizeof(*sb));
713 sb->md_magic = MD_SB_MAGIC;
714 sb->major_version = mddev->major_version;
715 sb->minor_version = mddev->minor_version;
716 sb->patch_version = mddev->patch_version;
717 sb->gvalid_words = 0; /* ignored */
718 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
719 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
720 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
721 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
723 sb->ctime = mddev->ctime;
724 sb->level = mddev->level;
725 sb->size = mddev->size;
726 sb->raid_disks = mddev->raid_disks;
727 sb->md_minor = mddev->md_minor;
728 sb->not_persistent = !mddev->persistent;
729 sb->utime = mddev->utime;
731 sb->events_hi = (mddev->events>>32);
732 sb->events_lo = (u32)mddev->events;
736 sb->recovery_cp = mddev->recovery_cp;
737 sb->cp_events_hi = (mddev->events>>32);
738 sb->cp_events_lo = (u32)mddev->events;
739 if (mddev->recovery_cp == MaxSector)
740 sb->state = (1<< MD_SB_CLEAN);
744 sb->layout = mddev->layout;
745 sb->chunk_size = mddev->chunk_size;
747 if (mddev->bitmap && mddev->bitmap_file == NULL)
748 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
750 sb->disks[0].state = (1<<MD_DISK_REMOVED);
751 ITERATE_RDEV(mddev,rdev2,tmp) {
753 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
754 rdev2->desc_nr = rdev2->raid_disk;
756 rdev2->desc_nr = next_spare++;
757 d = &sb->disks[rdev2->desc_nr];
759 d->number = rdev2->desc_nr;
760 d->major = MAJOR(rdev2->bdev->bd_dev);
761 d->minor = MINOR(rdev2->bdev->bd_dev);
762 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
763 d->raid_disk = rdev2->raid_disk;
765 d->raid_disk = rdev2->desc_nr; /* compatibility */
767 d->state = (1<<MD_DISK_FAULTY);
769 } else if (rdev2->in_sync) {
770 d->state = (1<<MD_DISK_ACTIVE);
771 d->state |= (1<<MD_DISK_SYNC);
781 /* now set the "removed" and "faulty" bits on any missing devices */
782 for (i=0 ; i < mddev->raid_disks ; i++) {
783 mdp_disk_t *d = &sb->disks[i];
784 if (d->state == 0 && d->number == 0) {
787 d->state = (1<<MD_DISK_REMOVED);
788 d->state |= (1<<MD_DISK_FAULTY);
792 sb->nr_disks = nr_disks;
793 sb->active_disks = active;
794 sb->working_disks = working;
795 sb->failed_disks = failed;
796 sb->spare_disks = spare;
798 sb->this_disk = sb->disks[rdev->desc_nr];
799 sb->sb_csum = calc_sb_csum(sb);
803 * version 1 superblock
806 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
808 unsigned int disk_csum, csum;
809 unsigned long long newcsum;
810 int size = 256 + le32_to_cpu(sb->max_dev)*2;
811 unsigned int *isuper = (unsigned int*)sb;
814 disk_csum = sb->sb_csum;
817 for (i=0; size>=4; size -= 4 )
818 newcsum += le32_to_cpu(*isuper++);
821 newcsum += le16_to_cpu(*(unsigned short*) isuper);
823 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
824 sb->sb_csum = disk_csum;
825 return cpu_to_le32(csum);
828 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
830 struct mdp_superblock_1 *sb;
833 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
836 * Calculate the position of the superblock.
837 * It is always aligned to a 4K boundary and
838 * depeding on minor_version, it can be:
839 * 0: At least 8K, but less than 12K, from end of device
840 * 1: At start of device
841 * 2: 4K from start of device.
843 switch(minor_version) {
845 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
847 sb_offset &= ~(sector_t)(4*2-1);
848 /* convert from sectors to K */
860 rdev->sb_offset = sb_offset;
862 ret = read_disk_sb(rdev);
866 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
868 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
869 sb->major_version != cpu_to_le32(1) ||
870 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
871 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
872 sb->feature_map != 0)
875 if (calc_sb_1_csum(sb) != sb->sb_csum) {
876 printk("md: invalid superblock checksum on %s\n",
877 bdevname(rdev->bdev,b));
880 if (le64_to_cpu(sb->data_size) < 10) {
881 printk("md: data_size too small on %s\n",
882 bdevname(rdev->bdev,b));
885 rdev->preferred_minor = 0xffff;
886 rdev->data_offset = le64_to_cpu(sb->data_offset);
892 struct mdp_superblock_1 *refsb =
893 (struct mdp_superblock_1*)page_address(refdev->sb_page);
895 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
896 sb->level != refsb->level ||
897 sb->layout != refsb->layout ||
898 sb->chunksize != refsb->chunksize) {
899 printk(KERN_WARNING "md: %s has strangely different"
900 " superblock to %s\n",
901 bdevname(rdev->bdev,b),
902 bdevname(refdev->bdev,b2));
905 ev1 = le64_to_cpu(sb->events);
906 ev2 = le64_to_cpu(refsb->events);
912 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
914 rdev->size = rdev->sb_offset;
915 if (rdev->size < le64_to_cpu(sb->data_size)/2)
917 rdev->size = le64_to_cpu(sb->data_size)/2;
918 if (le32_to_cpu(sb->chunksize))
919 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
923 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
925 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
927 rdev->raid_disk = -1;
929 if (mddev->raid_disks == 0) {
930 mddev->major_version = 1;
931 mddev->patch_version = 0;
932 mddev->persistent = 1;
933 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
934 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
935 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
936 mddev->level = le32_to_cpu(sb->level);
937 mddev->layout = le32_to_cpu(sb->layout);
938 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
939 mddev->size = le64_to_cpu(sb->size)/2;
940 mddev->events = le64_to_cpu(sb->events);
942 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
943 memcpy(mddev->uuid, sb->set_uuid, 16);
945 mddev->max_disks = (4096-256)/2;
947 if ((le32_to_cpu(sb->feature_map) & 1) &&
948 mddev->bitmap_file == NULL ) {
949 if (mddev->level != 1) {
950 printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
953 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
955 } else if (mddev->pers == NULL) {
956 /* Insist of good event counter while assembling */
957 __u64 ev1 = le64_to_cpu(sb->events);
959 if (ev1 < mddev->events)
961 } else if (mddev->bitmap) {
962 /* If adding to array with a bitmap, then we can accept an
963 * older device, but not too old.
965 __u64 ev1 = le64_to_cpu(sb->events);
966 if (ev1 < mddev->bitmap->events_cleared)
968 } else /* just a hot-add of a new device, leave raid_disk at -1 */
971 if (mddev->level != LEVEL_MULTIPATH) {
973 rdev->desc_nr = le32_to_cpu(sb->dev_number);
974 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
976 case 0xffff: /* spare */
979 case 0xfffe: /* faulty */
985 rdev->raid_disk = role;
988 } else /* MULTIPATH are always insync */
994 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
996 struct mdp_superblock_1 *sb;
997 struct list_head *tmp;
1000 /* make rdev->sb match mddev and rdev data. */
1002 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1004 sb->feature_map = 0;
1006 memset(sb->pad1, 0, sizeof(sb->pad1));
1007 memset(sb->pad2, 0, sizeof(sb->pad2));
1008 memset(sb->pad3, 0, sizeof(sb->pad3));
1010 sb->utime = cpu_to_le64((__u64)mddev->utime);
1011 sb->events = cpu_to_le64(mddev->events);
1013 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1015 sb->resync_offset = cpu_to_le64(0);
1017 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1018 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1019 sb->feature_map = cpu_to_le32(1);
1023 ITERATE_RDEV(mddev,rdev2,tmp)
1024 if (rdev2->desc_nr+1 > max_dev)
1025 max_dev = rdev2->desc_nr+1;
1027 sb->max_dev = cpu_to_le32(max_dev);
1028 for (i=0; i<max_dev;i++)
1029 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1031 ITERATE_RDEV(mddev,rdev2,tmp) {
1034 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1035 else if (rdev2->in_sync)
1036 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1038 sb->dev_roles[i] = cpu_to_le16(0xffff);
1041 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1042 sb->sb_csum = calc_sb_1_csum(sb);
1046 static struct super_type super_types[] = {
1049 .owner = THIS_MODULE,
1050 .load_super = super_90_load,
1051 .validate_super = super_90_validate,
1052 .sync_super = super_90_sync,
1056 .owner = THIS_MODULE,
1057 .load_super = super_1_load,
1058 .validate_super = super_1_validate,
1059 .sync_super = super_1_sync,
1063 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1065 struct list_head *tmp;
1068 ITERATE_RDEV(mddev,rdev,tmp)
1069 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1075 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1077 struct list_head *tmp;
1080 ITERATE_RDEV(mddev1,rdev,tmp)
1081 if (match_dev_unit(mddev2, rdev))
1087 static LIST_HEAD(pending_raid_disks);
1089 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1091 mdk_rdev_t *same_pdev;
1092 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1098 same_pdev = match_dev_unit(mddev, rdev);
1101 "%s: WARNING: %s appears to be on the same physical"
1102 " disk as %s. True\n protection against single-disk"
1103 " failure might be compromised.\n",
1104 mdname(mddev), bdevname(rdev->bdev,b),
1105 bdevname(same_pdev->bdev,b2));
1107 /* Verify rdev->desc_nr is unique.
1108 * If it is -1, assign a free number, else
1109 * check number is not in use
1111 if (rdev->desc_nr < 0) {
1113 if (mddev->pers) choice = mddev->raid_disks;
1114 while (find_rdev_nr(mddev, choice))
1116 rdev->desc_nr = choice;
1118 if (find_rdev_nr(mddev, rdev->desc_nr))
1122 list_add(&rdev->same_set, &mddev->disks);
1123 rdev->mddev = mddev;
1124 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1128 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1130 char b[BDEVNAME_SIZE];
1135 list_del_init(&rdev->same_set);
1136 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1141 * prevent the device from being mounted, repartitioned or
1142 * otherwise reused by a RAID array (or any other kernel
1143 * subsystem), by bd_claiming the device.
1145 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1148 struct block_device *bdev;
1149 char b[BDEVNAME_SIZE];
1151 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1153 printk(KERN_ERR "md: could not open %s.\n",
1154 __bdevname(dev, b));
1155 return PTR_ERR(bdev);
1157 err = bd_claim(bdev, rdev);
1159 printk(KERN_ERR "md: could not bd_claim %s.\n",
1168 static void unlock_rdev(mdk_rdev_t *rdev)
1170 struct block_device *bdev = rdev->bdev;
1178 void md_autodetect_dev(dev_t dev);
1180 static void export_rdev(mdk_rdev_t * rdev)
1182 char b[BDEVNAME_SIZE];
1183 printk(KERN_INFO "md: export_rdev(%s)\n",
1184 bdevname(rdev->bdev,b));
1188 list_del_init(&rdev->same_set);
1190 md_autodetect_dev(rdev->bdev->bd_dev);
1196 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1198 unbind_rdev_from_array(rdev);
1202 static void export_array(mddev_t *mddev)
1204 struct list_head *tmp;
1207 ITERATE_RDEV(mddev,rdev,tmp) {
1212 kick_rdev_from_array(rdev);
1214 if (!list_empty(&mddev->disks))
1216 mddev->raid_disks = 0;
1217 mddev->major_version = 0;
1220 static void print_desc(mdp_disk_t *desc)
1222 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1223 desc->major,desc->minor,desc->raid_disk,desc->state);
1226 static void print_sb(mdp_super_t *sb)
1231 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1232 sb->major_version, sb->minor_version, sb->patch_version,
1233 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1235 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1236 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1237 sb->md_minor, sb->layout, sb->chunk_size);
1238 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1239 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1240 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1241 sb->failed_disks, sb->spare_disks,
1242 sb->sb_csum, (unsigned long)sb->events_lo);
1245 for (i = 0; i < MD_SB_DISKS; i++) {
1248 desc = sb->disks + i;
1249 if (desc->number || desc->major || desc->minor ||
1250 desc->raid_disk || (desc->state && (desc->state != 4))) {
1251 printk(" D %2d: ", i);
1255 printk(KERN_INFO "md: THIS: ");
1256 print_desc(&sb->this_disk);
1260 static void print_rdev(mdk_rdev_t *rdev)
1262 char b[BDEVNAME_SIZE];
1263 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1264 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1265 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1266 if (rdev->sb_loaded) {
1267 printk(KERN_INFO "md: rdev superblock:\n");
1268 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1270 printk(KERN_INFO "md: no rdev superblock!\n");
1273 void md_print_devices(void)
1275 struct list_head *tmp, *tmp2;
1278 char b[BDEVNAME_SIZE];
1281 printk("md: **********************************\n");
1282 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1283 printk("md: **********************************\n");
1284 ITERATE_MDDEV(mddev,tmp) {
1287 bitmap_print_sb(mddev->bitmap);
1289 printk("%s: ", mdname(mddev));
1290 ITERATE_RDEV(mddev,rdev,tmp2)
1291 printk("<%s>", bdevname(rdev->bdev,b));
1294 ITERATE_RDEV(mddev,rdev,tmp2)
1297 printk("md: **********************************\n");
1302 static void sync_sbs(mddev_t * mddev)
1305 struct list_head *tmp;
1307 ITERATE_RDEV(mddev,rdev,tmp) {
1308 super_types[mddev->major_version].
1309 sync_super(mddev, rdev);
1310 rdev->sb_loaded = 1;
1314 static void md_update_sb(mddev_t * mddev)
1317 struct list_head *tmp;
1322 spin_lock(&mddev->write_lock);
1323 sync_req = mddev->in_sync;
1324 mddev->utime = get_seconds();
1327 if (!mddev->events) {
1329 * oops, this 64-bit counter should never wrap.
1330 * Either we are in around ~1 trillion A.C., assuming
1331 * 1 reboot per second, or we have a bug:
1336 mddev->sb_dirty = 2;
1340 * do not write anything to disk if using
1341 * nonpersistent superblocks
1343 if (!mddev->persistent) {
1344 mddev->sb_dirty = 0;
1345 spin_unlock(&mddev->write_lock);
1346 wake_up(&mddev->sb_wait);
1349 spin_unlock(&mddev->write_lock);
1352 "md: updating %s RAID superblock on device (in sync %d)\n",
1353 mdname(mddev),mddev->in_sync);
1355 err = bitmap_update_sb(mddev->bitmap);
1356 ITERATE_RDEV(mddev,rdev,tmp) {
1357 char b[BDEVNAME_SIZE];
1358 dprintk(KERN_INFO "md: ");
1360 dprintk("(skipping faulty ");
1362 dprintk("%s ", bdevname(rdev->bdev,b));
1363 if (!rdev->faulty) {
1364 md_super_write(mddev,rdev,
1365 rdev->sb_offset<<1, MD_SB_BYTES,
1367 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1368 bdevname(rdev->bdev,b),
1369 (unsigned long long)rdev->sb_offset);
1373 if (mddev->level == LEVEL_MULTIPATH)
1374 /* only need to write one superblock... */
1377 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1378 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1380 spin_lock(&mddev->write_lock);
1381 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1382 /* have to write it out again */
1383 spin_unlock(&mddev->write_lock);
1386 mddev->sb_dirty = 0;
1387 spin_unlock(&mddev->write_lock);
1388 wake_up(&mddev->sb_wait);
1393 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1395 * mark the device faulty if:
1397 * - the device is nonexistent (zero size)
1398 * - the device has no valid superblock
1400 * a faulty rdev _never_ has rdev->sb set.
1402 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1404 char b[BDEVNAME_SIZE];
1409 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1411 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1412 return ERR_PTR(-ENOMEM);
1414 memset(rdev, 0, sizeof(*rdev));
1416 if ((err = alloc_disk_sb(rdev)))
1419 err = lock_rdev(rdev, newdev);
1426 rdev->data_offset = 0;
1427 atomic_set(&rdev->nr_pending, 0);
1429 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1432 "md: %s has zero or unknown size, marking faulty!\n",
1433 bdevname(rdev->bdev,b));
1438 if (super_format >= 0) {
1439 err = super_types[super_format].
1440 load_super(rdev, NULL, super_minor);
1441 if (err == -EINVAL) {
1443 "md: %s has invalid sb, not importing!\n",
1444 bdevname(rdev->bdev,b));
1449 "md: could not read %s's sb, not importing!\n",
1450 bdevname(rdev->bdev,b));
1454 INIT_LIST_HEAD(&rdev->same_set);
1459 if (rdev->sb_page) {
1465 return ERR_PTR(err);
1469 * Check a full RAID array for plausibility
1473 static void analyze_sbs(mddev_t * mddev)
1476 struct list_head *tmp;
1477 mdk_rdev_t *rdev, *freshest;
1478 char b[BDEVNAME_SIZE];
1481 ITERATE_RDEV(mddev,rdev,tmp)
1482 switch (super_types[mddev->major_version].
1483 load_super(rdev, freshest, mddev->minor_version)) {
1491 "md: fatal superblock inconsistency in %s"
1492 " -- removing from array\n",
1493 bdevname(rdev->bdev,b));
1494 kick_rdev_from_array(rdev);
1498 super_types[mddev->major_version].
1499 validate_super(mddev, freshest);
1502 ITERATE_RDEV(mddev,rdev,tmp) {
1503 if (rdev != freshest)
1504 if (super_types[mddev->major_version].
1505 validate_super(mddev, rdev)) {
1506 printk(KERN_WARNING "md: kicking non-fresh %s"
1508 bdevname(rdev->bdev,b));
1509 kick_rdev_from_array(rdev);
1512 if (mddev->level == LEVEL_MULTIPATH) {
1513 rdev->desc_nr = i++;
1514 rdev->raid_disk = rdev->desc_nr;
1521 if (mddev->recovery_cp != MaxSector &&
1523 printk(KERN_ERR "md: %s: raid array is not clean"
1524 " -- starting background reconstruction\n",
1531 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1533 static DECLARE_MUTEX(disks_sem);
1534 mddev_t *mddev = mddev_find(dev);
1535 struct gendisk *disk;
1536 int partitioned = (MAJOR(dev) != MD_MAJOR);
1537 int shift = partitioned ? MdpMinorShift : 0;
1538 int unit = MINOR(dev) >> shift;
1544 if (mddev->gendisk) {
1549 disk = alloc_disk(1 << shift);
1555 disk->major = MAJOR(dev);
1556 disk->first_minor = unit << shift;
1558 sprintf(disk->disk_name, "md_d%d", unit);
1559 sprintf(disk->devfs_name, "md/d%d", unit);
1561 sprintf(disk->disk_name, "md%d", unit);
1562 sprintf(disk->devfs_name, "md/%d", unit);
1564 disk->fops = &md_fops;
1565 disk->private_data = mddev;
1566 disk->queue = mddev->queue;
1568 mddev->gendisk = disk;
1573 void md_wakeup_thread(mdk_thread_t *thread);
1575 static void md_safemode_timeout(unsigned long data)
1577 mddev_t *mddev = (mddev_t *) data;
1579 mddev->safemode = 1;
1580 md_wakeup_thread(mddev->thread);
1584 static int do_md_run(mddev_t * mddev)
1588 struct list_head *tmp;
1590 struct gendisk *disk;
1591 char b[BDEVNAME_SIZE];
1593 if (list_empty(&mddev->disks))
1594 /* cannot run an array with no devices.. */
1601 * Analyze all RAID superblock(s)
1603 if (!mddev->raid_disks)
1606 chunk_size = mddev->chunk_size;
1607 pnum = level_to_pers(mddev->level);
1609 if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1612 * 'default chunksize' in the old md code used to
1613 * be PAGE_SIZE, baaad.
1614 * we abort here to be on the safe side. We don't
1615 * want to continue the bad practice.
1618 "no chunksize specified, see 'man raidtab'\n");
1621 if (chunk_size > MAX_CHUNK_SIZE) {
1622 printk(KERN_ERR "too big chunk_size: %d > %d\n",
1623 chunk_size, MAX_CHUNK_SIZE);
1627 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1629 if ( (1 << ffz(~chunk_size)) != chunk_size) {
1630 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1633 if (chunk_size < PAGE_SIZE) {
1634 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1635 chunk_size, PAGE_SIZE);
1639 /* devices must have minimum size of one chunk */
1640 ITERATE_RDEV(mddev,rdev,tmp) {
1643 if (rdev->size < chunk_size / 1024) {
1645 "md: Dev %s smaller than chunk_size:"
1647 bdevname(rdev->bdev,b),
1648 (unsigned long long)rdev->size,
1658 request_module("md-personality-%d", pnum);
1663 * Drop all container device buffers, from now on
1664 * the only valid external interface is through the md
1666 * Also find largest hardsector size
1668 ITERATE_RDEV(mddev,rdev,tmp) {
1671 sync_blockdev(rdev->bdev);
1672 invalidate_bdev(rdev->bdev, 0);
1675 md_probe(mddev->unit, NULL, NULL);
1676 disk = mddev->gendisk;
1680 spin_lock(&pers_lock);
1681 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1682 spin_unlock(&pers_lock);
1683 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1688 mddev->pers = pers[pnum];
1689 spin_unlock(&pers_lock);
1691 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1693 /* before we start the array running, initialise the bitmap */
1694 err = bitmap_create(mddev);
1696 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1697 mdname(mddev), err);
1699 err = mddev->pers->run(mddev);
1701 printk(KERN_ERR "md: pers->run() failed ...\n");
1702 module_put(mddev->pers->owner);
1704 bitmap_destroy(mddev);
1707 atomic_set(&mddev->writes_pending,0);
1708 mddev->safemode = 0;
1709 mddev->safemode_timer.function = md_safemode_timeout;
1710 mddev->safemode_timer.data = (unsigned long) mddev;
1711 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1714 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1716 if (mddev->sb_dirty)
1717 md_update_sb(mddev);
1719 set_capacity(disk, mddev->array_size<<1);
1721 /* If we call blk_queue_make_request here, it will
1722 * re-initialise max_sectors etc which may have been
1723 * refined inside -> run. So just set the bits we need to set.
1724 * Most initialisation happended when we called
1725 * blk_queue_make_request(..., md_fail_request)
1728 mddev->queue->queuedata = mddev;
1729 mddev->queue->make_request_fn = mddev->pers->make_request;
1735 static int restart_array(mddev_t *mddev)
1737 struct gendisk *disk = mddev->gendisk;
1741 * Complain if it has no devices
1744 if (list_empty(&mddev->disks))
1752 mddev->safemode = 0;
1754 set_disk_ro(disk, 0);
1756 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1759 * Kick recovery or resync if necessary
1761 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1762 md_wakeup_thread(mddev->thread);
1765 printk(KERN_ERR "md: %s has no personality assigned.\n",
1774 static int do_md_stop(mddev_t * mddev, int ro)
1777 struct gendisk *disk = mddev->gendisk;
1780 if (atomic_read(&mddev->active)>2) {
1781 printk("md: %s still in use.\n",mdname(mddev));
1785 if (mddev->sync_thread) {
1786 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1787 md_unregister_thread(mddev->sync_thread);
1788 mddev->sync_thread = NULL;
1791 del_timer_sync(&mddev->safemode_timer);
1793 invalidate_partition(disk, 0);
1802 set_disk_ro(disk, 0);
1803 blk_queue_make_request(mddev->queue, md_fail_request);
1804 mddev->pers->stop(mddev);
1805 module_put(mddev->pers->owner);
1810 if (!mddev->in_sync) {
1811 /* mark array as shutdown cleanly */
1813 md_update_sb(mddev);
1816 set_disk_ro(disk, 1);
1819 bitmap_destroy(mddev);
1820 if (mddev->bitmap_file) {
1821 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1822 fput(mddev->bitmap_file);
1823 mddev->bitmap_file = NULL;
1827 * Free resources if final stop
1830 struct gendisk *disk;
1831 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1833 export_array(mddev);
1835 mddev->array_size = 0;
1836 disk = mddev->gendisk;
1838 set_capacity(disk, 0);
1841 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1848 static void autorun_array(mddev_t *mddev)
1851 struct list_head *tmp;
1854 if (list_empty(&mddev->disks))
1857 printk(KERN_INFO "md: running: ");
1859 ITERATE_RDEV(mddev,rdev,tmp) {
1860 char b[BDEVNAME_SIZE];
1861 printk("<%s>", bdevname(rdev->bdev,b));
1865 err = do_md_run (mddev);
1867 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1868 do_md_stop (mddev, 0);
1873 * lets try to run arrays based on all disks that have arrived
1874 * until now. (those are in pending_raid_disks)
1876 * the method: pick the first pending disk, collect all disks with
1877 * the same UUID, remove all from the pending list and put them into
1878 * the 'same_array' list. Then order this list based on superblock
1879 * update time (freshest comes first), kick out 'old' disks and
1880 * compare superblocks. If everything's fine then run it.
1882 * If "unit" is allocated, then bump its reference count
1884 static void autorun_devices(int part)
1886 struct list_head candidates;
1887 struct list_head *tmp;
1888 mdk_rdev_t *rdev0, *rdev;
1890 char b[BDEVNAME_SIZE];
1892 printk(KERN_INFO "md: autorun ...\n");
1893 while (!list_empty(&pending_raid_disks)) {
1895 rdev0 = list_entry(pending_raid_disks.next,
1896 mdk_rdev_t, same_set);
1898 printk(KERN_INFO "md: considering %s ...\n",
1899 bdevname(rdev0->bdev,b));
1900 INIT_LIST_HEAD(&candidates);
1901 ITERATE_RDEV_PENDING(rdev,tmp)
1902 if (super_90_load(rdev, rdev0, 0) >= 0) {
1903 printk(KERN_INFO "md: adding %s ...\n",
1904 bdevname(rdev->bdev,b));
1905 list_move(&rdev->same_set, &candidates);
1908 * now we have a set of devices, with all of them having
1909 * mostly sane superblocks. It's time to allocate the
1912 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1913 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1914 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1918 dev = MKDEV(mdp_major,
1919 rdev0->preferred_minor << MdpMinorShift);
1921 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1923 md_probe(dev, NULL, NULL);
1924 mddev = mddev_find(dev);
1927 "md: cannot allocate memory for md drive.\n");
1930 if (mddev_lock(mddev))
1931 printk(KERN_WARNING "md: %s locked, cannot run\n",
1933 else if (mddev->raid_disks || mddev->major_version
1934 || !list_empty(&mddev->disks)) {
1936 "md: %s already running, cannot run %s\n",
1937 mdname(mddev), bdevname(rdev0->bdev,b));
1938 mddev_unlock(mddev);
1940 printk(KERN_INFO "md: created %s\n", mdname(mddev));
1941 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1942 list_del_init(&rdev->same_set);
1943 if (bind_rdev_to_array(rdev, mddev))
1946 autorun_array(mddev);
1947 mddev_unlock(mddev);
1949 /* on success, candidates will be empty, on error
1952 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1956 printk(KERN_INFO "md: ... autorun DONE.\n");
1960 * import RAID devices based on one partition
1961 * if possible, the array gets run as well.
1964 static int autostart_array(dev_t startdev)
1966 char b[BDEVNAME_SIZE];
1967 int err = -EINVAL, i;
1968 mdp_super_t *sb = NULL;
1969 mdk_rdev_t *start_rdev = NULL, *rdev;
1971 start_rdev = md_import_device(startdev, 0, 0);
1972 if (IS_ERR(start_rdev))
1976 /* NOTE: this can only work for 0.90.0 superblocks */
1977 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1978 if (sb->major_version != 0 ||
1979 sb->minor_version != 90 ) {
1980 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1981 export_rdev(start_rdev);
1985 if (start_rdev->faulty) {
1987 "md: can not autostart based on faulty %s!\n",
1988 bdevname(start_rdev->bdev,b));
1989 export_rdev(start_rdev);
1992 list_add(&start_rdev->same_set, &pending_raid_disks);
1994 for (i = 0; i < MD_SB_DISKS; i++) {
1995 mdp_disk_t *desc = sb->disks + i;
1996 dev_t dev = MKDEV(desc->major, desc->minor);
2000 if (dev == startdev)
2002 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2004 rdev = md_import_device(dev, 0, 0);
2008 list_add(&rdev->same_set, &pending_raid_disks);
2012 * possibly return codes
2020 static int get_version(void __user * arg)
2024 ver.major = MD_MAJOR_VERSION;
2025 ver.minor = MD_MINOR_VERSION;
2026 ver.patchlevel = MD_PATCHLEVEL_VERSION;
2028 if (copy_to_user(arg, &ver, sizeof(ver)))
2034 static int get_array_info(mddev_t * mddev, void __user * arg)
2036 mdu_array_info_t info;
2037 int nr,working,active,failed,spare;
2039 struct list_head *tmp;
2041 nr=working=active=failed=spare=0;
2042 ITERATE_RDEV(mddev,rdev,tmp) {
2055 info.major_version = mddev->major_version;
2056 info.minor_version = mddev->minor_version;
2057 info.patch_version = MD_PATCHLEVEL_VERSION;
2058 info.ctime = mddev->ctime;
2059 info.level = mddev->level;
2060 info.size = mddev->size;
2062 info.raid_disks = mddev->raid_disks;
2063 info.md_minor = mddev->md_minor;
2064 info.not_persistent= !mddev->persistent;
2066 info.utime = mddev->utime;
2069 info.state = (1<<MD_SB_CLEAN);
2070 info.active_disks = active;
2071 info.working_disks = working;
2072 info.failed_disks = failed;
2073 info.spare_disks = spare;
2075 info.layout = mddev->layout;
2076 info.chunk_size = mddev->chunk_size;
2078 if (copy_to_user(arg, &info, sizeof(info)))
2084 static int get_bitmap_file(mddev_t * mddev, void * arg)
2086 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2087 char *ptr, *buf = NULL;
2090 file = kmalloc(sizeof(*file), GFP_KERNEL);
2094 /* bitmap disabled, zero the first byte and copy out */
2095 if (!mddev->bitmap || !mddev->bitmap->file) {
2096 file->pathname[0] = '\0';
2100 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2104 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2108 strcpy(file->pathname, ptr);
2112 if (copy_to_user(arg, file, sizeof(*file)))
2120 static int get_disk_info(mddev_t * mddev, void __user * arg)
2122 mdu_disk_info_t info;
2126 if (copy_from_user(&info, arg, sizeof(info)))
2131 rdev = find_rdev_nr(mddev, nr);
2133 info.major = MAJOR(rdev->bdev->bd_dev);
2134 info.minor = MINOR(rdev->bdev->bd_dev);
2135 info.raid_disk = rdev->raid_disk;
2138 info.state |= (1<<MD_DISK_FAULTY);
2139 else if (rdev->in_sync) {
2140 info.state |= (1<<MD_DISK_ACTIVE);
2141 info.state |= (1<<MD_DISK_SYNC);
2144 info.major = info.minor = 0;
2145 info.raid_disk = -1;
2146 info.state = (1<<MD_DISK_REMOVED);
2149 if (copy_to_user(arg, &info, sizeof(info)))
2155 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2157 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2159 dev_t dev = MKDEV(info->major,info->minor);
2161 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2164 if (!mddev->raid_disks) {
2166 /* expecting a device which has a superblock */
2167 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2170 "md: md_import_device returned %ld\n",
2172 return PTR_ERR(rdev);
2174 if (!list_empty(&mddev->disks)) {
2175 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2176 mdk_rdev_t, same_set);
2177 int err = super_types[mddev->major_version]
2178 .load_super(rdev, rdev0, mddev->minor_version);
2181 "md: %s has different UUID to %s\n",
2182 bdevname(rdev->bdev,b),
2183 bdevname(rdev0->bdev,b2));
2188 err = bind_rdev_to_array(rdev, mddev);
2195 * add_new_disk can be used once the array is assembled
2196 * to add "hot spares". They must already have a superblock
2201 if (!mddev->pers->hot_add_disk) {
2203 "%s: personality does not support diskops!\n",
2207 rdev = md_import_device(dev, mddev->major_version,
2208 mddev->minor_version);
2211 "md: md_import_device returned %ld\n",
2213 return PTR_ERR(rdev);
2215 /* set save_raid_disk if appropriate */
2216 if (!mddev->persistent) {
2217 if (info->state & (1<<MD_DISK_SYNC) &&
2218 info->raid_disk < mddev->raid_disks)
2219 rdev->raid_disk = info->raid_disk;
2221 rdev->raid_disk = -1;
2223 super_types[mddev->major_version].
2224 validate_super(mddev, rdev);
2225 rdev->saved_raid_disk = rdev->raid_disk;
2227 rdev->in_sync = 0; /* just to be sure */
2228 rdev->raid_disk = -1;
2229 err = bind_rdev_to_array(rdev, mddev);
2233 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2235 md_wakeup_thread(mddev->thread);
2239 /* otherwise, add_new_disk is only allowed
2240 * for major_version==0 superblocks
2242 if (mddev->major_version != 0) {
2243 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2248 if (!(info->state & (1<<MD_DISK_FAULTY))) {
2250 rdev = md_import_device (dev, -1, 0);
2253 "md: error, md_import_device() returned %ld\n",
2255 return PTR_ERR(rdev);
2257 rdev->desc_nr = info->number;
2258 if (info->raid_disk < mddev->raid_disks)
2259 rdev->raid_disk = info->raid_disk;
2261 rdev->raid_disk = -1;
2264 if (rdev->raid_disk < mddev->raid_disks)
2265 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2269 err = bind_rdev_to_array(rdev, mddev);
2275 if (!mddev->persistent) {
2276 printk(KERN_INFO "md: nonpersistent superblock ...\n");
2277 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2279 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2280 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2282 if (!mddev->size || (mddev->size > rdev->size))
2283 mddev->size = rdev->size;
2289 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2291 char b[BDEVNAME_SIZE];
2297 rdev = find_rdev(mddev, dev);
2301 if (rdev->raid_disk >= 0)
2304 kick_rdev_from_array(rdev);
2305 md_update_sb(mddev);
2309 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2310 bdevname(rdev->bdev,b), mdname(mddev));
2314 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2316 char b[BDEVNAME_SIZE];
2324 if (mddev->major_version != 0) {
2325 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2326 " version-0 superblocks.\n",
2330 if (!mddev->pers->hot_add_disk) {
2332 "%s: personality does not support diskops!\n",
2337 rdev = md_import_device (dev, -1, 0);
2340 "md: error, md_import_device() returned %ld\n",
2345 if (mddev->persistent)
2346 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2349 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2351 size = calc_dev_size(rdev, mddev->chunk_size);
2354 if (size < mddev->size) {
2356 "%s: disk size %llu blocks < array size %llu\n",
2357 mdname(mddev), (unsigned long long)size,
2358 (unsigned long long)mddev->size);
2365 "md: can not hot-add faulty %s disk to %s!\n",
2366 bdevname(rdev->bdev,b), mdname(mddev));
2372 bind_rdev_to_array(rdev, mddev);
2375 * The rest should better be atomic, we can have disk failures
2376 * noticed in interrupt contexts ...
2379 if (rdev->desc_nr == mddev->max_disks) {
2380 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2383 goto abort_unbind_export;
2386 rdev->raid_disk = -1;
2388 md_update_sb(mddev);
2391 * Kick recovery, maybe this spare has to be added to the
2392 * array immediately.
2394 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2395 md_wakeup_thread(mddev->thread);
2399 abort_unbind_export:
2400 unbind_rdev_from_array(rdev);
2407 /* similar to deny_write_access, but accounts for our holding a reference
2408 * to the file ourselves */
2409 static int deny_bitmap_write_access(struct file * file)
2411 struct inode *inode = file->f_mapping->host;
2413 spin_lock(&inode->i_lock);
2414 if (atomic_read(&inode->i_writecount) > 1) {
2415 spin_unlock(&inode->i_lock);
2418 atomic_set(&inode->i_writecount, -1);
2419 spin_unlock(&inode->i_lock);
2424 static int set_bitmap_file(mddev_t *mddev, int fd)
2431 mddev->bitmap_file = fget(fd);
2433 if (mddev->bitmap_file == NULL) {
2434 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2439 err = deny_bitmap_write_access(mddev->bitmap_file);
2441 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2443 fput(mddev->bitmap_file);
2444 mddev->bitmap_file = NULL;
2446 mddev->bitmap_offset = 0; /* file overrides offset */
2451 * set_array_info is used two different ways
2452 * The original usage is when creating a new array.
2453 * In this usage, raid_disks is > 0 and it together with
2454 * level, size, not_persistent,layout,chunksize determine the
2455 * shape of the array.
2456 * This will always create an array with a type-0.90.0 superblock.
2457 * The newer usage is when assembling an array.
2458 * In this case raid_disks will be 0, and the major_version field is
2459 * use to determine which style super-blocks are to be found on the devices.
2460 * The minor and patch _version numbers are also kept incase the
2461 * super_block handler wishes to interpret them.
2463 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2466 if (info->raid_disks == 0) {
2467 /* just setting version number for superblock loading */
2468 if (info->major_version < 0 ||
2469 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2470 super_types[info->major_version].name == NULL) {
2471 /* maybe try to auto-load a module? */
2473 "md: superblock version %d not known\n",
2474 info->major_version);
2477 mddev->major_version = info->major_version;
2478 mddev->minor_version = info->minor_version;
2479 mddev->patch_version = info->patch_version;
2482 mddev->major_version = MD_MAJOR_VERSION;
2483 mddev->minor_version = MD_MINOR_VERSION;
2484 mddev->patch_version = MD_PATCHLEVEL_VERSION;
2485 mddev->ctime = get_seconds();
2487 mddev->level = info->level;
2488 mddev->size = info->size;
2489 mddev->raid_disks = info->raid_disks;
2490 /* don't set md_minor, it is determined by which /dev/md* was
2493 if (info->state & (1<<MD_SB_CLEAN))
2494 mddev->recovery_cp = MaxSector;
2496 mddev->recovery_cp = 0;
2497 mddev->persistent = ! info->not_persistent;
2499 mddev->layout = info->layout;
2500 mddev->chunk_size = info->chunk_size;
2502 mddev->max_disks = MD_SB_DISKS;
2504 mddev->sb_dirty = 1;
2507 * Generate a 128 bit UUID
2509 get_random_bytes(mddev->uuid, 16);
2515 * update_array_info is used to change the configuration of an
2517 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2518 * fields in the info are checked against the array.
2519 * Any differences that cannot be handled will cause an error.
2520 * Normally, only one change can be managed at a time.
2522 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2527 if (mddev->major_version != info->major_version ||
2528 mddev->minor_version != info->minor_version ||
2529 /* mddev->patch_version != info->patch_version || */
2530 mddev->ctime != info->ctime ||
2531 mddev->level != info->level ||
2532 /* mddev->layout != info->layout || */
2533 !mddev->persistent != info->not_persistent||
2534 mddev->chunk_size != info->chunk_size )
2536 /* Check there is only one change */
2537 if (mddev->size != info->size) cnt++;
2538 if (mddev->raid_disks != info->raid_disks) cnt++;
2539 if (mddev->layout != info->layout) cnt++;
2540 if (cnt == 0) return 0;
2541 if (cnt > 1) return -EINVAL;
2543 if (mddev->layout != info->layout) {
2545 * we don't need to do anything at the md level, the
2546 * personality will take care of it all.
2548 if (mddev->pers->reconfig == NULL)
2551 return mddev->pers->reconfig(mddev, info->layout, -1);
2553 if (mddev->size != info->size) {
2555 struct list_head *tmp;
2556 if (mddev->pers->resize == NULL)
2558 /* The "size" is the amount of each device that is used.
2559 * This can only make sense for arrays with redundancy.
2560 * linear and raid0 always use whatever space is available
2561 * We can only consider changing the size if no resync
2562 * or reconstruction is happening, and if the new size
2563 * is acceptable. It must fit before the sb_offset or,
2564 * if that is <data_offset, it must fit before the
2565 * size of each device.
2566 * If size is zero, we find the largest size that fits.
2568 if (mddev->sync_thread)
2570 ITERATE_RDEV(mddev,rdev,tmp) {
2572 int fit = (info->size == 0);
2573 if (rdev->sb_offset > rdev->data_offset)
2574 avail = (rdev->sb_offset*2) - rdev->data_offset;
2576 avail = get_capacity(rdev->bdev->bd_disk)
2577 - rdev->data_offset;
2578 if (fit && (info->size == 0 || info->size > avail/2))
2579 info->size = avail/2;
2580 if (avail < ((sector_t)info->size << 1))
2583 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2585 struct block_device *bdev;
2587 bdev = bdget_disk(mddev->gendisk, 0);
2589 down(&bdev->bd_inode->i_sem);
2590 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2591 up(&bdev->bd_inode->i_sem);
2596 if (mddev->raid_disks != info->raid_disks) {
2597 /* change the number of raid disks */
2598 if (mddev->pers->reshape == NULL)
2600 if (info->raid_disks <= 0 ||
2601 info->raid_disks >= mddev->max_disks)
2603 if (mddev->sync_thread)
2605 rv = mddev->pers->reshape(mddev, info->raid_disks);
2607 struct block_device *bdev;
2609 bdev = bdget_disk(mddev->gendisk, 0);
2611 down(&bdev->bd_inode->i_sem);
2612 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2613 up(&bdev->bd_inode->i_sem);
2618 md_update_sb(mddev);
2622 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2626 if (mddev->pers == NULL)
2629 rdev = find_rdev(mddev, dev);
2633 md_error(mddev, rdev);
2637 static int md_ioctl(struct inode *inode, struct file *file,
2638 unsigned int cmd, unsigned long arg)
2641 void __user *argp = (void __user *)arg;
2642 struct hd_geometry __user *loc = argp;
2643 mddev_t *mddev = NULL;
2645 if (!capable(CAP_SYS_ADMIN))
2649 * Commands dealing with the RAID driver but not any
2655 err = get_version(argp);
2658 case PRINT_RAID_DEBUG:
2666 autostart_arrays(arg);
2673 * Commands creating/starting a new array:
2676 mddev = inode->i_bdev->bd_disk->private_data;
2684 if (cmd == START_ARRAY) {
2685 /* START_ARRAY doesn't need to lock the array as autostart_array
2686 * does the locking, and it could even be a different array
2691 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2692 "This will not be supported beyond 2.6\n",
2693 current->comm, current->pid);
2696 err = autostart_array(new_decode_dev(arg));
2698 printk(KERN_WARNING "md: autostart failed!\n");
2704 err = mddev_lock(mddev);
2707 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2714 case SET_ARRAY_INFO:
2716 mdu_array_info_t info;
2718 memset(&info, 0, sizeof(info));
2719 else if (copy_from_user(&info, argp, sizeof(info))) {
2724 err = update_array_info(mddev, &info);
2726 printk(KERN_WARNING "md: couldn't update"
2727 " array info. %d\n", err);
2732 if (!list_empty(&mddev->disks)) {
2734 "md: array %s already has disks!\n",
2739 if (mddev->raid_disks) {
2741 "md: array %s already initialised!\n",
2746 err = set_array_info(mddev, &info);
2748 printk(KERN_WARNING "md: couldn't set"
2749 " array info. %d\n", err);
2759 * Commands querying/configuring an existing array:
2761 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2762 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2763 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2764 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
2770 * Commands even a read-only array can execute:
2774 case GET_ARRAY_INFO:
2775 err = get_array_info(mddev, argp);
2778 case GET_BITMAP_FILE:
2779 err = get_bitmap_file(mddev, (void *)arg);
2783 err = get_disk_info(mddev, argp);
2786 case RESTART_ARRAY_RW:
2787 err = restart_array(mddev);
2791 err = do_md_stop (mddev, 0);
2795 err = do_md_stop (mddev, 1);
2799 * We have a problem here : there is no easy way to give a CHS
2800 * virtual geometry. We currently pretend that we have a 2 heads
2801 * 4 sectors (with a BIG number of cylinders...). This drives
2802 * dosfs just mad... ;-)
2809 err = put_user (2, (char __user *) &loc->heads);
2812 err = put_user (4, (char __user *) &loc->sectors);
2815 err = put_user(get_capacity(mddev->gendisk)/8,
2816 (short __user *) &loc->cylinders);
2819 err = put_user (get_start_sect(inode->i_bdev),
2820 (long __user *) &loc->start);
2825 * The remaining ioctls are changing the state of the
2826 * superblock, so we do not allow read-only arrays
2838 mdu_disk_info_t info;
2839 if (copy_from_user(&info, argp, sizeof(info)))
2842 err = add_new_disk(mddev, &info);
2846 case HOT_REMOVE_DISK:
2847 err = hot_remove_disk(mddev, new_decode_dev(arg));
2851 err = hot_add_disk(mddev, new_decode_dev(arg));
2854 case SET_DISK_FAULTY:
2855 err = set_disk_faulty(mddev, new_decode_dev(arg));
2859 err = do_md_run (mddev);
2862 case SET_BITMAP_FILE:
2863 err = set_bitmap_file(mddev, (int)arg);
2867 if (_IOC_TYPE(cmd) == MD_MAJOR)
2868 printk(KERN_WARNING "md: %s(pid %d) used"
2869 " obsolete MD ioctl, upgrade your"
2870 " software to use new ictls.\n",
2871 current->comm, current->pid);
2878 mddev_unlock(mddev);
2888 static int md_open(struct inode *inode, struct file *file)
2891 * Succeed if we can lock the mddev, which confirms that
2892 * it isn't being stopped right now.
2894 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2897 if ((err = mddev_lock(mddev)))
2902 mddev_unlock(mddev);
2904 check_disk_change(inode->i_bdev);
2909 static int md_release(struct inode *inode, struct file * file)
2911 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2920 static int md_media_changed(struct gendisk *disk)
2922 mddev_t *mddev = disk->private_data;
2924 return mddev->changed;
2927 static int md_revalidate(struct gendisk *disk)
2929 mddev_t *mddev = disk->private_data;
2934 static struct block_device_operations md_fops =
2936 .owner = THIS_MODULE,
2938 .release = md_release,
2940 .media_changed = md_media_changed,
2941 .revalidate_disk= md_revalidate,
2944 static int md_thread(void * arg)
2946 mdk_thread_t *thread = arg;
2954 daemonize(thread->name, mdname(thread->mddev));
2956 current->exit_signal = SIGCHLD;
2957 allow_signal(SIGKILL);
2958 thread->tsk = current;
2961 * md_thread is a 'system-thread', it's priority should be very
2962 * high. We avoid resource deadlocks individually in each
2963 * raid personality. (RAID5 does preallocation) We also use RR and
2964 * the very same RT priority as kswapd, thus we will never get
2965 * into a priority inversion deadlock.
2967 * we definitely have to have equal or higher priority than
2968 * bdflush, otherwise bdflush will deadlock if there are too
2969 * many dirty RAID5 blocks.
2973 complete(thread->event);
2974 while (thread->run) {
2975 void (*run)(mddev_t *);
2977 wait_event_interruptible_timeout(thread->wqueue,
2978 test_bit(THREAD_WAKEUP, &thread->flags),
2982 clear_bit(THREAD_WAKEUP, &thread->flags);
2988 if (signal_pending(current))
2989 flush_signals(current);
2991 complete(thread->event);
2995 void md_wakeup_thread(mdk_thread_t *thread)
2998 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
2999 set_bit(THREAD_WAKEUP, &thread->flags);
3000 wake_up(&thread->wqueue);
3004 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3007 mdk_thread_t *thread;
3009 struct completion event;
3011 thread = (mdk_thread_t *) kmalloc
3012 (sizeof(mdk_thread_t), GFP_KERNEL);
3016 memset(thread, 0, sizeof(mdk_thread_t));
3017 init_waitqueue_head(&thread->wqueue);
3019 init_completion(&event);
3020 thread->event = &event;
3022 thread->mddev = mddev;
3023 thread->name = name;
3024 thread->timeout = MAX_SCHEDULE_TIMEOUT;
3025 ret = kernel_thread(md_thread, thread, 0);
3030 wait_for_completion(&event);
3034 void md_unregister_thread(mdk_thread_t *thread)
3036 struct completion event;
3038 init_completion(&event);
3040 thread->event = &event;
3042 /* As soon as ->run is set to NULL, the task could disappear,
3043 * so we need to hold tasklist_lock until we have sent the signal
3045 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3046 read_lock(&tasklist_lock);
3048 send_sig(SIGKILL, thread->tsk, 1);
3049 read_unlock(&tasklist_lock);
3050 wait_for_completion(&event);
3054 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3061 if (!rdev || rdev->faulty)
3064 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3066 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3067 __builtin_return_address(0),__builtin_return_address(1),
3068 __builtin_return_address(2),__builtin_return_address(3));
3070 if (!mddev->pers->error_handler)
3072 mddev->pers->error_handler(mddev,rdev);
3073 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3074 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3075 md_wakeup_thread(mddev->thread);
3078 /* seq_file implementation /proc/mdstat */
3080 static void status_unused(struct seq_file *seq)
3084 struct list_head *tmp;
3086 seq_printf(seq, "unused devices: ");
3088 ITERATE_RDEV_PENDING(rdev,tmp) {
3089 char b[BDEVNAME_SIZE];
3091 seq_printf(seq, "%s ",
3092 bdevname(rdev->bdev,b));
3095 seq_printf(seq, "<none>");
3097 seq_printf(seq, "\n");
3101 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3103 unsigned long max_blocks, resync, res, dt, db, rt;
3105 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3107 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3108 max_blocks = mddev->resync_max_sectors >> 1;
3110 max_blocks = mddev->size;
3113 * Should not happen.
3119 res = (resync/1024)*1000/(max_blocks/1024 + 1);
3121 int i, x = res/50, y = 20-x;
3122 seq_printf(seq, "[");
3123 for (i = 0; i < x; i++)
3124 seq_printf(seq, "=");
3125 seq_printf(seq, ">");
3126 for (i = 0; i < y; i++)
3127 seq_printf(seq, ".");
3128 seq_printf(seq, "] ");
3130 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3131 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3132 "resync" : "recovery"),
3133 res/10, res % 10, resync, max_blocks);
3136 * We do not want to overflow, so the order of operands and
3137 * the * 100 / 100 trick are important. We do a +1 to be
3138 * safe against division by zero. We only estimate anyway.
3140 * dt: time from mark until now
3141 * db: blocks written from mark until now
3142 * rt: remaining time
3144 dt = ((jiffies - mddev->resync_mark) / HZ);
3146 db = resync - (mddev->resync_mark_cnt/2);
3147 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3149 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3151 seq_printf(seq, " speed=%ldK/sec", db/dt);
3154 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3156 struct list_head *tmp;
3166 spin_lock(&all_mddevs_lock);
3167 list_for_each(tmp,&all_mddevs)
3169 mddev = list_entry(tmp, mddev_t, all_mddevs);
3171 spin_unlock(&all_mddevs_lock);
3174 spin_unlock(&all_mddevs_lock);
3176 return (void*)2;/* tail */
3180 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3182 struct list_head *tmp;
3183 mddev_t *next_mddev, *mddev = v;
3189 spin_lock(&all_mddevs_lock);
3191 tmp = all_mddevs.next;
3193 tmp = mddev->all_mddevs.next;
3194 if (tmp != &all_mddevs)
3195 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3197 next_mddev = (void*)2;
3200 spin_unlock(&all_mddevs_lock);
3208 static void md_seq_stop(struct seq_file *seq, void *v)
3212 if (mddev && v != (void*)1 && v != (void*)2)
3216 static int md_seq_show(struct seq_file *seq, void *v)
3220 struct list_head *tmp2;
3223 struct bitmap *bitmap;
3225 if (v == (void*)1) {
3226 seq_printf(seq, "Personalities : ");
3227 spin_lock(&pers_lock);
3228 for (i = 0; i < MAX_PERSONALITY; i++)
3230 seq_printf(seq, "[%s] ", pers[i]->name);
3232 spin_unlock(&pers_lock);
3233 seq_printf(seq, "\n");
3236 if (v == (void*)2) {
3241 if (mddev_lock(mddev)!=0)
3243 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3244 seq_printf(seq, "%s : %sactive", mdname(mddev),
3245 mddev->pers ? "" : "in");
3248 seq_printf(seq, " (read-only)");
3249 seq_printf(seq, " %s", mddev->pers->name);
3253 ITERATE_RDEV(mddev,rdev,tmp2) {
3254 char b[BDEVNAME_SIZE];
3255 seq_printf(seq, " %s[%d]",
3256 bdevname(rdev->bdev,b), rdev->desc_nr);
3258 seq_printf(seq, "(F)");
3264 if (!list_empty(&mddev->disks)) {
3266 seq_printf(seq, "\n %llu blocks",
3267 (unsigned long long)mddev->array_size);
3269 seq_printf(seq, "\n %llu blocks",
3270 (unsigned long long)size);
3274 mddev->pers->status (seq, mddev);
3275 seq_printf(seq, "\n ");
3276 if (mddev->curr_resync > 2) {
3277 status_resync (seq, mddev);
3278 seq_printf(seq, "\n ");
3279 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3280 seq_printf(seq, " resync=DELAYED\n ");
3282 seq_printf(seq, "\n ");
3284 if ((bitmap = mddev->bitmap)) {
3285 unsigned long chunk_kb;
3286 unsigned long flags;
3287 spin_lock_irqsave(&bitmap->lock, flags);
3288 chunk_kb = bitmap->chunksize >> 10;
3289 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3291 bitmap->pages - bitmap->missing_pages,
3293 (bitmap->pages - bitmap->missing_pages)
3294 << (PAGE_SHIFT - 10),
3295 chunk_kb ? chunk_kb : bitmap->chunksize,
3296 chunk_kb ? "KB" : "B");
3298 seq_printf(seq, ", file: ");
3299 seq_path(seq, bitmap->file->f_vfsmnt,
3300 bitmap->file->f_dentry," \t\n");
3303 seq_printf(seq, "\n");
3304 spin_unlock_irqrestore(&bitmap->lock, flags);
3307 seq_printf(seq, "\n");
3309 mddev_unlock(mddev);
3314 static struct seq_operations md_seq_ops = {
3315 .start = md_seq_start,
3316 .next = md_seq_next,
3317 .stop = md_seq_stop,
3318 .show = md_seq_show,
3321 static int md_seq_open(struct inode *inode, struct file *file)
3325 error = seq_open(file, &md_seq_ops);
3329 static struct file_operations md_seq_fops = {
3330 .open = md_seq_open,
3332 .llseek = seq_lseek,
3333 .release = seq_release,
3336 int register_md_personality(int pnum, mdk_personality_t *p)
3338 if (pnum >= MAX_PERSONALITY) {
3340 "md: tried to install personality %s as nr %d, but max is %lu\n",
3341 p->name, pnum, MAX_PERSONALITY-1);
3345 spin_lock(&pers_lock);
3347 spin_unlock(&pers_lock);
3352 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3353 spin_unlock(&pers_lock);
3357 int unregister_md_personality(int pnum)
3359 if (pnum >= MAX_PERSONALITY)
3362 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3363 spin_lock(&pers_lock);
3365 spin_unlock(&pers_lock);
3369 static int is_mddev_idle(mddev_t *mddev)
3372 struct list_head *tmp;
3374 unsigned long curr_events;
3377 ITERATE_RDEV(mddev,rdev,tmp) {
3378 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3379 curr_events = disk_stat_read(disk, read_sectors) +
3380 disk_stat_read(disk, write_sectors) -
3381 atomic_read(&disk->sync_io);
3382 /* Allow some slack between valud of curr_events and last_events,
3383 * as there are some uninteresting races.
3384 * Note: the following is an unsigned comparison.
3386 if ((curr_events - rdev->last_events + 32) > 64) {
3387 rdev->last_events = curr_events;
3394 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3396 /* another "blocks" (512byte) blocks have been synced */
3397 atomic_sub(blocks, &mddev->recovery_active);
3398 wake_up(&mddev->recovery_wait);
3400 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3401 md_wakeup_thread(mddev->thread);
3402 // stop recovery, signal do_sync ....
3407 /* md_write_start(mddev, bi)
3408 * If we need to update some array metadata (e.g. 'active' flag
3409 * in superblock) before writing, schedule a superblock update
3410 * and wait for it to complete.
3412 void md_write_start(mddev_t *mddev, struct bio *bi)
3415 if (bio_data_dir(bi) != WRITE)
3418 atomic_inc(&mddev->writes_pending);
3419 if (mddev->in_sync) {
3420 spin_lock(&mddev->write_lock);
3421 if (mddev->in_sync) {
3423 mddev->sb_dirty = 1;
3424 md_wakeup_thread(mddev->thread);
3426 spin_unlock(&mddev->write_lock);
3428 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3431 void md_write_end(mddev_t *mddev)
3433 if (atomic_dec_and_test(&mddev->writes_pending)) {
3434 if (mddev->safemode == 2)
3435 md_wakeup_thread(mddev->thread);
3437 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3441 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3443 #define SYNC_MARKS 10
3444 #define SYNC_MARK_STEP (3*HZ)
3445 static void md_do_sync(mddev_t *mddev)
3448 unsigned int currspeed = 0,
3450 sector_t max_sectors,j, io_sectors;
3451 unsigned long mark[SYNC_MARKS];
3452 sector_t mark_cnt[SYNC_MARKS];
3454 struct list_head *tmp;
3455 sector_t last_check;
3458 /* just incase thread restarts... */
3459 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3462 /* we overload curr_resync somewhat here.
3463 * 0 == not engaged in resync at all
3464 * 2 == checking that there is no conflict with another sync
3465 * 1 == like 2, but have yielded to allow conflicting resync to
3467 * other == active in resync - this many blocks
3469 * Before starting a resync we must have set curr_resync to
3470 * 2, and then checked that every "conflicting" array has curr_resync
3471 * less than ours. When we find one that is the same or higher
3472 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3473 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3474 * This will mean we have to start checking from the beginning again.
3479 mddev->curr_resync = 2;
3482 if (signal_pending(current)) {
3483 flush_signals(current);
3486 ITERATE_MDDEV(mddev2,tmp) {
3488 if (mddev2 == mddev)
3490 if (mddev2->curr_resync &&
3491 match_mddev_units(mddev,mddev2)) {
3493 if (mddev < mddev2 && mddev->curr_resync == 2) {
3494 /* arbitrarily yield */
3495 mddev->curr_resync = 1;
3496 wake_up(&resync_wait);
3498 if (mddev > mddev2 && mddev->curr_resync == 1)
3499 /* no need to wait here, we can wait the next
3500 * time 'round when curr_resync == 2
3503 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3504 if (!signal_pending(current)
3505 && mddev2->curr_resync >= mddev->curr_resync) {
3506 printk(KERN_INFO "md: delaying resync of %s"
3507 " until %s has finished resync (they"
3508 " share one or more physical units)\n",
3509 mdname(mddev), mdname(mddev2));
3512 finish_wait(&resync_wait, &wq);
3515 finish_wait(&resync_wait, &wq);
3518 } while (mddev->curr_resync < 2);
3520 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3521 /* resync follows the size requested by the personality,
3522 * which defaults to physical size, but can be virtual size
3524 max_sectors = mddev->resync_max_sectors;
3526 /* recovery follows the physical size of devices */
3527 max_sectors = mddev->size << 1;
3529 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3530 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3531 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3532 printk(KERN_INFO "md: using maximum available idle IO bandwith "
3533 "(but not more than %d KB/sec) for reconstruction.\n",
3534 sysctl_speed_limit_max);
3536 is_mddev_idle(mddev); /* this also initializes IO event counters */
3537 /* we don't use the checkpoint if there's a bitmap */
3538 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
3539 j = mddev->recovery_cp;
3543 for (m = 0; m < SYNC_MARKS; m++) {
3545 mark_cnt[m] = io_sectors;
3548 mddev->resync_mark = mark[last_mark];
3549 mddev->resync_mark_cnt = mark_cnt[last_mark];
3552 * Tune reconstruction:
3554 window = 32*(PAGE_SIZE/512);
3555 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3556 window/2,(unsigned long long) max_sectors/2);
3558 atomic_set(&mddev->recovery_active, 0);
3559 init_waitqueue_head(&mddev->recovery_wait);
3564 "md: resuming recovery of %s from checkpoint.\n",
3566 mddev->curr_resync = j;
3569 while (j < max_sectors) {
3573 sectors = mddev->pers->sync_request(mddev, j, &skipped,
3574 currspeed < sysctl_speed_limit_min);
3576 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3580 if (!skipped) { /* actual IO requested */
3581 io_sectors += sectors;
3582 atomic_add(sectors, &mddev->recovery_active);
3586 if (j>1) mddev->curr_resync = j;
3589 if (last_check + window > io_sectors || j == max_sectors)
3592 last_check = io_sectors;
3594 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3595 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3599 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3601 int next = (last_mark+1) % SYNC_MARKS;
3603 mddev->resync_mark = mark[next];
3604 mddev->resync_mark_cnt = mark_cnt[next];
3605 mark[next] = jiffies;
3606 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
3611 if (signal_pending(current)) {
3613 * got a signal, exit.
3616 "md: md_do_sync() got signal ... exiting\n");
3617 flush_signals(current);
3618 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3623 * this loop exits only if either when we are slower than
3624 * the 'hard' speed limit, or the system was IO-idle for
3626 * the system might be non-idle CPU-wise, but we only care
3627 * about not overloading the IO subsystem. (things like an
3628 * e2fsck being done on the RAID array should execute fast)
3630 mddev->queue->unplug_fn(mddev->queue);
3633 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3634 /((jiffies-mddev->resync_mark)/HZ +1) +1;
3636 if (currspeed > sysctl_speed_limit_min) {
3637 if ((currspeed > sysctl_speed_limit_max) ||
3638 !is_mddev_idle(mddev)) {
3639 msleep_interruptible(250);
3644 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3646 * this also signals 'finished resyncing' to md_stop
3649 mddev->queue->unplug_fn(mddev->queue);
3651 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3653 /* tell personality that we are finished */
3654 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
3656 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3657 mddev->curr_resync > 2 &&
3658 mddev->curr_resync >= mddev->recovery_cp) {
3659 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3661 "md: checkpointing recovery of %s.\n",
3663 mddev->recovery_cp = mddev->curr_resync;
3665 mddev->recovery_cp = MaxSector;
3669 mddev->curr_resync = 0;
3670 wake_up(&resync_wait);
3671 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3672 md_wakeup_thread(mddev->thread);
3677 * This routine is regularly called by all per-raid-array threads to
3678 * deal with generic issues like resync and super-block update.
3679 * Raid personalities that don't have a thread (linear/raid0) do not
3680 * need this as they never do any recovery or update the superblock.
3682 * It does not do any resync itself, but rather "forks" off other threads
3683 * to do that as needed.
3684 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3685 * "->recovery" and create a thread at ->sync_thread.
3686 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3687 * and wakeups up this thread which will reap the thread and finish up.
3688 * This thread also removes any faulty devices (with nr_pending == 0).
3690 * The overall approach is:
3691 * 1/ if the superblock needs updating, update it.
3692 * 2/ If a recovery thread is running, don't do anything else.
3693 * 3/ If recovery has finished, clean up, possibly marking spares active.
3694 * 4/ If there are any faulty devices, remove them.
3695 * 5/ If array is degraded, try to add spares devices
3696 * 6/ If array has spares or is not in-sync, start a resync thread.
3698 void md_check_recovery(mddev_t *mddev)
3701 struct list_head *rtmp;
3705 bitmap_daemon_work(mddev->bitmap);
3710 if (signal_pending(current)) {
3711 if (mddev->pers->sync_request) {
3712 printk(KERN_INFO "md: %s in immediate safe mode\n",
3714 mddev->safemode = 2;
3716 flush_signals(current);
3721 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3722 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
3723 (mddev->safemode == 1) ||
3724 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
3725 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
3729 if (mddev_trylock(mddev)==0) {
3732 spin_lock(&mddev->write_lock);
3733 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3734 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3736 mddev->sb_dirty = 1;
3738 if (mddev->safemode == 1)
3739 mddev->safemode = 0;
3740 spin_unlock(&mddev->write_lock);
3742 if (mddev->sb_dirty)
3743 md_update_sb(mddev);
3746 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3747 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3748 /* resync/recovery still happening */
3749 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3752 if (mddev->sync_thread) {
3753 /* resync has finished, collect result */
3754 md_unregister_thread(mddev->sync_thread);
3755 mddev->sync_thread = NULL;
3756 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3757 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3759 /* activate any spares */
3760 mddev->pers->spare_active(mddev);
3762 md_update_sb(mddev);
3764 /* if array is no-longer degraded, then any saved_raid_disk
3765 * information must be scrapped
3767 if (!mddev->degraded)
3768 ITERATE_RDEV(mddev,rdev,rtmp)
3769 rdev->saved_raid_disk = -1;
3771 mddev->recovery = 0;
3772 /* flag recovery needed just to double check */
3773 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3776 if (mddev->recovery)
3777 /* probably just the RECOVERY_NEEDED flag */
3778 mddev->recovery = 0;
3780 /* no recovery is running.
3781 * remove any failed drives, then
3782 * add spares if possible.
3783 * Spare are also removed and re-added, to allow
3784 * the personality to fail the re-add.
3786 ITERATE_RDEV(mddev,rdev,rtmp)
3787 if (rdev->raid_disk >= 0 &&
3788 (rdev->faulty || ! rdev->in_sync) &&
3789 atomic_read(&rdev->nr_pending)==0) {
3790 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3791 rdev->raid_disk = -1;
3794 if (mddev->degraded) {
3795 ITERATE_RDEV(mddev,rdev,rtmp)
3796 if (rdev->raid_disk < 0
3798 if (mddev->pers->hot_add_disk(mddev,rdev))
3805 if (!spares && (mddev->recovery_cp == MaxSector )) {
3806 /* nothing we can do ... */
3809 if (mddev->pers->sync_request) {
3810 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3812 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3813 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
3814 /* We are adding a device or devices to an array
3815 * which has the bitmap stored on all devices.
3816 * So make sure all bitmap pages get written
3818 bitmap_write_all(mddev->bitmap);
3820 mddev->sync_thread = md_register_thread(md_do_sync,
3823 if (!mddev->sync_thread) {
3824 printk(KERN_ERR "%s: could not start resync"
3827 /* leave the spares where they are, it shouldn't hurt */
3828 mddev->recovery = 0;
3830 md_wakeup_thread(mddev->sync_thread);
3834 mddev_unlock(mddev);
3838 static int md_notify_reboot(struct notifier_block *this,
3839 unsigned long code, void *x)
3841 struct list_head *tmp;
3844 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3846 printk(KERN_INFO "md: stopping all md devices.\n");
3848 ITERATE_MDDEV(mddev,tmp)
3849 if (mddev_trylock(mddev)==0)
3850 do_md_stop (mddev, 1);
3852 * certain more exotic SCSI devices are known to be
3853 * volatile wrt too early system reboots. While the
3854 * right place to handle this issue is the given
3855 * driver, we do want to have a safe RAID driver ...
3862 static struct notifier_block md_notifier = {
3863 .notifier_call = md_notify_reboot,
3865 .priority = INT_MAX, /* before any real devices */
3868 static void md_geninit(void)
3870 struct proc_dir_entry *p;
3872 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3874 p = create_proc_entry("mdstat", S_IRUGO, NULL);
3876 p->proc_fops = &md_seq_fops;
3879 static int __init md_init(void)
3883 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3884 " MD_SB_DISKS=%d\n",
3885 MD_MAJOR_VERSION, MD_MINOR_VERSION,
3886 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3887 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
3890 if (register_blkdev(MAJOR_NR, "md"))
3892 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3893 unregister_blkdev(MAJOR_NR, "md");
3897 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3898 md_probe, NULL, NULL);
3899 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3900 md_probe, NULL, NULL);
3902 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3903 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3904 S_IFBLK|S_IRUSR|S_IWUSR,
3907 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3908 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3909 S_IFBLK|S_IRUSR|S_IWUSR,
3913 register_reboot_notifier(&md_notifier);
3914 raid_table_header = register_sysctl_table(raid_root_table, 1);
3924 * Searches all registered partitions for autorun RAID arrays
3927 static dev_t detected_devices[128];
3930 void md_autodetect_dev(dev_t dev)
3932 if (dev_cnt >= 0 && dev_cnt < 127)
3933 detected_devices[dev_cnt++] = dev;
3937 static void autostart_arrays(int part)
3942 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3944 for (i = 0; i < dev_cnt; i++) {
3945 dev_t dev = detected_devices[i];
3947 rdev = md_import_device(dev,0, 0);
3955 list_add(&rdev->same_set, &pending_raid_disks);
3959 autorun_devices(part);
3964 static __exit void md_exit(void)
3967 struct list_head *tmp;
3969 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3970 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
3971 for (i=0; i < MAX_MD_DEVS; i++)
3972 devfs_remove("md/%d", i);
3973 for (i=0; i < MAX_MD_DEVS; i++)
3974 devfs_remove("md/d%d", i);
3978 unregister_blkdev(MAJOR_NR,"md");
3979 unregister_blkdev(mdp_major, "mdp");
3980 unregister_reboot_notifier(&md_notifier);
3981 unregister_sysctl_table(raid_table_header);
3982 remove_proc_entry("mdstat", NULL);
3983 ITERATE_MDDEV(mddev,tmp) {
3984 struct gendisk *disk = mddev->gendisk;
3987 export_array(mddev);
3990 mddev->gendisk = NULL;
3995 module_init(md_init)
3996 module_exit(md_exit)
3998 EXPORT_SYMBOL(register_md_personality);
3999 EXPORT_SYMBOL(unregister_md_personality);
4000 EXPORT_SYMBOL(md_error);
4001 EXPORT_SYMBOL(md_done_sync);
4002 EXPORT_SYMBOL(md_write_start);
4003 EXPORT_SYMBOL(md_write_end);
4004 EXPORT_SYMBOL(md_register_thread);
4005 EXPORT_SYMBOL(md_unregister_thread);
4006 EXPORT_SYMBOL(md_wakeup_thread);
4007 EXPORT_SYMBOL(md_print_devices);
4008 EXPORT_SYMBOL(md_check_recovery);
4009 MODULE_LICENSE("GPL");