2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
19 * $Id: diskonchip.c,v 1.54 2005/04/07 14:22:55 dbrown Exp $
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/rslib.h>
27 #include <linux/moduleparam.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/doc2000.h>
33 #include <linux/mtd/compatmac.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/mtd/inftl.h>
37 /* Where to look for the devices? */
38 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
42 static unsigned long __initdata doc_locations[] = {
43 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
44 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50 #else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #elif defined(__PPC__)
59 #elif defined(CONFIG_MOMENCO_OCELOT)
62 #elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
65 #warning Unknown architecture for DiskOnChip. No default probe locations defined
69 static struct mtd_info *doclist = NULL;
72 void __iomem *virtadr;
73 unsigned long physadr;
76 int chips_per_floor; /* The number of chips detected on each floor */
81 struct mtd_info *nextdoc;
84 /* This is the syndrome computed by the HW ecc generator upon reading an empty
85 page, one with all 0xff for data and stored ecc code. */
86 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
87 /* This is the ecc value computed by the HW ecc generator upon writing an empty
88 page, one with all 0xff for data. */
89 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
91 #define INFTL_BBT_RESERVED_BLOCKS 4
93 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
94 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
95 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
97 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
98 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
101 module_param(debug, int, 0);
103 static int try_dword=1;
104 module_param(try_dword, int, 0);
106 static int no_ecc_failures=0;
107 module_param(no_ecc_failures, int, 0);
109 static int no_autopart=0;
110 module_param(no_autopart, int, 0);
112 static int show_firmware_partition=0;
113 module_param(show_firmware_partition, int, 0);
115 #ifdef MTD_NAND_DISKONCHIP_BBTWRITE
116 static int inftl_bbt_write=1;
118 static int inftl_bbt_write=0;
120 module_param(inftl_bbt_write, int, 0);
122 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
123 module_param(doc_config_location, ulong, 0);
124 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
127 /* Sector size for HW ECC */
128 #define SECTOR_SIZE 512
129 /* The sector bytes are packed into NB_DATA 10 bit words */
130 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
131 /* Number of roots */
133 /* First consective root */
135 /* Number of symbols */
138 /* the Reed Solomon control structure */
139 static struct rs_control *rs_decoder;
142 * The HW decoder in the DoC ASIC's provides us a error syndrome,
143 * which we must convert to a standard syndrom usable by the generic
144 * Reed-Solomon library code.
146 * Fabrice Bellard figured this out in the old docecc code. I added
147 * some comments, improved a minor bit and converted it to make use
148 * of the generic Reed-Solomon libary. tglx
150 static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
152 int i, j, nerr, errpos[8];
154 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
156 /* Convert the ecc bytes into words */
157 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
158 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
159 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
160 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
163 /* Initialize the syndrom buffer */
164 for (i = 0; i < NROOTS; i++)
168 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
169 * where x = alpha^(FCR + i)
171 for(j = 1; j < NROOTS; j++) {
174 tmp = rs->index_of[ds[j]];
175 for(i = 0; i < NROOTS; i++)
176 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
179 /* Calc s[i] = s[i] / alpha^(v + i) */
180 for (i = 0; i < NROOTS; i++) {
182 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
184 /* Call the decoder library */
185 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
187 /* Incorrectable errors ? */
192 * Correct the errors. The bitpositions are a bit of magic,
193 * but they are given by the design of the de/encoder circuit
196 for(i = 0;i < nerr; i++) {
197 int index, bitpos, pos = 1015 - errpos[i];
199 if (pos >= NB_DATA && pos < 1019)
202 /* extract bit position (MSB first) */
203 pos = 10 * (NB_DATA - 1 - pos) - 6;
204 /* now correct the following 10 bits. At most two bytes
205 can be modified since pos is even */
206 index = (pos >> 3) ^ 1;
208 if ((index >= 0 && index < SECTOR_SIZE) ||
209 index == (SECTOR_SIZE + 1)) {
210 val = (uint8_t) (errval[i] >> (2 + bitpos));
212 if (index < SECTOR_SIZE)
215 index = ((pos >> 3) + 1) ^ 1;
216 bitpos = (bitpos + 10) & 7;
219 if ((index >= 0 && index < SECTOR_SIZE) ||
220 index == (SECTOR_SIZE + 1)) {
221 val = (uint8_t)(errval[i] << (8 - bitpos));
223 if (index < SECTOR_SIZE)
228 /* If the parity is wrong, no rescue possible */
229 return parity ? -1 : nerr;
232 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
237 for (i = 0; i < cycles; i++) {
238 if (DoC_is_Millennium(doc))
239 dummy = ReadDOC(doc->virtadr, NOP);
240 else if (DoC_is_MillenniumPlus(doc))
241 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
243 dummy = ReadDOC(doc->virtadr, DOCStatus);
248 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
250 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
251 static int _DoC_WaitReady(struct doc_priv *doc)
253 void __iomem *docptr = doc->virtadr;
254 unsigned long timeo = jiffies + (HZ * 10);
256 if(debug) printk("_DoC_WaitReady...\n");
257 /* Out-of-line routine to wait for chip response */
258 if (DoC_is_MillenniumPlus(doc)) {
259 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
260 if (time_after(jiffies, timeo)) {
261 printk("_DoC_WaitReady timed out.\n");
268 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
269 if (time_after(jiffies, timeo)) {
270 printk("_DoC_WaitReady timed out.\n");
281 static inline int DoC_WaitReady(struct doc_priv *doc)
283 void __iomem *docptr = doc->virtadr;
286 if (DoC_is_MillenniumPlus(doc)) {
289 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
290 /* Call the out-of-line routine to wait */
291 ret = _DoC_WaitReady(doc);
295 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
296 /* Call the out-of-line routine to wait */
297 ret = _DoC_WaitReady(doc);
301 if(debug) printk("DoC_WaitReady OK\n");
305 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
307 struct nand_chip *this = mtd->priv;
308 struct doc_priv *doc = this->priv;
309 void __iomem *docptr = doc->virtadr;
311 if(debug)printk("write_byte %02x\n", datum);
312 WriteDOC(datum, docptr, CDSNSlowIO);
313 WriteDOC(datum, docptr, 2k_CDSN_IO);
316 static u_char doc2000_read_byte(struct mtd_info *mtd)
318 struct nand_chip *this = mtd->priv;
319 struct doc_priv *doc = this->priv;
320 void __iomem *docptr = doc->virtadr;
323 ReadDOC(docptr, CDSNSlowIO);
325 ret = ReadDOC(docptr, 2k_CDSN_IO);
326 if (debug) printk("read_byte returns %02x\n", ret);
330 static void doc2000_writebuf(struct mtd_info *mtd,
331 const u_char *buf, int len)
333 struct nand_chip *this = mtd->priv;
334 struct doc_priv *doc = this->priv;
335 void __iomem *docptr = doc->virtadr;
337 if (debug)printk("writebuf of %d bytes: ", len);
338 for (i=0; i < len; i++) {
339 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
341 printk("%02x ", buf[i]);
343 if (debug) printk("\n");
346 static void doc2000_readbuf(struct mtd_info *mtd,
347 u_char *buf, int len)
349 struct nand_chip *this = mtd->priv;
350 struct doc_priv *doc = this->priv;
351 void __iomem *docptr = doc->virtadr;
354 if (debug)printk("readbuf of %d bytes: ", len);
356 for (i=0; i < len; i++) {
357 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
361 static void doc2000_readbuf_dword(struct mtd_info *mtd,
362 u_char *buf, int len)
364 struct nand_chip *this = mtd->priv;
365 struct doc_priv *doc = this->priv;
366 void __iomem *docptr = doc->virtadr;
369 if (debug) printk("readbuf_dword of %d bytes: ", len);
371 if (unlikely((((unsigned long)buf)|len) & 3)) {
372 for (i=0; i < len; i++) {
373 *(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
376 for (i=0; i < len; i+=4) {
377 *(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
382 static int doc2000_verifybuf(struct mtd_info *mtd,
383 const u_char *buf, int len)
385 struct nand_chip *this = mtd->priv;
386 struct doc_priv *doc = this->priv;
387 void __iomem *docptr = doc->virtadr;
390 for (i=0; i < len; i++)
391 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
396 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
398 struct nand_chip *this = mtd->priv;
399 struct doc_priv *doc = this->priv;
402 doc200x_select_chip(mtd, nr);
403 doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
404 this->write_byte(mtd, NAND_CMD_READID);
405 doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
406 doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
407 this->write_byte(mtd, 0);
408 doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
410 /* We cant' use dev_ready here, but at least we wait for the
411 * command to complete
415 ret = this->read_byte(mtd) << 8;
416 ret |= this->read_byte(mtd);
418 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
419 /* First chip probe. See if we get same results by 32-bit access */
424 void __iomem *docptr = doc->virtadr;
426 doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
427 doc2000_write_byte(mtd, NAND_CMD_READID);
428 doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
429 doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
430 doc2000_write_byte(mtd, 0);
431 doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
435 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
436 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
437 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
438 this->read_buf = &doc2000_readbuf_dword;
445 static void __init doc2000_count_chips(struct mtd_info *mtd)
447 struct nand_chip *this = mtd->priv;
448 struct doc_priv *doc = this->priv;
452 /* Max 4 chips per floor on DiskOnChip 2000 */
453 doc->chips_per_floor = 4;
455 /* Find out what the first chip is */
456 mfrid = doc200x_ident_chip(mtd, 0);
458 /* Find how many chips in each floor. */
459 for (i = 1; i < 4; i++) {
460 if (doc200x_ident_chip(mtd, i) != mfrid)
463 doc->chips_per_floor = i;
464 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
467 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
469 struct doc_priv *doc = this->priv;
474 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
476 status = (int)this->read_byte(mtd);
481 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
483 struct nand_chip *this = mtd->priv;
484 struct doc_priv *doc = this->priv;
485 void __iomem *docptr = doc->virtadr;
487 WriteDOC(datum, docptr, CDSNSlowIO);
488 WriteDOC(datum, docptr, Mil_CDSN_IO);
489 WriteDOC(datum, docptr, WritePipeTerm);
492 static u_char doc2001_read_byte(struct mtd_info *mtd)
494 struct nand_chip *this = mtd->priv;
495 struct doc_priv *doc = this->priv;
496 void __iomem *docptr = doc->virtadr;
498 //ReadDOC(docptr, CDSNSlowIO);
499 /* 11.4.5 -- delay twice to allow extended length cycle */
501 ReadDOC(docptr, ReadPipeInit);
502 //return ReadDOC(docptr, Mil_CDSN_IO);
503 return ReadDOC(docptr, LastDataRead);
506 static void doc2001_writebuf(struct mtd_info *mtd,
507 const u_char *buf, int len)
509 struct nand_chip *this = mtd->priv;
510 struct doc_priv *doc = this->priv;
511 void __iomem *docptr = doc->virtadr;
514 for (i=0; i < len; i++)
515 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
516 /* Terminate write pipeline */
517 WriteDOC(0x00, docptr, WritePipeTerm);
520 static void doc2001_readbuf(struct mtd_info *mtd,
521 u_char *buf, int len)
523 struct nand_chip *this = mtd->priv;
524 struct doc_priv *doc = this->priv;
525 void __iomem *docptr = doc->virtadr;
528 /* Start read pipeline */
529 ReadDOC(docptr, ReadPipeInit);
531 for (i=0; i < len-1; i++)
532 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
534 /* Terminate read pipeline */
535 buf[i] = ReadDOC(docptr, LastDataRead);
538 static int doc2001_verifybuf(struct mtd_info *mtd,
539 const u_char *buf, int len)
541 struct nand_chip *this = mtd->priv;
542 struct doc_priv *doc = this->priv;
543 void __iomem *docptr = doc->virtadr;
546 /* Start read pipeline */
547 ReadDOC(docptr, ReadPipeInit);
549 for (i=0; i < len-1; i++)
550 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
551 ReadDOC(docptr, LastDataRead);
554 if (buf[i] != ReadDOC(docptr, LastDataRead))
559 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
561 struct nand_chip *this = mtd->priv;
562 struct doc_priv *doc = this->priv;
563 void __iomem *docptr = doc->virtadr;
566 ReadDOC(docptr, Mplus_ReadPipeInit);
567 ReadDOC(docptr, Mplus_ReadPipeInit);
568 ret = ReadDOC(docptr, Mplus_LastDataRead);
569 if (debug) printk("read_byte returns %02x\n", ret);
573 static void doc2001plus_writebuf(struct mtd_info *mtd,
574 const u_char *buf, int len)
576 struct nand_chip *this = mtd->priv;
577 struct doc_priv *doc = this->priv;
578 void __iomem *docptr = doc->virtadr;
581 if (debug)printk("writebuf of %d bytes: ", len);
582 for (i=0; i < len; i++) {
583 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
585 printk("%02x ", buf[i]);
587 if (debug) printk("\n");
590 static void doc2001plus_readbuf(struct mtd_info *mtd,
591 u_char *buf, int len)
593 struct nand_chip *this = mtd->priv;
594 struct doc_priv *doc = this->priv;
595 void __iomem *docptr = doc->virtadr;
598 if (debug)printk("readbuf of %d bytes: ", len);
600 /* Start read pipeline */
601 ReadDOC(docptr, Mplus_ReadPipeInit);
602 ReadDOC(docptr, Mplus_ReadPipeInit);
604 for (i=0; i < len-2; i++) {
605 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
607 printk("%02x ", buf[i]);
610 /* Terminate read pipeline */
611 buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
613 printk("%02x ", buf[len-2]);
614 buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
616 printk("%02x ", buf[len-1]);
617 if (debug) printk("\n");
620 static int doc2001plus_verifybuf(struct mtd_info *mtd,
621 const u_char *buf, int len)
623 struct nand_chip *this = mtd->priv;
624 struct doc_priv *doc = this->priv;
625 void __iomem *docptr = doc->virtadr;
628 if (debug)printk("verifybuf of %d bytes: ", len);
630 /* Start read pipeline */
631 ReadDOC(docptr, Mplus_ReadPipeInit);
632 ReadDOC(docptr, Mplus_ReadPipeInit);
634 for (i=0; i < len-2; i++)
635 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
636 ReadDOC(docptr, Mplus_LastDataRead);
637 ReadDOC(docptr, Mplus_LastDataRead);
640 if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
642 if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
647 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
649 struct nand_chip *this = mtd->priv;
650 struct doc_priv *doc = this->priv;
651 void __iomem *docptr = doc->virtadr;
654 if(debug)printk("select chip (%d)\n", chip);
657 /* Disable flash internally */
658 WriteDOC(0, docptr, Mplus_FlashSelect);
662 floor = chip / doc->chips_per_floor;
663 chip -= (floor * doc->chips_per_floor);
665 /* Assert ChipEnable and deassert WriteProtect */
666 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
667 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
670 doc->curfloor = floor;
673 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
675 struct nand_chip *this = mtd->priv;
676 struct doc_priv *doc = this->priv;
677 void __iomem *docptr = doc->virtadr;
680 if(debug)printk("select chip (%d)\n", chip);
685 floor = chip / doc->chips_per_floor;
686 chip -= (floor * doc->chips_per_floor);
688 /* 11.4.4 -- deassert CE before changing chip */
689 doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
691 WriteDOC(floor, docptr, FloorSelect);
692 WriteDOC(chip, docptr, CDSNDeviceSelect);
694 doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
697 doc->curfloor = floor;
700 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
702 struct nand_chip *this = mtd->priv;
703 struct doc_priv *doc = this->priv;
704 void __iomem *docptr = doc->virtadr;
707 case NAND_CTL_SETNCE:
708 doc->CDSNControl |= CDSN_CTRL_CE;
710 case NAND_CTL_CLRNCE:
711 doc->CDSNControl &= ~CDSN_CTRL_CE;
713 case NAND_CTL_SETCLE:
714 doc->CDSNControl |= CDSN_CTRL_CLE;
716 case NAND_CTL_CLRCLE:
717 doc->CDSNControl &= ~CDSN_CTRL_CLE;
719 case NAND_CTL_SETALE:
720 doc->CDSNControl |= CDSN_CTRL_ALE;
722 case NAND_CTL_CLRALE:
723 doc->CDSNControl &= ~CDSN_CTRL_ALE;
726 doc->CDSNControl |= CDSN_CTRL_WP;
729 doc->CDSNControl &= ~CDSN_CTRL_WP;
732 if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
733 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
734 /* 11.4.3 -- 4 NOPs after CSDNControl write */
738 static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
740 struct nand_chip *this = mtd->priv;
741 struct doc_priv *doc = this->priv;
742 void __iomem *docptr = doc->virtadr;
745 * Must terminate write pipeline before sending any commands
748 if (command == NAND_CMD_PAGEPROG) {
749 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
750 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
754 * Write out the command to the device.
756 if (command == NAND_CMD_SEQIN) {
759 if (column >= mtd->oobblock) {
761 column -= mtd->oobblock;
762 readcmd = NAND_CMD_READOOB;
763 } else if (column < 256) {
764 /* First 256 bytes --> READ0 */
765 readcmd = NAND_CMD_READ0;
768 readcmd = NAND_CMD_READ1;
770 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
772 WriteDOC(command, docptr, Mplus_FlashCmd);
773 WriteDOC(0, docptr, Mplus_WritePipeTerm);
774 WriteDOC(0, docptr, Mplus_WritePipeTerm);
776 if (column != -1 || page_addr != -1) {
777 /* Serially input address */
779 /* Adjust columns for 16 bit buswidth */
780 if (this->options & NAND_BUSWIDTH_16)
782 WriteDOC(column, docptr, Mplus_FlashAddress);
784 if (page_addr != -1) {
785 WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
786 WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
787 /* One more address cycle for higher density devices */
788 if (this->chipsize & 0x0c000000) {
789 WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
790 printk("high density\n");
793 WriteDOC(0, docptr, Mplus_WritePipeTerm);
794 WriteDOC(0, docptr, Mplus_WritePipeTerm);
796 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
797 WriteDOC(0, docptr, Mplus_FlashControl);
801 * program and erase have their own busy handlers
802 * status and sequential in needs no delay
806 case NAND_CMD_PAGEPROG:
807 case NAND_CMD_ERASE1:
808 case NAND_CMD_ERASE2:
810 case NAND_CMD_STATUS:
816 udelay(this->chip_delay);
817 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
818 WriteDOC(0, docptr, Mplus_WritePipeTerm);
819 WriteDOC(0, docptr, Mplus_WritePipeTerm);
820 while ( !(this->read_byte(mtd) & 0x40));
823 /* This applies to read commands */
826 * If we don't have access to the busy pin, we apply the given
829 if (!this->dev_ready) {
830 udelay (this->chip_delay);
835 /* Apply this short delay always to ensure that we do wait tWB in
836 * any case on any machine. */
838 /* wait until command is processed */
839 while (!this->dev_ready(mtd));
842 static int doc200x_dev_ready(struct mtd_info *mtd)
844 struct nand_chip *this = mtd->priv;
845 struct doc_priv *doc = this->priv;
846 void __iomem *docptr = doc->virtadr;
848 if (DoC_is_MillenniumPlus(doc)) {
849 /* 11.4.2 -- must NOP four times before checking FR/B# */
851 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
853 printk("not ready\n");
856 if (debug)printk("was ready\n");
859 /* 11.4.2 -- must NOP four times before checking FR/B# */
861 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
863 printk("not ready\n");
866 /* 11.4.2 -- Must NOP twice if it's ready */
868 if (debug)printk("was ready\n");
873 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
875 /* This is our last resort if we couldn't find or create a BBT. Just
876 pretend all blocks are good. */
880 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
882 struct nand_chip *this = mtd->priv;
883 struct doc_priv *doc = this->priv;
884 void __iomem *docptr = doc->virtadr;
886 /* Prime the ECC engine */
889 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
890 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
893 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
894 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
899 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
901 struct nand_chip *this = mtd->priv;
902 struct doc_priv *doc = this->priv;
903 void __iomem *docptr = doc->virtadr;
905 /* Prime the ECC engine */
908 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
909 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
912 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
913 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
918 /* This code is only called on write */
919 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
920 unsigned char *ecc_code)
922 struct nand_chip *this = mtd->priv;
923 struct doc_priv *doc = this->priv;
924 void __iomem *docptr = doc->virtadr;
928 /* flush the pipeline */
929 if (DoC_is_2000(doc)) {
930 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
931 WriteDOC(0, docptr, 2k_CDSN_IO);
932 WriteDOC(0, docptr, 2k_CDSN_IO);
933 WriteDOC(0, docptr, 2k_CDSN_IO);
934 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
935 } else if (DoC_is_MillenniumPlus(doc)) {
936 WriteDOC(0, docptr, Mplus_NOP);
937 WriteDOC(0, docptr, Mplus_NOP);
938 WriteDOC(0, docptr, Mplus_NOP);
940 WriteDOC(0, docptr, NOP);
941 WriteDOC(0, docptr, NOP);
942 WriteDOC(0, docptr, NOP);
945 for (i = 0; i < 6; i++) {
946 if (DoC_is_MillenniumPlus(doc))
947 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
949 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
950 if (ecc_code[i] != empty_write_ecc[i])
953 if (DoC_is_MillenniumPlus(doc))
954 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
956 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
958 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
960 /* Note: this somewhat expensive test should not be triggered
961 often. It could be optimized away by examining the data in
962 the writebuf routine, and remembering the result. */
963 for (i = 0; i < 512; i++) {
964 if (dat[i] == 0xff) continue;
969 /* If emptymatch still =1, we do have an all-0xff data buffer.
970 Return all-0xff ecc value instead of the computed one, so
971 it'll look just like a freshly-erased page. */
972 if (emptymatch) memset(ecc_code, 0xff, 6);
977 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
980 struct nand_chip *this = mtd->priv;
981 struct doc_priv *doc = this->priv;
982 void __iomem *docptr = doc->virtadr;
983 volatile u_char dummy;
986 /* flush the pipeline */
987 if (DoC_is_2000(doc)) {
988 dummy = ReadDOC(docptr, 2k_ECCStatus);
989 dummy = ReadDOC(docptr, 2k_ECCStatus);
990 dummy = ReadDOC(docptr, 2k_ECCStatus);
991 } else if (DoC_is_MillenniumPlus(doc)) {
992 dummy = ReadDOC(docptr, Mplus_ECCConf);
993 dummy = ReadDOC(docptr, Mplus_ECCConf);
994 dummy = ReadDOC(docptr, Mplus_ECCConf);
996 dummy = ReadDOC(docptr, ECCConf);
997 dummy = ReadDOC(docptr, ECCConf);
998 dummy = ReadDOC(docptr, ECCConf);
1001 /* Error occured ? */
1003 for (i = 0; i < 6; i++) {
1004 if (DoC_is_MillenniumPlus(doc))
1005 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
1007 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
1008 if (calc_ecc[i] != empty_read_syndrome[i])
1011 /* If emptymatch=1, the read syndrome is consistent with an
1012 all-0xff data and stored ecc block. Check the stored ecc. */
1014 for (i = 0; i < 6; i++) {
1015 if (read_ecc[i] == 0xff) continue;
1020 /* If emptymatch still =1, check the data block. */
1022 /* Note: this somewhat expensive test should not be triggered
1023 often. It could be optimized away by examining the data in
1024 the readbuf routine, and remembering the result. */
1025 for (i = 0; i < 512; i++) {
1026 if (dat[i] == 0xff) continue;
1031 /* If emptymatch still =1, this is almost certainly a freshly-
1032 erased block, in which case the ECC will not come out right.
1033 We'll suppress the error and tell the caller everything's
1034 OK. Because it is. */
1035 if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
1037 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1039 if (DoC_is_MillenniumPlus(doc))
1040 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1042 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1043 if (no_ecc_failures && (ret == -1)) {
1044 printk(KERN_ERR "suppressing ECC failure\n");
1050 //u_char mydatabuf[528];
1052 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1053 * attempt to retain compatibility. It used to read:
1054 * .oobfree = { {8, 8} }
1055 * Since that leaves two bytes unusable, it was changed. But the following
1056 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1057 * .oobfree = { {6, 10} }
1058 * jffs2 seems to handle the above gracefully, but the current scheme seems
1059 * safer. The only problem with it is that any code that parses oobfree must
1060 * be able to handle out-of-order segments.
1062 static struct nand_oobinfo doc200x_oobinfo = {
1063 .useecc = MTD_NANDECC_AUTOPLACE,
1065 .eccpos = {0, 1, 2, 3, 4, 5},
1066 .oobfree = { {8, 8}, {6, 2} }
1069 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1070 On sucessful return, buf will contain a copy of the media header for
1071 further processing. id is the string to scan for, and will presumably be
1072 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1073 header. The page #s of the found media headers are placed in mh0_page and
1074 mh1_page in the DOC private structure. */
1075 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
1076 const char *id, int findmirror)
1078 struct nand_chip *this = mtd->priv;
1079 struct doc_priv *doc = this->priv;
1084 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1085 ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
1086 if (retlen != mtd->oobblock) continue;
1088 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
1091 if (memcmp(buf, id, 6)) continue;
1092 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1093 if (doc->mh0_page == -1) {
1094 doc->mh0_page = offs >> this->page_shift;
1095 if (!findmirror) return 1;
1098 doc->mh1_page = offs >> this->page_shift;
1101 if (doc->mh0_page == -1) {
1102 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1105 /* Only one mediaheader was found. We want buf to contain a
1106 mediaheader on return, so we'll have to re-read the one we found. */
1107 offs = doc->mh0_page << this->page_shift;
1108 ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
1109 if (retlen != mtd->oobblock) {
1110 /* Insanity. Give up. */
1111 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1117 static inline int __init nftl_partscan(struct mtd_info *mtd,
1118 struct mtd_partition *parts)
1120 struct nand_chip *this = mtd->priv;
1121 struct doc_priv *doc = this->priv;
1124 struct NFTLMediaHeader *mh;
1125 const unsigned psize = 1 << this->page_shift;
1127 unsigned blocks, maxblocks;
1128 int offs, numheaders;
1130 buf = kmalloc(mtd->oobblock, GFP_KERNEL);
1132 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1135 if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
1136 mh = (struct NFTLMediaHeader *) buf;
1138 mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
1139 mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
1140 mh->FormattedSize = le32_to_cpu(mh->FormattedSize);
1142 printk(KERN_INFO " DataOrgID = %s\n"
1143 " NumEraseUnits = %d\n"
1144 " FirstPhysicalEUN = %d\n"
1145 " FormattedSize = %d\n"
1146 " UnitSizeFactor = %d\n",
1147 mh->DataOrgID, mh->NumEraseUnits,
1148 mh->FirstPhysicalEUN, mh->FormattedSize,
1149 mh->UnitSizeFactor);
1151 blocks = mtd->size >> this->phys_erase_shift;
1152 maxblocks = min(32768U, mtd->erasesize - psize);
1154 if (mh->UnitSizeFactor == 0x00) {
1155 /* Auto-determine UnitSizeFactor. The constraints are:
1156 - There can be at most 32768 virtual blocks.
1157 - There can be at most (virtual block size - page size)
1158 virtual blocks (because MediaHeader+BBT must fit in 1).
1160 mh->UnitSizeFactor = 0xff;
1161 while (blocks > maxblocks) {
1163 maxblocks = min(32768U, (maxblocks << 1) + psize);
1164 mh->UnitSizeFactor--;
1166 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1169 /* NOTE: The lines below modify internal variables of the NAND and MTD
1170 layers; variables with have already been configured by nand_scan.
1171 Unfortunately, we didn't know before this point what these values
1172 should be. Thus, this code is somewhat dependant on the exact
1173 implementation of the NAND layer. */
1174 if (mh->UnitSizeFactor != 0xff) {
1175 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1176 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1177 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1178 blocks = mtd->size >> this->bbt_erase_shift;
1179 maxblocks = min(32768U, mtd->erasesize - psize);
1182 if (blocks > maxblocks) {
1183 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1187 /* Skip past the media headers. */
1188 offs = max(doc->mh0_page, doc->mh1_page);
1189 offs <<= this->page_shift;
1190 offs += mtd->erasesize;
1192 if (show_firmware_partition == 1) {
1193 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1194 parts[0].offset = 0;
1195 parts[0].size = offs;
1199 parts[numparts].name = " DiskOnChip BDTL partition";
1200 parts[numparts].offset = offs;
1201 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1203 offs += parts[numparts].size;
1206 if (offs < mtd->size) {
1207 parts[numparts].name = " DiskOnChip Remainder partition";
1208 parts[numparts].offset = offs;
1209 parts[numparts].size = mtd->size - offs;
1219 /* This is a stripped-down copy of the code in inftlmount.c */
1220 static inline int __init inftl_partscan(struct mtd_info *mtd,
1221 struct mtd_partition *parts)
1223 struct nand_chip *this = mtd->priv;
1224 struct doc_priv *doc = this->priv;
1227 struct INFTLMediaHeader *mh;
1228 struct INFTLPartition *ip;
1231 int vshift, lastvunit = 0;
1233 int end = mtd->size;
1235 if (inftl_bbt_write)
1236 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1238 buf = kmalloc(mtd->oobblock, GFP_KERNEL);
1240 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1244 if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
1245 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1246 mh = (struct INFTLMediaHeader *) buf;
1248 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
1249 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
1250 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
1251 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
1252 mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
1253 mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
1255 printk(KERN_INFO " bootRecordID = %s\n"
1256 " NoOfBootImageBlocks = %d\n"
1257 " NoOfBinaryPartitions = %d\n"
1258 " NoOfBDTLPartitions = %d\n"
1259 " BlockMultiplerBits = %d\n"
1260 " FormatFlgs = %d\n"
1261 " OsakVersion = %d.%d.%d.%d\n"
1262 " PercentUsed = %d\n",
1263 mh->bootRecordID, mh->NoOfBootImageBlocks,
1264 mh->NoOfBinaryPartitions,
1265 mh->NoOfBDTLPartitions,
1266 mh->BlockMultiplierBits, mh->FormatFlags,
1267 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1268 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1269 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1270 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1273 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1275 blocks = mtd->size >> vshift;
1276 if (blocks > 32768) {
1277 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1281 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1282 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1283 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1287 /* Scan the partitions */
1288 for (i = 0; (i < 4); i++) {
1289 ip = &(mh->Partitions[i]);
1290 ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
1291 ip->firstUnit = le32_to_cpu(ip->firstUnit);
1292 ip->lastUnit = le32_to_cpu(ip->lastUnit);
1293 ip->flags = le32_to_cpu(ip->flags);
1294 ip->spareUnits = le32_to_cpu(ip->spareUnits);
1295 ip->Reserved0 = le32_to_cpu(ip->Reserved0);
1297 printk(KERN_INFO " PARTITION[%d] ->\n"
1298 " virtualUnits = %d\n"
1302 " spareUnits = %d\n",
1303 i, ip->virtualUnits, ip->firstUnit,
1304 ip->lastUnit, ip->flags,
1307 if ((show_firmware_partition == 1) &&
1308 (i == 0) && (ip->firstUnit > 0)) {
1309 parts[0].name = " DiskOnChip IPL / Media Header partition";
1310 parts[0].offset = 0;
1311 parts[0].size = mtd->erasesize * ip->firstUnit;
1315 if (ip->flags & INFTL_BINARY)
1316 parts[numparts].name = " DiskOnChip BDK partition";
1318 parts[numparts].name = " DiskOnChip BDTL partition";
1319 parts[numparts].offset = ip->firstUnit << vshift;
1320 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1322 if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
1323 if (ip->flags & INFTL_LAST) break;
1326 if ((lastvunit << vshift) < end) {
1327 parts[numparts].name = " DiskOnChip Remainder partition";
1328 parts[numparts].offset = lastvunit << vshift;
1329 parts[numparts].size = end - parts[numparts].offset;
1338 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1341 struct nand_chip *this = mtd->priv;
1342 struct doc_priv *doc = this->priv;
1343 struct mtd_partition parts[2];
1345 memset((char *) parts, 0, sizeof(parts));
1346 /* On NFTL, we have to find the media headers before we can read the
1347 BBTs, since they're stored in the media header eraseblocks. */
1348 numparts = nftl_partscan(mtd, parts);
1349 if (!numparts) return -EIO;
1350 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1351 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1353 this->bbt_td->veroffs = 7;
1354 this->bbt_td->pages[0] = doc->mh0_page + 1;
1355 if (doc->mh1_page != -1) {
1356 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1357 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1359 this->bbt_md->veroffs = 7;
1360 this->bbt_md->pages[0] = doc->mh1_page + 1;
1362 this->bbt_md = NULL;
1365 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1366 At least as nand_bbt.c is currently written. */
1367 if ((ret = nand_scan_bbt(mtd, NULL)))
1369 add_mtd_device(mtd);
1370 #ifdef CONFIG_MTD_PARTITIONS
1372 add_mtd_partitions(mtd, parts, numparts);
1377 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1380 struct nand_chip *this = mtd->priv;
1381 struct doc_priv *doc = this->priv;
1382 struct mtd_partition parts[5];
1384 if (this->numchips > doc->chips_per_floor) {
1385 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1389 if (DoC_is_MillenniumPlus(doc)) {
1390 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1391 if (inftl_bbt_write)
1392 this->bbt_td->options |= NAND_BBT_WRITE;
1393 this->bbt_td->pages[0] = 2;
1394 this->bbt_md = NULL;
1396 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
1398 if (inftl_bbt_write)
1399 this->bbt_td->options |= NAND_BBT_WRITE;
1400 this->bbt_td->offs = 8;
1401 this->bbt_td->len = 8;
1402 this->bbt_td->veroffs = 7;
1403 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1404 this->bbt_td->reserved_block_code = 0x01;
1405 this->bbt_td->pattern = "MSYS_BBT";
1407 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
1409 if (inftl_bbt_write)
1410 this->bbt_md->options |= NAND_BBT_WRITE;
1411 this->bbt_md->offs = 8;
1412 this->bbt_md->len = 8;
1413 this->bbt_md->veroffs = 7;
1414 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1415 this->bbt_md->reserved_block_code = 0x01;
1416 this->bbt_md->pattern = "TBB_SYSM";
1419 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1420 At least as nand_bbt.c is currently written. */
1421 if ((ret = nand_scan_bbt(mtd, NULL)))
1423 memset((char *) parts, 0, sizeof(parts));
1424 numparts = inftl_partscan(mtd, parts);
1425 /* At least for now, require the INFTL Media Header. We could probably
1426 do without it for non-INFTL use, since all it gives us is
1427 autopartitioning, but I want to give it more thought. */
1428 if (!numparts) return -EIO;
1429 add_mtd_device(mtd);
1430 #ifdef CONFIG_MTD_PARTITIONS
1432 add_mtd_partitions(mtd, parts, numparts);
1437 static inline int __init doc2000_init(struct mtd_info *mtd)
1439 struct nand_chip *this = mtd->priv;
1440 struct doc_priv *doc = this->priv;
1442 this->write_byte = doc2000_write_byte;
1443 this->read_byte = doc2000_read_byte;
1444 this->write_buf = doc2000_writebuf;
1445 this->read_buf = doc2000_readbuf;
1446 this->verify_buf = doc2000_verifybuf;
1447 this->scan_bbt = nftl_scan_bbt;
1449 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1450 doc2000_count_chips(mtd);
1451 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1452 return (4 * doc->chips_per_floor);
1455 static inline int __init doc2001_init(struct mtd_info *mtd)
1457 struct nand_chip *this = mtd->priv;
1458 struct doc_priv *doc = this->priv;
1460 this->write_byte = doc2001_write_byte;
1461 this->read_byte = doc2001_read_byte;
1462 this->write_buf = doc2001_writebuf;
1463 this->read_buf = doc2001_readbuf;
1464 this->verify_buf = doc2001_verifybuf;
1466 ReadDOC(doc->virtadr, ChipID);
1467 ReadDOC(doc->virtadr, ChipID);
1468 ReadDOC(doc->virtadr, ChipID);
1469 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1470 /* It's not a Millennium; it's one of the newer
1471 DiskOnChip 2000 units with a similar ASIC.
1472 Treat it like a Millennium, except that it
1473 can have multiple chips. */
1474 doc2000_count_chips(mtd);
1475 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1476 this->scan_bbt = inftl_scan_bbt;
1477 return (4 * doc->chips_per_floor);
1479 /* Bog-standard Millennium */
1480 doc->chips_per_floor = 1;
1481 mtd->name = "DiskOnChip Millennium";
1482 this->scan_bbt = nftl_scan_bbt;
1487 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1489 struct nand_chip *this = mtd->priv;
1490 struct doc_priv *doc = this->priv;
1492 this->write_byte = NULL;
1493 this->read_byte = doc2001plus_read_byte;
1494 this->write_buf = doc2001plus_writebuf;
1495 this->read_buf = doc2001plus_readbuf;
1496 this->verify_buf = doc2001plus_verifybuf;
1497 this->scan_bbt = inftl_scan_bbt;
1498 this->hwcontrol = NULL;
1499 this->select_chip = doc2001plus_select_chip;
1500 this->cmdfunc = doc2001plus_command;
1501 this->enable_hwecc = doc2001plus_enable_hwecc;
1503 doc->chips_per_floor = 1;
1504 mtd->name = "DiskOnChip Millennium Plus";
1509 static inline int __init doc_probe(unsigned long physadr)
1511 unsigned char ChipID;
1512 struct mtd_info *mtd;
1513 struct nand_chip *nand;
1514 struct doc_priv *doc;
1515 void __iomem *virtadr;
1516 unsigned char save_control;
1517 unsigned char tmp, tmpb, tmpc;
1518 int reg, len, numchips;
1521 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1523 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1527 /* It's not possible to cleanly detect the DiskOnChip - the
1528 * bootup procedure will put the device into reset mode, and
1529 * it's not possible to talk to it without actually writing
1530 * to the DOCControl register. So we store the current contents
1531 * of the DOCControl register's location, in case we later decide
1532 * that it's not a DiskOnChip, and want to put it back how we
1535 save_control = ReadDOC(virtadr, DOCControl);
1537 /* Reset the DiskOnChip ASIC */
1538 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
1539 virtadr, DOCControl);
1540 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
1541 virtadr, DOCControl);
1543 /* Enable the DiskOnChip ASIC */
1544 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
1545 virtadr, DOCControl);
1546 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
1547 virtadr, DOCControl);
1549 ChipID = ReadDOC(virtadr, ChipID);
1552 case DOC_ChipID_Doc2k:
1553 reg = DoC_2k_ECCStatus;
1555 case DOC_ChipID_DocMil:
1558 case DOC_ChipID_DocMilPlus16:
1559 case DOC_ChipID_DocMilPlus32:
1561 /* Possible Millennium Plus, need to do more checks */
1562 /* Possibly release from power down mode */
1563 for (tmp = 0; (tmp < 4); tmp++)
1564 ReadDOC(virtadr, Mplus_Power);
1566 /* Reset the Millennium Plus ASIC */
1567 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
1569 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1570 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1573 /* Enable the Millennium Plus ASIC */
1574 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
1576 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1577 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1580 ChipID = ReadDOC(virtadr, ChipID);
1583 case DOC_ChipID_DocMilPlus16:
1584 reg = DoC_Mplus_Toggle;
1586 case DOC_ChipID_DocMilPlus32:
1587 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1598 /* Check the TOGGLE bit in the ECC register */
1599 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1600 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1601 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1602 if ((tmp == tmpb) || (tmp != tmpc)) {
1603 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1608 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1609 unsigned char oldval;
1610 unsigned char newval;
1613 /* Use the alias resolution register to determine if this is
1614 in fact the same DOC aliased to a new address. If writes
1615 to one chip's alias resolution register change the value on
1616 the other chip, they're the same chip. */
1617 if (ChipID == DOC_ChipID_DocMilPlus16) {
1618 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1619 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1621 oldval = ReadDOC(doc->virtadr, AliasResolution);
1622 newval = ReadDOC(virtadr, AliasResolution);
1624 if (oldval != newval)
1626 if (ChipID == DOC_ChipID_DocMilPlus16) {
1627 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1628 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1629 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1631 WriteDOC(~newval, virtadr, AliasResolution);
1632 oldval = ReadDOC(doc->virtadr, AliasResolution);
1633 WriteDOC(newval, virtadr, AliasResolution); // restore it
1636 if (oldval == newval) {
1637 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1642 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1644 len = sizeof(struct mtd_info) +
1645 sizeof(struct nand_chip) +
1646 sizeof(struct doc_priv) +
1647 (2 * sizeof(struct nand_bbt_descr));
1648 mtd = kmalloc(len, GFP_KERNEL);
1650 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1654 memset(mtd, 0, len);
1656 nand = (struct nand_chip *) (mtd + 1);
1657 doc = (struct doc_priv *) (nand + 1);
1658 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1659 nand->bbt_md = nand->bbt_td + 1;
1662 mtd->owner = THIS_MODULE;
1665 nand->select_chip = doc200x_select_chip;
1666 nand->hwcontrol = doc200x_hwcontrol;
1667 nand->dev_ready = doc200x_dev_ready;
1668 nand->waitfunc = doc200x_wait;
1669 nand->block_bad = doc200x_block_bad;
1670 nand->enable_hwecc = doc200x_enable_hwecc;
1671 nand->calculate_ecc = doc200x_calculate_ecc;
1672 nand->correct_data = doc200x_correct_data;
1674 nand->autooob = &doc200x_oobinfo;
1675 nand->eccmode = NAND_ECC_HW6_512;
1676 nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
1678 doc->physadr = physadr;
1679 doc->virtadr = virtadr;
1680 doc->ChipID = ChipID;
1685 doc->nextdoc = doclist;
1687 if (ChipID == DOC_ChipID_Doc2k)
1688 numchips = doc2000_init(mtd);
1689 else if (ChipID == DOC_ChipID_DocMilPlus16)
1690 numchips = doc2001plus_init(mtd);
1692 numchips = doc2001_init(mtd);
1694 if ((ret = nand_scan(mtd, numchips))) {
1695 /* DBB note: i believe nand_release is necessary here, as
1696 buffers may have been allocated in nand_base. Check with
1698 /* nand_release will call del_mtd_device, but we haven't yet
1699 added it. This is handled without incident by
1700 del_mtd_device, as far as I can tell. */
1711 /* Put back the contents of the DOCControl register, in case it's not
1712 actually a DiskOnChip. */
1713 WriteDOC(save_control, virtadr, DOCControl);
1719 static void release_nanddoc(void)
1721 struct mtd_info *mtd, *nextmtd;
1722 struct nand_chip *nand;
1723 struct doc_priv *doc;
1725 for (mtd = doclist; mtd; mtd = nextmtd) {
1729 nextmtd = doc->nextdoc;
1731 iounmap(doc->virtadr);
1736 static int __init init_nanddoc(void)
1740 /* We could create the decoder on demand, if memory is a concern.
1741 * This way we have it handy, if an error happens
1743 * Symbolsize is 10 (bits)
1744 * Primitve polynomial is x^10+x^3+1
1745 * first consecutive root is 510
1746 * primitve element to generate roots = 1
1747 * generator polinomial degree = 4
1749 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1751 printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1755 if (doc_config_location) {
1756 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1757 ret = doc_probe(doc_config_location);
1761 for (i=0; (doc_locations[i] != 0xffffffff); i++) {
1762 doc_probe(doc_locations[i]);
1765 /* No banner message any more. Print a message if no DiskOnChip
1766 found, so the user knows we at least tried. */
1768 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1774 free_rs(rs_decoder);
1778 static void __exit cleanup_nanddoc(void)
1780 /* Cleanup the nand/DoC resources */
1783 /* Free the reed solomon resources */
1785 free_rs(rs_decoder);
1789 module_init(init_nanddoc);
1790 module_exit(cleanup_nanddoc);
1792 MODULE_LICENSE("GPL");
1793 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1794 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");