Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[linux-2.6] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31
32 #include <linux/kvm_host.h>
33
34 #include "irq.h"
35 #include "i8254.h"
36
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51         union {
52                 u64 ll;
53                 struct {
54                         u32 low, high;
55                 } l;
56         } u, res;
57         u64 rl, rh;
58
59         u.ll = a;
60         rl = (u64)u.l.low * (u64)b;
61         rh = (u64)u.l.high * (u64)b;
62         rh += (rl >> 32);
63         res.l.high = div64_u64(rh, c);
64         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65         return res.ll;
66 }
67
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70         struct kvm_kpit_channel_state *c =
71                 &kvm->arch.vpit->pit_state.channels[channel];
72
73         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75         switch (c->mode) {
76         default:
77         case 0:
78         case 4:
79                 /* XXX: just disable/enable counting */
80                 break;
81         case 1:
82         case 2:
83         case 3:
84         case 5:
85                 /* Restart counting on rising edge. */
86                 if (c->gate < val)
87                         c->count_load_time = ktime_get();
88                 break;
89         }
90
91         c->gate = val;
92 }
93
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98         return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100
101 static s64 __kpit_elapsed(struct kvm *kvm)
102 {
103         s64 elapsed;
104         ktime_t remaining;
105         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
106
107         /*
108          * The Counter does not stop when it reaches zero. In
109          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
110          * the highest count, either FFFF hex for binary counting
111          * or 9999 for BCD counting, and continues counting.
112          * Modes 2 and 3 are periodic; the Counter reloads
113          * itself with the initial count and continues counting
114          * from there.
115          */
116         remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
117         elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
118         elapsed = mod_64(elapsed, ps->pit_timer.period);
119
120         return elapsed;
121 }
122
123 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
124                         int channel)
125 {
126         if (channel == 0)
127                 return __kpit_elapsed(kvm);
128
129         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
130 }
131
132 static int pit_get_count(struct kvm *kvm, int channel)
133 {
134         struct kvm_kpit_channel_state *c =
135                 &kvm->arch.vpit->pit_state.channels[channel];
136         s64 d, t;
137         int counter;
138
139         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
140
141         t = kpit_elapsed(kvm, c, channel);
142         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
143
144         switch (c->mode) {
145         case 0:
146         case 1:
147         case 4:
148         case 5:
149                 counter = (c->count - d) & 0xffff;
150                 break;
151         case 3:
152                 /* XXX: may be incorrect for odd counts */
153                 counter = c->count - (mod_64((2 * d), c->count));
154                 break;
155         default:
156                 counter = c->count - mod_64(d, c->count);
157                 break;
158         }
159         return counter;
160 }
161
162 static int pit_get_out(struct kvm *kvm, int channel)
163 {
164         struct kvm_kpit_channel_state *c =
165                 &kvm->arch.vpit->pit_state.channels[channel];
166         s64 d, t;
167         int out;
168
169         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
170
171         t = kpit_elapsed(kvm, c, channel);
172         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
173
174         switch (c->mode) {
175         default:
176         case 0:
177                 out = (d >= c->count);
178                 break;
179         case 1:
180                 out = (d < c->count);
181                 break;
182         case 2:
183                 out = ((mod_64(d, c->count) == 0) && (d != 0));
184                 break;
185         case 3:
186                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
187                 break;
188         case 4:
189         case 5:
190                 out = (d == c->count);
191                 break;
192         }
193
194         return out;
195 }
196
197 static void pit_latch_count(struct kvm *kvm, int channel)
198 {
199         struct kvm_kpit_channel_state *c =
200                 &kvm->arch.vpit->pit_state.channels[channel];
201
202         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
203
204         if (!c->count_latched) {
205                 c->latched_count = pit_get_count(kvm, channel);
206                 c->count_latched = c->rw_mode;
207         }
208 }
209
210 static void pit_latch_status(struct kvm *kvm, int channel)
211 {
212         struct kvm_kpit_channel_state *c =
213                 &kvm->arch.vpit->pit_state.channels[channel];
214
215         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
216
217         if (!c->status_latched) {
218                 /* TODO: Return NULL COUNT (bit 6). */
219                 c->status = ((pit_get_out(kvm, channel) << 7) |
220                                 (c->rw_mode << 4) |
221                                 (c->mode << 1) |
222                                 c->bcd);
223                 c->status_latched = 1;
224         }
225 }
226
227 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
228 {
229         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
230
231         if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
232                 return atomic_read(&pit->pit_state.pit_timer.pending);
233         return 0;
234 }
235
236 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
237 {
238         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
239                                                  irq_ack_notifier);
240         spin_lock(&ps->inject_lock);
241         if (atomic_dec_return(&ps->pit_timer.pending) < 0)
242                 atomic_inc(&ps->pit_timer.pending);
243         ps->irq_ack = 1;
244         spin_unlock(&ps->inject_lock);
245 }
246
247 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
248 {
249         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
250         struct hrtimer *timer;
251
252         if (vcpu->vcpu_id != 0 || !pit)
253                 return;
254
255         timer = &pit->pit_state.pit_timer.timer;
256         if (hrtimer_cancel(timer))
257                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
258 }
259
260 static void destroy_pit_timer(struct kvm_timer *pt)
261 {
262         pr_debug("pit: execute del timer!\n");
263         hrtimer_cancel(&pt->timer);
264 }
265
266 static bool kpit_is_periodic(struct kvm_timer *ktimer)
267 {
268         struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
269                                                  pit_timer);
270         return ps->is_periodic;
271 }
272
273 static struct kvm_timer_ops kpit_ops = {
274         .is_periodic = kpit_is_periodic,
275 };
276
277 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
278 {
279         struct kvm_timer *pt = &ps->pit_timer;
280         s64 interval;
281
282         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
283
284         pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
285
286         /* TODO The new value only affected after the retriggered */
287         hrtimer_cancel(&pt->timer);
288         pt->period = interval;
289         ps->is_periodic = is_period;
290
291         pt->timer.function = kvm_timer_fn;
292         pt->t_ops = &kpit_ops;
293         pt->kvm = ps->pit->kvm;
294         pt->vcpu_id = 0;
295
296         atomic_set(&pt->pending, 0);
297         ps->irq_ack = 1;
298
299         hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
300                       HRTIMER_MODE_ABS);
301 }
302
303 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
304 {
305         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
306
307         WARN_ON(!mutex_is_locked(&ps->lock));
308
309         pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
310
311         /*
312          * The largest possible initial count is 0; this is equivalent
313          * to 216 for binary counting and 104 for BCD counting.
314          */
315         if (val == 0)
316                 val = 0x10000;
317
318         ps->channels[channel].count = val;
319
320         if (channel != 0) {
321                 ps->channels[channel].count_load_time = ktime_get();
322                 return;
323         }
324
325         /* Two types of timer
326          * mode 1 is one shot, mode 2 is period, otherwise del timer */
327         switch (ps->channels[0].mode) {
328         case 0:
329         case 1:
330         /* FIXME: enhance mode 4 precision */
331         case 4:
332                 create_pit_timer(ps, val, 0);
333                 break;
334         case 2:
335         case 3:
336                 create_pit_timer(ps, val, 1);
337                 break;
338         default:
339                 destroy_pit_timer(&ps->pit_timer);
340         }
341 }
342
343 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
344 {
345         mutex_lock(&kvm->arch.vpit->pit_state.lock);
346         pit_load_count(kvm, channel, val);
347         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
348 }
349
350 static void pit_ioport_write(struct kvm_io_device *this,
351                              gpa_t addr, int len, const void *data)
352 {
353         struct kvm_pit *pit = (struct kvm_pit *)this->private;
354         struct kvm_kpit_state *pit_state = &pit->pit_state;
355         struct kvm *kvm = pit->kvm;
356         int channel, access;
357         struct kvm_kpit_channel_state *s;
358         u32 val = *(u32 *) data;
359
360         val  &= 0xff;
361         addr &= KVM_PIT_CHANNEL_MASK;
362
363         mutex_lock(&pit_state->lock);
364
365         if (val != 0)
366                 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
367                           (unsigned int)addr, len, val);
368
369         if (addr == 3) {
370                 channel = val >> 6;
371                 if (channel == 3) {
372                         /* Read-Back Command. */
373                         for (channel = 0; channel < 3; channel++) {
374                                 s = &pit_state->channels[channel];
375                                 if (val & (2 << channel)) {
376                                         if (!(val & 0x20))
377                                                 pit_latch_count(kvm, channel);
378                                         if (!(val & 0x10))
379                                                 pit_latch_status(kvm, channel);
380                                 }
381                         }
382                 } else {
383                         /* Select Counter <channel>. */
384                         s = &pit_state->channels[channel];
385                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
386                         if (access == 0) {
387                                 pit_latch_count(kvm, channel);
388                         } else {
389                                 s->rw_mode = access;
390                                 s->read_state = access;
391                                 s->write_state = access;
392                                 s->mode = (val >> 1) & 7;
393                                 if (s->mode > 5)
394                                         s->mode -= 4;
395                                 s->bcd = val & 1;
396                         }
397                 }
398         } else {
399                 /* Write Count. */
400                 s = &pit_state->channels[addr];
401                 switch (s->write_state) {
402                 default:
403                 case RW_STATE_LSB:
404                         pit_load_count(kvm, addr, val);
405                         break;
406                 case RW_STATE_MSB:
407                         pit_load_count(kvm, addr, val << 8);
408                         break;
409                 case RW_STATE_WORD0:
410                         s->write_latch = val;
411                         s->write_state = RW_STATE_WORD1;
412                         break;
413                 case RW_STATE_WORD1:
414                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
415                         s->write_state = RW_STATE_WORD0;
416                         break;
417                 }
418         }
419
420         mutex_unlock(&pit_state->lock);
421 }
422
423 static void pit_ioport_read(struct kvm_io_device *this,
424                             gpa_t addr, int len, void *data)
425 {
426         struct kvm_pit *pit = (struct kvm_pit *)this->private;
427         struct kvm_kpit_state *pit_state = &pit->pit_state;
428         struct kvm *kvm = pit->kvm;
429         int ret, count;
430         struct kvm_kpit_channel_state *s;
431
432         addr &= KVM_PIT_CHANNEL_MASK;
433         s = &pit_state->channels[addr];
434
435         mutex_lock(&pit_state->lock);
436
437         if (s->status_latched) {
438                 s->status_latched = 0;
439                 ret = s->status;
440         } else if (s->count_latched) {
441                 switch (s->count_latched) {
442                 default:
443                 case RW_STATE_LSB:
444                         ret = s->latched_count & 0xff;
445                         s->count_latched = 0;
446                         break;
447                 case RW_STATE_MSB:
448                         ret = s->latched_count >> 8;
449                         s->count_latched = 0;
450                         break;
451                 case RW_STATE_WORD0:
452                         ret = s->latched_count & 0xff;
453                         s->count_latched = RW_STATE_MSB;
454                         break;
455                 }
456         } else {
457                 switch (s->read_state) {
458                 default:
459                 case RW_STATE_LSB:
460                         count = pit_get_count(kvm, addr);
461                         ret = count & 0xff;
462                         break;
463                 case RW_STATE_MSB:
464                         count = pit_get_count(kvm, addr);
465                         ret = (count >> 8) & 0xff;
466                         break;
467                 case RW_STATE_WORD0:
468                         count = pit_get_count(kvm, addr);
469                         ret = count & 0xff;
470                         s->read_state = RW_STATE_WORD1;
471                         break;
472                 case RW_STATE_WORD1:
473                         count = pit_get_count(kvm, addr);
474                         ret = (count >> 8) & 0xff;
475                         s->read_state = RW_STATE_WORD0;
476                         break;
477                 }
478         }
479
480         if (len > sizeof(ret))
481                 len = sizeof(ret);
482         memcpy(data, (char *)&ret, len);
483
484         mutex_unlock(&pit_state->lock);
485 }
486
487 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
488                         int len, int is_write)
489 {
490         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
491                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
492 }
493
494 static void speaker_ioport_write(struct kvm_io_device *this,
495                                  gpa_t addr, int len, const void *data)
496 {
497         struct kvm_pit *pit = (struct kvm_pit *)this->private;
498         struct kvm_kpit_state *pit_state = &pit->pit_state;
499         struct kvm *kvm = pit->kvm;
500         u32 val = *(u32 *) data;
501
502         mutex_lock(&pit_state->lock);
503         pit_state->speaker_data_on = (val >> 1) & 1;
504         pit_set_gate(kvm, 2, val & 1);
505         mutex_unlock(&pit_state->lock);
506 }
507
508 static void speaker_ioport_read(struct kvm_io_device *this,
509                                 gpa_t addr, int len, void *data)
510 {
511         struct kvm_pit *pit = (struct kvm_pit *)this->private;
512         struct kvm_kpit_state *pit_state = &pit->pit_state;
513         struct kvm *kvm = pit->kvm;
514         unsigned int refresh_clock;
515         int ret;
516
517         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
518         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
519
520         mutex_lock(&pit_state->lock);
521         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
522                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
523         if (len > sizeof(ret))
524                 len = sizeof(ret);
525         memcpy(data, (char *)&ret, len);
526         mutex_unlock(&pit_state->lock);
527 }
528
529 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
530                             int len, int is_write)
531 {
532         return (addr == KVM_SPEAKER_BASE_ADDRESS);
533 }
534
535 void kvm_pit_reset(struct kvm_pit *pit)
536 {
537         int i;
538         struct kvm_kpit_channel_state *c;
539
540         mutex_lock(&pit->pit_state.lock);
541         for (i = 0; i < 3; i++) {
542                 c = &pit->pit_state.channels[i];
543                 c->mode = 0xff;
544                 c->gate = (i != 2);
545                 pit_load_count(pit->kvm, i, 0);
546         }
547         mutex_unlock(&pit->pit_state.lock);
548
549         atomic_set(&pit->pit_state.pit_timer.pending, 0);
550         pit->pit_state.irq_ack = 1;
551 }
552
553 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
554 {
555         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
556
557         if (!mask) {
558                 atomic_set(&pit->pit_state.pit_timer.pending, 0);
559                 pit->pit_state.irq_ack = 1;
560         }
561 }
562
563 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
564 {
565         struct kvm_pit *pit;
566         struct kvm_kpit_state *pit_state;
567
568         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
569         if (!pit)
570                 return NULL;
571
572         pit->irq_source_id = kvm_request_irq_source_id(kvm);
573         if (pit->irq_source_id < 0) {
574                 kfree(pit);
575                 return NULL;
576         }
577
578         mutex_init(&pit->pit_state.lock);
579         mutex_lock(&pit->pit_state.lock);
580         spin_lock_init(&pit->pit_state.inject_lock);
581
582         /* Initialize PIO device */
583         pit->dev.read = pit_ioport_read;
584         pit->dev.write = pit_ioport_write;
585         pit->dev.in_range = pit_in_range;
586         pit->dev.private = pit;
587         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
588
589         pit->speaker_dev.read = speaker_ioport_read;
590         pit->speaker_dev.write = speaker_ioport_write;
591         pit->speaker_dev.in_range = speaker_in_range;
592         pit->speaker_dev.private = pit;
593         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
594
595         kvm->arch.vpit = pit;
596         pit->kvm = kvm;
597
598         pit_state = &pit->pit_state;
599         pit_state->pit = pit;
600         hrtimer_init(&pit_state->pit_timer.timer,
601                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
602         pit_state->irq_ack_notifier.gsi = 0;
603         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
604         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
605         pit_state->pit_timer.reinject = true;
606         mutex_unlock(&pit->pit_state.lock);
607
608         kvm_pit_reset(pit);
609
610         pit->mask_notifier.func = pit_mask_notifer;
611         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
612
613         return pit;
614 }
615
616 void kvm_free_pit(struct kvm *kvm)
617 {
618         struct hrtimer *timer;
619
620         if (kvm->arch.vpit) {
621                 kvm_unregister_irq_mask_notifier(kvm, 0,
622                                                &kvm->arch.vpit->mask_notifier);
623                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
624                 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
625                 hrtimer_cancel(timer);
626                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
627                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
628                 kfree(kvm->arch.vpit);
629         }
630 }
631
632 static void __inject_pit_timer_intr(struct kvm *kvm)
633 {
634         struct kvm_vcpu *vcpu;
635         int i;
636
637         mutex_lock(&kvm->lock);
638         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
639         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
640         mutex_unlock(&kvm->lock);
641
642         /*
643          * Provides NMI watchdog support via Virtual Wire mode.
644          * The route is: PIT -> PIC -> LVT0 in NMI mode.
645          *
646          * Note: Our Virtual Wire implementation is simplified, only
647          * propagating PIT interrupts to all VCPUs when they have set
648          * LVT0 to NMI delivery. Other PIC interrupts are just sent to
649          * VCPU0, and only if its LVT0 is in EXTINT mode.
650          */
651         if (kvm->arch.vapics_in_nmi_mode > 0)
652                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
653                         vcpu = kvm->vcpus[i];
654                         if (vcpu)
655                                 kvm_apic_nmi_wd_deliver(vcpu);
656                 }
657 }
658
659 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
660 {
661         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
662         struct kvm *kvm = vcpu->kvm;
663         struct kvm_kpit_state *ps;
664
665         if (vcpu && pit) {
666                 int inject = 0;
667                 ps = &pit->pit_state;
668
669                 /* Try to inject pending interrupts when
670                  * last one has been acked.
671                  */
672                 spin_lock(&ps->inject_lock);
673                 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
674                         ps->irq_ack = 0;
675                         inject = 1;
676                 }
677                 spin_unlock(&ps->inject_lock);
678                 if (inject)
679                         __inject_pit_timer_intr(kvm);
680         }
681 }