Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[linux-2.6] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31
32 #include <linux/kvm_host.h>
33
34 #include "irq.h"
35 #include "i8254.h"
36
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51         union {
52                 u64 ll;
53                 struct {
54                         u32 low, high;
55                 } l;
56         } u, res;
57         u64 rl, rh;
58
59         u.ll = a;
60         rl = (u64)u.l.low * (u64)b;
61         rh = (u64)u.l.high * (u64)b;
62         rh += (rl >> 32);
63         res.l.high = div64_u64(rh, c);
64         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65         return res.ll;
66 }
67
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70         struct kvm_kpit_channel_state *c =
71                 &kvm->arch.vpit->pit_state.channels[channel];
72
73         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75         switch (c->mode) {
76         default:
77         case 0:
78         case 4:
79                 /* XXX: just disable/enable counting */
80                 break;
81         case 1:
82         case 2:
83         case 3:
84         case 5:
85                 /* Restart counting on rising edge. */
86                 if (c->gate < val)
87                         c->count_load_time = ktime_get();
88                 break;
89         }
90
91         c->gate = val;
92 }
93
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98         return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100
101 static int pit_get_count(struct kvm *kvm, int channel)
102 {
103         struct kvm_kpit_channel_state *c =
104                 &kvm->arch.vpit->pit_state.channels[channel];
105         s64 d, t;
106         int counter;
107
108         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
109
110         t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
111         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
112
113         switch (c->mode) {
114         case 0:
115         case 1:
116         case 4:
117         case 5:
118                 counter = (c->count - d) & 0xffff;
119                 break;
120         case 3:
121                 /* XXX: may be incorrect for odd counts */
122                 counter = c->count - (mod_64((2 * d), c->count));
123                 break;
124         default:
125                 counter = c->count - mod_64(d, c->count);
126                 break;
127         }
128         return counter;
129 }
130
131 static int pit_get_out(struct kvm *kvm, int channel)
132 {
133         struct kvm_kpit_channel_state *c =
134                 &kvm->arch.vpit->pit_state.channels[channel];
135         s64 d, t;
136         int out;
137
138         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
139
140         t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
141         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
142
143         switch (c->mode) {
144         default:
145         case 0:
146                 out = (d >= c->count);
147                 break;
148         case 1:
149                 out = (d < c->count);
150                 break;
151         case 2:
152                 out = ((mod_64(d, c->count) == 0) && (d != 0));
153                 break;
154         case 3:
155                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
156                 break;
157         case 4:
158         case 5:
159                 out = (d == c->count);
160                 break;
161         }
162
163         return out;
164 }
165
166 static void pit_latch_count(struct kvm *kvm, int channel)
167 {
168         struct kvm_kpit_channel_state *c =
169                 &kvm->arch.vpit->pit_state.channels[channel];
170
171         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
172
173         if (!c->count_latched) {
174                 c->latched_count = pit_get_count(kvm, channel);
175                 c->count_latched = c->rw_mode;
176         }
177 }
178
179 static void pit_latch_status(struct kvm *kvm, int channel)
180 {
181         struct kvm_kpit_channel_state *c =
182                 &kvm->arch.vpit->pit_state.channels[channel];
183
184         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
185
186         if (!c->status_latched) {
187                 /* TODO: Return NULL COUNT (bit 6). */
188                 c->status = ((pit_get_out(kvm, channel) << 7) |
189                                 (c->rw_mode << 4) |
190                                 (c->mode << 1) |
191                                 c->bcd);
192                 c->status_latched = 1;
193         }
194 }
195
196 static int __pit_timer_fn(struct kvm_kpit_state *ps)
197 {
198         struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
199         struct kvm_kpit_timer *pt = &ps->pit_timer;
200
201         if (!atomic_inc_and_test(&pt->pending))
202                 set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
203         if (vcpu0 && waitqueue_active(&vcpu0->wq)) {
204                 vcpu0->arch.mp_state = KVM_MP_STATE_RUNNABLE;
205                 wake_up_interruptible(&vcpu0->wq);
206         }
207
208         pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period);
209         pt->scheduled = ktime_to_ns(pt->timer.expires);
210
211         return (pt->period == 0 ? 0 : 1);
212 }
213
214 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
215 {
216         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
217
218         if (pit && vcpu->vcpu_id == 0 && pit->pit_state.inject_pending)
219                 return atomic_read(&pit->pit_state.pit_timer.pending);
220
221         return 0;
222 }
223
224 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
225 {
226         struct kvm_kpit_state *ps;
227         int restart_timer = 0;
228
229         ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
230
231         restart_timer = __pit_timer_fn(ps);
232
233         if (restart_timer)
234                 return HRTIMER_RESTART;
235         else
236                 return HRTIMER_NORESTART;
237 }
238
239 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
240 {
241         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
242         struct hrtimer *timer;
243
244         if (vcpu->vcpu_id != 0 || !pit)
245                 return;
246
247         timer = &pit->pit_state.pit_timer.timer;
248         if (hrtimer_cancel(timer))
249                 hrtimer_start(timer, timer->expires, HRTIMER_MODE_ABS);
250 }
251
252 static void destroy_pit_timer(struct kvm_kpit_timer *pt)
253 {
254         pr_debug("pit: execute del timer!\n");
255         hrtimer_cancel(&pt->timer);
256 }
257
258 static void create_pit_timer(struct kvm_kpit_timer *pt, u32 val, int is_period)
259 {
260         s64 interval;
261
262         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
263
264         pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
265
266         /* TODO The new value only affected after the retriggered */
267         hrtimer_cancel(&pt->timer);
268         pt->period = (is_period == 0) ? 0 : interval;
269         pt->timer.function = pit_timer_fn;
270         atomic_set(&pt->pending, 0);
271
272         hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
273                       HRTIMER_MODE_ABS);
274 }
275
276 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
277 {
278         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
279
280         WARN_ON(!mutex_is_locked(&ps->lock));
281
282         pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
283
284         /*
285          * Though spec said the state of 8254 is undefined after power-up,
286          * seems some tricky OS like Windows XP depends on IRQ0 interrupt
287          * when booting up.
288          * So here setting initialize rate for it, and not a specific number
289          */
290         if (val == 0)
291                 val = 0x10000;
292
293         ps->channels[channel].count_load_time = ktime_get();
294         ps->channels[channel].count = val;
295
296         if (channel != 0)
297                 return;
298
299         /* Two types of timer
300          * mode 1 is one shot, mode 2 is period, otherwise del timer */
301         switch (ps->channels[0].mode) {
302         case 1:
303         /* FIXME: enhance mode 4 precision */
304         case 4:
305                 create_pit_timer(&ps->pit_timer, val, 0);
306                 break;
307         case 2:
308         case 3:
309                 create_pit_timer(&ps->pit_timer, val, 1);
310                 break;
311         default:
312                 destroy_pit_timer(&ps->pit_timer);
313         }
314 }
315
316 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
317 {
318         mutex_lock(&kvm->arch.vpit->pit_state.lock);
319         pit_load_count(kvm, channel, val);
320         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
321 }
322
323 static void pit_ioport_write(struct kvm_io_device *this,
324                              gpa_t addr, int len, const void *data)
325 {
326         struct kvm_pit *pit = (struct kvm_pit *)this->private;
327         struct kvm_kpit_state *pit_state = &pit->pit_state;
328         struct kvm *kvm = pit->kvm;
329         int channel, access;
330         struct kvm_kpit_channel_state *s;
331         u32 val = *(u32 *) data;
332
333         val  &= 0xff;
334         addr &= KVM_PIT_CHANNEL_MASK;
335
336         mutex_lock(&pit_state->lock);
337
338         if (val != 0)
339                 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
340                           (unsigned int)addr, len, val);
341
342         if (addr == 3) {
343                 channel = val >> 6;
344                 if (channel == 3) {
345                         /* Read-Back Command. */
346                         for (channel = 0; channel < 3; channel++) {
347                                 s = &pit_state->channels[channel];
348                                 if (val & (2 << channel)) {
349                                         if (!(val & 0x20))
350                                                 pit_latch_count(kvm, channel);
351                                         if (!(val & 0x10))
352                                                 pit_latch_status(kvm, channel);
353                                 }
354                         }
355                 } else {
356                         /* Select Counter <channel>. */
357                         s = &pit_state->channels[channel];
358                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
359                         if (access == 0) {
360                                 pit_latch_count(kvm, channel);
361                         } else {
362                                 s->rw_mode = access;
363                                 s->read_state = access;
364                                 s->write_state = access;
365                                 s->mode = (val >> 1) & 7;
366                                 if (s->mode > 5)
367                                         s->mode -= 4;
368                                 s->bcd = val & 1;
369                         }
370                 }
371         } else {
372                 /* Write Count. */
373                 s = &pit_state->channels[addr];
374                 switch (s->write_state) {
375                 default:
376                 case RW_STATE_LSB:
377                         pit_load_count(kvm, addr, val);
378                         break;
379                 case RW_STATE_MSB:
380                         pit_load_count(kvm, addr, val << 8);
381                         break;
382                 case RW_STATE_WORD0:
383                         s->write_latch = val;
384                         s->write_state = RW_STATE_WORD1;
385                         break;
386                 case RW_STATE_WORD1:
387                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
388                         s->write_state = RW_STATE_WORD0;
389                         break;
390                 }
391         }
392
393         mutex_unlock(&pit_state->lock);
394 }
395
396 static void pit_ioport_read(struct kvm_io_device *this,
397                             gpa_t addr, int len, void *data)
398 {
399         struct kvm_pit *pit = (struct kvm_pit *)this->private;
400         struct kvm_kpit_state *pit_state = &pit->pit_state;
401         struct kvm *kvm = pit->kvm;
402         int ret, count;
403         struct kvm_kpit_channel_state *s;
404
405         addr &= KVM_PIT_CHANNEL_MASK;
406         s = &pit_state->channels[addr];
407
408         mutex_lock(&pit_state->lock);
409
410         if (s->status_latched) {
411                 s->status_latched = 0;
412                 ret = s->status;
413         } else if (s->count_latched) {
414                 switch (s->count_latched) {
415                 default:
416                 case RW_STATE_LSB:
417                         ret = s->latched_count & 0xff;
418                         s->count_latched = 0;
419                         break;
420                 case RW_STATE_MSB:
421                         ret = s->latched_count >> 8;
422                         s->count_latched = 0;
423                         break;
424                 case RW_STATE_WORD0:
425                         ret = s->latched_count & 0xff;
426                         s->count_latched = RW_STATE_MSB;
427                         break;
428                 }
429         } else {
430                 switch (s->read_state) {
431                 default:
432                 case RW_STATE_LSB:
433                         count = pit_get_count(kvm, addr);
434                         ret = count & 0xff;
435                         break;
436                 case RW_STATE_MSB:
437                         count = pit_get_count(kvm, addr);
438                         ret = (count >> 8) & 0xff;
439                         break;
440                 case RW_STATE_WORD0:
441                         count = pit_get_count(kvm, addr);
442                         ret = count & 0xff;
443                         s->read_state = RW_STATE_WORD1;
444                         break;
445                 case RW_STATE_WORD1:
446                         count = pit_get_count(kvm, addr);
447                         ret = (count >> 8) & 0xff;
448                         s->read_state = RW_STATE_WORD0;
449                         break;
450                 }
451         }
452
453         if (len > sizeof(ret))
454                 len = sizeof(ret);
455         memcpy(data, (char *)&ret, len);
456
457         mutex_unlock(&pit_state->lock);
458 }
459
460 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
461                         int len, int is_write)
462 {
463         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
464                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
465 }
466
467 static void speaker_ioport_write(struct kvm_io_device *this,
468                                  gpa_t addr, int len, const void *data)
469 {
470         struct kvm_pit *pit = (struct kvm_pit *)this->private;
471         struct kvm_kpit_state *pit_state = &pit->pit_state;
472         struct kvm *kvm = pit->kvm;
473         u32 val = *(u32 *) data;
474
475         mutex_lock(&pit_state->lock);
476         pit_state->speaker_data_on = (val >> 1) & 1;
477         pit_set_gate(kvm, 2, val & 1);
478         mutex_unlock(&pit_state->lock);
479 }
480
481 static void speaker_ioport_read(struct kvm_io_device *this,
482                                 gpa_t addr, int len, void *data)
483 {
484         struct kvm_pit *pit = (struct kvm_pit *)this->private;
485         struct kvm_kpit_state *pit_state = &pit->pit_state;
486         struct kvm *kvm = pit->kvm;
487         unsigned int refresh_clock;
488         int ret;
489
490         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
491         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
492
493         mutex_lock(&pit_state->lock);
494         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
495                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
496         if (len > sizeof(ret))
497                 len = sizeof(ret);
498         memcpy(data, (char *)&ret, len);
499         mutex_unlock(&pit_state->lock);
500 }
501
502 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
503                             int len, int is_write)
504 {
505         return (addr == KVM_SPEAKER_BASE_ADDRESS);
506 }
507
508 void kvm_pit_reset(struct kvm_pit *pit)
509 {
510         int i;
511         struct kvm_kpit_channel_state *c;
512
513         mutex_lock(&pit->pit_state.lock);
514         for (i = 0; i < 3; i++) {
515                 c = &pit->pit_state.channels[i];
516                 c->mode = 0xff;
517                 c->gate = (i != 2);
518                 pit_load_count(pit->kvm, i, 0);
519         }
520         mutex_unlock(&pit->pit_state.lock);
521
522         atomic_set(&pit->pit_state.pit_timer.pending, 0);
523         pit->pit_state.inject_pending = 1;
524 }
525
526 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
527 {
528         struct kvm_pit *pit;
529         struct kvm_kpit_state *pit_state;
530
531         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
532         if (!pit)
533                 return NULL;
534
535         mutex_init(&pit->pit_state.lock);
536         mutex_lock(&pit->pit_state.lock);
537
538         /* Initialize PIO device */
539         pit->dev.read = pit_ioport_read;
540         pit->dev.write = pit_ioport_write;
541         pit->dev.in_range = pit_in_range;
542         pit->dev.private = pit;
543         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
544
545         pit->speaker_dev.read = speaker_ioport_read;
546         pit->speaker_dev.write = speaker_ioport_write;
547         pit->speaker_dev.in_range = speaker_in_range;
548         pit->speaker_dev.private = pit;
549         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
550
551         kvm->arch.vpit = pit;
552         pit->kvm = kvm;
553
554         pit_state = &pit->pit_state;
555         pit_state->pit = pit;
556         hrtimer_init(&pit_state->pit_timer.timer,
557                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
558         mutex_unlock(&pit->pit_state.lock);
559
560         kvm_pit_reset(pit);
561
562         return pit;
563 }
564
565 void kvm_free_pit(struct kvm *kvm)
566 {
567         struct hrtimer *timer;
568
569         if (kvm->arch.vpit) {
570                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
571                 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
572                 hrtimer_cancel(timer);
573                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
574                 kfree(kvm->arch.vpit);
575         }
576 }
577
578 static void __inject_pit_timer_intr(struct kvm *kvm)
579 {
580         mutex_lock(&kvm->lock);
581         kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1);
582         kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0);
583         kvm_pic_set_irq(pic_irqchip(kvm), 0, 1);
584         kvm_pic_set_irq(pic_irqchip(kvm), 0, 0);
585         mutex_unlock(&kvm->lock);
586 }
587
588 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
589 {
590         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
591         struct kvm *kvm = vcpu->kvm;
592         struct kvm_kpit_state *ps;
593
594         if (vcpu && pit) {
595                 ps = &pit->pit_state;
596
597                 /* Try to inject pending interrupts when:
598                  * 1. Pending exists
599                  * 2. Last interrupt was accepted or waited for too long time*/
600                 if (atomic_read(&ps->pit_timer.pending) &&
601                     (ps->inject_pending ||
602                     (jiffies - ps->last_injected_time
603                                 >= KVM_MAX_PIT_INTR_INTERVAL))) {
604                         ps->inject_pending = 0;
605                         __inject_pit_timer_intr(kvm);
606                         ps->last_injected_time = jiffies;
607                 }
608         }
609 }
610
611 void kvm_pit_timer_intr_post(struct kvm_vcpu *vcpu, int vec)
612 {
613         struct kvm_arch *arch = &vcpu->kvm->arch;
614         struct kvm_kpit_state *ps;
615
616         if (vcpu && arch->vpit) {
617                 ps = &arch->vpit->pit_state;
618                 if (atomic_read(&ps->pit_timer.pending) &&
619                 (((arch->vpic->pics[0].imr & 1) == 0 &&
620                   arch->vpic->pics[0].irq_base == vec) ||
621                   (arch->vioapic->redirtbl[0].fields.vector == vec &&
622                   arch->vioapic->redirtbl[0].fields.mask != 1))) {
623                         ps->inject_pending = 1;
624                         atomic_dec(&ps->pit_timer.pending);
625                         ps->channels[0].count_load_time = ktime_get();
626                 }
627         }
628 }