Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[linux-2.6] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/version.h>
32 #include <xen/interface/physdev.h>
33 #include <xen/interface/vcpu.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/apic.h>
40 #include <asm/page.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
43 #include <asm/fixmap.h>
44 #include <asm/processor.h>
45 #include <asm/proto.h>
46 #include <asm/msr-index.h>
47 #include <asm/setup.h>
48 #include <asm/desc.h>
49 #include <asm/pgtable.h>
50 #include <asm/tlbflush.h>
51 #include <asm/reboot.h>
52
53 #include "xen-ops.h"
54 #include "mmu.h"
55 #include "multicalls.h"
56
57 EXPORT_SYMBOL_GPL(hypercall_page);
58
59 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
60 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
61
62 enum xen_domain_type xen_domain_type = XEN_NATIVE;
63 EXPORT_SYMBOL_GPL(xen_domain_type);
64
65 struct start_info *xen_start_info;
66 EXPORT_SYMBOL_GPL(xen_start_info);
67
68 struct shared_info xen_dummy_shared_info;
69
70 void *xen_initial_gdt;
71
72 /*
73  * Point at some empty memory to start with. We map the real shared_info
74  * page as soon as fixmap is up and running.
75  */
76 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
77
78 /*
79  * Flag to determine whether vcpu info placement is available on all
80  * VCPUs.  We assume it is to start with, and then set it to zero on
81  * the first failure.  This is because it can succeed on some VCPUs
82  * and not others, since it can involve hypervisor memory allocation,
83  * or because the guest failed to guarantee all the appropriate
84  * constraints on all VCPUs (ie buffer can't cross a page boundary).
85  *
86  * Note that any particular CPU may be using a placed vcpu structure,
87  * but we can only optimise if the all are.
88  *
89  * 0: not available, 1: available
90  */
91 static int have_vcpu_info_placement = 1;
92
93 static void xen_vcpu_setup(int cpu)
94 {
95         struct vcpu_register_vcpu_info info;
96         int err;
97         struct vcpu_info *vcpup;
98
99         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
100         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
101
102         if (!have_vcpu_info_placement)
103                 return;         /* already tested, not available */
104
105         vcpup = &per_cpu(xen_vcpu_info, cpu);
106
107         info.mfn = arbitrary_virt_to_mfn(vcpup);
108         info.offset = offset_in_page(vcpup);
109
110         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
111                cpu, vcpup, info.mfn, info.offset);
112
113         /* Check to see if the hypervisor will put the vcpu_info
114            structure where we want it, which allows direct access via
115            a percpu-variable. */
116         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
117
118         if (err) {
119                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
120                 have_vcpu_info_placement = 0;
121         } else {
122                 /* This cpu is using the registered vcpu info, even if
123                    later ones fail to. */
124                 per_cpu(xen_vcpu, cpu) = vcpup;
125
126                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
127                        cpu, vcpup);
128         }
129 }
130
131 /*
132  * On restore, set the vcpu placement up again.
133  * If it fails, then we're in a bad state, since
134  * we can't back out from using it...
135  */
136 void xen_vcpu_restore(void)
137 {
138         if (have_vcpu_info_placement) {
139                 int cpu;
140
141                 for_each_online_cpu(cpu) {
142                         bool other_cpu = (cpu != smp_processor_id());
143
144                         if (other_cpu &&
145                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
146                                 BUG();
147
148                         xen_vcpu_setup(cpu);
149
150                         if (other_cpu &&
151                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
152                                 BUG();
153                 }
154
155                 BUG_ON(!have_vcpu_info_placement);
156         }
157 }
158
159 static void __init xen_banner(void)
160 {
161         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
162         struct xen_extraversion extra;
163         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
164
165         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
166                pv_info.name);
167         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
168                version >> 16, version & 0xffff, extra.extraversion,
169                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
170 }
171
172 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
173 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
174
175 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
176                       unsigned int *cx, unsigned int *dx)
177 {
178         unsigned maskecx = ~0;
179         unsigned maskedx = ~0;
180
181         /*
182          * Mask out inconvenient features, to try and disable as many
183          * unsupported kernel subsystems as possible.
184          */
185         if (*ax == 1) {
186                 maskecx = cpuid_leaf1_ecx_mask;
187                 maskedx = cpuid_leaf1_edx_mask;
188         }
189
190         asm(XEN_EMULATE_PREFIX "cpuid"
191                 : "=a" (*ax),
192                   "=b" (*bx),
193                   "=c" (*cx),
194                   "=d" (*dx)
195                 : "0" (*ax), "2" (*cx));
196
197         *cx &= maskecx;
198         *dx &= maskedx;
199 }
200
201 static __init void xen_init_cpuid_mask(void)
202 {
203         unsigned int ax, bx, cx, dx;
204
205         cpuid_leaf1_edx_mask =
206                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
207                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
208                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
209
210         if (!xen_initial_domain())
211                 cpuid_leaf1_edx_mask &=
212                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
213                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
214
215         ax = 1;
216         xen_cpuid(&ax, &bx, &cx, &dx);
217
218         /* cpuid claims we support xsave; try enabling it to see what happens */
219         if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
220                 unsigned long cr4;
221
222                 set_in_cr4(X86_CR4_OSXSAVE);
223                 
224                 cr4 = read_cr4();
225
226                 if ((cr4 & X86_CR4_OSXSAVE) == 0)
227                         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
228
229                 clear_in_cr4(X86_CR4_OSXSAVE);
230         }
231 }
232
233 static void xen_set_debugreg(int reg, unsigned long val)
234 {
235         HYPERVISOR_set_debugreg(reg, val);
236 }
237
238 static unsigned long xen_get_debugreg(int reg)
239 {
240         return HYPERVISOR_get_debugreg(reg);
241 }
242
243 void xen_leave_lazy(void)
244 {
245         paravirt_leave_lazy(paravirt_get_lazy_mode());
246         xen_mc_flush();
247 }
248
249 static unsigned long xen_store_tr(void)
250 {
251         return 0;
252 }
253
254 /*
255  * Set the page permissions for a particular virtual address.  If the
256  * address is a vmalloc mapping (or other non-linear mapping), then
257  * find the linear mapping of the page and also set its protections to
258  * match.
259  */
260 static void set_aliased_prot(void *v, pgprot_t prot)
261 {
262         int level;
263         pte_t *ptep;
264         pte_t pte;
265         unsigned long pfn;
266         struct page *page;
267
268         ptep = lookup_address((unsigned long)v, &level);
269         BUG_ON(ptep == NULL);
270
271         pfn = pte_pfn(*ptep);
272         page = pfn_to_page(pfn);
273
274         pte = pfn_pte(pfn, prot);
275
276         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
277                 BUG();
278
279         if (!PageHighMem(page)) {
280                 void *av = __va(PFN_PHYS(pfn));
281
282                 if (av != v)
283                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
284                                 BUG();
285         } else
286                 kmap_flush_unused();
287 }
288
289 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
290 {
291         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
292         int i;
293
294         for(i = 0; i < entries; i += entries_per_page)
295                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
296 }
297
298 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
299 {
300         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
301         int i;
302
303         for(i = 0; i < entries; i += entries_per_page)
304                 set_aliased_prot(ldt + i, PAGE_KERNEL);
305 }
306
307 static void xen_set_ldt(const void *addr, unsigned entries)
308 {
309         struct mmuext_op *op;
310         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
311
312         op = mcs.args;
313         op->cmd = MMUEXT_SET_LDT;
314         op->arg1.linear_addr = (unsigned long)addr;
315         op->arg2.nr_ents = entries;
316
317         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
318
319         xen_mc_issue(PARAVIRT_LAZY_CPU);
320 }
321
322 static void xen_load_gdt(const struct desc_ptr *dtr)
323 {
324         unsigned long va = dtr->address;
325         unsigned int size = dtr->size + 1;
326         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
327         unsigned long frames[pages];
328         int f;
329
330         /* A GDT can be up to 64k in size, which corresponds to 8192
331            8-byte entries, or 16 4k pages.. */
332
333         BUG_ON(size > 65536);
334         BUG_ON(va & ~PAGE_MASK);
335
336         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
337                 int level;
338                 pte_t *ptep = lookup_address(va, &level);
339                 unsigned long pfn, mfn;
340                 void *virt;
341
342                 BUG_ON(ptep == NULL);
343
344                 pfn = pte_pfn(*ptep);
345                 mfn = pfn_to_mfn(pfn);
346                 virt = __va(PFN_PHYS(pfn));
347
348                 frames[f] = mfn;
349
350                 make_lowmem_page_readonly((void *)va);
351                 make_lowmem_page_readonly(virt);
352         }
353
354         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
355                 BUG();
356 }
357
358 static void load_TLS_descriptor(struct thread_struct *t,
359                                 unsigned int cpu, unsigned int i)
360 {
361         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
362         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
363         struct multicall_space mc = __xen_mc_entry(0);
364
365         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
366 }
367
368 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
369 {
370         /*
371          * XXX sleazy hack: If we're being called in a lazy-cpu zone
372          * and lazy gs handling is enabled, it means we're in a
373          * context switch, and %gs has just been saved.  This means we
374          * can zero it out to prevent faults on exit from the
375          * hypervisor if the next process has no %gs.  Either way, it
376          * has been saved, and the new value will get loaded properly.
377          * This will go away as soon as Xen has been modified to not
378          * save/restore %gs for normal hypercalls.
379          *
380          * On x86_64, this hack is not used for %gs, because gs points
381          * to KERNEL_GS_BASE (and uses it for PDA references), so we
382          * must not zero %gs on x86_64
383          *
384          * For x86_64, we need to zero %fs, otherwise we may get an
385          * exception between the new %fs descriptor being loaded and
386          * %fs being effectively cleared at __switch_to().
387          */
388         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
389 #ifdef CONFIG_X86_32
390                 lazy_load_gs(0);
391 #else
392                 loadsegment(fs, 0);
393 #endif
394         }
395
396         xen_mc_batch();
397
398         load_TLS_descriptor(t, cpu, 0);
399         load_TLS_descriptor(t, cpu, 1);
400         load_TLS_descriptor(t, cpu, 2);
401
402         xen_mc_issue(PARAVIRT_LAZY_CPU);
403 }
404
405 #ifdef CONFIG_X86_64
406 static void xen_load_gs_index(unsigned int idx)
407 {
408         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
409                 BUG();
410 }
411 #endif
412
413 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
414                                 const void *ptr)
415 {
416         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
417         u64 entry = *(u64 *)ptr;
418
419         preempt_disable();
420
421         xen_mc_flush();
422         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
423                 BUG();
424
425         preempt_enable();
426 }
427
428 static int cvt_gate_to_trap(int vector, const gate_desc *val,
429                             struct trap_info *info)
430 {
431         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
432                 return 0;
433
434         info->vector = vector;
435         info->address = gate_offset(*val);
436         info->cs = gate_segment(*val);
437         info->flags = val->dpl;
438         /* interrupt gates clear IF */
439         if (val->type == GATE_INTERRUPT)
440                 info->flags |= 1 << 2;
441
442         return 1;
443 }
444
445 /* Locations of each CPU's IDT */
446 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
447
448 /* Set an IDT entry.  If the entry is part of the current IDT, then
449    also update Xen. */
450 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
451 {
452         unsigned long p = (unsigned long)&dt[entrynum];
453         unsigned long start, end;
454
455         preempt_disable();
456
457         start = __get_cpu_var(idt_desc).address;
458         end = start + __get_cpu_var(idt_desc).size + 1;
459
460         xen_mc_flush();
461
462         native_write_idt_entry(dt, entrynum, g);
463
464         if (p >= start && (p + 8) <= end) {
465                 struct trap_info info[2];
466
467                 info[1].address = 0;
468
469                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
470                         if (HYPERVISOR_set_trap_table(info))
471                                 BUG();
472         }
473
474         preempt_enable();
475 }
476
477 static void xen_convert_trap_info(const struct desc_ptr *desc,
478                                   struct trap_info *traps)
479 {
480         unsigned in, out, count;
481
482         count = (desc->size+1) / sizeof(gate_desc);
483         BUG_ON(count > 256);
484
485         for (in = out = 0; in < count; in++) {
486                 gate_desc *entry = (gate_desc*)(desc->address) + in;
487
488                 if (cvt_gate_to_trap(in, entry, &traps[out]))
489                         out++;
490         }
491         traps[out].address = 0;
492 }
493
494 void xen_copy_trap_info(struct trap_info *traps)
495 {
496         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
497
498         xen_convert_trap_info(desc, traps);
499 }
500
501 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
502    hold a spinlock to protect the static traps[] array (static because
503    it avoids allocation, and saves stack space). */
504 static void xen_load_idt(const struct desc_ptr *desc)
505 {
506         static DEFINE_SPINLOCK(lock);
507         static struct trap_info traps[257];
508
509         spin_lock(&lock);
510
511         __get_cpu_var(idt_desc) = *desc;
512
513         xen_convert_trap_info(desc, traps);
514
515         xen_mc_flush();
516         if (HYPERVISOR_set_trap_table(traps))
517                 BUG();
518
519         spin_unlock(&lock);
520 }
521
522 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
523    they're handled differently. */
524 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
525                                 const void *desc, int type)
526 {
527         preempt_disable();
528
529         switch (type) {
530         case DESC_LDT:
531         case DESC_TSS:
532                 /* ignore */
533                 break;
534
535         default: {
536                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
537
538                 xen_mc_flush();
539                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
540                         BUG();
541         }
542
543         }
544
545         preempt_enable();
546 }
547
548 static void xen_load_sp0(struct tss_struct *tss,
549                          struct thread_struct *thread)
550 {
551         struct multicall_space mcs = xen_mc_entry(0);
552         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
553         xen_mc_issue(PARAVIRT_LAZY_CPU);
554 }
555
556 static void xen_set_iopl_mask(unsigned mask)
557 {
558         struct physdev_set_iopl set_iopl;
559
560         /* Force the change at ring 0. */
561         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
562         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
563 }
564
565 static void xen_io_delay(void)
566 {
567 }
568
569 #ifdef CONFIG_X86_LOCAL_APIC
570 static u32 xen_apic_read(u32 reg)
571 {
572         return 0;
573 }
574
575 static void xen_apic_write(u32 reg, u32 val)
576 {
577         /* Warn to see if there's any stray references */
578         WARN_ON(1);
579 }
580
581 static u64 xen_apic_icr_read(void)
582 {
583         return 0;
584 }
585
586 static void xen_apic_icr_write(u32 low, u32 id)
587 {
588         /* Warn to see if there's any stray references */
589         WARN_ON(1);
590 }
591
592 static void xen_apic_wait_icr_idle(void)
593 {
594         return;
595 }
596
597 static u32 xen_safe_apic_wait_icr_idle(void)
598 {
599         return 0;
600 }
601
602 static void set_xen_basic_apic_ops(void)
603 {
604         apic->read = xen_apic_read;
605         apic->write = xen_apic_write;
606         apic->icr_read = xen_apic_icr_read;
607         apic->icr_write = xen_apic_icr_write;
608         apic->wait_icr_idle = xen_apic_wait_icr_idle;
609         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
610 }
611
612 #endif
613
614
615 static void xen_clts(void)
616 {
617         struct multicall_space mcs;
618
619         mcs = xen_mc_entry(0);
620
621         MULTI_fpu_taskswitch(mcs.mc, 0);
622
623         xen_mc_issue(PARAVIRT_LAZY_CPU);
624 }
625
626 static void xen_write_cr0(unsigned long cr0)
627 {
628         struct multicall_space mcs;
629
630         /* Only pay attention to cr0.TS; everything else is
631            ignored. */
632         mcs = xen_mc_entry(0);
633
634         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
635
636         xen_mc_issue(PARAVIRT_LAZY_CPU);
637 }
638
639 static void xen_write_cr4(unsigned long cr4)
640 {
641         cr4 &= ~X86_CR4_PGE;
642         cr4 &= ~X86_CR4_PSE;
643
644         native_write_cr4(cr4);
645 }
646
647 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
648 {
649         int ret;
650
651         ret = 0;
652
653         switch (msr) {
654 #ifdef CONFIG_X86_64
655                 unsigned which;
656                 u64 base;
657
658         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
659         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
660         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
661
662         set:
663                 base = ((u64)high << 32) | low;
664                 if (HYPERVISOR_set_segment_base(which, base) != 0)
665                         ret = -EFAULT;
666                 break;
667 #endif
668
669         case MSR_STAR:
670         case MSR_CSTAR:
671         case MSR_LSTAR:
672         case MSR_SYSCALL_MASK:
673         case MSR_IA32_SYSENTER_CS:
674         case MSR_IA32_SYSENTER_ESP:
675         case MSR_IA32_SYSENTER_EIP:
676                 /* Fast syscall setup is all done in hypercalls, so
677                    these are all ignored.  Stub them out here to stop
678                    Xen console noise. */
679                 break;
680
681         default:
682                 ret = native_write_msr_safe(msr, low, high);
683         }
684
685         return ret;
686 }
687
688 void xen_setup_shared_info(void)
689 {
690         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
691                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
692                            xen_start_info->shared_info);
693
694                 HYPERVISOR_shared_info =
695                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
696         } else
697                 HYPERVISOR_shared_info =
698                         (struct shared_info *)__va(xen_start_info->shared_info);
699
700 #ifndef CONFIG_SMP
701         /* In UP this is as good a place as any to set up shared info */
702         xen_setup_vcpu_info_placement();
703 #endif
704
705         xen_setup_mfn_list_list();
706 }
707
708 /* This is called once we have the cpu_possible_map */
709 void xen_setup_vcpu_info_placement(void)
710 {
711         int cpu;
712
713         for_each_possible_cpu(cpu)
714                 xen_vcpu_setup(cpu);
715
716         /* xen_vcpu_setup managed to place the vcpu_info within the
717            percpu area for all cpus, so make use of it */
718         if (have_vcpu_info_placement) {
719                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
720
721                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
722                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
723                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
724                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
725                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
726         }
727 }
728
729 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
730                           unsigned long addr, unsigned len)
731 {
732         char *start, *end, *reloc;
733         unsigned ret;
734
735         start = end = reloc = NULL;
736
737 #define SITE(op, x)                                                     \
738         case PARAVIRT_PATCH(op.x):                                      \
739         if (have_vcpu_info_placement) {                                 \
740                 start = (char *)xen_##x##_direct;                       \
741                 end = xen_##x##_direct_end;                             \
742                 reloc = xen_##x##_direct_reloc;                         \
743         }                                                               \
744         goto patch_site
745
746         switch (type) {
747                 SITE(pv_irq_ops, irq_enable);
748                 SITE(pv_irq_ops, irq_disable);
749                 SITE(pv_irq_ops, save_fl);
750                 SITE(pv_irq_ops, restore_fl);
751 #undef SITE
752
753         patch_site:
754                 if (start == NULL || (end-start) > len)
755                         goto default_patch;
756
757                 ret = paravirt_patch_insns(insnbuf, len, start, end);
758
759                 /* Note: because reloc is assigned from something that
760                    appears to be an array, gcc assumes it's non-null,
761                    but doesn't know its relationship with start and
762                    end. */
763                 if (reloc > start && reloc < end) {
764                         int reloc_off = reloc - start;
765                         long *relocp = (long *)(insnbuf + reloc_off);
766                         long delta = start - (char *)addr;
767
768                         *relocp += delta;
769                 }
770                 break;
771
772         default_patch:
773         default:
774                 ret = paravirt_patch_default(type, clobbers, insnbuf,
775                                              addr, len);
776                 break;
777         }
778
779         return ret;
780 }
781
782 static const struct pv_info xen_info __initdata = {
783         .paravirt_enabled = 1,
784         .shared_kernel_pmd = 0,
785
786         .name = "Xen",
787 };
788
789 static const struct pv_init_ops xen_init_ops __initdata = {
790         .patch = xen_patch,
791
792         .banner = xen_banner,
793         .memory_setup = xen_memory_setup,
794         .arch_setup = xen_arch_setup,
795         .post_allocator_init = xen_post_allocator_init,
796 };
797
798 static const struct pv_time_ops xen_time_ops __initdata = {
799         .time_init = xen_time_init,
800
801         .set_wallclock = xen_set_wallclock,
802         .get_wallclock = xen_get_wallclock,
803         .get_tsc_khz = xen_tsc_khz,
804         .sched_clock = xen_sched_clock,
805 };
806
807 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
808         .cpuid = xen_cpuid,
809
810         .set_debugreg = xen_set_debugreg,
811         .get_debugreg = xen_get_debugreg,
812
813         .clts = xen_clts,
814
815         .read_cr0 = native_read_cr0,
816         .write_cr0 = xen_write_cr0,
817
818         .read_cr4 = native_read_cr4,
819         .read_cr4_safe = native_read_cr4_safe,
820         .write_cr4 = xen_write_cr4,
821
822         .wbinvd = native_wbinvd,
823
824         .read_msr = native_read_msr_safe,
825         .write_msr = xen_write_msr_safe,
826         .read_tsc = native_read_tsc,
827         .read_pmc = native_read_pmc,
828
829         .iret = xen_iret,
830         .irq_enable_sysexit = xen_sysexit,
831 #ifdef CONFIG_X86_64
832         .usergs_sysret32 = xen_sysret32,
833         .usergs_sysret64 = xen_sysret64,
834 #endif
835
836         .load_tr_desc = paravirt_nop,
837         .set_ldt = xen_set_ldt,
838         .load_gdt = xen_load_gdt,
839         .load_idt = xen_load_idt,
840         .load_tls = xen_load_tls,
841 #ifdef CONFIG_X86_64
842         .load_gs_index = xen_load_gs_index,
843 #endif
844
845         .alloc_ldt = xen_alloc_ldt,
846         .free_ldt = xen_free_ldt,
847
848         .store_gdt = native_store_gdt,
849         .store_idt = native_store_idt,
850         .store_tr = xen_store_tr,
851
852         .write_ldt_entry = xen_write_ldt_entry,
853         .write_gdt_entry = xen_write_gdt_entry,
854         .write_idt_entry = xen_write_idt_entry,
855         .load_sp0 = xen_load_sp0,
856
857         .set_iopl_mask = xen_set_iopl_mask,
858         .io_delay = xen_io_delay,
859
860         /* Xen takes care of %gs when switching to usermode for us */
861         .swapgs = paravirt_nop,
862
863         .lazy_mode = {
864                 .enter = paravirt_enter_lazy_cpu,
865                 .leave = xen_leave_lazy,
866         },
867 };
868
869 static const struct pv_apic_ops xen_apic_ops __initdata = {
870 #ifdef CONFIG_X86_LOCAL_APIC
871         .setup_boot_clock = paravirt_nop,
872         .setup_secondary_clock = paravirt_nop,
873         .startup_ipi_hook = paravirt_nop,
874 #endif
875 };
876
877 static void xen_reboot(int reason)
878 {
879         struct sched_shutdown r = { .reason = reason };
880
881 #ifdef CONFIG_SMP
882         smp_send_stop();
883 #endif
884
885         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
886                 BUG();
887 }
888
889 static void xen_restart(char *msg)
890 {
891         xen_reboot(SHUTDOWN_reboot);
892 }
893
894 static void xen_emergency_restart(void)
895 {
896         xen_reboot(SHUTDOWN_reboot);
897 }
898
899 static void xen_machine_halt(void)
900 {
901         xen_reboot(SHUTDOWN_poweroff);
902 }
903
904 static void xen_crash_shutdown(struct pt_regs *regs)
905 {
906         xen_reboot(SHUTDOWN_crash);
907 }
908
909 static const struct machine_ops __initdata xen_machine_ops = {
910         .restart = xen_restart,
911         .halt = xen_machine_halt,
912         .power_off = xen_machine_halt,
913         .shutdown = xen_machine_halt,
914         .crash_shutdown = xen_crash_shutdown,
915         .emergency_restart = xen_emergency_restart,
916 };
917
918 /* First C function to be called on Xen boot */
919 asmlinkage void __init xen_start_kernel(void)
920 {
921         pgd_t *pgd;
922
923         if (!xen_start_info)
924                 return;
925
926         xen_domain_type = XEN_PV_DOMAIN;
927
928         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
929
930         xen_setup_features();
931
932         /* Install Xen paravirt ops */
933         pv_info = xen_info;
934         pv_init_ops = xen_init_ops;
935         pv_time_ops = xen_time_ops;
936         pv_cpu_ops = xen_cpu_ops;
937         pv_apic_ops = xen_apic_ops;
938         pv_mmu_ops = xen_mmu_ops;
939
940         xen_init_irq_ops();
941
942         xen_init_cpuid_mask();
943
944 #ifdef CONFIG_X86_LOCAL_APIC
945         /*
946          * set up the basic apic ops.
947          */
948         set_xen_basic_apic_ops();
949 #endif
950
951         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
952                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
953                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
954         }
955
956         machine_ops = xen_machine_ops;
957
958 #ifdef CONFIG_X86_64
959         /*
960          * Setup percpu state.  We only need to do this for 64-bit
961          * because 32-bit already has %fs set properly.
962          */
963         load_percpu_segment(0);
964 #endif
965         /*
966          * The only reliable way to retain the initial address of the
967          * percpu gdt_page is to remember it here, so we can go and
968          * mark it RW later, when the initial percpu area is freed.
969          */
970         xen_initial_gdt = &per_cpu(gdt_page, 0);
971
972         xen_smp_init();
973
974         /* Get mfn list */
975         if (!xen_feature(XENFEAT_auto_translated_physmap))
976                 xen_build_dynamic_phys_to_machine();
977
978         pgd = (pgd_t *)xen_start_info->pt_base;
979
980         /* Prevent unwanted bits from being set in PTEs. */
981         __supported_pte_mask &= ~_PAGE_GLOBAL;
982         if (!xen_initial_domain())
983                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
984
985 #ifdef CONFIG_X86_64
986         /* Work out if we support NX */
987         check_efer();
988 #endif
989
990         /* Don't do the full vcpu_info placement stuff until we have a
991            possible map and a non-dummy shared_info. */
992         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
993
994         local_irq_disable();
995         early_boot_irqs_off();
996
997         xen_raw_console_write("mapping kernel into physical memory\n");
998         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
999
1000         init_mm.pgd = pgd;
1001
1002         /* keep using Xen gdt for now; no urgent need to change it */
1003
1004         pv_info.kernel_rpl = 1;
1005         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1006                 pv_info.kernel_rpl = 0;
1007
1008         /* set the limit of our address space */
1009         xen_reserve_top();
1010
1011 #ifdef CONFIG_X86_32
1012         /* set up basic CPUID stuff */
1013         cpu_detect(&new_cpu_data);
1014         new_cpu_data.hard_math = 1;
1015         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1016 #endif
1017
1018         /* Poke various useful things into boot_params */
1019         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1020         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1021                 ? __pa(xen_start_info->mod_start) : 0;
1022         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1023         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1024
1025         if (!xen_initial_domain()) {
1026                 add_preferred_console("xenboot", 0, NULL);
1027                 add_preferred_console("tty", 0, NULL);
1028                 add_preferred_console("hvc", 0, NULL);
1029         }
1030
1031         xen_raw_console_write("about to get started...\n");
1032
1033         /* Start the world */
1034 #ifdef CONFIG_X86_32
1035         i386_start_kernel();
1036 #else
1037         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1038 #endif
1039 }