Merge git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/v4l-dvb
[linux-2.6] / drivers / net / ppp_generic.c
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/netdevice.h>
31 #include <linux/poll.h>
32 #include <linux/ppp_defs.h>
33 #include <linux/filter.h>
34 #include <linux/if_ppp.h>
35 #include <linux/ppp_channel.h>
36 #include <linux/ppp-comp.h>
37 #include <linux/skbuff.h>
38 #include <linux/rtnetlink.h>
39 #include <linux/if_arp.h>
40 #include <linux/ip.h>
41 #include <linux/tcp.h>
42 #include <linux/smp_lock.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <net/slhc_vj.h>
49 #include <asm/atomic.h>
50
51 #define PPP_VERSION     "2.4.2"
52
53 /*
54  * Network protocols we support.
55  */
56 #define NP_IP   0               /* Internet Protocol V4 */
57 #define NP_IPV6 1               /* Internet Protocol V6 */
58 #define NP_IPX  2               /* IPX protocol */
59 #define NP_AT   3               /* Appletalk protocol */
60 #define NP_MPLS_UC 4            /* MPLS unicast */
61 #define NP_MPLS_MC 5            /* MPLS multicast */
62 #define NUM_NP  6               /* Number of NPs. */
63
64 #define MPHDRLEN        6       /* multilink protocol header length */
65 #define MPHDRLEN_SSN    4       /* ditto with short sequence numbers */
66 #define MIN_FRAG_SIZE   64
67
68 /*
69  * An instance of /dev/ppp can be associated with either a ppp
70  * interface unit or a ppp channel.  In both cases, file->private_data
71  * points to one of these.
72  */
73 struct ppp_file {
74         enum {
75                 INTERFACE=1, CHANNEL
76         }               kind;
77         struct sk_buff_head xq;         /* pppd transmit queue */
78         struct sk_buff_head rq;         /* receive queue for pppd */
79         wait_queue_head_t rwait;        /* for poll on reading /dev/ppp */
80         atomic_t        refcnt;         /* # refs (incl /dev/ppp attached) */
81         int             hdrlen;         /* space to leave for headers */
82         int             index;          /* interface unit / channel number */
83         int             dead;           /* unit/channel has been shut down */
84 };
85
86 #define PF_TO_X(pf, X)          container_of(pf, X, file)
87
88 #define PF_TO_PPP(pf)           PF_TO_X(pf, struct ppp)
89 #define PF_TO_CHANNEL(pf)       PF_TO_X(pf, struct channel)
90
91 /*
92  * Data structure describing one ppp unit.
93  * A ppp unit corresponds to a ppp network interface device
94  * and represents a multilink bundle.
95  * It can have 0 or more ppp channels connected to it.
96  */
97 struct ppp {
98         struct ppp_file file;           /* stuff for read/write/poll 0 */
99         struct file     *owner;         /* file that owns this unit 48 */
100         struct list_head channels;      /* list of attached channels 4c */
101         int             n_channels;     /* how many channels are attached 54 */
102         spinlock_t      rlock;          /* lock for receive side 58 */
103         spinlock_t      wlock;          /* lock for transmit side 5c */
104         int             mru;            /* max receive unit 60 */
105         unsigned int    flags;          /* control bits 64 */
106         unsigned int    xstate;         /* transmit state bits 68 */
107         unsigned int    rstate;         /* receive state bits 6c */
108         int             debug;          /* debug flags 70 */
109         struct slcompress *vj;          /* state for VJ header compression */
110         enum NPmode     npmode[NUM_NP]; /* what to do with each net proto 78 */
111         struct sk_buff  *xmit_pending;  /* a packet ready to go out 88 */
112         struct compressor *xcomp;       /* transmit packet compressor 8c */
113         void            *xc_state;      /* its internal state 90 */
114         struct compressor *rcomp;       /* receive decompressor 94 */
115         void            *rc_state;      /* its internal state 98 */
116         unsigned long   last_xmit;      /* jiffies when last pkt sent 9c */
117         unsigned long   last_recv;      /* jiffies when last pkt rcvd a0 */
118         struct net_device *dev;         /* network interface device a4 */
119 #ifdef CONFIG_PPP_MULTILINK
120         int             nxchan;         /* next channel to send something on */
121         u32             nxseq;          /* next sequence number to send */
122         int             mrru;           /* MP: max reconst. receive unit */
123         u32             nextseq;        /* MP: seq no of next packet */
124         u32             minseq;         /* MP: min of most recent seqnos */
125         struct sk_buff_head mrq;        /* MP: receive reconstruction queue */
126 #endif /* CONFIG_PPP_MULTILINK */
127 #ifdef CONFIG_PPP_FILTER
128         struct sock_filter *pass_filter;        /* filter for packets to pass */
129         struct sock_filter *active_filter;/* filter for pkts to reset idle */
130         unsigned pass_len, active_len;
131 #endif /* CONFIG_PPP_FILTER */
132 };
133
134 /*
135  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
136  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
137  * SC_MUST_COMP
138  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
139  * Bits in xstate: SC_COMP_RUN
140  */
141 #define SC_FLAG_BITS    (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
142                          |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
143                          |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
144
145 /*
146  * Private data structure for each channel.
147  * This includes the data structure used for multilink.
148  */
149 struct channel {
150         struct ppp_file file;           /* stuff for read/write/poll */
151         struct list_head list;          /* link in all/new_channels list */
152         struct ppp_channel *chan;       /* public channel data structure */
153         struct rw_semaphore chan_sem;   /* protects `chan' during chan ioctl */
154         spinlock_t      downl;          /* protects `chan', file.xq dequeue */
155         struct ppp      *ppp;           /* ppp unit we're connected to */
156         struct list_head clist;         /* link in list of channels per unit */
157         rwlock_t        upl;            /* protects `ppp' */
158 #ifdef CONFIG_PPP_MULTILINK
159         u8              avail;          /* flag used in multilink stuff */
160         u8              had_frag;       /* >= 1 fragments have been sent */
161         u32             lastseq;        /* MP: last sequence # received */
162 #endif /* CONFIG_PPP_MULTILINK */
163 };
164
165 /*
166  * SMP locking issues:
167  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
168  * list and the ppp.n_channels field, you need to take both locks
169  * before you modify them.
170  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
171  * channel.downl.
172  */
173
174 /*
175  * A cardmap represents a mapping from unsigned integers to pointers,
176  * and provides a fast "find lowest unused number" operation.
177  * It uses a broad (32-way) tree with a bitmap at each level.
178  * It is designed to be space-efficient for small numbers of entries
179  * and time-efficient for large numbers of entries.
180  */
181 #define CARDMAP_ORDER   5
182 #define CARDMAP_WIDTH   (1U << CARDMAP_ORDER)
183 #define CARDMAP_MASK    (CARDMAP_WIDTH - 1)
184
185 struct cardmap {
186         int shift;
187         unsigned long inuse;
188         struct cardmap *parent;
189         void *ptr[CARDMAP_WIDTH];
190 };
191 static void *cardmap_get(struct cardmap *map, unsigned int nr);
192 static int cardmap_set(struct cardmap **map, unsigned int nr, void *ptr);
193 static unsigned int cardmap_find_first_free(struct cardmap *map);
194 static void cardmap_destroy(struct cardmap **map);
195
196 /*
197  * all_ppp_mutex protects the all_ppp_units mapping.
198  * It also ensures that finding a ppp unit in the all_ppp_units map
199  * and updating its file.refcnt field is atomic.
200  */
201 static DEFINE_MUTEX(all_ppp_mutex);
202 static struct cardmap *all_ppp_units;
203 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
204
205 /*
206  * all_channels_lock protects all_channels and last_channel_index,
207  * and the atomicity of find a channel and updating its file.refcnt
208  * field.
209  */
210 static DEFINE_SPINLOCK(all_channels_lock);
211 static LIST_HEAD(all_channels);
212 static LIST_HEAD(new_channels);
213 static int last_channel_index;
214 static atomic_t channel_count = ATOMIC_INIT(0);
215
216 /* Get the PPP protocol number from a skb */
217 #define PPP_PROTO(skb)  (((skb)->data[0] << 8) + (skb)->data[1])
218
219 /* We limit the length of ppp->file.rq to this (arbitrary) value */
220 #define PPP_MAX_RQLEN   32
221
222 /*
223  * Maximum number of multilink fragments queued up.
224  * This has to be large enough to cope with the maximum latency of
225  * the slowest channel relative to the others.  Strictly it should
226  * depend on the number of channels and their characteristics.
227  */
228 #define PPP_MP_MAX_QLEN 128
229
230 /* Multilink header bits. */
231 #define B       0x80            /* this fragment begins a packet */
232 #define E       0x40            /* this fragment ends a packet */
233
234 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
235 #define seq_before(a, b)        ((s32)((a) - (b)) < 0)
236 #define seq_after(a, b)         ((s32)((a) - (b)) > 0)
237
238 /* Prototypes. */
239 static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file,
240                                 unsigned int cmd, unsigned long arg);
241 static void ppp_xmit_process(struct ppp *ppp);
242 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
243 static void ppp_push(struct ppp *ppp);
244 static void ppp_channel_push(struct channel *pch);
245 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
246                               struct channel *pch);
247 static void ppp_receive_error(struct ppp *ppp);
248 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
249 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
250                                             struct sk_buff *skb);
251 #ifdef CONFIG_PPP_MULTILINK
252 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
253                                 struct channel *pch);
254 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
255 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
256 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
257 #endif /* CONFIG_PPP_MULTILINK */
258 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
259 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
260 static void ppp_ccp_closed(struct ppp *ppp);
261 static struct compressor *find_compressor(int type);
262 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
263 static struct ppp *ppp_create_interface(int unit, int *retp);
264 static void init_ppp_file(struct ppp_file *pf, int kind);
265 static void ppp_shutdown_interface(struct ppp *ppp);
266 static void ppp_destroy_interface(struct ppp *ppp);
267 static struct ppp *ppp_find_unit(int unit);
268 static struct channel *ppp_find_channel(int unit);
269 static int ppp_connect_channel(struct channel *pch, int unit);
270 static int ppp_disconnect_channel(struct channel *pch);
271 static void ppp_destroy_channel(struct channel *pch);
272
273 static struct class *ppp_class;
274
275 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
276 static inline int proto_to_npindex(int proto)
277 {
278         switch (proto) {
279         case PPP_IP:
280                 return NP_IP;
281         case PPP_IPV6:
282                 return NP_IPV6;
283         case PPP_IPX:
284                 return NP_IPX;
285         case PPP_AT:
286                 return NP_AT;
287         case PPP_MPLS_UC:
288                 return NP_MPLS_UC;
289         case PPP_MPLS_MC:
290                 return NP_MPLS_MC;
291         }
292         return -EINVAL;
293 }
294
295 /* Translates an NP index into a PPP protocol number */
296 static const int npindex_to_proto[NUM_NP] = {
297         PPP_IP,
298         PPP_IPV6,
299         PPP_IPX,
300         PPP_AT,
301         PPP_MPLS_UC,
302         PPP_MPLS_MC,
303 };
304
305 /* Translates an ethertype into an NP index */
306 static inline int ethertype_to_npindex(int ethertype)
307 {
308         switch (ethertype) {
309         case ETH_P_IP:
310                 return NP_IP;
311         case ETH_P_IPV6:
312                 return NP_IPV6;
313         case ETH_P_IPX:
314                 return NP_IPX;
315         case ETH_P_PPPTALK:
316         case ETH_P_ATALK:
317                 return NP_AT;
318         case ETH_P_MPLS_UC:
319                 return NP_MPLS_UC;
320         case ETH_P_MPLS_MC:
321                 return NP_MPLS_MC;
322         }
323         return -1;
324 }
325
326 /* Translates an NP index into an ethertype */
327 static const int npindex_to_ethertype[NUM_NP] = {
328         ETH_P_IP,
329         ETH_P_IPV6,
330         ETH_P_IPX,
331         ETH_P_PPPTALK,
332         ETH_P_MPLS_UC,
333         ETH_P_MPLS_MC,
334 };
335
336 /*
337  * Locking shorthand.
338  */
339 #define ppp_xmit_lock(ppp)      spin_lock_bh(&(ppp)->wlock)
340 #define ppp_xmit_unlock(ppp)    spin_unlock_bh(&(ppp)->wlock)
341 #define ppp_recv_lock(ppp)      spin_lock_bh(&(ppp)->rlock)
342 #define ppp_recv_unlock(ppp)    spin_unlock_bh(&(ppp)->rlock)
343 #define ppp_lock(ppp)           do { ppp_xmit_lock(ppp); \
344                                      ppp_recv_lock(ppp); } while (0)
345 #define ppp_unlock(ppp)         do { ppp_recv_unlock(ppp); \
346                                      ppp_xmit_unlock(ppp); } while (0)
347
348 /*
349  * /dev/ppp device routines.
350  * The /dev/ppp device is used by pppd to control the ppp unit.
351  * It supports the read, write, ioctl and poll functions.
352  * Open instances of /dev/ppp can be in one of three states:
353  * unattached, attached to a ppp unit, or attached to a ppp channel.
354  */
355 static int ppp_open(struct inode *inode, struct file *file)
356 {
357         cycle_kernel_lock();
358         /*
359          * This could (should?) be enforced by the permissions on /dev/ppp.
360          */
361         if (!capable(CAP_NET_ADMIN))
362                 return -EPERM;
363         return 0;
364 }
365
366 static int ppp_release(struct inode *unused, struct file *file)
367 {
368         struct ppp_file *pf = file->private_data;
369         struct ppp *ppp;
370
371         if (pf) {
372                 file->private_data = NULL;
373                 if (pf->kind == INTERFACE) {
374                         ppp = PF_TO_PPP(pf);
375                         if (file == ppp->owner)
376                                 ppp_shutdown_interface(ppp);
377                 }
378                 if (atomic_dec_and_test(&pf->refcnt)) {
379                         switch (pf->kind) {
380                         case INTERFACE:
381                                 ppp_destroy_interface(PF_TO_PPP(pf));
382                                 break;
383                         case CHANNEL:
384                                 ppp_destroy_channel(PF_TO_CHANNEL(pf));
385                                 break;
386                         }
387                 }
388         }
389         return 0;
390 }
391
392 static ssize_t ppp_read(struct file *file, char __user *buf,
393                         size_t count, loff_t *ppos)
394 {
395         struct ppp_file *pf = file->private_data;
396         DECLARE_WAITQUEUE(wait, current);
397         ssize_t ret;
398         struct sk_buff *skb = NULL;
399
400         ret = count;
401
402         if (!pf)
403                 return -ENXIO;
404         add_wait_queue(&pf->rwait, &wait);
405         for (;;) {
406                 set_current_state(TASK_INTERRUPTIBLE);
407                 skb = skb_dequeue(&pf->rq);
408                 if (skb)
409                         break;
410                 ret = 0;
411                 if (pf->dead)
412                         break;
413                 if (pf->kind == INTERFACE) {
414                         /*
415                          * Return 0 (EOF) on an interface that has no
416                          * channels connected, unless it is looping
417                          * network traffic (demand mode).
418                          */
419                         struct ppp *ppp = PF_TO_PPP(pf);
420                         if (ppp->n_channels == 0
421                             && (ppp->flags & SC_LOOP_TRAFFIC) == 0)
422                                 break;
423                 }
424                 ret = -EAGAIN;
425                 if (file->f_flags & O_NONBLOCK)
426                         break;
427                 ret = -ERESTARTSYS;
428                 if (signal_pending(current))
429                         break;
430                 schedule();
431         }
432         set_current_state(TASK_RUNNING);
433         remove_wait_queue(&pf->rwait, &wait);
434
435         if (!skb)
436                 goto out;
437
438         ret = -EOVERFLOW;
439         if (skb->len > count)
440                 goto outf;
441         ret = -EFAULT;
442         if (copy_to_user(buf, skb->data, skb->len))
443                 goto outf;
444         ret = skb->len;
445
446  outf:
447         kfree_skb(skb);
448  out:
449         return ret;
450 }
451
452 static ssize_t ppp_write(struct file *file, const char __user *buf,
453                          size_t count, loff_t *ppos)
454 {
455         struct ppp_file *pf = file->private_data;
456         struct sk_buff *skb;
457         ssize_t ret;
458
459         if (!pf)
460                 return -ENXIO;
461         ret = -ENOMEM;
462         skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
463         if (!skb)
464                 goto out;
465         skb_reserve(skb, pf->hdrlen);
466         ret = -EFAULT;
467         if (copy_from_user(skb_put(skb, count), buf, count)) {
468                 kfree_skb(skb);
469                 goto out;
470         }
471
472         skb_queue_tail(&pf->xq, skb);
473
474         switch (pf->kind) {
475         case INTERFACE:
476                 ppp_xmit_process(PF_TO_PPP(pf));
477                 break;
478         case CHANNEL:
479                 ppp_channel_push(PF_TO_CHANNEL(pf));
480                 break;
481         }
482
483         ret = count;
484
485  out:
486         return ret;
487 }
488
489 /* No kernel lock - fine */
490 static unsigned int ppp_poll(struct file *file, poll_table *wait)
491 {
492         struct ppp_file *pf = file->private_data;
493         unsigned int mask;
494
495         if (!pf)
496                 return 0;
497         poll_wait(file, &pf->rwait, wait);
498         mask = POLLOUT | POLLWRNORM;
499         if (skb_peek(&pf->rq))
500                 mask |= POLLIN | POLLRDNORM;
501         if (pf->dead)
502                 mask |= POLLHUP;
503         else if (pf->kind == INTERFACE) {
504                 /* see comment in ppp_read */
505                 struct ppp *ppp = PF_TO_PPP(pf);
506                 if (ppp->n_channels == 0
507                     && (ppp->flags & SC_LOOP_TRAFFIC) == 0)
508                         mask |= POLLIN | POLLRDNORM;
509         }
510
511         return mask;
512 }
513
514 #ifdef CONFIG_PPP_FILTER
515 static int get_filter(void __user *arg, struct sock_filter **p)
516 {
517         struct sock_fprog uprog;
518         struct sock_filter *code = NULL;
519         int len, err;
520
521         if (copy_from_user(&uprog, arg, sizeof(uprog)))
522                 return -EFAULT;
523
524         if (!uprog.len) {
525                 *p = NULL;
526                 return 0;
527         }
528
529         len = uprog.len * sizeof(struct sock_filter);
530         code = kmalloc(len, GFP_KERNEL);
531         if (code == NULL)
532                 return -ENOMEM;
533
534         if (copy_from_user(code, uprog.filter, len)) {
535                 kfree(code);
536                 return -EFAULT;
537         }
538
539         err = sk_chk_filter(code, uprog.len);
540         if (err) {
541                 kfree(code);
542                 return err;
543         }
544
545         *p = code;
546         return uprog.len;
547 }
548 #endif /* CONFIG_PPP_FILTER */
549
550 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
551 {
552         struct ppp_file *pf = file->private_data;
553         struct ppp *ppp;
554         int err = -EFAULT, val, val2, i;
555         struct ppp_idle idle;
556         struct npioctl npi;
557         int unit, cflags;
558         struct slcompress *vj;
559         void __user *argp = (void __user *)arg;
560         int __user *p = argp;
561
562         if (!pf)
563                 return ppp_unattached_ioctl(pf, file, cmd, arg);
564
565         if (cmd == PPPIOCDETACH) {
566                 /*
567                  * We have to be careful here... if the file descriptor
568                  * has been dup'd, we could have another process in the
569                  * middle of a poll using the same file *, so we had
570                  * better not free the interface data structures -
571                  * instead we fail the ioctl.  Even in this case, we
572                  * shut down the interface if we are the owner of it.
573                  * Actually, we should get rid of PPPIOCDETACH, userland
574                  * (i.e. pppd) could achieve the same effect by closing
575                  * this fd and reopening /dev/ppp.
576                  */
577                 err = -EINVAL;
578                 lock_kernel();
579                 if (pf->kind == INTERFACE) {
580                         ppp = PF_TO_PPP(pf);
581                         if (file == ppp->owner)
582                                 ppp_shutdown_interface(ppp);
583                 }
584                 if (atomic_read(&file->f_count) <= 2) {
585                         ppp_release(NULL, file);
586                         err = 0;
587                 } else
588                         printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%d\n",
589                                atomic_read(&file->f_count));
590                 unlock_kernel();
591                 return err;
592         }
593
594         if (pf->kind == CHANNEL) {
595                 struct channel *pch;
596                 struct ppp_channel *chan;
597
598                 lock_kernel();
599                 pch = PF_TO_CHANNEL(pf);
600
601                 switch (cmd) {
602                 case PPPIOCCONNECT:
603                         if (get_user(unit, p))
604                                 break;
605                         err = ppp_connect_channel(pch, unit);
606                         break;
607
608                 case PPPIOCDISCONN:
609                         err = ppp_disconnect_channel(pch);
610                         break;
611
612                 default:
613                         down_read(&pch->chan_sem);
614                         chan = pch->chan;
615                         err = -ENOTTY;
616                         if (chan && chan->ops->ioctl)
617                                 err = chan->ops->ioctl(chan, cmd, arg);
618                         up_read(&pch->chan_sem);
619                 }
620                 unlock_kernel();
621                 return err;
622         }
623
624         if (pf->kind != INTERFACE) {
625                 /* can't happen */
626                 printk(KERN_ERR "PPP: not interface or channel??\n");
627                 return -EINVAL;
628         }
629
630         lock_kernel();
631         ppp = PF_TO_PPP(pf);
632         switch (cmd) {
633         case PPPIOCSMRU:
634                 if (get_user(val, p))
635                         break;
636                 ppp->mru = val;
637                 err = 0;
638                 break;
639
640         case PPPIOCSFLAGS:
641                 if (get_user(val, p))
642                         break;
643                 ppp_lock(ppp);
644                 cflags = ppp->flags & ~val;
645                 ppp->flags = val & SC_FLAG_BITS;
646                 ppp_unlock(ppp);
647                 if (cflags & SC_CCP_OPEN)
648                         ppp_ccp_closed(ppp);
649                 err = 0;
650                 break;
651
652         case PPPIOCGFLAGS:
653                 val = ppp->flags | ppp->xstate | ppp->rstate;
654                 if (put_user(val, p))
655                         break;
656                 err = 0;
657                 break;
658
659         case PPPIOCSCOMPRESS:
660                 err = ppp_set_compress(ppp, arg);
661                 break;
662
663         case PPPIOCGUNIT:
664                 if (put_user(ppp->file.index, p))
665                         break;
666                 err = 0;
667                 break;
668
669         case PPPIOCSDEBUG:
670                 if (get_user(val, p))
671                         break;
672                 ppp->debug = val;
673                 err = 0;
674                 break;
675
676         case PPPIOCGDEBUG:
677                 if (put_user(ppp->debug, p))
678                         break;
679                 err = 0;
680                 break;
681
682         case PPPIOCGIDLE:
683                 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
684                 idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
685                 if (copy_to_user(argp, &idle, sizeof(idle)))
686                         break;
687                 err = 0;
688                 break;
689
690         case PPPIOCSMAXCID:
691                 if (get_user(val, p))
692                         break;
693                 val2 = 15;
694                 if ((val >> 16) != 0) {
695                         val2 = val >> 16;
696                         val &= 0xffff;
697                 }
698                 vj = slhc_init(val2+1, val+1);
699                 if (!vj) {
700                         printk(KERN_ERR "PPP: no memory (VJ compressor)\n");
701                         err = -ENOMEM;
702                         break;
703                 }
704                 ppp_lock(ppp);
705                 if (ppp->vj)
706                         slhc_free(ppp->vj);
707                 ppp->vj = vj;
708                 ppp_unlock(ppp);
709                 err = 0;
710                 break;
711
712         case PPPIOCGNPMODE:
713         case PPPIOCSNPMODE:
714                 if (copy_from_user(&npi, argp, sizeof(npi)))
715                         break;
716                 err = proto_to_npindex(npi.protocol);
717                 if (err < 0)
718                         break;
719                 i = err;
720                 if (cmd == PPPIOCGNPMODE) {
721                         err = -EFAULT;
722                         npi.mode = ppp->npmode[i];
723                         if (copy_to_user(argp, &npi, sizeof(npi)))
724                                 break;
725                 } else {
726                         ppp->npmode[i] = npi.mode;
727                         /* we may be able to transmit more packets now (??) */
728                         netif_wake_queue(ppp->dev);
729                 }
730                 err = 0;
731                 break;
732
733 #ifdef CONFIG_PPP_FILTER
734         case PPPIOCSPASS:
735         {
736                 struct sock_filter *code;
737                 err = get_filter(argp, &code);
738                 if (err >= 0) {
739                         ppp_lock(ppp);
740                         kfree(ppp->pass_filter);
741                         ppp->pass_filter = code;
742                         ppp->pass_len = err;
743                         ppp_unlock(ppp);
744                         err = 0;
745                 }
746                 break;
747         }
748         case PPPIOCSACTIVE:
749         {
750                 struct sock_filter *code;
751                 err = get_filter(argp, &code);
752                 if (err >= 0) {
753                         ppp_lock(ppp);
754                         kfree(ppp->active_filter);
755                         ppp->active_filter = code;
756                         ppp->active_len = err;
757                         ppp_unlock(ppp);
758                         err = 0;
759                 }
760                 break;
761         }
762 #endif /* CONFIG_PPP_FILTER */
763
764 #ifdef CONFIG_PPP_MULTILINK
765         case PPPIOCSMRRU:
766                 if (get_user(val, p))
767                         break;
768                 ppp_recv_lock(ppp);
769                 ppp->mrru = val;
770                 ppp_recv_unlock(ppp);
771                 err = 0;
772                 break;
773 #endif /* CONFIG_PPP_MULTILINK */
774
775         default:
776                 err = -ENOTTY;
777         }
778         unlock_kernel();
779         return err;
780 }
781
782 static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file,
783                                 unsigned int cmd, unsigned long arg)
784 {
785         int unit, err = -EFAULT;
786         struct ppp *ppp;
787         struct channel *chan;
788         int __user *p = (int __user *)arg;
789
790         lock_kernel();
791         switch (cmd) {
792         case PPPIOCNEWUNIT:
793                 /* Create a new ppp unit */
794                 if (get_user(unit, p))
795                         break;
796                 ppp = ppp_create_interface(unit, &err);
797                 if (!ppp)
798                         break;
799                 file->private_data = &ppp->file;
800                 ppp->owner = file;
801                 err = -EFAULT;
802                 if (put_user(ppp->file.index, p))
803                         break;
804                 err = 0;
805                 break;
806
807         case PPPIOCATTACH:
808                 /* Attach to an existing ppp unit */
809                 if (get_user(unit, p))
810                         break;
811                 mutex_lock(&all_ppp_mutex);
812                 err = -ENXIO;
813                 ppp = ppp_find_unit(unit);
814                 if (ppp) {
815                         atomic_inc(&ppp->file.refcnt);
816                         file->private_data = &ppp->file;
817                         err = 0;
818                 }
819                 mutex_unlock(&all_ppp_mutex);
820                 break;
821
822         case PPPIOCATTCHAN:
823                 if (get_user(unit, p))
824                         break;
825                 spin_lock_bh(&all_channels_lock);
826                 err = -ENXIO;
827                 chan = ppp_find_channel(unit);
828                 if (chan) {
829                         atomic_inc(&chan->file.refcnt);
830                         file->private_data = &chan->file;
831                         err = 0;
832                 }
833                 spin_unlock_bh(&all_channels_lock);
834                 break;
835
836         default:
837                 err = -ENOTTY;
838         }
839         unlock_kernel();
840         return err;
841 }
842
843 static const struct file_operations ppp_device_fops = {
844         .owner          = THIS_MODULE,
845         .read           = ppp_read,
846         .write          = ppp_write,
847         .poll           = ppp_poll,
848         .unlocked_ioctl = ppp_ioctl,
849         .open           = ppp_open,
850         .release        = ppp_release
851 };
852
853 #define PPP_MAJOR       108
854
855 /* Called at boot time if ppp is compiled into the kernel,
856    or at module load time (from init_module) if compiled as a module. */
857 static int __init ppp_init(void)
858 {
859         int err;
860
861         printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n");
862         err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
863         if (!err) {
864                 ppp_class = class_create(THIS_MODULE, "ppp");
865                 if (IS_ERR(ppp_class)) {
866                         err = PTR_ERR(ppp_class);
867                         goto out_chrdev;
868                 }
869                 device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), "ppp");
870         }
871
872 out:
873         if (err)
874                 printk(KERN_ERR "failed to register PPP device (%d)\n", err);
875         return err;
876
877 out_chrdev:
878         unregister_chrdev(PPP_MAJOR, "ppp");
879         goto out;
880 }
881
882 /*
883  * Network interface unit routines.
884  */
885 static int
886 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
887 {
888         struct ppp *ppp = (struct ppp *) dev->priv;
889         int npi, proto;
890         unsigned char *pp;
891
892         npi = ethertype_to_npindex(ntohs(skb->protocol));
893         if (npi < 0)
894                 goto outf;
895
896         /* Drop, accept or reject the packet */
897         switch (ppp->npmode[npi]) {
898         case NPMODE_PASS:
899                 break;
900         case NPMODE_QUEUE:
901                 /* it would be nice to have a way to tell the network
902                    system to queue this one up for later. */
903                 goto outf;
904         case NPMODE_DROP:
905         case NPMODE_ERROR:
906                 goto outf;
907         }
908
909         /* Put the 2-byte PPP protocol number on the front,
910            making sure there is room for the address and control fields. */
911         if (skb_cow_head(skb, PPP_HDRLEN))
912                 goto outf;
913
914         pp = skb_push(skb, 2);
915         proto = npindex_to_proto[npi];
916         pp[0] = proto >> 8;
917         pp[1] = proto;
918
919         netif_stop_queue(dev);
920         skb_queue_tail(&ppp->file.xq, skb);
921         ppp_xmit_process(ppp);
922         return 0;
923
924  outf:
925         kfree_skb(skb);
926         ++ppp->dev->stats.tx_dropped;
927         return 0;
928 }
929
930 static int
931 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
932 {
933         struct ppp *ppp = dev->priv;
934         int err = -EFAULT;
935         void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
936         struct ppp_stats stats;
937         struct ppp_comp_stats cstats;
938         char *vers;
939
940         switch (cmd) {
941         case SIOCGPPPSTATS:
942                 ppp_get_stats(ppp, &stats);
943                 if (copy_to_user(addr, &stats, sizeof(stats)))
944                         break;
945                 err = 0;
946                 break;
947
948         case SIOCGPPPCSTATS:
949                 memset(&cstats, 0, sizeof(cstats));
950                 if (ppp->xc_state)
951                         ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
952                 if (ppp->rc_state)
953                         ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
954                 if (copy_to_user(addr, &cstats, sizeof(cstats)))
955                         break;
956                 err = 0;
957                 break;
958
959         case SIOCGPPPVER:
960                 vers = PPP_VERSION;
961                 if (copy_to_user(addr, vers, strlen(vers) + 1))
962                         break;
963                 err = 0;
964                 break;
965
966         default:
967                 err = -EINVAL;
968         }
969
970         return err;
971 }
972
973 static void ppp_setup(struct net_device *dev)
974 {
975         dev->hard_header_len = PPP_HDRLEN;
976         dev->mtu = PPP_MTU;
977         dev->addr_len = 0;
978         dev->tx_queue_len = 3;
979         dev->type = ARPHRD_PPP;
980         dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
981 }
982
983 /*
984  * Transmit-side routines.
985  */
986
987 /*
988  * Called to do any work queued up on the transmit side
989  * that can now be done.
990  */
991 static void
992 ppp_xmit_process(struct ppp *ppp)
993 {
994         struct sk_buff *skb;
995
996         ppp_xmit_lock(ppp);
997         if (ppp->dev) {
998                 ppp_push(ppp);
999                 while (!ppp->xmit_pending
1000                        && (skb = skb_dequeue(&ppp->file.xq)))
1001                         ppp_send_frame(ppp, skb);
1002                 /* If there's no work left to do, tell the core net
1003                    code that we can accept some more. */
1004                 if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1005                         netif_wake_queue(ppp->dev);
1006         }
1007         ppp_xmit_unlock(ppp);
1008 }
1009
1010 static inline struct sk_buff *
1011 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1012 {
1013         struct sk_buff *new_skb;
1014         int len;
1015         int new_skb_size = ppp->dev->mtu +
1016                 ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1017         int compressor_skb_size = ppp->dev->mtu +
1018                 ppp->xcomp->comp_extra + PPP_HDRLEN;
1019         new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1020         if (!new_skb) {
1021                 if (net_ratelimit())
1022                         printk(KERN_ERR "PPP: no memory (comp pkt)\n");
1023                 return NULL;
1024         }
1025         if (ppp->dev->hard_header_len > PPP_HDRLEN)
1026                 skb_reserve(new_skb,
1027                             ppp->dev->hard_header_len - PPP_HDRLEN);
1028
1029         /* compressor still expects A/C bytes in hdr */
1030         len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1031                                    new_skb->data, skb->len + 2,
1032                                    compressor_skb_size);
1033         if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1034                 kfree_skb(skb);
1035                 skb = new_skb;
1036                 skb_put(skb, len);
1037                 skb_pull(skb, 2);       /* pull off A/C bytes */
1038         } else if (len == 0) {
1039                 /* didn't compress, or CCP not up yet */
1040                 kfree_skb(new_skb);
1041                 new_skb = skb;
1042         } else {
1043                 /*
1044                  * (len < 0)
1045                  * MPPE requires that we do not send unencrypted
1046                  * frames.  The compressor will return -1 if we
1047                  * should drop the frame.  We cannot simply test
1048                  * the compress_proto because MPPE and MPPC share
1049                  * the same number.
1050                  */
1051                 if (net_ratelimit())
1052                         printk(KERN_ERR "ppp: compressor dropped pkt\n");
1053                 kfree_skb(skb);
1054                 kfree_skb(new_skb);
1055                 new_skb = NULL;
1056         }
1057         return new_skb;
1058 }
1059
1060 /*
1061  * Compress and send a frame.
1062  * The caller should have locked the xmit path,
1063  * and xmit_pending should be 0.
1064  */
1065 static void
1066 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1067 {
1068         int proto = PPP_PROTO(skb);
1069         struct sk_buff *new_skb;
1070         int len;
1071         unsigned char *cp;
1072
1073         if (proto < 0x8000) {
1074 #ifdef CONFIG_PPP_FILTER
1075                 /* check if we should pass this packet */
1076                 /* the filter instructions are constructed assuming
1077                    a four-byte PPP header on each packet */
1078                 *skb_push(skb, 2) = 1;
1079                 if (ppp->pass_filter
1080                     && sk_run_filter(skb, ppp->pass_filter,
1081                                      ppp->pass_len) == 0) {
1082                         if (ppp->debug & 1)
1083                                 printk(KERN_DEBUG "PPP: outbound frame not passed\n");
1084                         kfree_skb(skb);
1085                         return;
1086                 }
1087                 /* if this packet passes the active filter, record the time */
1088                 if (!(ppp->active_filter
1089                       && sk_run_filter(skb, ppp->active_filter,
1090                                        ppp->active_len) == 0))
1091                         ppp->last_xmit = jiffies;
1092                 skb_pull(skb, 2);
1093 #else
1094                 /* for data packets, record the time */
1095                 ppp->last_xmit = jiffies;
1096 #endif /* CONFIG_PPP_FILTER */
1097         }
1098
1099         ++ppp->dev->stats.tx_packets;
1100         ppp->dev->stats.tx_bytes += skb->len - 2;
1101
1102         switch (proto) {
1103         case PPP_IP:
1104                 if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1105                         break;
1106                 /* try to do VJ TCP header compression */
1107                 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1108                                     GFP_ATOMIC);
1109                 if (!new_skb) {
1110                         printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n");
1111                         goto drop;
1112                 }
1113                 skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1114                 cp = skb->data + 2;
1115                 len = slhc_compress(ppp->vj, cp, skb->len - 2,
1116                                     new_skb->data + 2, &cp,
1117                                     !(ppp->flags & SC_NO_TCP_CCID));
1118                 if (cp == skb->data + 2) {
1119                         /* didn't compress */
1120                         kfree_skb(new_skb);
1121                 } else {
1122                         if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1123                                 proto = PPP_VJC_COMP;
1124                                 cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1125                         } else {
1126                                 proto = PPP_VJC_UNCOMP;
1127                                 cp[0] = skb->data[2];
1128                         }
1129                         kfree_skb(skb);
1130                         skb = new_skb;
1131                         cp = skb_put(skb, len + 2);
1132                         cp[0] = 0;
1133                         cp[1] = proto;
1134                 }
1135                 break;
1136
1137         case PPP_CCP:
1138                 /* peek at outbound CCP frames */
1139                 ppp_ccp_peek(ppp, skb, 0);
1140                 break;
1141         }
1142
1143         /* try to do packet compression */
1144         if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state
1145             && proto != PPP_LCP && proto != PPP_CCP) {
1146                 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1147                         if (net_ratelimit())
1148                                 printk(KERN_ERR "ppp: compression required but down - pkt dropped.\n");
1149                         goto drop;
1150                 }
1151                 skb = pad_compress_skb(ppp, skb);
1152                 if (!skb)
1153                         goto drop;
1154         }
1155
1156         /*
1157          * If we are waiting for traffic (demand dialling),
1158          * queue it up for pppd to receive.
1159          */
1160         if (ppp->flags & SC_LOOP_TRAFFIC) {
1161                 if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1162                         goto drop;
1163                 skb_queue_tail(&ppp->file.rq, skb);
1164                 wake_up_interruptible(&ppp->file.rwait);
1165                 return;
1166         }
1167
1168         ppp->xmit_pending = skb;
1169         ppp_push(ppp);
1170         return;
1171
1172  drop:
1173         if (skb)
1174                 kfree_skb(skb);
1175         ++ppp->dev->stats.tx_errors;
1176 }
1177
1178 /*
1179  * Try to send the frame in xmit_pending.
1180  * The caller should have the xmit path locked.
1181  */
1182 static void
1183 ppp_push(struct ppp *ppp)
1184 {
1185         struct list_head *list;
1186         struct channel *pch;
1187         struct sk_buff *skb = ppp->xmit_pending;
1188
1189         if (!skb)
1190                 return;
1191
1192         list = &ppp->channels;
1193         if (list_empty(list)) {
1194                 /* nowhere to send the packet, just drop it */
1195                 ppp->xmit_pending = NULL;
1196                 kfree_skb(skb);
1197                 return;
1198         }
1199
1200         if ((ppp->flags & SC_MULTILINK) == 0) {
1201                 /* not doing multilink: send it down the first channel */
1202                 list = list->next;
1203                 pch = list_entry(list, struct channel, clist);
1204
1205                 spin_lock_bh(&pch->downl);
1206                 if (pch->chan) {
1207                         if (pch->chan->ops->start_xmit(pch->chan, skb))
1208                                 ppp->xmit_pending = NULL;
1209                 } else {
1210                         /* channel got unregistered */
1211                         kfree_skb(skb);
1212                         ppp->xmit_pending = NULL;
1213                 }
1214                 spin_unlock_bh(&pch->downl);
1215                 return;
1216         }
1217
1218 #ifdef CONFIG_PPP_MULTILINK
1219         /* Multilink: fragment the packet over as many links
1220            as can take the packet at the moment. */
1221         if (!ppp_mp_explode(ppp, skb))
1222                 return;
1223 #endif /* CONFIG_PPP_MULTILINK */
1224
1225         ppp->xmit_pending = NULL;
1226         kfree_skb(skb);
1227 }
1228
1229 #ifdef CONFIG_PPP_MULTILINK
1230 /*
1231  * Divide a packet to be transmitted into fragments and
1232  * send them out the individual links.
1233  */
1234 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1235 {
1236         int len, fragsize;
1237         int i, bits, hdrlen, mtu;
1238         int flen;
1239         int navail, nfree;
1240         int nbigger;
1241         unsigned char *p, *q;
1242         struct list_head *list;
1243         struct channel *pch;
1244         struct sk_buff *frag;
1245         struct ppp_channel *chan;
1246
1247         nfree = 0;      /* # channels which have no packet already queued */
1248         navail = 0;     /* total # of usable channels (not deregistered) */
1249         hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1250         i = 0;
1251         list_for_each_entry(pch, &ppp->channels, clist) {
1252                 navail += pch->avail = (pch->chan != NULL);
1253                 if (pch->avail) {
1254                         if (skb_queue_empty(&pch->file.xq) ||
1255                             !pch->had_frag) {
1256                                 pch->avail = 2;
1257                                 ++nfree;
1258                         }
1259                         if (!pch->had_frag && i < ppp->nxchan)
1260                                 ppp->nxchan = i;
1261                 }
1262                 ++i;
1263         }
1264
1265         /*
1266          * Don't start sending this packet unless at least half of
1267          * the channels are free.  This gives much better TCP
1268          * performance if we have a lot of channels.
1269          */
1270         if (nfree == 0 || nfree < navail / 2)
1271                 return 0;       /* can't take now, leave it in xmit_pending */
1272
1273         /* Do protocol field compression (XXX this should be optional) */
1274         p = skb->data;
1275         len = skb->len;
1276         if (*p == 0) {
1277                 ++p;
1278                 --len;
1279         }
1280
1281         /*
1282          * Decide on fragment size.
1283          * We create a fragment for each free channel regardless of
1284          * how small they are (i.e. even 0 length) in order to minimize
1285          * the time that it will take to detect when a channel drops
1286          * a fragment.
1287          */
1288         fragsize = len;
1289         if (nfree > 1)
1290                 fragsize = DIV_ROUND_UP(fragsize, nfree);
1291         /* nbigger channels get fragsize bytes, the rest get fragsize-1,
1292            except if nbigger==0, then they all get fragsize. */
1293         nbigger = len % nfree;
1294
1295         /* skip to the channel after the one we last used
1296            and start at that one */
1297         list = &ppp->channels;
1298         for (i = 0; i < ppp->nxchan; ++i) {
1299                 list = list->next;
1300                 if (list == &ppp->channels) {
1301                         i = 0;
1302                         break;
1303                 }
1304         }
1305
1306         /* create a fragment for each channel */
1307         bits = B;
1308         while (nfree > 0 || len > 0) {
1309                 list = list->next;
1310                 if (list == &ppp->channels) {
1311                         i = 0;
1312                         continue;
1313                 }
1314                 pch = list_entry(list, struct channel, clist);
1315                 ++i;
1316                 if (!pch->avail)
1317                         continue;
1318
1319                 /*
1320                  * Skip this channel if it has a fragment pending already and
1321                  * we haven't given a fragment to all of the free channels.
1322                  */
1323                 if (pch->avail == 1) {
1324                         if (nfree > 0)
1325                                 continue;
1326                 } else {
1327                         --nfree;
1328                         pch->avail = 1;
1329                 }
1330
1331                 /* check the channel's mtu and whether it is still attached. */
1332                 spin_lock_bh(&pch->downl);
1333                 if (pch->chan == NULL) {
1334                         /* can't use this channel, it's being deregistered */
1335                         spin_unlock_bh(&pch->downl);
1336                         pch->avail = 0;
1337                         if (--navail == 0)
1338                                 break;
1339                         continue;
1340                 }
1341
1342                 /*
1343                  * Create a fragment for this channel of
1344                  * min(max(mtu+2-hdrlen, 4), fragsize, len) bytes.
1345                  * If mtu+2-hdrlen < 4, that is a ridiculously small
1346                  * MTU, so we use mtu = 2 + hdrlen.
1347                  */
1348                 if (fragsize > len)
1349                         fragsize = len;
1350                 flen = fragsize;
1351                 mtu = pch->chan->mtu + 2 - hdrlen;
1352                 if (mtu < 4)
1353                         mtu = 4;
1354                 if (flen > mtu)
1355                         flen = mtu;
1356                 if (flen == len && nfree == 0)
1357                         bits |= E;
1358                 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1359                 if (!frag)
1360                         goto noskb;
1361                 q = skb_put(frag, flen + hdrlen);
1362
1363                 /* make the MP header */
1364                 q[0] = PPP_MP >> 8;
1365                 q[1] = PPP_MP;
1366                 if (ppp->flags & SC_MP_XSHORTSEQ) {
1367                         q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1368                         q[3] = ppp->nxseq;
1369                 } else {
1370                         q[2] = bits;
1371                         q[3] = ppp->nxseq >> 16;
1372                         q[4] = ppp->nxseq >> 8;
1373                         q[5] = ppp->nxseq;
1374                 }
1375
1376                 /*
1377                  * Copy the data in.
1378                  * Unfortunately there is a bug in older versions of
1379                  * the Linux PPP multilink reconstruction code where it
1380                  * drops 0-length fragments.  Therefore we make sure the
1381                  * fragment has at least one byte of data.  Any bytes
1382                  * we add in this situation will end up as padding on the
1383                  * end of the reconstructed packet.
1384                  */
1385                 if (flen == 0)
1386                         *skb_put(frag, 1) = 0;
1387                 else
1388                         memcpy(q + hdrlen, p, flen);
1389
1390                 /* try to send it down the channel */
1391                 chan = pch->chan;
1392                 if (!skb_queue_empty(&pch->file.xq) ||
1393                     !chan->ops->start_xmit(chan, frag))
1394                         skb_queue_tail(&pch->file.xq, frag);
1395                 pch->had_frag = 1;
1396                 p += flen;
1397                 len -= flen;
1398                 ++ppp->nxseq;
1399                 bits = 0;
1400                 spin_unlock_bh(&pch->downl);
1401
1402                 if (--nbigger == 0 && fragsize > 0)
1403                         --fragsize;
1404         }
1405         ppp->nxchan = i;
1406
1407         return 1;
1408
1409  noskb:
1410         spin_unlock_bh(&pch->downl);
1411         if (ppp->debug & 1)
1412                 printk(KERN_ERR "PPP: no memory (fragment)\n");
1413         ++ppp->dev->stats.tx_errors;
1414         ++ppp->nxseq;
1415         return 1;       /* abandon the frame */
1416 }
1417 #endif /* CONFIG_PPP_MULTILINK */
1418
1419 /*
1420  * Try to send data out on a channel.
1421  */
1422 static void
1423 ppp_channel_push(struct channel *pch)
1424 {
1425         struct sk_buff *skb;
1426         struct ppp *ppp;
1427
1428         spin_lock_bh(&pch->downl);
1429         if (pch->chan) {
1430                 while (!skb_queue_empty(&pch->file.xq)) {
1431                         skb = skb_dequeue(&pch->file.xq);
1432                         if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1433                                 /* put the packet back and try again later */
1434                                 skb_queue_head(&pch->file.xq, skb);
1435                                 break;
1436                         }
1437                 }
1438         } else {
1439                 /* channel got deregistered */
1440                 skb_queue_purge(&pch->file.xq);
1441         }
1442         spin_unlock_bh(&pch->downl);
1443         /* see if there is anything from the attached unit to be sent */
1444         if (skb_queue_empty(&pch->file.xq)) {
1445                 read_lock_bh(&pch->upl);
1446                 ppp = pch->ppp;
1447                 if (ppp)
1448                         ppp_xmit_process(ppp);
1449                 read_unlock_bh(&pch->upl);
1450         }
1451 }
1452
1453 /*
1454  * Receive-side routines.
1455  */
1456
1457 /* misuse a few fields of the skb for MP reconstruction */
1458 #define sequence        priority
1459 #define BEbits          cb[0]
1460
1461 static inline void
1462 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1463 {
1464         ppp_recv_lock(ppp);
1465         /* ppp->dev == 0 means interface is closing down */
1466         if (ppp->dev)
1467                 ppp_receive_frame(ppp, skb, pch);
1468         else
1469                 kfree_skb(skb);
1470         ppp_recv_unlock(ppp);
1471 }
1472
1473 void
1474 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1475 {
1476         struct channel *pch = chan->ppp;
1477         int proto;
1478
1479         if (!pch || skb->len == 0) {
1480                 kfree_skb(skb);
1481                 return;
1482         }
1483
1484         proto = PPP_PROTO(skb);
1485         read_lock_bh(&pch->upl);
1486         if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1487                 /* put it on the channel queue */
1488                 skb_queue_tail(&pch->file.rq, skb);
1489                 /* drop old frames if queue too long */
1490                 while (pch->file.rq.qlen > PPP_MAX_RQLEN
1491                        && (skb = skb_dequeue(&pch->file.rq)))
1492                         kfree_skb(skb);
1493                 wake_up_interruptible(&pch->file.rwait);
1494         } else {
1495                 ppp_do_recv(pch->ppp, skb, pch);
1496         }
1497         read_unlock_bh(&pch->upl);
1498 }
1499
1500 /* Put a 0-length skb in the receive queue as an error indication */
1501 void
1502 ppp_input_error(struct ppp_channel *chan, int code)
1503 {
1504         struct channel *pch = chan->ppp;
1505         struct sk_buff *skb;
1506
1507         if (!pch)
1508                 return;
1509
1510         read_lock_bh(&pch->upl);
1511         if (pch->ppp) {
1512                 skb = alloc_skb(0, GFP_ATOMIC);
1513                 if (skb) {
1514                         skb->len = 0;           /* probably unnecessary */
1515                         skb->cb[0] = code;
1516                         ppp_do_recv(pch->ppp, skb, pch);
1517                 }
1518         }
1519         read_unlock_bh(&pch->upl);
1520 }
1521
1522 /*
1523  * We come in here to process a received frame.
1524  * The receive side of the ppp unit is locked.
1525  */
1526 static void
1527 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1528 {
1529         if (pskb_may_pull(skb, 2)) {
1530 #ifdef CONFIG_PPP_MULTILINK
1531                 /* XXX do channel-level decompression here */
1532                 if (PPP_PROTO(skb) == PPP_MP)
1533                         ppp_receive_mp_frame(ppp, skb, pch);
1534                 else
1535 #endif /* CONFIG_PPP_MULTILINK */
1536                         ppp_receive_nonmp_frame(ppp, skb);
1537                 return;
1538         }
1539
1540         if (skb->len > 0)
1541                 /* note: a 0-length skb is used as an error indication */
1542                 ++ppp->dev->stats.rx_length_errors;
1543
1544         kfree_skb(skb);
1545         ppp_receive_error(ppp);
1546 }
1547
1548 static void
1549 ppp_receive_error(struct ppp *ppp)
1550 {
1551         ++ppp->dev->stats.rx_errors;
1552         if (ppp->vj)
1553                 slhc_toss(ppp->vj);
1554 }
1555
1556 static void
1557 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1558 {
1559         struct sk_buff *ns;
1560         int proto, len, npi;
1561
1562         /*
1563          * Decompress the frame, if compressed.
1564          * Note that some decompressors need to see uncompressed frames
1565          * that come in as well as compressed frames.
1566          */
1567         if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)
1568             && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1569                 skb = ppp_decompress_frame(ppp, skb);
1570
1571         if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1572                 goto err;
1573
1574         proto = PPP_PROTO(skb);
1575         switch (proto) {
1576         case PPP_VJC_COMP:
1577                 /* decompress VJ compressed packets */
1578                 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1579                         goto err;
1580
1581                 if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1582                         /* copy to a new sk_buff with more tailroom */
1583                         ns = dev_alloc_skb(skb->len + 128);
1584                         if (!ns) {
1585                                 printk(KERN_ERR"PPP: no memory (VJ decomp)\n");
1586                                 goto err;
1587                         }
1588                         skb_reserve(ns, 2);
1589                         skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1590                         kfree_skb(skb);
1591                         skb = ns;
1592                 }
1593                 else
1594                         skb->ip_summed = CHECKSUM_NONE;
1595
1596                 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1597                 if (len <= 0) {
1598                         printk(KERN_DEBUG "PPP: VJ decompression error\n");
1599                         goto err;
1600                 }
1601                 len += 2;
1602                 if (len > skb->len)
1603                         skb_put(skb, len - skb->len);
1604                 else if (len < skb->len)
1605                         skb_trim(skb, len);
1606                 proto = PPP_IP;
1607                 break;
1608
1609         case PPP_VJC_UNCOMP:
1610                 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1611                         goto err;
1612
1613                 /* Until we fix the decompressor need to make sure
1614                  * data portion is linear.
1615                  */
1616                 if (!pskb_may_pull(skb, skb->len))
1617                         goto err;
1618
1619                 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1620                         printk(KERN_ERR "PPP: VJ uncompressed error\n");
1621                         goto err;
1622                 }
1623                 proto = PPP_IP;
1624                 break;
1625
1626         case PPP_CCP:
1627                 ppp_ccp_peek(ppp, skb, 1);
1628                 break;
1629         }
1630
1631         ++ppp->dev->stats.rx_packets;
1632         ppp->dev->stats.rx_bytes += skb->len - 2;
1633
1634         npi = proto_to_npindex(proto);
1635         if (npi < 0) {
1636                 /* control or unknown frame - pass it to pppd */
1637                 skb_queue_tail(&ppp->file.rq, skb);
1638                 /* limit queue length by dropping old frames */
1639                 while (ppp->file.rq.qlen > PPP_MAX_RQLEN
1640                        && (skb = skb_dequeue(&ppp->file.rq)))
1641                         kfree_skb(skb);
1642                 /* wake up any process polling or blocking on read */
1643                 wake_up_interruptible(&ppp->file.rwait);
1644
1645         } else {
1646                 /* network protocol frame - give it to the kernel */
1647
1648 #ifdef CONFIG_PPP_FILTER
1649                 /* check if the packet passes the pass and active filters */
1650                 /* the filter instructions are constructed assuming
1651                    a four-byte PPP header on each packet */
1652                 if (ppp->pass_filter || ppp->active_filter) {
1653                         if (skb_cloned(skb) &&
1654                             pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1655                                 goto err;
1656
1657                         *skb_push(skb, 2) = 0;
1658                         if (ppp->pass_filter
1659                             && sk_run_filter(skb, ppp->pass_filter,
1660                                              ppp->pass_len) == 0) {
1661                                 if (ppp->debug & 1)
1662                                         printk(KERN_DEBUG "PPP: inbound frame "
1663                                                "not passed\n");
1664                                 kfree_skb(skb);
1665                                 return;
1666                         }
1667                         if (!(ppp->active_filter
1668                               && sk_run_filter(skb, ppp->active_filter,
1669                                                ppp->active_len) == 0))
1670                                 ppp->last_recv = jiffies;
1671                         __skb_pull(skb, 2);
1672                 } else
1673 #endif /* CONFIG_PPP_FILTER */
1674                         ppp->last_recv = jiffies;
1675
1676                 if ((ppp->dev->flags & IFF_UP) == 0
1677                     || ppp->npmode[npi] != NPMODE_PASS) {
1678                         kfree_skb(skb);
1679                 } else {
1680                         /* chop off protocol */
1681                         skb_pull_rcsum(skb, 2);
1682                         skb->dev = ppp->dev;
1683                         skb->protocol = htons(npindex_to_ethertype[npi]);
1684                         skb_reset_mac_header(skb);
1685                         netif_rx(skb);
1686                         ppp->dev->last_rx = jiffies;
1687                 }
1688         }
1689         return;
1690
1691  err:
1692         kfree_skb(skb);
1693         ppp_receive_error(ppp);
1694 }
1695
1696 static struct sk_buff *
1697 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1698 {
1699         int proto = PPP_PROTO(skb);
1700         struct sk_buff *ns;
1701         int len;
1702
1703         /* Until we fix all the decompressor's need to make sure
1704          * data portion is linear.
1705          */
1706         if (!pskb_may_pull(skb, skb->len))
1707                 goto err;
1708
1709         if (proto == PPP_COMP) {
1710                 int obuff_size;
1711
1712                 switch(ppp->rcomp->compress_proto) {
1713                 case CI_MPPE:
1714                         obuff_size = ppp->mru + PPP_HDRLEN + 1;
1715                         break;
1716                 default:
1717                         obuff_size = ppp->mru + PPP_HDRLEN;
1718                         break;
1719                 }
1720
1721                 ns = dev_alloc_skb(obuff_size);
1722                 if (!ns) {
1723                         printk(KERN_ERR "ppp_decompress_frame: no memory\n");
1724                         goto err;
1725                 }
1726                 /* the decompressor still expects the A/C bytes in the hdr */
1727                 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1728                                 skb->len + 2, ns->data, obuff_size);
1729                 if (len < 0) {
1730                         /* Pass the compressed frame to pppd as an
1731                            error indication. */
1732                         if (len == DECOMP_FATALERROR)
1733                                 ppp->rstate |= SC_DC_FERROR;
1734                         kfree_skb(ns);
1735                         goto err;
1736                 }
1737
1738                 kfree_skb(skb);
1739                 skb = ns;
1740                 skb_put(skb, len);
1741                 skb_pull(skb, 2);       /* pull off the A/C bytes */
1742
1743         } else {
1744                 /* Uncompressed frame - pass to decompressor so it
1745                    can update its dictionary if necessary. */
1746                 if (ppp->rcomp->incomp)
1747                         ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1748                                            skb->len + 2);
1749         }
1750
1751         return skb;
1752
1753  err:
1754         ppp->rstate |= SC_DC_ERROR;
1755         ppp_receive_error(ppp);
1756         return skb;
1757 }
1758
1759 #ifdef CONFIG_PPP_MULTILINK
1760 /*
1761  * Receive a multilink frame.
1762  * We put it on the reconstruction queue and then pull off
1763  * as many completed frames as we can.
1764  */
1765 static void
1766 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1767 {
1768         u32 mask, seq;
1769         struct channel *ch;
1770         int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1771
1772         if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1773                 goto err;               /* no good, throw it away */
1774
1775         /* Decode sequence number and begin/end bits */
1776         if (ppp->flags & SC_MP_SHORTSEQ) {
1777                 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1778                 mask = 0xfff;
1779         } else {
1780                 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1781                 mask = 0xffffff;
1782         }
1783         skb->BEbits = skb->data[2];
1784         skb_pull(skb, mphdrlen);        /* pull off PPP and MP headers */
1785
1786         /*
1787          * Do protocol ID decompression on the first fragment of each packet.
1788          */
1789         if ((skb->BEbits & B) && (skb->data[0] & 1))
1790                 *skb_push(skb, 1) = 0;
1791
1792         /*
1793          * Expand sequence number to 32 bits, making it as close
1794          * as possible to ppp->minseq.
1795          */
1796         seq |= ppp->minseq & ~mask;
1797         if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1798                 seq += mask + 1;
1799         else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1800                 seq -= mask + 1;        /* should never happen */
1801         skb->sequence = seq;
1802         pch->lastseq = seq;
1803
1804         /*
1805          * If this packet comes before the next one we were expecting,
1806          * drop it.
1807          */
1808         if (seq_before(seq, ppp->nextseq)) {
1809                 kfree_skb(skb);
1810                 ++ppp->dev->stats.rx_dropped;
1811                 ppp_receive_error(ppp);
1812                 return;
1813         }
1814
1815         /*
1816          * Reevaluate minseq, the minimum over all channels of the
1817          * last sequence number received on each channel.  Because of
1818          * the increasing sequence number rule, we know that any fragment
1819          * before `minseq' which hasn't arrived is never going to arrive.
1820          * The list of channels can't change because we have the receive
1821          * side of the ppp unit locked.
1822          */
1823         list_for_each_entry(ch, &ppp->channels, clist) {
1824                 if (seq_before(ch->lastseq, seq))
1825                         seq = ch->lastseq;
1826         }
1827         if (seq_before(ppp->minseq, seq))
1828                 ppp->minseq = seq;
1829
1830         /* Put the fragment on the reconstruction queue */
1831         ppp_mp_insert(ppp, skb);
1832
1833         /* If the queue is getting long, don't wait any longer for packets
1834            before the start of the queue. */
1835         if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN
1836             && seq_before(ppp->minseq, ppp->mrq.next->sequence))
1837                 ppp->minseq = ppp->mrq.next->sequence;
1838
1839         /* Pull completed packets off the queue and receive them. */
1840         while ((skb = ppp_mp_reconstruct(ppp)))
1841                 ppp_receive_nonmp_frame(ppp, skb);
1842
1843         return;
1844
1845  err:
1846         kfree_skb(skb);
1847         ppp_receive_error(ppp);
1848 }
1849
1850 /*
1851  * Insert a fragment on the MP reconstruction queue.
1852  * The queue is ordered by increasing sequence number.
1853  */
1854 static void
1855 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
1856 {
1857         struct sk_buff *p;
1858         struct sk_buff_head *list = &ppp->mrq;
1859         u32 seq = skb->sequence;
1860
1861         /* N.B. we don't need to lock the list lock because we have the
1862            ppp unit receive-side lock. */
1863         for (p = list->next; p != (struct sk_buff *)list; p = p->next)
1864                 if (seq_before(seq, p->sequence))
1865                         break;
1866         __skb_insert(skb, p->prev, p, list);
1867 }
1868
1869 /*
1870  * Reconstruct a packet from the MP fragment queue.
1871  * We go through increasing sequence numbers until we find a
1872  * complete packet, or we get to the sequence number for a fragment
1873  * which hasn't arrived but might still do so.
1874  */
1875 static struct sk_buff *
1876 ppp_mp_reconstruct(struct ppp *ppp)
1877 {
1878         u32 seq = ppp->nextseq;
1879         u32 minseq = ppp->minseq;
1880         struct sk_buff_head *list = &ppp->mrq;
1881         struct sk_buff *p, *next;
1882         struct sk_buff *head, *tail;
1883         struct sk_buff *skb = NULL;
1884         int lost = 0, len = 0;
1885
1886         if (ppp->mrru == 0)     /* do nothing until mrru is set */
1887                 return NULL;
1888         head = list->next;
1889         tail = NULL;
1890         for (p = head; p != (struct sk_buff *) list; p = next) {
1891                 next = p->next;
1892                 if (seq_before(p->sequence, seq)) {
1893                         /* this can't happen, anyway ignore the skb */
1894                         printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n",
1895                                p->sequence, seq);
1896                         head = next;
1897                         continue;
1898                 }
1899                 if (p->sequence != seq) {
1900                         /* Fragment `seq' is missing.  If it is after
1901                            minseq, it might arrive later, so stop here. */
1902                         if (seq_after(seq, minseq))
1903                                 break;
1904                         /* Fragment `seq' is lost, keep going. */
1905                         lost = 1;
1906                         seq = seq_before(minseq, p->sequence)?
1907                                 minseq + 1: p->sequence;
1908                         next = p;
1909                         continue;
1910                 }
1911
1912                 /*
1913                  * At this point we know that all the fragments from
1914                  * ppp->nextseq to seq are either present or lost.
1915                  * Also, there are no complete packets in the queue
1916                  * that have no missing fragments and end before this
1917                  * fragment.
1918                  */
1919
1920                 /* B bit set indicates this fragment starts a packet */
1921                 if (p->BEbits & B) {
1922                         head = p;
1923                         lost = 0;
1924                         len = 0;
1925                 }
1926
1927                 len += p->len;
1928
1929                 /* Got a complete packet yet? */
1930                 if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) {
1931                         if (len > ppp->mrru + 2) {
1932                                 ++ppp->dev->stats.rx_length_errors;
1933                                 printk(KERN_DEBUG "PPP: reconstructed packet"
1934                                        " is too long (%d)\n", len);
1935                         } else if (p == head) {
1936                                 /* fragment is complete packet - reuse skb */
1937                                 tail = p;
1938                                 skb = skb_get(p);
1939                                 break;
1940                         } else if ((skb = dev_alloc_skb(len)) == NULL) {
1941                                 ++ppp->dev->stats.rx_missed_errors;
1942                                 printk(KERN_DEBUG "PPP: no memory for "
1943                                        "reconstructed packet");
1944                         } else {
1945                                 tail = p;
1946                                 break;
1947                         }
1948                         ppp->nextseq = seq + 1;
1949                 }
1950
1951                 /*
1952                  * If this is the ending fragment of a packet,
1953                  * and we haven't found a complete valid packet yet,
1954                  * we can discard up to and including this fragment.
1955                  */
1956                 if (p->BEbits & E)
1957                         head = next;
1958
1959                 ++seq;
1960         }
1961
1962         /* If we have a complete packet, copy it all into one skb. */
1963         if (tail != NULL) {
1964                 /* If we have discarded any fragments,
1965                    signal a receive error. */
1966                 if (head->sequence != ppp->nextseq) {
1967                         if (ppp->debug & 1)
1968                                 printk(KERN_DEBUG "  missed pkts %u..%u\n",
1969                                        ppp->nextseq, head->sequence-1);
1970                         ++ppp->dev->stats.rx_dropped;
1971                         ppp_receive_error(ppp);
1972                 }
1973
1974                 if (head != tail)
1975                         /* copy to a single skb */
1976                         for (p = head; p != tail->next; p = p->next)
1977                                 skb_copy_bits(p, 0, skb_put(skb, p->len), p->len);
1978                 ppp->nextseq = tail->sequence + 1;
1979                 head = tail->next;
1980         }
1981
1982         /* Discard all the skbuffs that we have copied the data out of
1983            or that we can't use. */
1984         while ((p = list->next) != head) {
1985                 __skb_unlink(p, list);
1986                 kfree_skb(p);
1987         }
1988
1989         return skb;
1990 }
1991 #endif /* CONFIG_PPP_MULTILINK */
1992
1993 /*
1994  * Channel interface.
1995  */
1996
1997 /*
1998  * Create a new, unattached ppp channel.
1999  */
2000 int
2001 ppp_register_channel(struct ppp_channel *chan)
2002 {
2003         struct channel *pch;
2004
2005         pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2006         if (!pch)
2007                 return -ENOMEM;
2008         pch->ppp = NULL;
2009         pch->chan = chan;
2010         chan->ppp = pch;
2011         init_ppp_file(&pch->file, CHANNEL);
2012         pch->file.hdrlen = chan->hdrlen;
2013 #ifdef CONFIG_PPP_MULTILINK
2014         pch->lastseq = -1;
2015 #endif /* CONFIG_PPP_MULTILINK */
2016         init_rwsem(&pch->chan_sem);
2017         spin_lock_init(&pch->downl);
2018         rwlock_init(&pch->upl);
2019         spin_lock_bh(&all_channels_lock);
2020         pch->file.index = ++last_channel_index;
2021         list_add(&pch->list, &new_channels);
2022         atomic_inc(&channel_count);
2023         spin_unlock_bh(&all_channels_lock);
2024         return 0;
2025 }
2026
2027 /*
2028  * Return the index of a channel.
2029  */
2030 int ppp_channel_index(struct ppp_channel *chan)
2031 {
2032         struct channel *pch = chan->ppp;
2033
2034         if (pch)
2035                 return pch->file.index;
2036         return -1;
2037 }
2038
2039 /*
2040  * Return the PPP unit number to which a channel is connected.
2041  */
2042 int ppp_unit_number(struct ppp_channel *chan)
2043 {
2044         struct channel *pch = chan->ppp;
2045         int unit = -1;
2046
2047         if (pch) {
2048                 read_lock_bh(&pch->upl);
2049                 if (pch->ppp)
2050                         unit = pch->ppp->file.index;
2051                 read_unlock_bh(&pch->upl);
2052         }
2053         return unit;
2054 }
2055
2056 /*
2057  * Disconnect a channel from the generic layer.
2058  * This must be called in process context.
2059  */
2060 void
2061 ppp_unregister_channel(struct ppp_channel *chan)
2062 {
2063         struct channel *pch = chan->ppp;
2064
2065         if (!pch)
2066                 return;         /* should never happen */
2067         chan->ppp = NULL;
2068
2069         /*
2070          * This ensures that we have returned from any calls into the
2071          * the channel's start_xmit or ioctl routine before we proceed.
2072          */
2073         down_write(&pch->chan_sem);
2074         spin_lock_bh(&pch->downl);
2075         pch->chan = NULL;
2076         spin_unlock_bh(&pch->downl);
2077         up_write(&pch->chan_sem);
2078         ppp_disconnect_channel(pch);
2079         spin_lock_bh(&all_channels_lock);
2080         list_del(&pch->list);
2081         spin_unlock_bh(&all_channels_lock);
2082         pch->file.dead = 1;
2083         wake_up_interruptible(&pch->file.rwait);
2084         if (atomic_dec_and_test(&pch->file.refcnt))
2085                 ppp_destroy_channel(pch);
2086 }
2087
2088 /*
2089  * Callback from a channel when it can accept more to transmit.
2090  * This should be called at BH/softirq level, not interrupt level.
2091  */
2092 void
2093 ppp_output_wakeup(struct ppp_channel *chan)
2094 {
2095         struct channel *pch = chan->ppp;
2096
2097         if (!pch)
2098                 return;
2099         ppp_channel_push(pch);
2100 }
2101
2102 /*
2103  * Compression control.
2104  */
2105
2106 /* Process the PPPIOCSCOMPRESS ioctl. */
2107 static int
2108 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2109 {
2110         int err;
2111         struct compressor *cp, *ocomp;
2112         struct ppp_option_data data;
2113         void *state, *ostate;
2114         unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2115
2116         err = -EFAULT;
2117         if (copy_from_user(&data, (void __user *) arg, sizeof(data))
2118             || (data.length <= CCP_MAX_OPTION_LENGTH
2119                 && copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2120                 goto out;
2121         err = -EINVAL;
2122         if (data.length > CCP_MAX_OPTION_LENGTH
2123             || ccp_option[1] < 2 || ccp_option[1] > data.length)
2124                 goto out;
2125
2126         cp = find_compressor(ccp_option[0]);
2127 #ifdef CONFIG_KMOD
2128         if (!cp) {
2129                 request_module("ppp-compress-%d", ccp_option[0]);
2130                 cp = find_compressor(ccp_option[0]);
2131         }
2132 #endif /* CONFIG_KMOD */
2133         if (!cp)
2134                 goto out;
2135
2136         err = -ENOBUFS;
2137         if (data.transmit) {
2138                 state = cp->comp_alloc(ccp_option, data.length);
2139                 if (state) {
2140                         ppp_xmit_lock(ppp);
2141                         ppp->xstate &= ~SC_COMP_RUN;
2142                         ocomp = ppp->xcomp;
2143                         ostate = ppp->xc_state;
2144                         ppp->xcomp = cp;
2145                         ppp->xc_state = state;
2146                         ppp_xmit_unlock(ppp);
2147                         if (ostate) {
2148                                 ocomp->comp_free(ostate);
2149                                 module_put(ocomp->owner);
2150                         }
2151                         err = 0;
2152                 } else
2153                         module_put(cp->owner);
2154
2155         } else {
2156                 state = cp->decomp_alloc(ccp_option, data.length);
2157                 if (state) {
2158                         ppp_recv_lock(ppp);
2159                         ppp->rstate &= ~SC_DECOMP_RUN;
2160                         ocomp = ppp->rcomp;
2161                         ostate = ppp->rc_state;
2162                         ppp->rcomp = cp;
2163                         ppp->rc_state = state;
2164                         ppp_recv_unlock(ppp);
2165                         if (ostate) {
2166                                 ocomp->decomp_free(ostate);
2167                                 module_put(ocomp->owner);
2168                         }
2169                         err = 0;
2170                 } else
2171                         module_put(cp->owner);
2172         }
2173
2174  out:
2175         return err;
2176 }
2177
2178 /*
2179  * Look at a CCP packet and update our state accordingly.
2180  * We assume the caller has the xmit or recv path locked.
2181  */
2182 static void
2183 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2184 {
2185         unsigned char *dp;
2186         int len;
2187
2188         if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2189                 return; /* no header */
2190         dp = skb->data + 2;
2191
2192         switch (CCP_CODE(dp)) {
2193         case CCP_CONFREQ:
2194
2195                 /* A ConfReq starts negotiation of compression
2196                  * in one direction of transmission,
2197                  * and hence brings it down...but which way?
2198                  *
2199                  * Remember:
2200                  * A ConfReq indicates what the sender would like to receive
2201                  */
2202                 if(inbound)
2203                         /* He is proposing what I should send */
2204                         ppp->xstate &= ~SC_COMP_RUN;
2205                 else
2206                         /* I am proposing to what he should send */
2207                         ppp->rstate &= ~SC_DECOMP_RUN;
2208
2209                 break;
2210
2211         case CCP_TERMREQ:
2212         case CCP_TERMACK:
2213                 /*
2214                  * CCP is going down, both directions of transmission
2215                  */
2216                 ppp->rstate &= ~SC_DECOMP_RUN;
2217                 ppp->xstate &= ~SC_COMP_RUN;
2218                 break;
2219
2220         case CCP_CONFACK:
2221                 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2222                         break;
2223                 len = CCP_LENGTH(dp);
2224                 if (!pskb_may_pull(skb, len + 2))
2225                         return;         /* too short */
2226                 dp += CCP_HDRLEN;
2227                 len -= CCP_HDRLEN;
2228                 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2229                         break;
2230                 if (inbound) {
2231                         /* we will start receiving compressed packets */
2232                         if (!ppp->rc_state)
2233                                 break;
2234                         if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2235                                         ppp->file.index, 0, ppp->mru, ppp->debug)) {
2236                                 ppp->rstate |= SC_DECOMP_RUN;
2237                                 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2238                         }
2239                 } else {
2240                         /* we will soon start sending compressed packets */
2241                         if (!ppp->xc_state)
2242                                 break;
2243                         if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2244                                         ppp->file.index, 0, ppp->debug))
2245                                 ppp->xstate |= SC_COMP_RUN;
2246                 }
2247                 break;
2248
2249         case CCP_RESETACK:
2250                 /* reset the [de]compressor */
2251                 if ((ppp->flags & SC_CCP_UP) == 0)
2252                         break;
2253                 if (inbound) {
2254                         if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2255                                 ppp->rcomp->decomp_reset(ppp->rc_state);
2256                                 ppp->rstate &= ~SC_DC_ERROR;
2257                         }
2258                 } else {
2259                         if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2260                                 ppp->xcomp->comp_reset(ppp->xc_state);
2261                 }
2262                 break;
2263         }
2264 }
2265
2266 /* Free up compression resources. */
2267 static void
2268 ppp_ccp_closed(struct ppp *ppp)
2269 {
2270         void *xstate, *rstate;
2271         struct compressor *xcomp, *rcomp;
2272
2273         ppp_lock(ppp);
2274         ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2275         ppp->xstate = 0;
2276         xcomp = ppp->xcomp;
2277         xstate = ppp->xc_state;
2278         ppp->xc_state = NULL;
2279         ppp->rstate = 0;
2280         rcomp = ppp->rcomp;
2281         rstate = ppp->rc_state;
2282         ppp->rc_state = NULL;
2283         ppp_unlock(ppp);
2284
2285         if (xstate) {
2286                 xcomp->comp_free(xstate);
2287                 module_put(xcomp->owner);
2288         }
2289         if (rstate) {
2290                 rcomp->decomp_free(rstate);
2291                 module_put(rcomp->owner);
2292         }
2293 }
2294
2295 /* List of compressors. */
2296 static LIST_HEAD(compressor_list);
2297 static DEFINE_SPINLOCK(compressor_list_lock);
2298
2299 struct compressor_entry {
2300         struct list_head list;
2301         struct compressor *comp;
2302 };
2303
2304 static struct compressor_entry *
2305 find_comp_entry(int proto)
2306 {
2307         struct compressor_entry *ce;
2308
2309         list_for_each_entry(ce, &compressor_list, list) {
2310                 if (ce->comp->compress_proto == proto)
2311                         return ce;
2312         }
2313         return NULL;
2314 }
2315
2316 /* Register a compressor */
2317 int
2318 ppp_register_compressor(struct compressor *cp)
2319 {
2320         struct compressor_entry *ce;
2321         int ret;
2322         spin_lock(&compressor_list_lock);
2323         ret = -EEXIST;
2324         if (find_comp_entry(cp->compress_proto))
2325                 goto out;
2326         ret = -ENOMEM;
2327         ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2328         if (!ce)
2329                 goto out;
2330         ret = 0;
2331         ce->comp = cp;
2332         list_add(&ce->list, &compressor_list);
2333  out:
2334         spin_unlock(&compressor_list_lock);
2335         return ret;
2336 }
2337
2338 /* Unregister a compressor */
2339 void
2340 ppp_unregister_compressor(struct compressor *cp)
2341 {
2342         struct compressor_entry *ce;
2343
2344         spin_lock(&compressor_list_lock);
2345         ce = find_comp_entry(cp->compress_proto);
2346         if (ce && ce->comp == cp) {
2347                 list_del(&ce->list);
2348                 kfree(ce);
2349         }
2350         spin_unlock(&compressor_list_lock);
2351 }
2352
2353 /* Find a compressor. */
2354 static struct compressor *
2355 find_compressor(int type)
2356 {
2357         struct compressor_entry *ce;
2358         struct compressor *cp = NULL;
2359
2360         spin_lock(&compressor_list_lock);
2361         ce = find_comp_entry(type);
2362         if (ce) {
2363                 cp = ce->comp;
2364                 if (!try_module_get(cp->owner))
2365                         cp = NULL;
2366         }
2367         spin_unlock(&compressor_list_lock);
2368         return cp;
2369 }
2370
2371 /*
2372  * Miscelleneous stuff.
2373  */
2374
2375 static void
2376 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2377 {
2378         struct slcompress *vj = ppp->vj;
2379
2380         memset(st, 0, sizeof(*st));
2381         st->p.ppp_ipackets = ppp->dev->stats.rx_packets;
2382         st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2383         st->p.ppp_ibytes = ppp->dev->stats.rx_bytes;
2384         st->p.ppp_opackets = ppp->dev->stats.tx_packets;
2385         st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2386         st->p.ppp_obytes = ppp->dev->stats.tx_bytes;
2387         if (!vj)
2388                 return;
2389         st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2390         st->vj.vjs_compressed = vj->sls_o_compressed;
2391         st->vj.vjs_searches = vj->sls_o_searches;
2392         st->vj.vjs_misses = vj->sls_o_misses;
2393         st->vj.vjs_errorin = vj->sls_i_error;
2394         st->vj.vjs_tossed = vj->sls_i_tossed;
2395         st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2396         st->vj.vjs_compressedin = vj->sls_i_compressed;
2397 }
2398
2399 /*
2400  * Stuff for handling the lists of ppp units and channels
2401  * and for initialization.
2402  */
2403
2404 /*
2405  * Create a new ppp interface unit.  Fails if it can't allocate memory
2406  * or if there is already a unit with the requested number.
2407  * unit == -1 means allocate a new number.
2408  */
2409 static struct ppp *
2410 ppp_create_interface(int unit, int *retp)
2411 {
2412         struct ppp *ppp;
2413         struct net_device *dev = NULL;
2414         int ret = -ENOMEM;
2415         int i;
2416
2417         ppp = kzalloc(sizeof(struct ppp), GFP_KERNEL);
2418         if (!ppp)
2419                 goto out;
2420         dev = alloc_netdev(0, "", ppp_setup);
2421         if (!dev)
2422                 goto out1;
2423
2424         ppp->mru = PPP_MRU;
2425         init_ppp_file(&ppp->file, INTERFACE);
2426         ppp->file.hdrlen = PPP_HDRLEN - 2;      /* don't count proto bytes */
2427         for (i = 0; i < NUM_NP; ++i)
2428                 ppp->npmode[i] = NPMODE_PASS;
2429         INIT_LIST_HEAD(&ppp->channels);
2430         spin_lock_init(&ppp->rlock);
2431         spin_lock_init(&ppp->wlock);
2432 #ifdef CONFIG_PPP_MULTILINK
2433         ppp->minseq = -1;
2434         skb_queue_head_init(&ppp->mrq);
2435 #endif /* CONFIG_PPP_MULTILINK */
2436         ppp->dev = dev;
2437         dev->priv = ppp;
2438
2439         dev->hard_start_xmit = ppp_start_xmit;
2440         dev->do_ioctl = ppp_net_ioctl;
2441
2442         ret = -EEXIST;
2443         mutex_lock(&all_ppp_mutex);
2444         if (unit < 0)
2445                 unit = cardmap_find_first_free(all_ppp_units);
2446         else if (cardmap_get(all_ppp_units, unit) != NULL)
2447                 goto out2;      /* unit already exists */
2448
2449         /* Initialize the new ppp unit */
2450         ppp->file.index = unit;
2451         sprintf(dev->name, "ppp%d", unit);
2452
2453         ret = register_netdev(dev);
2454         if (ret != 0) {
2455                 printk(KERN_ERR "PPP: couldn't register device %s (%d)\n",
2456                        dev->name, ret);
2457                 goto out2;
2458         }
2459
2460         atomic_inc(&ppp_unit_count);
2461         ret = cardmap_set(&all_ppp_units, unit, ppp);
2462         if (ret != 0)
2463                 goto out3;
2464
2465         mutex_unlock(&all_ppp_mutex);
2466         *retp = 0;
2467         return ppp;
2468
2469 out3:
2470         atomic_dec(&ppp_unit_count);
2471         unregister_netdev(dev);
2472 out2:
2473         mutex_unlock(&all_ppp_mutex);
2474         free_netdev(dev);
2475 out1:
2476         kfree(ppp);
2477 out:
2478         *retp = ret;
2479         return NULL;
2480 }
2481
2482 /*
2483  * Initialize a ppp_file structure.
2484  */
2485 static void
2486 init_ppp_file(struct ppp_file *pf, int kind)
2487 {
2488         pf->kind = kind;
2489         skb_queue_head_init(&pf->xq);
2490         skb_queue_head_init(&pf->rq);
2491         atomic_set(&pf->refcnt, 1);
2492         init_waitqueue_head(&pf->rwait);
2493 }
2494
2495 /*
2496  * Take down a ppp interface unit - called when the owning file
2497  * (the one that created the unit) is closed or detached.
2498  */
2499 static void ppp_shutdown_interface(struct ppp *ppp)
2500 {
2501         struct net_device *dev;
2502
2503         mutex_lock(&all_ppp_mutex);
2504         ppp_lock(ppp);
2505         dev = ppp->dev;
2506         ppp->dev = NULL;
2507         ppp_unlock(ppp);
2508         /* This will call dev_close() for us. */
2509         if (dev) {
2510                 unregister_netdev(dev);
2511                 free_netdev(dev);
2512         }
2513         cardmap_set(&all_ppp_units, ppp->file.index, NULL);
2514         ppp->file.dead = 1;
2515         ppp->owner = NULL;
2516         wake_up_interruptible(&ppp->file.rwait);
2517         mutex_unlock(&all_ppp_mutex);
2518 }
2519
2520 /*
2521  * Free the memory used by a ppp unit.  This is only called once
2522  * there are no channels connected to the unit and no file structs
2523  * that reference the unit.
2524  */
2525 static void ppp_destroy_interface(struct ppp *ppp)
2526 {
2527         atomic_dec(&ppp_unit_count);
2528
2529         if (!ppp->file.dead || ppp->n_channels) {
2530                 /* "can't happen" */
2531                 printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d "
2532                        "n_channels=%d !\n", ppp, ppp->file.dead,
2533                        ppp->n_channels);
2534                 return;
2535         }
2536
2537         ppp_ccp_closed(ppp);
2538         if (ppp->vj) {
2539                 slhc_free(ppp->vj);
2540                 ppp->vj = NULL;
2541         }
2542         skb_queue_purge(&ppp->file.xq);
2543         skb_queue_purge(&ppp->file.rq);
2544 #ifdef CONFIG_PPP_MULTILINK
2545         skb_queue_purge(&ppp->mrq);
2546 #endif /* CONFIG_PPP_MULTILINK */
2547 #ifdef CONFIG_PPP_FILTER
2548         kfree(ppp->pass_filter);
2549         ppp->pass_filter = NULL;
2550         kfree(ppp->active_filter);
2551         ppp->active_filter = NULL;
2552 #endif /* CONFIG_PPP_FILTER */
2553
2554         if (ppp->xmit_pending)
2555                 kfree_skb(ppp->xmit_pending);
2556
2557         kfree(ppp);
2558 }
2559
2560 /*
2561  * Locate an existing ppp unit.
2562  * The caller should have locked the all_ppp_mutex.
2563  */
2564 static struct ppp *
2565 ppp_find_unit(int unit)
2566 {
2567         return cardmap_get(all_ppp_units, unit);
2568 }
2569
2570 /*
2571  * Locate an existing ppp channel.
2572  * The caller should have locked the all_channels_lock.
2573  * First we look in the new_channels list, then in the
2574  * all_channels list.  If found in the new_channels list,
2575  * we move it to the all_channels list.  This is for speed
2576  * when we have a lot of channels in use.
2577  */
2578 static struct channel *
2579 ppp_find_channel(int unit)
2580 {
2581         struct channel *pch;
2582
2583         list_for_each_entry(pch, &new_channels, list) {
2584                 if (pch->file.index == unit) {
2585                         list_move(&pch->list, &all_channels);
2586                         return pch;
2587                 }
2588         }
2589         list_for_each_entry(pch, &all_channels, list) {
2590                 if (pch->file.index == unit)
2591                         return pch;
2592         }
2593         return NULL;
2594 }
2595
2596 /*
2597  * Connect a PPP channel to a PPP interface unit.
2598  */
2599 static int
2600 ppp_connect_channel(struct channel *pch, int unit)
2601 {
2602         struct ppp *ppp;
2603         int ret = -ENXIO;
2604         int hdrlen;
2605
2606         mutex_lock(&all_ppp_mutex);
2607         ppp = ppp_find_unit(unit);
2608         if (!ppp)
2609                 goto out;
2610         write_lock_bh(&pch->upl);
2611         ret = -EINVAL;
2612         if (pch->ppp)
2613                 goto outl;
2614
2615         ppp_lock(ppp);
2616         if (pch->file.hdrlen > ppp->file.hdrlen)
2617                 ppp->file.hdrlen = pch->file.hdrlen;
2618         hdrlen = pch->file.hdrlen + 2;  /* for protocol bytes */
2619         if (ppp->dev && hdrlen > ppp->dev->hard_header_len)
2620                 ppp->dev->hard_header_len = hdrlen;
2621         list_add_tail(&pch->clist, &ppp->channels);
2622         ++ppp->n_channels;
2623         pch->ppp = ppp;
2624         atomic_inc(&ppp->file.refcnt);
2625         ppp_unlock(ppp);
2626         ret = 0;
2627
2628  outl:
2629         write_unlock_bh(&pch->upl);
2630  out:
2631         mutex_unlock(&all_ppp_mutex);
2632         return ret;
2633 }
2634
2635 /*
2636  * Disconnect a channel from its ppp unit.
2637  */
2638 static int
2639 ppp_disconnect_channel(struct channel *pch)
2640 {
2641         struct ppp *ppp;
2642         int err = -EINVAL;
2643
2644         write_lock_bh(&pch->upl);
2645         ppp = pch->ppp;
2646         pch->ppp = NULL;
2647         write_unlock_bh(&pch->upl);
2648         if (ppp) {
2649                 /* remove it from the ppp unit's list */
2650                 ppp_lock(ppp);
2651                 list_del(&pch->clist);
2652                 if (--ppp->n_channels == 0)
2653                         wake_up_interruptible(&ppp->file.rwait);
2654                 ppp_unlock(ppp);
2655                 if (atomic_dec_and_test(&ppp->file.refcnt))
2656                         ppp_destroy_interface(ppp);
2657                 err = 0;
2658         }
2659         return err;
2660 }
2661
2662 /*
2663  * Free up the resources used by a ppp channel.
2664  */
2665 static void ppp_destroy_channel(struct channel *pch)
2666 {
2667         atomic_dec(&channel_count);
2668
2669         if (!pch->file.dead) {
2670                 /* "can't happen" */
2671                 printk(KERN_ERR "ppp: destroying undead channel %p !\n",
2672                        pch);
2673                 return;
2674         }
2675         skb_queue_purge(&pch->file.xq);
2676         skb_queue_purge(&pch->file.rq);
2677         kfree(pch);
2678 }
2679
2680 static void __exit ppp_cleanup(void)
2681 {
2682         /* should never happen */
2683         if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2684                 printk(KERN_ERR "PPP: removing module but units remain!\n");
2685         cardmap_destroy(&all_ppp_units);
2686         unregister_chrdev(PPP_MAJOR, "ppp");
2687         device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2688         class_destroy(ppp_class);
2689 }
2690
2691 /*
2692  * Cardmap implementation.
2693  */
2694 static void *cardmap_get(struct cardmap *map, unsigned int nr)
2695 {
2696         struct cardmap *p;
2697         int i;
2698
2699         for (p = map; p != NULL; ) {
2700                 if ((i = nr >> p->shift) >= CARDMAP_WIDTH)
2701                         return NULL;
2702                 if (p->shift == 0)
2703                         return p->ptr[i];
2704                 nr &= ~(CARDMAP_MASK << p->shift);
2705                 p = p->ptr[i];
2706         }
2707         return NULL;
2708 }
2709
2710 static int cardmap_set(struct cardmap **pmap, unsigned int nr, void *ptr)
2711 {
2712         struct cardmap *p;
2713         int i;
2714
2715         p = *pmap;
2716         if (p == NULL || (nr >> p->shift) >= CARDMAP_WIDTH) {
2717                 do {
2718                         /* need a new top level */
2719                         struct cardmap *np = kzalloc(sizeof(*np), GFP_KERNEL);
2720                         if (!np)
2721                                 goto enomem;
2722                         np->ptr[0] = p;
2723                         if (p != NULL) {
2724                                 np->shift = p->shift + CARDMAP_ORDER;
2725                                 p->parent = np;
2726                         } else
2727                                 np->shift = 0;
2728                         p = np;
2729                 } while ((nr >> p->shift) >= CARDMAP_WIDTH);
2730                 *pmap = p;
2731         }
2732         while (p->shift > 0) {
2733                 i = (nr >> p->shift) & CARDMAP_MASK;
2734                 if (p->ptr[i] == NULL) {
2735                         struct cardmap *np = kzalloc(sizeof(*np), GFP_KERNEL);
2736                         if (!np)
2737                                 goto enomem;
2738                         np->shift = p->shift - CARDMAP_ORDER;
2739                         np->parent = p;
2740                         p->ptr[i] = np;
2741                 }
2742                 if (ptr == NULL)
2743                         clear_bit(i, &p->inuse);
2744                 p = p->ptr[i];
2745         }
2746         i = nr & CARDMAP_MASK;
2747         p->ptr[i] = ptr;
2748         if (ptr != NULL)
2749                 set_bit(i, &p->inuse);
2750         else
2751                 clear_bit(i, &p->inuse);
2752         return 0;
2753  enomem:
2754         return -ENOMEM;
2755 }
2756
2757 static unsigned int cardmap_find_first_free(struct cardmap *map)
2758 {
2759         struct cardmap *p;
2760         unsigned int nr = 0;
2761         int i;
2762
2763         if ((p = map) == NULL)
2764                 return 0;
2765         for (;;) {
2766                 i = find_first_zero_bit(&p->inuse, CARDMAP_WIDTH);
2767                 if (i >= CARDMAP_WIDTH) {
2768                         if (p->parent == NULL)
2769                                 return CARDMAP_WIDTH << p->shift;
2770                         p = p->parent;
2771                         i = (nr >> p->shift) & CARDMAP_MASK;
2772                         set_bit(i, &p->inuse);
2773                         continue;
2774                 }
2775                 nr = (nr & (~CARDMAP_MASK << p->shift)) | (i << p->shift);
2776                 if (p->shift == 0 || p->ptr[i] == NULL)
2777                         return nr;
2778                 p = p->ptr[i];
2779         }
2780 }
2781
2782 static void cardmap_destroy(struct cardmap **pmap)
2783 {
2784         struct cardmap *p, *np;
2785         int i;
2786
2787         for (p = *pmap; p != NULL; p = np) {
2788                 if (p->shift != 0) {
2789                         for (i = 0; i < CARDMAP_WIDTH; ++i)
2790                                 if (p->ptr[i] != NULL)
2791                                         break;
2792                         if (i < CARDMAP_WIDTH) {
2793                                 np = p->ptr[i];
2794                                 p->ptr[i] = NULL;
2795                                 continue;
2796                         }
2797                 }
2798                 np = p->parent;
2799                 kfree(p);
2800         }
2801         *pmap = NULL;
2802 }
2803
2804 /* Module/initialization stuff */
2805
2806 module_init(ppp_init);
2807 module_exit(ppp_cleanup);
2808
2809 EXPORT_SYMBOL(ppp_register_channel);
2810 EXPORT_SYMBOL(ppp_unregister_channel);
2811 EXPORT_SYMBOL(ppp_channel_index);
2812 EXPORT_SYMBOL(ppp_unit_number);
2813 EXPORT_SYMBOL(ppp_input);
2814 EXPORT_SYMBOL(ppp_input_error);
2815 EXPORT_SYMBOL(ppp_output_wakeup);
2816 EXPORT_SYMBOL(ppp_register_compressor);
2817 EXPORT_SYMBOL(ppp_unregister_compressor);
2818 MODULE_LICENSE("GPL");
2819 MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR);
2820 MODULE_ALIAS("/dev/ppp");