2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
66 #include <asm/uaccess.h>
68 #define DRIVER_NAME "pktcdvd"
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
73 #define DPRINTK(fmt, args...)
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
79 #define VPRINTK(fmt, args...)
82 #define MAX_SPEED 0xffff
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
87 static struct proc_dir_entry *pkt_proc;
88 static int pktdev_major;
89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
92 static mempool_t *psd_pool;
94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
95 static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
99 static int pkt_remove_dev(dev_t pkt_dev);
100 static int pkt_seq_show(struct seq_file *m, void *p);
105 * create and register a pktcdvd kernel object.
107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
109 struct kobject* parent,
110 struct kobj_type* ktype)
112 struct pktcdvd_kobj *p;
115 p = kzalloc(sizeof(*p), GFP_KERNEL);
119 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
121 kobject_put(&p->kobj);
124 kobject_uevent(&p->kobj, KOBJ_ADD);
128 * remove a pktcdvd kernel object.
130 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
133 kobject_put(&p->kobj);
136 * default release function for pktcdvd kernel objects.
138 static void pkt_kobj_release(struct kobject *kobj)
140 kfree(to_pktcdvdkobj(kobj));
144 /**********************************************************
146 * sysfs interface for pktcdvd
147 * by (C) 2006 Thomas Maier <balagi@justmail.de>
149 **********************************************************/
151 #define DEF_ATTR(_obj,_name,_mode) \
152 static struct attribute _obj = { .name = _name, .mode = _mode }
154 /**********************************************************
155 /sys/class/pktcdvd/pktcdvd[0-7]/
158 stat/packets_finished
163 write_queue/congestion_off
164 write_queue/congestion_on
165 **********************************************************/
167 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
168 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
169 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
170 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
171 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
172 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
174 static struct attribute *kobj_pkt_attrs_stat[] = {
184 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
185 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
186 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
188 static struct attribute *kobj_pkt_attrs_wqueue[] = {
195 static ssize_t kobj_pkt_show(struct kobject *kobj,
196 struct attribute *attr, char *data)
198 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
201 if (strcmp(attr->name, "packets_started") == 0) {
202 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
204 } else if (strcmp(attr->name, "packets_finished") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
207 } else if (strcmp(attr->name, "kb_written") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
210 } else if (strcmp(attr->name, "kb_read") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
213 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
216 } else if (strcmp(attr->name, "size") == 0) {
217 spin_lock(&pd->lock);
218 v = pd->bio_queue_size;
219 spin_unlock(&pd->lock);
220 n = sprintf(data, "%d\n", v);
222 } else if (strcmp(attr->name, "congestion_off") == 0) {
223 spin_lock(&pd->lock);
224 v = pd->write_congestion_off;
225 spin_unlock(&pd->lock);
226 n = sprintf(data, "%d\n", v);
228 } else if (strcmp(attr->name, "congestion_on") == 0) {
229 spin_lock(&pd->lock);
230 v = pd->write_congestion_on;
231 spin_unlock(&pd->lock);
232 n = sprintf(data, "%d\n", v);
237 static void init_write_congestion_marks(int* lo, int* hi)
241 *hi = min(*hi, 1000000);
245 *lo = min(*lo, *hi - 100);
254 static ssize_t kobj_pkt_store(struct kobject *kobj,
255 struct attribute *attr,
256 const char *data, size_t len)
258 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
261 if (strcmp(attr->name, "reset") == 0 && len > 0) {
262 pd->stats.pkt_started = 0;
263 pd->stats.pkt_ended = 0;
264 pd->stats.secs_w = 0;
265 pd->stats.secs_rg = 0;
266 pd->stats.secs_r = 0;
268 } else if (strcmp(attr->name, "congestion_off") == 0
269 && sscanf(data, "%d", &val) == 1) {
270 spin_lock(&pd->lock);
271 pd->write_congestion_off = val;
272 init_write_congestion_marks(&pd->write_congestion_off,
273 &pd->write_congestion_on);
274 spin_unlock(&pd->lock);
276 } else if (strcmp(attr->name, "congestion_on") == 0
277 && sscanf(data, "%d", &val) == 1) {
278 spin_lock(&pd->lock);
279 pd->write_congestion_on = val;
280 init_write_congestion_marks(&pd->write_congestion_off,
281 &pd->write_congestion_on);
282 spin_unlock(&pd->lock);
287 static struct sysfs_ops kobj_pkt_ops = {
288 .show = kobj_pkt_show,
289 .store = kobj_pkt_store
291 static struct kobj_type kobj_pkt_type_stat = {
292 .release = pkt_kobj_release,
293 .sysfs_ops = &kobj_pkt_ops,
294 .default_attrs = kobj_pkt_attrs_stat
296 static struct kobj_type kobj_pkt_type_wqueue = {
297 .release = pkt_kobj_release,
298 .sysfs_ops = &kobj_pkt_ops,
299 .default_attrs = kobj_pkt_attrs_wqueue
302 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
305 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
311 pd->kobj_stat = pkt_kobj_create(pd, "stat",
313 &kobj_pkt_type_stat);
314 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
316 &kobj_pkt_type_wqueue);
320 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
322 pkt_kobj_remove(pd->kobj_stat);
323 pkt_kobj_remove(pd->kobj_wqueue);
325 device_destroy(class_pktcdvd, pd->pkt_dev);
329 /********************************************************************
332 remove unmap packet dev
333 device_map show mappings
334 *******************************************************************/
336 static void class_pktcdvd_release(struct class *cls)
340 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
344 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
345 for (idx = 0; idx < MAX_WRITERS; idx++) {
346 struct pktcdvd_device *pd = pkt_devs[idx];
349 n += sprintf(data+n, "%s %u:%u %u:%u\n",
351 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
352 MAJOR(pd->bdev->bd_dev),
353 MINOR(pd->bdev->bd_dev));
355 mutex_unlock(&ctl_mutex);
359 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
362 unsigned int major, minor;
364 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
365 /* pkt_setup_dev() expects caller to hold reference to self */
366 if (!try_module_get(THIS_MODULE))
369 pkt_setup_dev(MKDEV(major, minor), NULL);
371 module_put(THIS_MODULE);
379 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
382 unsigned int major, minor;
383 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
384 pkt_remove_dev(MKDEV(major, minor));
390 static struct class_attribute class_pktcdvd_attrs[] = {
391 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
392 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
393 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
398 static int pkt_sysfs_init(void)
403 * create control files in sysfs
404 * /sys/class/pktcdvd/...
406 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
409 class_pktcdvd->name = DRIVER_NAME;
410 class_pktcdvd->owner = THIS_MODULE;
411 class_pktcdvd->class_release = class_pktcdvd_release;
412 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
413 ret = class_register(class_pktcdvd);
415 kfree(class_pktcdvd);
416 class_pktcdvd = NULL;
417 printk(DRIVER_NAME": failed to create class pktcdvd\n");
423 static void pkt_sysfs_cleanup(void)
426 class_destroy(class_pktcdvd);
427 class_pktcdvd = NULL;
430 /********************************************************************
433 /sys/kernel/debug/pktcdvd[0-7]/
436 *******************************************************************/
438 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
440 return pkt_seq_show(m, p);
443 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
445 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
448 static const struct file_operations debug_fops = {
449 .open = pkt_debugfs_fops_open,
452 .release = single_release,
453 .owner = THIS_MODULE,
456 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
458 if (!pkt_debugfs_root)
460 pd->dfs_f_info = NULL;
461 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
462 if (IS_ERR(pd->dfs_d_root)) {
463 pd->dfs_d_root = NULL;
466 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
467 pd->dfs_d_root, pd, &debug_fops);
468 if (IS_ERR(pd->dfs_f_info)) {
469 pd->dfs_f_info = NULL;
474 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
476 if (!pkt_debugfs_root)
479 debugfs_remove(pd->dfs_f_info);
480 pd->dfs_f_info = NULL;
482 debugfs_remove(pd->dfs_d_root);
483 pd->dfs_d_root = NULL;
486 static void pkt_debugfs_init(void)
488 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
489 if (IS_ERR(pkt_debugfs_root)) {
490 pkt_debugfs_root = NULL;
495 static void pkt_debugfs_cleanup(void)
497 if (!pkt_debugfs_root)
499 debugfs_remove(pkt_debugfs_root);
500 pkt_debugfs_root = NULL;
503 /* ----------------------------------------------------------*/
506 static void pkt_bio_finished(struct pktcdvd_device *pd)
508 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
509 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
510 VPRINTK(DRIVER_NAME": queue empty\n");
511 atomic_set(&pd->iosched.attention, 1);
512 wake_up(&pd->wqueue);
516 static void pkt_bio_destructor(struct bio *bio)
518 kfree(bio->bi_io_vec);
522 static struct bio *pkt_bio_alloc(int nr_iovecs)
524 struct bio_vec *bvl = NULL;
527 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
532 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
536 bio->bi_max_vecs = nr_iovecs;
537 bio->bi_io_vec = bvl;
538 bio->bi_destructor = pkt_bio_destructor;
549 * Allocate a packet_data struct
551 static struct packet_data *pkt_alloc_packet_data(int frames)
554 struct packet_data *pkt;
556 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
560 pkt->frames = frames;
561 pkt->w_bio = pkt_bio_alloc(frames);
565 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
566 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
571 spin_lock_init(&pkt->lock);
573 for (i = 0; i < frames; i++) {
574 struct bio *bio = pkt_bio_alloc(1);
577 pkt->r_bios[i] = bio;
583 for (i = 0; i < frames; i++) {
584 struct bio *bio = pkt->r_bios[i];
590 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
592 __free_page(pkt->pages[i]);
601 * Free a packet_data struct
603 static void pkt_free_packet_data(struct packet_data *pkt)
607 for (i = 0; i < pkt->frames; i++) {
608 struct bio *bio = pkt->r_bios[i];
612 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
613 __free_page(pkt->pages[i]);
618 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
620 struct packet_data *pkt, *next;
622 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
624 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
625 pkt_free_packet_data(pkt);
627 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
630 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
632 struct packet_data *pkt;
634 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
636 while (nr_packets > 0) {
637 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
639 pkt_shrink_pktlist(pd);
642 pkt->id = nr_packets;
644 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
650 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
652 struct rb_node *n = rb_next(&node->rb_node);
655 return rb_entry(n, struct pkt_rb_node, rb_node);
658 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
660 rb_erase(&node->rb_node, &pd->bio_queue);
661 mempool_free(node, pd->rb_pool);
662 pd->bio_queue_size--;
663 BUG_ON(pd->bio_queue_size < 0);
667 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
669 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
671 struct rb_node *n = pd->bio_queue.rb_node;
672 struct rb_node *next;
673 struct pkt_rb_node *tmp;
676 BUG_ON(pd->bio_queue_size > 0);
681 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
682 if (s <= tmp->bio->bi_sector)
691 if (s > tmp->bio->bi_sector) {
692 tmp = pkt_rbtree_next(tmp);
696 BUG_ON(s > tmp->bio->bi_sector);
701 * Insert a node into the pd->bio_queue rb tree.
703 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
705 struct rb_node **p = &pd->bio_queue.rb_node;
706 struct rb_node *parent = NULL;
707 sector_t s = node->bio->bi_sector;
708 struct pkt_rb_node *tmp;
712 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
713 if (s < tmp->bio->bi_sector)
718 rb_link_node(&node->rb_node, parent, p);
719 rb_insert_color(&node->rb_node, &pd->bio_queue);
720 pd->bio_queue_size++;
724 * Add a bio to a single linked list defined by its head and tail pointers.
726 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
730 BUG_ON((*list_head) == NULL);
731 (*list_tail)->bi_next = bio;
734 BUG_ON((*list_head) != NULL);
741 * Remove and return the first bio from a single linked list defined by its
742 * head and tail pointers.
744 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
748 if (*list_head == NULL)
752 *list_head = bio->bi_next;
753 if (*list_head == NULL)
761 * Send a packet_command to the underlying block device and
762 * wait for completion.
764 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
766 struct request_queue *q = bdev_get_queue(pd->bdev);
770 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
771 WRITE : READ, __GFP_WAIT);
774 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
778 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
779 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
782 rq->cmd_type = REQ_TYPE_BLOCK_PC;
783 rq->cmd_flags |= REQ_HARDBARRIER;
785 rq->cmd_flags |= REQ_QUIET;
787 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
796 * A generic sense dump / resolve mechanism should be implemented across
797 * all ATAPI + SCSI devices.
799 static void pkt_dump_sense(struct packet_command *cgc)
801 static char *info[9] = { "No sense", "Recovered error", "Not ready",
802 "Medium error", "Hardware error", "Illegal request",
803 "Unit attention", "Data protect", "Blank check" };
805 struct request_sense *sense = cgc->sense;
807 printk(DRIVER_NAME":");
808 for (i = 0; i < CDROM_PACKET_SIZE; i++)
809 printk(" %02x", cgc->cmd[i]);
813 printk("no sense\n");
817 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
819 if (sense->sense_key > 8) {
820 printk(" (INVALID)\n");
824 printk(" (%s)\n", info[sense->sense_key]);
828 * flush the drive cache to media
830 static int pkt_flush_cache(struct pktcdvd_device *pd)
832 struct packet_command cgc;
834 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
835 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
839 * the IMMED bit -- we default to not setting it, although that
840 * would allow a much faster close, this is safer
845 return pkt_generic_packet(pd, &cgc);
849 * speed is given as the normal factor, e.g. 4 for 4x
851 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
852 unsigned write_speed, unsigned read_speed)
854 struct packet_command cgc;
855 struct request_sense sense;
858 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
860 cgc.cmd[0] = GPCMD_SET_SPEED;
861 cgc.cmd[2] = (read_speed >> 8) & 0xff;
862 cgc.cmd[3] = read_speed & 0xff;
863 cgc.cmd[4] = (write_speed >> 8) & 0xff;
864 cgc.cmd[5] = write_speed & 0xff;
866 if ((ret = pkt_generic_packet(pd, &cgc)))
867 pkt_dump_sense(&cgc);
873 * Queue a bio for processing by the low-level CD device. Must be called
874 * from process context.
876 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
878 spin_lock(&pd->iosched.lock);
879 if (bio_data_dir(bio) == READ) {
880 pkt_add_list_last(bio, &pd->iosched.read_queue,
881 &pd->iosched.read_queue_tail);
883 pkt_add_list_last(bio, &pd->iosched.write_queue,
884 &pd->iosched.write_queue_tail);
886 spin_unlock(&pd->iosched.lock);
888 atomic_set(&pd->iosched.attention, 1);
889 wake_up(&pd->wqueue);
893 * Process the queued read/write requests. This function handles special
894 * requirements for CDRW drives:
895 * - A cache flush command must be inserted before a read request if the
896 * previous request was a write.
897 * - Switching between reading and writing is slow, so don't do it more often
899 * - Optimize for throughput at the expense of latency. This means that streaming
900 * writes will never be interrupted by a read, but if the drive has to seek
901 * before the next write, switch to reading instead if there are any pending
903 * - Set the read speed according to current usage pattern. When only reading
904 * from the device, it's best to use the highest possible read speed, but
905 * when switching often between reading and writing, it's better to have the
906 * same read and write speeds.
908 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
911 if (atomic_read(&pd->iosched.attention) == 0)
913 atomic_set(&pd->iosched.attention, 0);
917 int reads_queued, writes_queued;
919 spin_lock(&pd->iosched.lock);
920 reads_queued = (pd->iosched.read_queue != NULL);
921 writes_queued = (pd->iosched.write_queue != NULL);
922 spin_unlock(&pd->iosched.lock);
924 if (!reads_queued && !writes_queued)
927 if (pd->iosched.writing) {
928 int need_write_seek = 1;
929 spin_lock(&pd->iosched.lock);
930 bio = pd->iosched.write_queue;
931 spin_unlock(&pd->iosched.lock);
932 if (bio && (bio->bi_sector == pd->iosched.last_write))
934 if (need_write_seek && reads_queued) {
935 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
936 VPRINTK(DRIVER_NAME": write, waiting\n");
940 pd->iosched.writing = 0;
943 if (!reads_queued && writes_queued) {
944 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
945 VPRINTK(DRIVER_NAME": read, waiting\n");
948 pd->iosched.writing = 1;
952 spin_lock(&pd->iosched.lock);
953 if (pd->iosched.writing) {
954 bio = pkt_get_list_first(&pd->iosched.write_queue,
955 &pd->iosched.write_queue_tail);
957 bio = pkt_get_list_first(&pd->iosched.read_queue,
958 &pd->iosched.read_queue_tail);
960 spin_unlock(&pd->iosched.lock);
965 if (bio_data_dir(bio) == READ)
966 pd->iosched.successive_reads += bio->bi_size >> 10;
968 pd->iosched.successive_reads = 0;
969 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
971 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
972 if (pd->read_speed == pd->write_speed) {
973 pd->read_speed = MAX_SPEED;
974 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
977 if (pd->read_speed != pd->write_speed) {
978 pd->read_speed = pd->write_speed;
979 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
983 atomic_inc(&pd->cdrw.pending_bios);
984 generic_make_request(bio);
989 * Special care is needed if the underlying block device has a small
990 * max_phys_segments value.
992 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
994 if ((pd->settings.size << 9) / CD_FRAMESIZE
995 <= queue_max_phys_segments(q)) {
997 * The cdrom device can handle one segment/frame
999 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
1001 } else if ((pd->settings.size << 9) / PAGE_SIZE
1002 <= queue_max_phys_segments(q)) {
1004 * We can handle this case at the expense of some extra memory
1005 * copies during write operations
1007 set_bit(PACKET_MERGE_SEGS, &pd->flags);
1010 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
1016 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1018 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1020 unsigned int copy_size = CD_FRAMESIZE;
1022 while (copy_size > 0) {
1023 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1024 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1025 src_bvl->bv_offset + offs;
1026 void *vto = page_address(dst_page) + dst_offs;
1027 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1030 memcpy(vto, vfrom, len);
1031 kunmap_atomic(vfrom, KM_USER0);
1041 * Copy all data for this packet to pkt->pages[], so that
1042 * a) The number of required segments for the write bio is minimized, which
1043 * is necessary for some scsi controllers.
1044 * b) The data can be used as cache to avoid read requests if we receive a
1045 * new write request for the same zone.
1047 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1051 /* Copy all data to pkt->pages[] */
1054 for (f = 0; f < pkt->frames; f++) {
1055 if (bvec[f].bv_page != pkt->pages[p]) {
1056 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1057 void *vto = page_address(pkt->pages[p]) + offs;
1058 memcpy(vto, vfrom, CD_FRAMESIZE);
1059 kunmap_atomic(vfrom, KM_USER0);
1060 bvec[f].bv_page = pkt->pages[p];
1061 bvec[f].bv_offset = offs;
1063 BUG_ON(bvec[f].bv_offset != offs);
1065 offs += CD_FRAMESIZE;
1066 if (offs >= PAGE_SIZE) {
1073 static void pkt_end_io_read(struct bio *bio, int err)
1075 struct packet_data *pkt = bio->bi_private;
1076 struct pktcdvd_device *pd = pkt->pd;
1079 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1080 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1083 atomic_inc(&pkt->io_errors);
1084 if (atomic_dec_and_test(&pkt->io_wait)) {
1085 atomic_inc(&pkt->run_sm);
1086 wake_up(&pd->wqueue);
1088 pkt_bio_finished(pd);
1091 static void pkt_end_io_packet_write(struct bio *bio, int err)
1093 struct packet_data *pkt = bio->bi_private;
1094 struct pktcdvd_device *pd = pkt->pd;
1097 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1099 pd->stats.pkt_ended++;
1101 pkt_bio_finished(pd);
1102 atomic_dec(&pkt->io_wait);
1103 atomic_inc(&pkt->run_sm);
1104 wake_up(&pd->wqueue);
1108 * Schedule reads for the holes in a packet
1110 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1112 int frames_read = 0;
1115 char written[PACKET_MAX_SIZE];
1117 BUG_ON(!pkt->orig_bios);
1119 atomic_set(&pkt->io_wait, 0);
1120 atomic_set(&pkt->io_errors, 0);
1123 * Figure out which frames we need to read before we can write.
1125 memset(written, 0, sizeof(written));
1126 spin_lock(&pkt->lock);
1127 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1128 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1129 int num_frames = bio->bi_size / CD_FRAMESIZE;
1130 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1131 BUG_ON(first_frame < 0);
1132 BUG_ON(first_frame + num_frames > pkt->frames);
1133 for (f = first_frame; f < first_frame + num_frames; f++)
1136 spin_unlock(&pkt->lock);
1138 if (pkt->cache_valid) {
1139 VPRINTK("pkt_gather_data: zone %llx cached\n",
1140 (unsigned long long)pkt->sector);
1145 * Schedule reads for missing parts of the packet.
1147 for (f = 0; f < pkt->frames; f++) {
1148 struct bio_vec *vec;
1153 bio = pkt->r_bios[f];
1154 vec = bio->bi_io_vec;
1156 bio->bi_max_vecs = 1;
1157 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1158 bio->bi_bdev = pd->bdev;
1159 bio->bi_end_io = pkt_end_io_read;
1160 bio->bi_private = pkt;
1161 bio->bi_io_vec = vec;
1162 bio->bi_destructor = pkt_bio_destructor;
1164 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1165 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1166 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1167 f, pkt->pages[p], offset);
1168 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1171 atomic_inc(&pkt->io_wait);
1173 pkt_queue_bio(pd, bio);
1178 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1179 frames_read, (unsigned long long)pkt->sector);
1180 pd->stats.pkt_started++;
1181 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1185 * Find a packet matching zone, or the least recently used packet if
1186 * there is no match.
1188 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1190 struct packet_data *pkt;
1192 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1193 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1194 list_del_init(&pkt->list);
1195 if (pkt->sector != zone)
1196 pkt->cache_valid = 0;
1204 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1206 if (pkt->cache_valid) {
1207 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1209 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1214 * recover a failed write, query for relocation if possible
1216 * returns 1 if recovery is possible, or 0 if not
1219 static int pkt_start_recovery(struct packet_data *pkt)
1222 * FIXME. We need help from the file system to implement
1223 * recovery handling.
1227 struct request *rq = pkt->rq;
1228 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1229 struct block_device *pkt_bdev;
1230 struct super_block *sb = NULL;
1231 unsigned long old_block, new_block;
1232 sector_t new_sector;
1234 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1236 sb = get_super(pkt_bdev);
1243 if (!sb->s_op || !sb->s_op->relocate_blocks)
1246 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1247 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1250 new_sector = new_block * (CD_FRAMESIZE >> 9);
1251 pkt->sector = new_sector;
1253 pkt->bio->bi_sector = new_sector;
1254 pkt->bio->bi_next = NULL;
1255 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1256 pkt->bio->bi_idx = 0;
1258 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1259 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1260 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1261 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1262 BUG_ON(pkt->bio->bi_private != pkt);
1273 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1275 #if PACKET_DEBUG > 1
1276 static const char *state_name[] = {
1277 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1279 enum packet_data_state old_state = pkt->state;
1280 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1281 state_name[old_state], state_name[state]);
1287 * Scan the work queue to see if we can start a new packet.
1288 * returns non-zero if any work was done.
1290 static int pkt_handle_queue(struct pktcdvd_device *pd)
1292 struct packet_data *pkt, *p;
1293 struct bio *bio = NULL;
1294 sector_t zone = 0; /* Suppress gcc warning */
1295 struct pkt_rb_node *node, *first_node;
1299 VPRINTK("handle_queue\n");
1301 atomic_set(&pd->scan_queue, 0);
1303 if (list_empty(&pd->cdrw.pkt_free_list)) {
1304 VPRINTK("handle_queue: no pkt\n");
1309 * Try to find a zone we are not already working on.
1311 spin_lock(&pd->lock);
1312 first_node = pkt_rbtree_find(pd, pd->current_sector);
1314 n = rb_first(&pd->bio_queue);
1316 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1321 zone = ZONE(bio->bi_sector, pd);
1322 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1323 if (p->sector == zone) {
1330 node = pkt_rbtree_next(node);
1332 n = rb_first(&pd->bio_queue);
1334 node = rb_entry(n, struct pkt_rb_node, rb_node);
1336 if (node == first_node)
1339 spin_unlock(&pd->lock);
1341 VPRINTK("handle_queue: no bio\n");
1345 pkt = pkt_get_packet_data(pd, zone);
1347 pd->current_sector = zone + pd->settings.size;
1349 BUG_ON(pkt->frames != pd->settings.size >> 2);
1350 pkt->write_size = 0;
1353 * Scan work queue for bios in the same zone and link them
1356 spin_lock(&pd->lock);
1357 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1358 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1360 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1361 (unsigned long long)ZONE(bio->bi_sector, pd));
1362 if (ZONE(bio->bi_sector, pd) != zone)
1364 pkt_rbtree_erase(pd, node);
1365 spin_lock(&pkt->lock);
1366 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1367 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1368 spin_unlock(&pkt->lock);
1370 /* check write congestion marks, and if bio_queue_size is
1371 below, wake up any waiters */
1372 wakeup = (pd->write_congestion_on > 0
1373 && pd->bio_queue_size <= pd->write_congestion_off);
1374 spin_unlock(&pd->lock);
1376 clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE);
1378 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1379 pkt_set_state(pkt, PACKET_WAITING_STATE);
1380 atomic_set(&pkt->run_sm, 1);
1382 spin_lock(&pd->cdrw.active_list_lock);
1383 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1384 spin_unlock(&pd->cdrw.active_list_lock);
1390 * Assemble a bio to write one packet and queue the bio for processing
1391 * by the underlying block device.
1393 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1398 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1400 for (f = 0; f < pkt->frames; f++) {
1401 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1402 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1406 * Fill-in bvec with data from orig_bios.
1409 spin_lock(&pkt->lock);
1410 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1411 int segment = bio->bi_idx;
1413 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1414 int num_frames = bio->bi_size / CD_FRAMESIZE;
1415 BUG_ON(first_frame < 0);
1416 BUG_ON(first_frame + num_frames > pkt->frames);
1417 for (f = first_frame; f < first_frame + num_frames; f++) {
1418 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1420 while (src_offs >= src_bvl->bv_len) {
1421 src_offs -= src_bvl->bv_len;
1423 BUG_ON(segment >= bio->bi_vcnt);
1424 src_bvl = bio_iovec_idx(bio, segment);
1427 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1428 bvec[f].bv_page = src_bvl->bv_page;
1429 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1431 pkt_copy_bio_data(bio, segment, src_offs,
1432 bvec[f].bv_page, bvec[f].bv_offset);
1434 src_offs += CD_FRAMESIZE;
1438 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1439 spin_unlock(&pkt->lock);
1441 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1442 frames_write, (unsigned long long)pkt->sector);
1443 BUG_ON(frames_write != pkt->write_size);
1445 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1446 pkt_make_local_copy(pkt, bvec);
1447 pkt->cache_valid = 1;
1449 pkt->cache_valid = 0;
1452 /* Start the write request */
1453 bio_init(pkt->w_bio);
1454 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1455 pkt->w_bio->bi_sector = pkt->sector;
1456 pkt->w_bio->bi_bdev = pd->bdev;
1457 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1458 pkt->w_bio->bi_private = pkt;
1459 pkt->w_bio->bi_io_vec = bvec;
1460 pkt->w_bio->bi_destructor = pkt_bio_destructor;
1461 for (f = 0; f < pkt->frames; f++)
1462 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1464 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1466 atomic_set(&pkt->io_wait, 1);
1467 pkt->w_bio->bi_rw = WRITE;
1468 pkt_queue_bio(pd, pkt->w_bio);
1471 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1473 struct bio *bio, *next;
1476 pkt->cache_valid = 0;
1478 /* Finish all bios corresponding to this packet */
1479 bio = pkt->orig_bios;
1481 next = bio->bi_next;
1482 bio->bi_next = NULL;
1483 bio_endio(bio, uptodate ? 0 : -EIO);
1486 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1489 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1493 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1496 switch (pkt->state) {
1497 case PACKET_WAITING_STATE:
1498 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1501 pkt->sleep_time = 0;
1502 pkt_gather_data(pd, pkt);
1503 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1506 case PACKET_READ_WAIT_STATE:
1507 if (atomic_read(&pkt->io_wait) > 0)
1510 if (atomic_read(&pkt->io_errors) > 0) {
1511 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1513 pkt_start_write(pd, pkt);
1517 case PACKET_WRITE_WAIT_STATE:
1518 if (atomic_read(&pkt->io_wait) > 0)
1521 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1522 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1524 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1528 case PACKET_RECOVERY_STATE:
1529 if (pkt_start_recovery(pkt)) {
1530 pkt_start_write(pd, pkt);
1532 VPRINTK("No recovery possible\n");
1533 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1537 case PACKET_FINISHED_STATE:
1538 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1539 pkt_finish_packet(pkt, uptodate);
1549 static void pkt_handle_packets(struct pktcdvd_device *pd)
1551 struct packet_data *pkt, *next;
1553 VPRINTK("pkt_handle_packets\n");
1556 * Run state machine for active packets
1558 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1559 if (atomic_read(&pkt->run_sm) > 0) {
1560 atomic_set(&pkt->run_sm, 0);
1561 pkt_run_state_machine(pd, pkt);
1566 * Move no longer active packets to the free list
1568 spin_lock(&pd->cdrw.active_list_lock);
1569 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1570 if (pkt->state == PACKET_FINISHED_STATE) {
1571 list_del(&pkt->list);
1572 pkt_put_packet_data(pd, pkt);
1573 pkt_set_state(pkt, PACKET_IDLE_STATE);
1574 atomic_set(&pd->scan_queue, 1);
1577 spin_unlock(&pd->cdrw.active_list_lock);
1580 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1582 struct packet_data *pkt;
1585 for (i = 0; i < PACKET_NUM_STATES; i++)
1588 spin_lock(&pd->cdrw.active_list_lock);
1589 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1590 states[pkt->state]++;
1592 spin_unlock(&pd->cdrw.active_list_lock);
1596 * kcdrwd is woken up when writes have been queued for one of our
1597 * registered devices
1599 static int kcdrwd(void *foobar)
1601 struct pktcdvd_device *pd = foobar;
1602 struct packet_data *pkt;
1603 long min_sleep_time, residue;
1605 set_user_nice(current, -20);
1609 DECLARE_WAITQUEUE(wait, current);
1612 * Wait until there is something to do
1614 add_wait_queue(&pd->wqueue, &wait);
1616 set_current_state(TASK_INTERRUPTIBLE);
1618 /* Check if we need to run pkt_handle_queue */
1619 if (atomic_read(&pd->scan_queue) > 0)
1622 /* Check if we need to run the state machine for some packet */
1623 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1624 if (atomic_read(&pkt->run_sm) > 0)
1628 /* Check if we need to process the iosched queues */
1629 if (atomic_read(&pd->iosched.attention) != 0)
1632 /* Otherwise, go to sleep */
1633 if (PACKET_DEBUG > 1) {
1634 int states[PACKET_NUM_STATES];
1635 pkt_count_states(pd, states);
1636 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1637 states[0], states[1], states[2], states[3],
1638 states[4], states[5]);
1641 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1642 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1643 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1644 min_sleep_time = pkt->sleep_time;
1647 generic_unplug_device(bdev_get_queue(pd->bdev));
1649 VPRINTK("kcdrwd: sleeping\n");
1650 residue = schedule_timeout(min_sleep_time);
1651 VPRINTK("kcdrwd: wake up\n");
1653 /* make swsusp happy with our thread */
1656 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1657 if (!pkt->sleep_time)
1659 pkt->sleep_time -= min_sleep_time - residue;
1660 if (pkt->sleep_time <= 0) {
1661 pkt->sleep_time = 0;
1662 atomic_inc(&pkt->run_sm);
1666 if (kthread_should_stop())
1670 set_current_state(TASK_RUNNING);
1671 remove_wait_queue(&pd->wqueue, &wait);
1673 if (kthread_should_stop())
1677 * if pkt_handle_queue returns true, we can queue
1680 while (pkt_handle_queue(pd))
1684 * Handle packet state machine
1686 pkt_handle_packets(pd);
1689 * Handle iosched queues
1691 pkt_iosched_process_queue(pd);
1697 static void pkt_print_settings(struct pktcdvd_device *pd)
1699 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1700 printk("%u blocks, ", pd->settings.size >> 2);
1701 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1704 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1706 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1708 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1709 cgc->cmd[2] = page_code | (page_control << 6);
1710 cgc->cmd[7] = cgc->buflen >> 8;
1711 cgc->cmd[8] = cgc->buflen & 0xff;
1712 cgc->data_direction = CGC_DATA_READ;
1713 return pkt_generic_packet(pd, cgc);
1716 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1718 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1719 memset(cgc->buffer, 0, 2);
1720 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1721 cgc->cmd[1] = 0x10; /* PF */
1722 cgc->cmd[7] = cgc->buflen >> 8;
1723 cgc->cmd[8] = cgc->buflen & 0xff;
1724 cgc->data_direction = CGC_DATA_WRITE;
1725 return pkt_generic_packet(pd, cgc);
1728 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1730 struct packet_command cgc;
1733 /* set up command and get the disc info */
1734 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1735 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1736 cgc.cmd[8] = cgc.buflen = 2;
1739 if ((ret = pkt_generic_packet(pd, &cgc)))
1742 /* not all drives have the same disc_info length, so requeue
1743 * packet with the length the drive tells us it can supply
1745 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1746 sizeof(di->disc_information_length);
1748 if (cgc.buflen > sizeof(disc_information))
1749 cgc.buflen = sizeof(disc_information);
1751 cgc.cmd[8] = cgc.buflen;
1752 return pkt_generic_packet(pd, &cgc);
1755 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1757 struct packet_command cgc;
1760 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1761 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1762 cgc.cmd[1] = type & 3;
1763 cgc.cmd[4] = (track & 0xff00) >> 8;
1764 cgc.cmd[5] = track & 0xff;
1768 if ((ret = pkt_generic_packet(pd, &cgc)))
1771 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1772 sizeof(ti->track_information_length);
1774 if (cgc.buflen > sizeof(track_information))
1775 cgc.buflen = sizeof(track_information);
1777 cgc.cmd[8] = cgc.buflen;
1778 return pkt_generic_packet(pd, &cgc);
1781 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1784 disc_information di;
1785 track_information ti;
1789 if ((ret = pkt_get_disc_info(pd, &di)))
1792 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1793 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1796 /* if this track is blank, try the previous. */
1799 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1803 /* if last recorded field is valid, return it. */
1805 *last_written = be32_to_cpu(ti.last_rec_address);
1807 /* make it up instead */
1808 *last_written = be32_to_cpu(ti.track_start) +
1809 be32_to_cpu(ti.track_size);
1811 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1817 * write mode select package based on pd->settings
1819 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1821 struct packet_command cgc;
1822 struct request_sense sense;
1823 write_param_page *wp;
1827 /* doesn't apply to DVD+RW or DVD-RAM */
1828 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1831 memset(buffer, 0, sizeof(buffer));
1832 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1834 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1835 pkt_dump_sense(&cgc);
1839 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1840 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1841 if (size > sizeof(buffer))
1842 size = sizeof(buffer);
1847 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1849 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1850 pkt_dump_sense(&cgc);
1855 * write page is offset header + block descriptor length
1857 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1859 wp->fp = pd->settings.fp;
1860 wp->track_mode = pd->settings.track_mode;
1861 wp->write_type = pd->settings.write_type;
1862 wp->data_block_type = pd->settings.block_mode;
1864 wp->multi_session = 0;
1866 #ifdef PACKET_USE_LS
1871 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1872 wp->session_format = 0;
1874 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1875 wp->session_format = 0x20;
1879 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1885 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1888 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1890 cgc.buflen = cgc.cmd[8] = size;
1891 if ((ret = pkt_mode_select(pd, &cgc))) {
1892 pkt_dump_sense(&cgc);
1896 pkt_print_settings(pd);
1901 * 1 -- we can write to this track, 0 -- we can't
1903 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1905 switch (pd->mmc3_profile) {
1906 case 0x1a: /* DVD+RW */
1907 case 0x12: /* DVD-RAM */
1908 /* The track is always writable on DVD+RW/DVD-RAM */
1914 if (!ti->packet || !ti->fp)
1918 * "good" settings as per Mt Fuji.
1920 if (ti->rt == 0 && ti->blank == 0)
1923 if (ti->rt == 0 && ti->blank == 1)
1926 if (ti->rt == 1 && ti->blank == 0)
1929 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1934 * 1 -- we can write to this disc, 0 -- we can't
1936 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1938 switch (pd->mmc3_profile) {
1939 case 0x0a: /* CD-RW */
1940 case 0xffff: /* MMC3 not supported */
1942 case 0x1a: /* DVD+RW */
1943 case 0x13: /* DVD-RW */
1944 case 0x12: /* DVD-RAM */
1947 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1952 * for disc type 0xff we should probably reserve a new track.
1953 * but i'm not sure, should we leave this to user apps? probably.
1955 if (di->disc_type == 0xff) {
1956 printk(DRIVER_NAME": Unknown disc. No track?\n");
1960 if (di->disc_type != 0x20 && di->disc_type != 0) {
1961 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1965 if (di->erasable == 0) {
1966 printk(DRIVER_NAME": Disc not erasable\n");
1970 if (di->border_status == PACKET_SESSION_RESERVED) {
1971 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1978 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1980 struct packet_command cgc;
1981 unsigned char buf[12];
1982 disc_information di;
1983 track_information ti;
1986 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1987 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1989 ret = pkt_generic_packet(pd, &cgc);
1990 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1992 memset(&di, 0, sizeof(disc_information));
1993 memset(&ti, 0, sizeof(track_information));
1995 if ((ret = pkt_get_disc_info(pd, &di))) {
1996 printk("failed get_disc\n");
2000 if (!pkt_writable_disc(pd, &di))
2003 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
2005 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
2006 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
2007 printk(DRIVER_NAME": failed get_track\n");
2011 if (!pkt_writable_track(pd, &ti)) {
2012 printk(DRIVER_NAME": can't write to this track\n");
2017 * we keep packet size in 512 byte units, makes it easier to
2018 * deal with request calculations.
2020 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2021 if (pd->settings.size == 0) {
2022 printk(DRIVER_NAME": detected zero packet size!\n");
2025 if (pd->settings.size > PACKET_MAX_SECTORS) {
2026 printk(DRIVER_NAME": packet size is too big\n");
2029 pd->settings.fp = ti.fp;
2030 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2033 pd->nwa = be32_to_cpu(ti.next_writable);
2034 set_bit(PACKET_NWA_VALID, &pd->flags);
2038 * in theory we could use lra on -RW media as well and just zero
2039 * blocks that haven't been written yet, but in practice that
2040 * is just a no-go. we'll use that for -R, naturally.
2043 pd->lra = be32_to_cpu(ti.last_rec_address);
2044 set_bit(PACKET_LRA_VALID, &pd->flags);
2046 pd->lra = 0xffffffff;
2047 set_bit(PACKET_LRA_VALID, &pd->flags);
2053 pd->settings.link_loss = 7;
2054 pd->settings.write_type = 0; /* packet */
2055 pd->settings.track_mode = ti.track_mode;
2058 * mode1 or mode2 disc
2060 switch (ti.data_mode) {
2062 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2065 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2068 printk(DRIVER_NAME": unknown data mode\n");
2075 * enable/disable write caching on drive
2077 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2080 struct packet_command cgc;
2081 struct request_sense sense;
2082 unsigned char buf[64];
2085 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2087 cgc.buflen = pd->mode_offset + 12;
2090 * caching mode page might not be there, so quiet this command
2094 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2097 buf[pd->mode_offset + 10] |= (!!set << 2);
2099 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2100 ret = pkt_mode_select(pd, &cgc);
2102 printk(DRIVER_NAME": write caching control failed\n");
2103 pkt_dump_sense(&cgc);
2104 } else if (!ret && set)
2105 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2109 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2111 struct packet_command cgc;
2113 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2114 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2115 cgc.cmd[4] = lockflag ? 1 : 0;
2116 return pkt_generic_packet(pd, &cgc);
2120 * Returns drive maximum write speed
2122 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2123 unsigned *write_speed)
2125 struct packet_command cgc;
2126 struct request_sense sense;
2127 unsigned char buf[256+18];
2128 unsigned char *cap_buf;
2131 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2132 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2135 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2137 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2138 sizeof(struct mode_page_header);
2139 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2141 pkt_dump_sense(&cgc);
2146 offset = 20; /* Obsoleted field, used by older drives */
2147 if (cap_buf[1] >= 28)
2148 offset = 28; /* Current write speed selected */
2149 if (cap_buf[1] >= 30) {
2150 /* If the drive reports at least one "Logical Unit Write
2151 * Speed Performance Descriptor Block", use the information
2152 * in the first block. (contains the highest speed)
2154 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2159 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2163 /* These tables from cdrecord - I don't have orange book */
2164 /* standard speed CD-RW (1-4x) */
2165 static char clv_to_speed[16] = {
2166 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2167 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2169 /* high speed CD-RW (-10x) */
2170 static char hs_clv_to_speed[16] = {
2171 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2172 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2174 /* ultra high speed CD-RW */
2175 static char us_clv_to_speed[16] = {
2176 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2177 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2181 * reads the maximum media speed from ATIP
2183 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2186 struct packet_command cgc;
2187 struct request_sense sense;
2188 unsigned char buf[64];
2189 unsigned int size, st, sp;
2192 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2194 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2196 cgc.cmd[2] = 4; /* READ ATIP */
2198 ret = pkt_generic_packet(pd, &cgc);
2200 pkt_dump_sense(&cgc);
2203 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2204 if (size > sizeof(buf))
2207 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2209 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2213 ret = pkt_generic_packet(pd, &cgc);
2215 pkt_dump_sense(&cgc);
2219 if (!(buf[6] & 0x40)) {
2220 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2223 if (!(buf[6] & 0x4)) {
2224 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2228 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2230 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2232 /* Info from cdrecord */
2234 case 0: /* standard speed */
2235 *speed = clv_to_speed[sp];
2237 case 1: /* high speed */
2238 *speed = hs_clv_to_speed[sp];
2240 case 2: /* ultra high speed */
2241 *speed = us_clv_to_speed[sp];
2244 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2248 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2251 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2256 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2258 struct packet_command cgc;
2259 struct request_sense sense;
2262 VPRINTK(DRIVER_NAME": Performing OPC\n");
2264 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2266 cgc.timeout = 60*HZ;
2267 cgc.cmd[0] = GPCMD_SEND_OPC;
2269 if ((ret = pkt_generic_packet(pd, &cgc)))
2270 pkt_dump_sense(&cgc);
2274 static int pkt_open_write(struct pktcdvd_device *pd)
2277 unsigned int write_speed, media_write_speed, read_speed;
2279 if ((ret = pkt_probe_settings(pd))) {
2280 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2284 if ((ret = pkt_set_write_settings(pd))) {
2285 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2289 pkt_write_caching(pd, USE_WCACHING);
2291 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2292 write_speed = 16 * 177;
2293 switch (pd->mmc3_profile) {
2294 case 0x13: /* DVD-RW */
2295 case 0x1a: /* DVD+RW */
2296 case 0x12: /* DVD-RAM */
2297 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2300 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2301 media_write_speed = 16;
2302 write_speed = min(write_speed, media_write_speed * 177);
2303 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2306 read_speed = write_speed;
2308 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2309 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2312 pd->write_speed = write_speed;
2313 pd->read_speed = read_speed;
2315 if ((ret = pkt_perform_opc(pd))) {
2316 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2323 * called at open time.
2325 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2329 struct request_queue *q;
2332 * We need to re-open the cdrom device without O_NONBLOCK to be able
2333 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2334 * so bdget() can't fail.
2336 bdget(pd->bdev->bd_dev);
2337 if ((ret = blkdev_get(pd->bdev, FMODE_READ)))
2340 if ((ret = bd_claim(pd->bdev, pd)))
2343 if ((ret = pkt_get_last_written(pd, &lba))) {
2344 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2348 set_capacity(pd->disk, lba << 2);
2349 set_capacity(pd->bdev->bd_disk, lba << 2);
2350 bd_set_size(pd->bdev, (loff_t)lba << 11);
2352 q = bdev_get_queue(pd->bdev);
2354 if ((ret = pkt_open_write(pd)))
2357 * Some CDRW drives can not handle writes larger than one packet,
2358 * even if the size is a multiple of the packet size.
2360 spin_lock_irq(q->queue_lock);
2361 blk_queue_max_sectors(q, pd->settings.size);
2362 spin_unlock_irq(q->queue_lock);
2363 set_bit(PACKET_WRITABLE, &pd->flags);
2365 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2366 clear_bit(PACKET_WRITABLE, &pd->flags);
2369 if ((ret = pkt_set_segment_merging(pd, q)))
2373 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2374 printk(DRIVER_NAME": not enough memory for buffers\n");
2378 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2384 bd_release(pd->bdev);
2386 blkdev_put(pd->bdev, FMODE_READ);
2392 * called when the device is closed. makes sure that the device flushes
2393 * the internal cache before we close.
2395 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2397 if (flush && pkt_flush_cache(pd))
2398 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2400 pkt_lock_door(pd, 0);
2402 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2403 bd_release(pd->bdev);
2404 blkdev_put(pd->bdev, FMODE_READ);
2406 pkt_shrink_pktlist(pd);
2409 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2411 if (dev_minor >= MAX_WRITERS)
2413 return pkt_devs[dev_minor];
2416 static int pkt_open(struct block_device *bdev, fmode_t mode)
2418 struct pktcdvd_device *pd = NULL;
2421 VPRINTK(DRIVER_NAME": entering open\n");
2423 mutex_lock(&ctl_mutex);
2424 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2429 BUG_ON(pd->refcnt < 0);
2432 if (pd->refcnt > 1) {
2433 if ((mode & FMODE_WRITE) &&
2434 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2439 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2443 * needed here as well, since ext2 (among others) may change
2444 * the blocksize at mount time
2446 set_blocksize(bdev, CD_FRAMESIZE);
2449 mutex_unlock(&ctl_mutex);
2455 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2456 mutex_unlock(&ctl_mutex);
2460 static int pkt_close(struct gendisk *disk, fmode_t mode)
2462 struct pktcdvd_device *pd = disk->private_data;
2465 mutex_lock(&ctl_mutex);
2467 BUG_ON(pd->refcnt < 0);
2468 if (pd->refcnt == 0) {
2469 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2470 pkt_release_dev(pd, flush);
2472 mutex_unlock(&ctl_mutex);
2477 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2479 struct packet_stacked_data *psd = bio->bi_private;
2480 struct pktcdvd_device *pd = psd->pd;
2483 bio_endio(psd->bio, err);
2484 mempool_free(psd, psd_pool);
2485 pkt_bio_finished(pd);
2488 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2490 struct pktcdvd_device *pd;
2491 char b[BDEVNAME_SIZE];
2493 struct packet_data *pkt;
2494 int was_empty, blocked_bio;
2495 struct pkt_rb_node *node;
2499 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2504 * Clone READ bios so we can have our own bi_end_io callback.
2506 if (bio_data_dir(bio) == READ) {
2507 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2508 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2512 cloned_bio->bi_bdev = pd->bdev;
2513 cloned_bio->bi_private = psd;
2514 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2515 pd->stats.secs_r += bio->bi_size >> 9;
2516 pkt_queue_bio(pd, cloned_bio);
2520 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2521 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2522 pd->name, (unsigned long long)bio->bi_sector);
2526 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2527 printk(DRIVER_NAME": wrong bio size\n");
2531 blk_queue_bounce(q, &bio);
2533 zone = ZONE(bio->bi_sector, pd);
2534 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2535 (unsigned long long)bio->bi_sector,
2536 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2538 /* Check if we have to split the bio */
2540 struct bio_pair *bp;
2544 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2545 if (last_zone != zone) {
2546 BUG_ON(last_zone != zone + pd->settings.size);
2547 first_sectors = last_zone - bio->bi_sector;
2548 bp = bio_split(bio, first_sectors);
2550 pkt_make_request(q, &bp->bio1);
2551 pkt_make_request(q, &bp->bio2);
2552 bio_pair_release(bp);
2558 * If we find a matching packet in state WAITING or READ_WAIT, we can
2559 * just append this bio to that packet.
2561 spin_lock(&pd->cdrw.active_list_lock);
2563 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2564 if (pkt->sector == zone) {
2565 spin_lock(&pkt->lock);
2566 if ((pkt->state == PACKET_WAITING_STATE) ||
2567 (pkt->state == PACKET_READ_WAIT_STATE)) {
2568 pkt_add_list_last(bio, &pkt->orig_bios,
2569 &pkt->orig_bios_tail);
2570 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2571 if ((pkt->write_size >= pkt->frames) &&
2572 (pkt->state == PACKET_WAITING_STATE)) {
2573 atomic_inc(&pkt->run_sm);
2574 wake_up(&pd->wqueue);
2576 spin_unlock(&pkt->lock);
2577 spin_unlock(&pd->cdrw.active_list_lock);
2582 spin_unlock(&pkt->lock);
2585 spin_unlock(&pd->cdrw.active_list_lock);
2588 * Test if there is enough room left in the bio work queue
2589 * (queue size >= congestion on mark).
2590 * If not, wait till the work queue size is below the congestion off mark.
2592 spin_lock(&pd->lock);
2593 if (pd->write_congestion_on > 0
2594 && pd->bio_queue_size >= pd->write_congestion_on) {
2595 set_bdi_congested(&q->backing_dev_info, WRITE);
2597 spin_unlock(&pd->lock);
2598 congestion_wait(WRITE, HZ);
2599 spin_lock(&pd->lock);
2600 } while(pd->bio_queue_size > pd->write_congestion_off);
2602 spin_unlock(&pd->lock);
2605 * No matching packet found. Store the bio in the work queue.
2607 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2609 spin_lock(&pd->lock);
2610 BUG_ON(pd->bio_queue_size < 0);
2611 was_empty = (pd->bio_queue_size == 0);
2612 pkt_rbtree_insert(pd, node);
2613 spin_unlock(&pd->lock);
2616 * Wake up the worker thread.
2618 atomic_set(&pd->scan_queue, 1);
2620 /* This wake_up is required for correct operation */
2621 wake_up(&pd->wqueue);
2622 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2624 * This wake up is not required for correct operation,
2625 * but improves performance in some cases.
2627 wake_up(&pd->wqueue);
2637 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2638 struct bio_vec *bvec)
2640 struct pktcdvd_device *pd = q->queuedata;
2641 sector_t zone = ZONE(bmd->bi_sector, pd);
2642 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2643 int remaining = (pd->settings.size << 9) - used;
2647 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2648 * boundary, pkt_make_request() will split the bio.
2650 remaining2 = PAGE_SIZE - bmd->bi_size;
2651 remaining = max(remaining, remaining2);
2653 BUG_ON(remaining < 0);
2657 static void pkt_init_queue(struct pktcdvd_device *pd)
2659 struct request_queue *q = pd->disk->queue;
2661 blk_queue_make_request(q, pkt_make_request);
2662 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2663 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2664 blk_queue_merge_bvec(q, pkt_merge_bvec);
2668 static int pkt_seq_show(struct seq_file *m, void *p)
2670 struct pktcdvd_device *pd = m->private;
2672 char bdev_buf[BDEVNAME_SIZE];
2673 int states[PACKET_NUM_STATES];
2675 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2676 bdevname(pd->bdev, bdev_buf));
2678 seq_printf(m, "\nSettings:\n");
2679 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2681 if (pd->settings.write_type == 0)
2685 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2687 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2688 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2690 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2692 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2694 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2698 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2700 seq_printf(m, "\nStatistics:\n");
2701 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2702 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2703 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2704 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2705 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2707 seq_printf(m, "\nMisc:\n");
2708 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2709 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2710 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2711 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2712 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2713 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2715 seq_printf(m, "\nQueue state:\n");
2716 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2717 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2718 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2720 pkt_count_states(pd, states);
2721 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2722 states[0], states[1], states[2], states[3], states[4], states[5]);
2724 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2725 pd->write_congestion_off,
2726 pd->write_congestion_on);
2730 static int pkt_seq_open(struct inode *inode, struct file *file)
2732 return single_open(file, pkt_seq_show, PDE(inode)->data);
2735 static const struct file_operations pkt_proc_fops = {
2736 .open = pkt_seq_open,
2738 .llseek = seq_lseek,
2739 .release = single_release
2742 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2746 char b[BDEVNAME_SIZE];
2747 struct block_device *bdev;
2749 if (pd->pkt_dev == dev) {
2750 printk(DRIVER_NAME": Recursive setup not allowed\n");
2753 for (i = 0; i < MAX_WRITERS; i++) {
2754 struct pktcdvd_device *pd2 = pkt_devs[i];
2757 if (pd2->bdev->bd_dev == dev) {
2758 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2761 if (pd2->pkt_dev == dev) {
2762 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2770 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY);
2774 /* This is safe, since we have a reference from open(). */
2775 __module_get(THIS_MODULE);
2778 set_blocksize(bdev, CD_FRAMESIZE);
2782 atomic_set(&pd->cdrw.pending_bios, 0);
2783 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2784 if (IS_ERR(pd->cdrw.thread)) {
2785 printk(DRIVER_NAME": can't start kernel thread\n");
2790 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2791 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2795 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2796 /* This is safe: open() is still holding a reference. */
2797 module_put(THIS_MODULE);
2801 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2803 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2805 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2806 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2811 * The door gets locked when the device is opened, so we
2812 * have to unlock it or else the eject command fails.
2814 if (pd->refcnt == 1)
2815 pkt_lock_door(pd, 0);
2818 * forward selected CDROM ioctls to CD-ROM, for UDF
2820 case CDROMMULTISESSION:
2821 case CDROMREADTOCENTRY:
2822 case CDROM_LAST_WRITTEN:
2823 case CDROM_SEND_PACKET:
2824 case SCSI_IOCTL_SEND_COMMAND:
2825 return __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2828 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2835 static int pkt_media_changed(struct gendisk *disk)
2837 struct pktcdvd_device *pd = disk->private_data;
2838 struct gendisk *attached_disk;
2844 attached_disk = pd->bdev->bd_disk;
2847 return attached_disk->fops->media_changed(attached_disk);
2850 static struct block_device_operations pktcdvd_ops = {
2851 .owner = THIS_MODULE,
2853 .release = pkt_close,
2854 .locked_ioctl = pkt_ioctl,
2855 .media_changed = pkt_media_changed,
2858 static char *pktcdvd_nodename(struct gendisk *gd)
2860 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2864 * Set up mapping from pktcdvd device to CD-ROM device.
2866 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2870 struct pktcdvd_device *pd;
2871 struct gendisk *disk;
2873 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2875 for (idx = 0; idx < MAX_WRITERS; idx++)
2878 if (idx == MAX_WRITERS) {
2879 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2884 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2888 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2889 sizeof(struct pkt_rb_node));
2893 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2894 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2895 spin_lock_init(&pd->cdrw.active_list_lock);
2897 spin_lock_init(&pd->lock);
2898 spin_lock_init(&pd->iosched.lock);
2899 sprintf(pd->name, DRIVER_NAME"%d", idx);
2900 init_waitqueue_head(&pd->wqueue);
2901 pd->bio_queue = RB_ROOT;
2903 pd->write_congestion_on = write_congestion_on;
2904 pd->write_congestion_off = write_congestion_off;
2906 disk = alloc_disk(1);
2910 disk->major = pktdev_major;
2911 disk->first_minor = idx;
2912 disk->fops = &pktcdvd_ops;
2913 disk->flags = GENHD_FL_REMOVABLE;
2914 strcpy(disk->disk_name, pd->name);
2915 disk->nodename = pktcdvd_nodename;
2916 disk->private_data = pd;
2917 disk->queue = blk_alloc_queue(GFP_KERNEL);
2921 pd->pkt_dev = MKDEV(pktdev_major, idx);
2922 ret = pkt_new_dev(pd, dev);
2928 pkt_sysfs_dev_new(pd);
2929 pkt_debugfs_dev_new(pd);
2933 *pkt_dev = pd->pkt_dev;
2935 mutex_unlock(&ctl_mutex);
2939 blk_cleanup_queue(disk->queue);
2944 mempool_destroy(pd->rb_pool);
2947 mutex_unlock(&ctl_mutex);
2948 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2953 * Tear down mapping from pktcdvd device to CD-ROM device.
2955 static int pkt_remove_dev(dev_t pkt_dev)
2957 struct pktcdvd_device *pd;
2961 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2963 for (idx = 0; idx < MAX_WRITERS; idx++) {
2965 if (pd && (pd->pkt_dev == pkt_dev))
2968 if (idx == MAX_WRITERS) {
2969 DPRINTK(DRIVER_NAME": dev not setup\n");
2974 if (pd->refcnt > 0) {
2978 if (!IS_ERR(pd->cdrw.thread))
2979 kthread_stop(pd->cdrw.thread);
2981 pkt_devs[idx] = NULL;
2983 pkt_debugfs_dev_remove(pd);
2984 pkt_sysfs_dev_remove(pd);
2986 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2988 remove_proc_entry(pd->name, pkt_proc);
2989 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2991 del_gendisk(pd->disk);
2992 blk_cleanup_queue(pd->disk->queue);
2995 mempool_destroy(pd->rb_pool);
2998 /* This is safe: open() is still holding a reference. */
2999 module_put(THIS_MODULE);
3002 mutex_unlock(&ctl_mutex);
3006 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
3008 struct pktcdvd_device *pd;
3010 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3012 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3014 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3015 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3018 ctrl_cmd->pkt_dev = 0;
3020 ctrl_cmd->num_devices = MAX_WRITERS;
3022 mutex_unlock(&ctl_mutex);
3025 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3027 void __user *argp = (void __user *)arg;
3028 struct pkt_ctrl_command ctrl_cmd;
3032 if (cmd != PACKET_CTRL_CMD)
3035 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3038 switch (ctrl_cmd.command) {
3039 case PKT_CTRL_CMD_SETUP:
3040 if (!capable(CAP_SYS_ADMIN))
3042 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3043 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3045 case PKT_CTRL_CMD_TEARDOWN:
3046 if (!capable(CAP_SYS_ADMIN))
3048 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3050 case PKT_CTRL_CMD_STATUS:
3051 pkt_get_status(&ctrl_cmd);
3057 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3063 static const struct file_operations pkt_ctl_fops = {
3064 .ioctl = pkt_ctl_ioctl,
3065 .owner = THIS_MODULE,
3068 static struct miscdevice pkt_misc = {
3069 .minor = MISC_DYNAMIC_MINOR,
3070 .name = DRIVER_NAME,
3071 .name = "pktcdvd/control",
3072 .fops = &pkt_ctl_fops
3075 static int __init pkt_init(void)
3079 mutex_init(&ctl_mutex);
3081 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3082 sizeof(struct packet_stacked_data));
3086 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3088 printk(DRIVER_NAME": Unable to register block device\n");
3094 ret = pkt_sysfs_init();
3100 ret = misc_register(&pkt_misc);
3102 printk(DRIVER_NAME": Unable to register misc device\n");
3106 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3111 pkt_debugfs_cleanup();
3112 pkt_sysfs_cleanup();
3114 unregister_blkdev(pktdev_major, DRIVER_NAME);
3116 mempool_destroy(psd_pool);
3120 static void __exit pkt_exit(void)
3122 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3123 misc_deregister(&pkt_misc);
3125 pkt_debugfs_cleanup();
3126 pkt_sysfs_cleanup();
3128 unregister_blkdev(pktdev_major, DRIVER_NAME);
3129 mempool_destroy(psd_pool);
3132 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3133 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3134 MODULE_LICENSE("GPL");
3136 module_init(pkt_init);
3137 module_exit(pkt_exit);