2 * Linux INET6 implementation
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * $Id: route.c,v 1.56 2001/10/31 21:55:55 davem Exp $
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
18 * YOSHIFUJI Hideaki @USAGI
19 * reworked default router selection.
20 * - respect outgoing interface
21 * - select from (probably) reachable routers (i.e.
22 * routers in REACHABLE, STALE, DELAY or PROBE states).
23 * - always select the same router if it is (probably)
24 * reachable. otherwise, round-robin the list.
26 * Fixed routing subtrees.
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/types.h>
32 #include <linux/times.h>
33 #include <linux/socket.h>
34 #include <linux/sockios.h>
35 #include <linux/net.h>
36 #include <linux/route.h>
37 #include <linux/netdevice.h>
38 #include <linux/in6.h>
39 #include <linux/init.h>
40 #include <linux/if_arp.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
49 #include <net/ip6_fib.h>
50 #include <net/ip6_route.h>
51 #include <net/ndisc.h>
52 #include <net/addrconf.h>
54 #include <linux/rtnetlink.h>
57 #include <net/netevent.h>
58 #include <net/netlink.h>
60 #include <asm/uaccess.h>
63 #include <linux/sysctl.h>
66 /* Set to 3 to get tracing. */
70 #define RDBG(x) printk x
71 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
74 #define RT6_TRACE(x...) do { ; } while (0)
77 #define CLONE_OFFLINK_ROUTE 0
79 static int ip6_rt_max_size = 4096;
80 static int ip6_rt_gc_min_interval = HZ / 2;
81 static int ip6_rt_gc_timeout = 60*HZ;
82 int ip6_rt_gc_interval = 30*HZ;
83 static int ip6_rt_gc_elasticity = 9;
84 static int ip6_rt_mtu_expires = 10*60*HZ;
85 static int ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
87 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort);
88 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie);
89 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
90 static void ip6_dst_destroy(struct dst_entry *);
91 static void ip6_dst_ifdown(struct dst_entry *,
92 struct net_device *dev, int how);
93 static int ip6_dst_gc(void);
95 static int ip6_pkt_discard(struct sk_buff *skb);
96 static int ip6_pkt_discard_out(struct sk_buff *skb);
97 static void ip6_link_failure(struct sk_buff *skb);
98 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
100 #ifdef CONFIG_IPV6_ROUTE_INFO
101 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
102 struct in6_addr *gwaddr, int ifindex,
104 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
105 struct in6_addr *gwaddr, int ifindex);
108 static struct dst_ops ip6_dst_ops = {
110 .protocol = __constant_htons(ETH_P_IPV6),
113 .check = ip6_dst_check,
114 .destroy = ip6_dst_destroy,
115 .ifdown = ip6_dst_ifdown,
116 .negative_advice = ip6_negative_advice,
117 .link_failure = ip6_link_failure,
118 .update_pmtu = ip6_rt_update_pmtu,
119 .entry_size = sizeof(struct rt6_info),
122 struct rt6_info ip6_null_entry = {
125 .__refcnt = ATOMIC_INIT(1),
127 .dev = &loopback_dev,
129 .error = -ENETUNREACH,
130 .metrics = { [RTAX_HOPLIMIT - 1] = 255, },
131 .input = ip6_pkt_discard,
132 .output = ip6_pkt_discard_out,
134 .path = (struct dst_entry*)&ip6_null_entry,
137 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
138 .rt6i_metric = ~(u32) 0,
139 .rt6i_ref = ATOMIC_INIT(1),
142 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
144 static int ip6_pkt_prohibit(struct sk_buff *skb);
145 static int ip6_pkt_prohibit_out(struct sk_buff *skb);
146 static int ip6_pkt_blk_hole(struct sk_buff *skb);
148 struct rt6_info ip6_prohibit_entry = {
151 .__refcnt = ATOMIC_INIT(1),
153 .dev = &loopback_dev,
156 .metrics = { [RTAX_HOPLIMIT - 1] = 255, },
157 .input = ip6_pkt_prohibit,
158 .output = ip6_pkt_prohibit_out,
160 .path = (struct dst_entry*)&ip6_prohibit_entry,
163 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
164 .rt6i_metric = ~(u32) 0,
165 .rt6i_ref = ATOMIC_INIT(1),
168 struct rt6_info ip6_blk_hole_entry = {
171 .__refcnt = ATOMIC_INIT(1),
173 .dev = &loopback_dev,
176 .metrics = { [RTAX_HOPLIMIT - 1] = 255, },
177 .input = ip6_pkt_blk_hole,
178 .output = ip6_pkt_blk_hole,
180 .path = (struct dst_entry*)&ip6_blk_hole_entry,
183 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
184 .rt6i_metric = ~(u32) 0,
185 .rt6i_ref = ATOMIC_INIT(1),
190 /* allocate dst with ip6_dst_ops */
191 static __inline__ struct rt6_info *ip6_dst_alloc(void)
193 return (struct rt6_info *)dst_alloc(&ip6_dst_ops);
196 static void ip6_dst_destroy(struct dst_entry *dst)
198 struct rt6_info *rt = (struct rt6_info *)dst;
199 struct inet6_dev *idev = rt->rt6i_idev;
202 rt->rt6i_idev = NULL;
207 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
210 struct rt6_info *rt = (struct rt6_info *)dst;
211 struct inet6_dev *idev = rt->rt6i_idev;
213 if (dev != &loopback_dev && idev != NULL && idev->dev == dev) {
214 struct inet6_dev *loopback_idev = in6_dev_get(&loopback_dev);
215 if (loopback_idev != NULL) {
216 rt->rt6i_idev = loopback_idev;
222 static __inline__ int rt6_check_expired(const struct rt6_info *rt)
224 return (rt->rt6i_flags & RTF_EXPIRES &&
225 time_after(jiffies, rt->rt6i_expires));
228 static inline int rt6_need_strict(struct in6_addr *daddr)
230 return (ipv6_addr_type(daddr) &
231 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL));
235 * Route lookup. Any table->tb6_lock is implied.
238 static __inline__ struct rt6_info *rt6_device_match(struct rt6_info *rt,
242 struct rt6_info *local = NULL;
243 struct rt6_info *sprt;
246 for (sprt = rt; sprt; sprt = sprt->u.next) {
247 struct net_device *dev = sprt->rt6i_dev;
248 if (dev->ifindex == oif)
250 if (dev->flags & IFF_LOOPBACK) {
251 if (sprt->rt6i_idev == NULL ||
252 sprt->rt6i_idev->dev->ifindex != oif) {
255 if (local && (!oif ||
256 local->rt6i_idev->dev->ifindex == oif))
267 return &ip6_null_entry;
272 #ifdef CONFIG_IPV6_ROUTER_PREF
273 static void rt6_probe(struct rt6_info *rt)
275 struct neighbour *neigh = rt ? rt->rt6i_nexthop : NULL;
277 * Okay, this does not seem to be appropriate
278 * for now, however, we need to check if it
279 * is really so; aka Router Reachability Probing.
281 * Router Reachability Probe MUST be rate-limited
282 * to no more than one per minute.
284 if (!neigh || (neigh->nud_state & NUD_VALID))
286 read_lock_bh(&neigh->lock);
287 if (!(neigh->nud_state & NUD_VALID) &&
288 time_after(jiffies, neigh->updated + rt->rt6i_idev->cnf.rtr_probe_interval)) {
289 struct in6_addr mcaddr;
290 struct in6_addr *target;
292 neigh->updated = jiffies;
293 read_unlock_bh(&neigh->lock);
295 target = (struct in6_addr *)&neigh->primary_key;
296 addrconf_addr_solict_mult(target, &mcaddr);
297 ndisc_send_ns(rt->rt6i_dev, NULL, target, &mcaddr, NULL);
299 read_unlock_bh(&neigh->lock);
302 static inline void rt6_probe(struct rt6_info *rt)
309 * Default Router Selection (RFC 2461 6.3.6)
311 static int inline rt6_check_dev(struct rt6_info *rt, int oif)
313 struct net_device *dev = rt->rt6i_dev;
314 if (!oif || dev->ifindex == oif)
316 if ((dev->flags & IFF_LOOPBACK) &&
317 rt->rt6i_idev && rt->rt6i_idev->dev->ifindex == oif)
322 static int inline rt6_check_neigh(struct rt6_info *rt)
324 struct neighbour *neigh = rt->rt6i_nexthop;
326 if (rt->rt6i_flags & RTF_NONEXTHOP ||
327 !(rt->rt6i_flags & RTF_GATEWAY))
330 read_lock_bh(&neigh->lock);
331 if (neigh->nud_state & NUD_VALID)
333 else if (!(neigh->nud_state & NUD_FAILED))
335 read_unlock_bh(&neigh->lock);
340 static int rt6_score_route(struct rt6_info *rt, int oif,
345 m = rt6_check_dev(rt, oif);
346 if (!m && (strict & RT6_LOOKUP_F_IFACE))
348 #ifdef CONFIG_IPV6_ROUTER_PREF
349 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->rt6i_flags)) << 2;
351 n = rt6_check_neigh(rt);
352 if (!n && (strict & RT6_LOOKUP_F_REACHABLE))
357 static struct rt6_info *rt6_select(struct rt6_info **head, int oif,
360 struct rt6_info *match = NULL, *last = NULL;
361 struct rt6_info *rt, *rt0 = *head;
365 RT6_TRACE("%s(head=%p(*head=%p), oif=%d)\n",
366 __FUNCTION__, head, head ? *head : NULL, oif);
368 for (rt = rt0, metric = rt0->rt6i_metric;
369 rt && rt->rt6i_metric == metric && (!last || rt != rt0);
373 if (rt6_check_expired(rt))
378 m = rt6_score_route(rt, oif, strict);
383 if (strict & RT6_LOOKUP_F_REACHABLE)
387 } else if (strict & RT6_LOOKUP_F_REACHABLE) {
393 (strict & RT6_LOOKUP_F_REACHABLE) &&
394 last && last != rt0) {
395 /* no entries matched; do round-robin */
396 static DEFINE_SPINLOCK(lock);
399 rt0->u.next = last->u.next;
404 RT6_TRACE("%s() => %p, score=%d\n",
405 __FUNCTION__, match, mpri);
407 return (match ? match : &ip6_null_entry);
410 #ifdef CONFIG_IPV6_ROUTE_INFO
411 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
412 struct in6_addr *gwaddr)
414 struct route_info *rinfo = (struct route_info *) opt;
415 struct in6_addr prefix_buf, *prefix;
420 if (len < sizeof(struct route_info)) {
424 /* Sanity check for prefix_len and length */
425 if (rinfo->length > 3) {
427 } else if (rinfo->prefix_len > 128) {
429 } else if (rinfo->prefix_len > 64) {
430 if (rinfo->length < 2) {
433 } else if (rinfo->prefix_len > 0) {
434 if (rinfo->length < 1) {
439 pref = rinfo->route_pref;
440 if (pref == ICMPV6_ROUTER_PREF_INVALID)
441 pref = ICMPV6_ROUTER_PREF_MEDIUM;
443 lifetime = ntohl(rinfo->lifetime);
444 if (lifetime == 0xffffffff) {
446 } else if (lifetime > 0x7fffffff/HZ) {
447 /* Avoid arithmetic overflow */
448 lifetime = 0x7fffffff/HZ - 1;
451 if (rinfo->length == 3)
452 prefix = (struct in6_addr *)rinfo->prefix;
454 /* this function is safe */
455 ipv6_addr_prefix(&prefix_buf,
456 (struct in6_addr *)rinfo->prefix,
458 prefix = &prefix_buf;
461 rt = rt6_get_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex);
463 if (rt && !lifetime) {
469 rt = rt6_add_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex,
472 rt->rt6i_flags = RTF_ROUTEINFO |
473 (rt->rt6i_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
476 if (lifetime == 0xffffffff) {
477 rt->rt6i_flags &= ~RTF_EXPIRES;
479 rt->rt6i_expires = jiffies + HZ * lifetime;
480 rt->rt6i_flags |= RTF_EXPIRES;
482 dst_release(&rt->u.dst);
488 #define BACKTRACK(saddr) \
490 if (rt == &ip6_null_entry) { \
491 struct fib6_node *pn; \
493 if (fn->fn_flags & RTN_TL_ROOT) \
496 if (FIB6_SUBTREE(pn) && FIB6_SUBTREE(pn) != fn) \
497 fn = fib6_lookup(pn->subtree, NULL, saddr); \
500 if (fn->fn_flags & RTN_RTINFO) \
506 static struct rt6_info *ip6_pol_route_lookup(struct fib6_table *table,
507 struct flowi *fl, int flags)
509 struct fib6_node *fn;
512 read_lock_bh(&table->tb6_lock);
513 fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
516 rt = rt6_device_match(rt, fl->oif, flags);
517 BACKTRACK(&fl->fl6_src);
519 dst_hold(&rt->u.dst);
520 read_unlock_bh(&table->tb6_lock);
522 rt->u.dst.lastuse = jiffies;
529 struct rt6_info *rt6_lookup(struct in6_addr *daddr, struct in6_addr *saddr,
540 struct dst_entry *dst;
541 int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
544 memcpy(&fl.fl6_src, saddr, sizeof(*saddr));
545 flags |= RT6_LOOKUP_F_HAS_SADDR;
548 dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_lookup);
550 return (struct rt6_info *) dst;
557 /* ip6_ins_rt is called with FREE table->tb6_lock.
558 It takes new route entry, the addition fails by any reason the
559 route is freed. In any case, if caller does not hold it, it may
563 static int __ip6_ins_rt(struct rt6_info *rt, struct nl_info *info)
566 struct fib6_table *table;
568 table = rt->rt6i_table;
569 write_lock_bh(&table->tb6_lock);
570 err = fib6_add(&table->tb6_root, rt, info);
571 write_unlock_bh(&table->tb6_lock);
576 int ip6_ins_rt(struct rt6_info *rt)
578 return __ip6_ins_rt(rt, NULL);
581 static struct rt6_info *rt6_alloc_cow(struct rt6_info *ort, struct in6_addr *daddr,
582 struct in6_addr *saddr)
590 rt = ip6_rt_copy(ort);
593 if (!(rt->rt6i_flags&RTF_GATEWAY)) {
594 if (rt->rt6i_dst.plen != 128 &&
595 ipv6_addr_equal(&rt->rt6i_dst.addr, daddr))
596 rt->rt6i_flags |= RTF_ANYCAST;
597 ipv6_addr_copy(&rt->rt6i_gateway, daddr);
600 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
601 rt->rt6i_dst.plen = 128;
602 rt->rt6i_flags |= RTF_CACHE;
603 rt->u.dst.flags |= DST_HOST;
605 #ifdef CONFIG_IPV6_SUBTREES
606 if (rt->rt6i_src.plen && saddr) {
607 ipv6_addr_copy(&rt->rt6i_src.addr, saddr);
608 rt->rt6i_src.plen = 128;
612 rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
619 static struct rt6_info *rt6_alloc_clone(struct rt6_info *ort, struct in6_addr *daddr)
621 struct rt6_info *rt = ip6_rt_copy(ort);
623 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
624 rt->rt6i_dst.plen = 128;
625 rt->rt6i_flags |= RTF_CACHE;
626 rt->u.dst.flags |= DST_HOST;
627 rt->rt6i_nexthop = neigh_clone(ort->rt6i_nexthop);
632 static struct rt6_info *ip6_pol_route_input(struct fib6_table *table,
633 struct flowi *fl, int flags)
635 struct fib6_node *fn;
636 struct rt6_info *rt, *nrt;
640 int reachable = ipv6_devconf.forwarding ? 0 : RT6_LOOKUP_F_REACHABLE;
642 strict |= flags & RT6_LOOKUP_F_IFACE;
645 read_lock_bh(&table->tb6_lock);
648 fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
651 rt = rt6_select(&fn->leaf, fl->iif, strict | reachable);
652 BACKTRACK(&fl->fl6_src);
653 if (rt == &ip6_null_entry ||
654 rt->rt6i_flags & RTF_CACHE)
657 dst_hold(&rt->u.dst);
658 read_unlock_bh(&table->tb6_lock);
660 if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
661 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
663 #if CLONE_OFFLINK_ROUTE
664 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
670 dst_release(&rt->u.dst);
671 rt = nrt ? : &ip6_null_entry;
673 dst_hold(&rt->u.dst);
675 err = ip6_ins_rt(nrt);
684 * Race condition! In the gap, when table->tb6_lock was
685 * released someone could insert this route. Relookup.
687 dst_release(&rt->u.dst);
695 dst_hold(&rt->u.dst);
696 read_unlock_bh(&table->tb6_lock);
698 rt->u.dst.lastuse = jiffies;
704 void ip6_route_input(struct sk_buff *skb)
706 struct ipv6hdr *iph = skb->nh.ipv6h;
707 int flags = RT6_LOOKUP_F_HAS_SADDR;
709 .iif = skb->dev->ifindex,
714 .flowlabel = (* (__be32 *) iph)&IPV6_FLOWINFO_MASK,
718 .proto = iph->nexthdr,
721 if (rt6_need_strict(&iph->daddr))
722 flags |= RT6_LOOKUP_F_IFACE;
724 skb->dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_input);
727 static struct rt6_info *ip6_pol_route_output(struct fib6_table *table,
728 struct flowi *fl, int flags)
730 struct fib6_node *fn;
731 struct rt6_info *rt, *nrt;
735 int reachable = ipv6_devconf.forwarding ? 0 : RT6_LOOKUP_F_REACHABLE;
737 strict |= flags & RT6_LOOKUP_F_IFACE;
740 read_lock_bh(&table->tb6_lock);
743 fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
746 rt = rt6_select(&fn->leaf, fl->oif, strict | reachable);
747 BACKTRACK(&fl->fl6_src);
748 if (rt == &ip6_null_entry ||
749 rt->rt6i_flags & RTF_CACHE)
752 dst_hold(&rt->u.dst);
753 read_unlock_bh(&table->tb6_lock);
755 if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
756 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
758 #if CLONE_OFFLINK_ROUTE
759 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
765 dst_release(&rt->u.dst);
766 rt = nrt ? : &ip6_null_entry;
768 dst_hold(&rt->u.dst);
770 err = ip6_ins_rt(nrt);
779 * Race condition! In the gap, when table->tb6_lock was
780 * released someone could insert this route. Relookup.
782 dst_release(&rt->u.dst);
790 dst_hold(&rt->u.dst);
791 read_unlock_bh(&table->tb6_lock);
793 rt->u.dst.lastuse = jiffies;
798 struct dst_entry * ip6_route_output(struct sock *sk, struct flowi *fl)
802 if (rt6_need_strict(&fl->fl6_dst))
803 flags |= RT6_LOOKUP_F_IFACE;
805 if (!ipv6_addr_any(&fl->fl6_src))
806 flags |= RT6_LOOKUP_F_HAS_SADDR;
808 return fib6_rule_lookup(fl, flags, ip6_pol_route_output);
813 * Destination cache support functions
816 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
820 rt = (struct rt6_info *) dst;
822 if (rt && rt->rt6i_node && (rt->rt6i_node->fn_sernum == cookie))
828 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
830 struct rt6_info *rt = (struct rt6_info *) dst;
833 if (rt->rt6i_flags & RTF_CACHE)
841 static void ip6_link_failure(struct sk_buff *skb)
845 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0, skb->dev);
847 rt = (struct rt6_info *) skb->dst;
849 if (rt->rt6i_flags&RTF_CACHE) {
850 dst_set_expires(&rt->u.dst, 0);
851 rt->rt6i_flags |= RTF_EXPIRES;
852 } else if (rt->rt6i_node && (rt->rt6i_flags & RTF_DEFAULT))
853 rt->rt6i_node->fn_sernum = -1;
857 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
859 struct rt6_info *rt6 = (struct rt6_info*)dst;
861 if (mtu < dst_mtu(dst) && rt6->rt6i_dst.plen == 128) {
862 rt6->rt6i_flags |= RTF_MODIFIED;
863 if (mtu < IPV6_MIN_MTU) {
865 dst->metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
867 dst->metrics[RTAX_MTU-1] = mtu;
868 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
872 static int ipv6_get_mtu(struct net_device *dev);
874 static inline unsigned int ipv6_advmss(unsigned int mtu)
876 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
878 if (mtu < ip6_rt_min_advmss)
879 mtu = ip6_rt_min_advmss;
882 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
883 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
884 * IPV6_MAXPLEN is also valid and means: "any MSS,
885 * rely only on pmtu discovery"
887 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
892 static struct dst_entry *ndisc_dst_gc_list;
893 static DEFINE_SPINLOCK(ndisc_lock);
895 struct dst_entry *ndisc_dst_alloc(struct net_device *dev,
896 struct neighbour *neigh,
897 struct in6_addr *addr,
898 int (*output)(struct sk_buff *))
901 struct inet6_dev *idev = in6_dev_get(dev);
903 if (unlikely(idev == NULL))
906 rt = ip6_dst_alloc();
907 if (unlikely(rt == NULL)) {
916 neigh = ndisc_get_neigh(dev, addr);
919 rt->rt6i_idev = idev;
920 rt->rt6i_nexthop = neigh;
921 atomic_set(&rt->u.dst.__refcnt, 1);
922 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = 255;
923 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
924 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
925 rt->u.dst.output = output;
927 #if 0 /* there's no chance to use these for ndisc */
928 rt->u.dst.flags = ipv6_addr_type(addr) & IPV6_ADDR_UNICAST
931 ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
932 rt->rt6i_dst.plen = 128;
935 spin_lock_bh(&ndisc_lock);
936 rt->u.dst.next = ndisc_dst_gc_list;
937 ndisc_dst_gc_list = &rt->u.dst;
938 spin_unlock_bh(&ndisc_lock);
940 fib6_force_start_gc();
946 int ndisc_dst_gc(int *more)
948 struct dst_entry *dst, *next, **pprev;
954 spin_lock_bh(&ndisc_lock);
955 pprev = &ndisc_dst_gc_list;
957 while ((dst = *pprev) != NULL) {
958 if (!atomic_read(&dst->__refcnt)) {
968 spin_unlock_bh(&ndisc_lock);
973 static int ip6_dst_gc(void)
975 static unsigned expire = 30*HZ;
976 static unsigned long last_gc;
977 unsigned long now = jiffies;
979 if (time_after(last_gc + ip6_rt_gc_min_interval, now) &&
980 atomic_read(&ip6_dst_ops.entries) <= ip6_rt_max_size)
986 if (atomic_read(&ip6_dst_ops.entries) < ip6_dst_ops.gc_thresh)
987 expire = ip6_rt_gc_timeout>>1;
990 expire -= expire>>ip6_rt_gc_elasticity;
991 return (atomic_read(&ip6_dst_ops.entries) > ip6_rt_max_size);
994 /* Clean host part of a prefix. Not necessary in radix tree,
995 but results in cleaner routing tables.
997 Remove it only when all the things will work!
1000 static int ipv6_get_mtu(struct net_device *dev)
1002 int mtu = IPV6_MIN_MTU;
1003 struct inet6_dev *idev;
1005 idev = in6_dev_get(dev);
1007 mtu = idev->cnf.mtu6;
1013 int ipv6_get_hoplimit(struct net_device *dev)
1015 int hoplimit = ipv6_devconf.hop_limit;
1016 struct inet6_dev *idev;
1018 idev = in6_dev_get(dev);
1020 hoplimit = idev->cnf.hop_limit;
1030 int ip6_route_add(struct fib6_config *cfg)
1033 struct rt6_info *rt = NULL;
1034 struct net_device *dev = NULL;
1035 struct inet6_dev *idev = NULL;
1036 struct fib6_table *table;
1039 if (cfg->fc_dst_len > 128 || cfg->fc_src_len > 128)
1041 #ifndef CONFIG_IPV6_SUBTREES
1042 if (cfg->fc_src_len)
1045 if (cfg->fc_ifindex) {
1047 dev = dev_get_by_index(cfg->fc_ifindex);
1050 idev = in6_dev_get(dev);
1055 if (cfg->fc_metric == 0)
1056 cfg->fc_metric = IP6_RT_PRIO_USER;
1058 table = fib6_new_table(cfg->fc_table);
1059 if (table == NULL) {
1064 rt = ip6_dst_alloc();
1071 rt->u.dst.obsolete = -1;
1072 rt->rt6i_expires = jiffies + clock_t_to_jiffies(cfg->fc_expires);
1074 if (cfg->fc_protocol == RTPROT_UNSPEC)
1075 cfg->fc_protocol = RTPROT_BOOT;
1076 rt->rt6i_protocol = cfg->fc_protocol;
1078 addr_type = ipv6_addr_type(&cfg->fc_dst);
1080 if (addr_type & IPV6_ADDR_MULTICAST)
1081 rt->u.dst.input = ip6_mc_input;
1083 rt->u.dst.input = ip6_forward;
1085 rt->u.dst.output = ip6_output;
1087 ipv6_addr_prefix(&rt->rt6i_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
1088 rt->rt6i_dst.plen = cfg->fc_dst_len;
1089 if (rt->rt6i_dst.plen == 128)
1090 rt->u.dst.flags = DST_HOST;
1092 #ifdef CONFIG_IPV6_SUBTREES
1093 ipv6_addr_prefix(&rt->rt6i_src.addr, &cfg->fc_src, cfg->fc_src_len);
1094 rt->rt6i_src.plen = cfg->fc_src_len;
1097 rt->rt6i_metric = cfg->fc_metric;
1099 /* We cannot add true routes via loopback here,
1100 they would result in kernel looping; promote them to reject routes
1102 if ((cfg->fc_flags & RTF_REJECT) ||
1103 (dev && (dev->flags&IFF_LOOPBACK) && !(addr_type&IPV6_ADDR_LOOPBACK))) {
1104 /* hold loopback dev/idev if we haven't done so. */
1105 if (dev != &loopback_dev) {
1110 dev = &loopback_dev;
1112 idev = in6_dev_get(dev);
1118 rt->u.dst.output = ip6_pkt_discard_out;
1119 rt->u.dst.input = ip6_pkt_discard;
1120 rt->u.dst.error = -ENETUNREACH;
1121 rt->rt6i_flags = RTF_REJECT|RTF_NONEXTHOP;
1125 if (cfg->fc_flags & RTF_GATEWAY) {
1126 struct in6_addr *gw_addr;
1129 gw_addr = &cfg->fc_gateway;
1130 ipv6_addr_copy(&rt->rt6i_gateway, gw_addr);
1131 gwa_type = ipv6_addr_type(gw_addr);
1133 if (gwa_type != (IPV6_ADDR_LINKLOCAL|IPV6_ADDR_UNICAST)) {
1134 struct rt6_info *grt;
1136 /* IPv6 strictly inhibits using not link-local
1137 addresses as nexthop address.
1138 Otherwise, router will not able to send redirects.
1139 It is very good, but in some (rare!) circumstances
1140 (SIT, PtP, NBMA NOARP links) it is handy to allow
1141 some exceptions. --ANK
1144 if (!(gwa_type&IPV6_ADDR_UNICAST))
1147 grt = rt6_lookup(gw_addr, NULL, cfg->fc_ifindex, 1);
1149 err = -EHOSTUNREACH;
1153 if (dev != grt->rt6i_dev) {
1154 dst_release(&grt->u.dst);
1158 dev = grt->rt6i_dev;
1159 idev = grt->rt6i_idev;
1161 in6_dev_hold(grt->rt6i_idev);
1163 if (!(grt->rt6i_flags&RTF_GATEWAY))
1165 dst_release(&grt->u.dst);
1171 if (dev == NULL || (dev->flags&IFF_LOOPBACK))
1179 if (cfg->fc_flags & (RTF_GATEWAY | RTF_NONEXTHOP)) {
1180 rt->rt6i_nexthop = __neigh_lookup_errno(&nd_tbl, &rt->rt6i_gateway, dev);
1181 if (IS_ERR(rt->rt6i_nexthop)) {
1182 err = PTR_ERR(rt->rt6i_nexthop);
1183 rt->rt6i_nexthop = NULL;
1188 rt->rt6i_flags = cfg->fc_flags;
1195 nla_for_each_attr(nla, cfg->fc_mx, cfg->fc_mx_len, remaining) {
1196 int type = nla->nla_type;
1199 if (type > RTAX_MAX) {
1204 rt->u.dst.metrics[type - 1] = nla_get_u32(nla);
1209 if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1210 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1211 if (!rt->u.dst.metrics[RTAX_MTU-1])
1212 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(dev);
1213 if (!rt->u.dst.metrics[RTAX_ADVMSS-1])
1214 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1215 rt->u.dst.dev = dev;
1216 rt->rt6i_idev = idev;
1217 rt->rt6i_table = table;
1218 return __ip6_ins_rt(rt, &cfg->fc_nlinfo);
1226 dst_free(&rt->u.dst);
1230 static int __ip6_del_rt(struct rt6_info *rt, struct nl_info *info)
1233 struct fib6_table *table;
1235 if (rt == &ip6_null_entry)
1238 table = rt->rt6i_table;
1239 write_lock_bh(&table->tb6_lock);
1241 err = fib6_del(rt, info);
1242 dst_release(&rt->u.dst);
1244 write_unlock_bh(&table->tb6_lock);
1249 int ip6_del_rt(struct rt6_info *rt)
1251 return __ip6_del_rt(rt, NULL);
1254 static int ip6_route_del(struct fib6_config *cfg)
1256 struct fib6_table *table;
1257 struct fib6_node *fn;
1258 struct rt6_info *rt;
1261 table = fib6_get_table(cfg->fc_table);
1265 read_lock_bh(&table->tb6_lock);
1267 fn = fib6_locate(&table->tb6_root,
1268 &cfg->fc_dst, cfg->fc_dst_len,
1269 &cfg->fc_src, cfg->fc_src_len);
1272 for (rt = fn->leaf; rt; rt = rt->u.next) {
1273 if (cfg->fc_ifindex &&
1274 (rt->rt6i_dev == NULL ||
1275 rt->rt6i_dev->ifindex != cfg->fc_ifindex))
1277 if (cfg->fc_flags & RTF_GATEWAY &&
1278 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
1280 if (cfg->fc_metric && cfg->fc_metric != rt->rt6i_metric)
1282 dst_hold(&rt->u.dst);
1283 read_unlock_bh(&table->tb6_lock);
1285 return __ip6_del_rt(rt, &cfg->fc_nlinfo);
1288 read_unlock_bh(&table->tb6_lock);
1296 struct ip6rd_flowi {
1298 struct in6_addr gateway;
1301 static struct rt6_info *__ip6_route_redirect(struct fib6_table *table,
1305 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl;
1306 struct rt6_info *rt;
1307 struct fib6_node *fn;
1310 * Get the "current" route for this destination and
1311 * check if the redirect has come from approriate router.
1313 * RFC 2461 specifies that redirects should only be
1314 * accepted if they come from the nexthop to the target.
1315 * Due to the way the routes are chosen, this notion
1316 * is a bit fuzzy and one might need to check all possible
1320 read_lock_bh(&table->tb6_lock);
1321 fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
1323 for (rt = fn->leaf; rt; rt = rt->u.next) {
1325 * Current route is on-link; redirect is always invalid.
1327 * Seems, previous statement is not true. It could
1328 * be node, which looks for us as on-link (f.e. proxy ndisc)
1329 * But then router serving it might decide, that we should
1330 * know truth 8)8) --ANK (980726).
1332 if (rt6_check_expired(rt))
1334 if (!(rt->rt6i_flags & RTF_GATEWAY))
1336 if (fl->oif != rt->rt6i_dev->ifindex)
1338 if (!ipv6_addr_equal(&rdfl->gateway, &rt->rt6i_gateway))
1344 rt = &ip6_null_entry;
1345 BACKTRACK(&fl->fl6_src);
1347 dst_hold(&rt->u.dst);
1349 read_unlock_bh(&table->tb6_lock);
1354 static struct rt6_info *ip6_route_redirect(struct in6_addr *dest,
1355 struct in6_addr *src,
1356 struct in6_addr *gateway,
1357 struct net_device *dev)
1359 int flags = RT6_LOOKUP_F_HAS_SADDR;
1360 struct ip6rd_flowi rdfl = {
1362 .oif = dev->ifindex,
1370 .gateway = *gateway,
1373 if (rt6_need_strict(dest))
1374 flags |= RT6_LOOKUP_F_IFACE;
1376 return (struct rt6_info *)fib6_rule_lookup((struct flowi *)&rdfl, flags, __ip6_route_redirect);
1379 void rt6_redirect(struct in6_addr *dest, struct in6_addr *src,
1380 struct in6_addr *saddr,
1381 struct neighbour *neigh, u8 *lladdr, int on_link)
1383 struct rt6_info *rt, *nrt = NULL;
1384 struct netevent_redirect netevent;
1386 rt = ip6_route_redirect(dest, src, saddr, neigh->dev);
1388 if (rt == &ip6_null_entry) {
1389 if (net_ratelimit())
1390 printk(KERN_DEBUG "rt6_redirect: source isn't a valid nexthop "
1391 "for redirect target\n");
1396 * We have finally decided to accept it.
1399 neigh_update(neigh, lladdr, NUD_STALE,
1400 NEIGH_UPDATE_F_WEAK_OVERRIDE|
1401 NEIGH_UPDATE_F_OVERRIDE|
1402 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
1403 NEIGH_UPDATE_F_ISROUTER))
1407 * Redirect received -> path was valid.
1408 * Look, redirects are sent only in response to data packets,
1409 * so that this nexthop apparently is reachable. --ANK
1411 dst_confirm(&rt->u.dst);
1413 /* Duplicate redirect: silently ignore. */
1414 if (neigh == rt->u.dst.neighbour)
1417 nrt = ip6_rt_copy(rt);
1421 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
1423 nrt->rt6i_flags &= ~RTF_GATEWAY;
1425 ipv6_addr_copy(&nrt->rt6i_dst.addr, dest);
1426 nrt->rt6i_dst.plen = 128;
1427 nrt->u.dst.flags |= DST_HOST;
1429 ipv6_addr_copy(&nrt->rt6i_gateway, (struct in6_addr*)neigh->primary_key);
1430 nrt->rt6i_nexthop = neigh_clone(neigh);
1431 /* Reset pmtu, it may be better */
1432 nrt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(neigh->dev);
1433 nrt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&nrt->u.dst));
1435 if (ip6_ins_rt(nrt))
1438 netevent.old = &rt->u.dst;
1439 netevent.new = &nrt->u.dst;
1440 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
1442 if (rt->rt6i_flags&RTF_CACHE) {
1448 dst_release(&rt->u.dst);
1453 * Handle ICMP "packet too big" messages
1454 * i.e. Path MTU discovery
1457 void rt6_pmtu_discovery(struct in6_addr *daddr, struct in6_addr *saddr,
1458 struct net_device *dev, u32 pmtu)
1460 struct rt6_info *rt, *nrt;
1463 rt = rt6_lookup(daddr, saddr, dev->ifindex, 0);
1467 if (pmtu >= dst_mtu(&rt->u.dst))
1470 if (pmtu < IPV6_MIN_MTU) {
1472 * According to RFC2460, PMTU is set to the IPv6 Minimum Link
1473 * MTU (1280) and a fragment header should always be included
1474 * after a node receiving Too Big message reporting PMTU is
1475 * less than the IPv6 Minimum Link MTU.
1477 pmtu = IPV6_MIN_MTU;
1481 /* New mtu received -> path was valid.
1482 They are sent only in response to data packets,
1483 so that this nexthop apparently is reachable. --ANK
1485 dst_confirm(&rt->u.dst);
1487 /* Host route. If it is static, it would be better
1488 not to override it, but add new one, so that
1489 when cache entry will expire old pmtu
1490 would return automatically.
1492 if (rt->rt6i_flags & RTF_CACHE) {
1493 rt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1495 rt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1496 dst_set_expires(&rt->u.dst, ip6_rt_mtu_expires);
1497 rt->rt6i_flags |= RTF_MODIFIED|RTF_EXPIRES;
1502 Two cases are possible:
1503 1. It is connected route. Action: COW
1504 2. It is gatewayed route or NONEXTHOP route. Action: clone it.
1506 if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
1507 nrt = rt6_alloc_cow(rt, daddr, saddr);
1509 nrt = rt6_alloc_clone(rt, daddr);
1512 nrt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1514 nrt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1516 /* According to RFC 1981, detecting PMTU increase shouldn't be
1517 * happened within 5 mins, the recommended timer is 10 mins.
1518 * Here this route expiration time is set to ip6_rt_mtu_expires
1519 * which is 10 mins. After 10 mins the decreased pmtu is expired
1520 * and detecting PMTU increase will be automatically happened.
1522 dst_set_expires(&nrt->u.dst, ip6_rt_mtu_expires);
1523 nrt->rt6i_flags |= RTF_DYNAMIC|RTF_EXPIRES;
1528 dst_release(&rt->u.dst);
1532 * Misc support functions
1535 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort)
1537 struct rt6_info *rt = ip6_dst_alloc();
1540 rt->u.dst.input = ort->u.dst.input;
1541 rt->u.dst.output = ort->u.dst.output;
1543 memcpy(rt->u.dst.metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
1544 rt->u.dst.error = ort->u.dst.error;
1545 rt->u.dst.dev = ort->u.dst.dev;
1547 dev_hold(rt->u.dst.dev);
1548 rt->rt6i_idev = ort->rt6i_idev;
1550 in6_dev_hold(rt->rt6i_idev);
1551 rt->u.dst.lastuse = jiffies;
1552 rt->rt6i_expires = 0;
1554 ipv6_addr_copy(&rt->rt6i_gateway, &ort->rt6i_gateway);
1555 rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES;
1556 rt->rt6i_metric = 0;
1558 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
1559 #ifdef CONFIG_IPV6_SUBTREES
1560 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
1562 rt->rt6i_table = ort->rt6i_table;
1567 #ifdef CONFIG_IPV6_ROUTE_INFO
1568 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
1569 struct in6_addr *gwaddr, int ifindex)
1571 struct fib6_node *fn;
1572 struct rt6_info *rt = NULL;
1573 struct fib6_table *table;
1575 table = fib6_get_table(RT6_TABLE_INFO);
1579 write_lock_bh(&table->tb6_lock);
1580 fn = fib6_locate(&table->tb6_root, prefix ,prefixlen, NULL, 0);
1584 for (rt = fn->leaf; rt; rt = rt->u.next) {
1585 if (rt->rt6i_dev->ifindex != ifindex)
1587 if ((rt->rt6i_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
1589 if (!ipv6_addr_equal(&rt->rt6i_gateway, gwaddr))
1591 dst_hold(&rt->u.dst);
1595 write_unlock_bh(&table->tb6_lock);
1599 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
1600 struct in6_addr *gwaddr, int ifindex,
1603 struct fib6_config cfg = {
1604 .fc_table = RT6_TABLE_INFO,
1606 .fc_ifindex = ifindex,
1607 .fc_dst_len = prefixlen,
1608 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
1609 RTF_UP | RTF_PREF(pref),
1612 ipv6_addr_copy(&cfg.fc_dst, prefix);
1613 ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1615 /* We should treat it as a default route if prefix length is 0. */
1617 cfg.fc_flags |= RTF_DEFAULT;
1619 ip6_route_add(&cfg);
1621 return rt6_get_route_info(prefix, prefixlen, gwaddr, ifindex);
1625 struct rt6_info *rt6_get_dflt_router(struct in6_addr *addr, struct net_device *dev)
1627 struct rt6_info *rt;
1628 struct fib6_table *table;
1630 table = fib6_get_table(RT6_TABLE_DFLT);
1634 write_lock_bh(&table->tb6_lock);
1635 for (rt = table->tb6_root.leaf; rt; rt=rt->u.next) {
1636 if (dev == rt->rt6i_dev &&
1637 ((rt->rt6i_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
1638 ipv6_addr_equal(&rt->rt6i_gateway, addr))
1642 dst_hold(&rt->u.dst);
1643 write_unlock_bh(&table->tb6_lock);
1647 struct rt6_info *rt6_add_dflt_router(struct in6_addr *gwaddr,
1648 struct net_device *dev,
1651 struct fib6_config cfg = {
1652 .fc_table = RT6_TABLE_DFLT,
1654 .fc_ifindex = dev->ifindex,
1655 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
1656 RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
1659 ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1661 ip6_route_add(&cfg);
1663 return rt6_get_dflt_router(gwaddr, dev);
1666 void rt6_purge_dflt_routers(void)
1668 struct rt6_info *rt;
1669 struct fib6_table *table;
1671 /* NOTE: Keep consistent with rt6_get_dflt_router */
1672 table = fib6_get_table(RT6_TABLE_DFLT);
1677 read_lock_bh(&table->tb6_lock);
1678 for (rt = table->tb6_root.leaf; rt; rt = rt->u.next) {
1679 if (rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) {
1680 dst_hold(&rt->u.dst);
1681 read_unlock_bh(&table->tb6_lock);
1686 read_unlock_bh(&table->tb6_lock);
1689 static void rtmsg_to_fib6_config(struct in6_rtmsg *rtmsg,
1690 struct fib6_config *cfg)
1692 memset(cfg, 0, sizeof(*cfg));
1694 cfg->fc_table = RT6_TABLE_MAIN;
1695 cfg->fc_ifindex = rtmsg->rtmsg_ifindex;
1696 cfg->fc_metric = rtmsg->rtmsg_metric;
1697 cfg->fc_expires = rtmsg->rtmsg_info;
1698 cfg->fc_dst_len = rtmsg->rtmsg_dst_len;
1699 cfg->fc_src_len = rtmsg->rtmsg_src_len;
1700 cfg->fc_flags = rtmsg->rtmsg_flags;
1702 ipv6_addr_copy(&cfg->fc_dst, &rtmsg->rtmsg_dst);
1703 ipv6_addr_copy(&cfg->fc_src, &rtmsg->rtmsg_src);
1704 ipv6_addr_copy(&cfg->fc_gateway, &rtmsg->rtmsg_gateway);
1707 int ipv6_route_ioctl(unsigned int cmd, void __user *arg)
1709 struct fib6_config cfg;
1710 struct in6_rtmsg rtmsg;
1714 case SIOCADDRT: /* Add a route */
1715 case SIOCDELRT: /* Delete a route */
1716 if (!capable(CAP_NET_ADMIN))
1718 err = copy_from_user(&rtmsg, arg,
1719 sizeof(struct in6_rtmsg));
1723 rtmsg_to_fib6_config(&rtmsg, &cfg);
1728 err = ip6_route_add(&cfg);
1731 err = ip6_route_del(&cfg);
1745 * Drop the packet on the floor
1748 static inline int ip6_pkt_drop(struct sk_buff *skb, int code)
1750 int type = ipv6_addr_type(&skb->nh.ipv6h->daddr);
1751 if (type == IPV6_ADDR_ANY || type == IPV6_ADDR_RESERVED)
1752 IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_INADDRERRORS);
1754 IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_OUTNOROUTES);
1755 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0, skb->dev);
1760 static int ip6_pkt_discard(struct sk_buff *skb)
1762 return ip6_pkt_drop(skb, ICMPV6_NOROUTE);
1765 static int ip6_pkt_discard_out(struct sk_buff *skb)
1767 skb->dev = skb->dst->dev;
1768 return ip6_pkt_discard(skb);
1771 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1773 static int ip6_pkt_prohibit(struct sk_buff *skb)
1775 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED);
1778 static int ip6_pkt_prohibit_out(struct sk_buff *skb)
1780 skb->dev = skb->dst->dev;
1781 return ip6_pkt_prohibit(skb);
1784 static int ip6_pkt_blk_hole(struct sk_buff *skb)
1793 * Allocate a dst for local (unicast / anycast) address.
1796 struct rt6_info *addrconf_dst_alloc(struct inet6_dev *idev,
1797 const struct in6_addr *addr,
1800 struct rt6_info *rt = ip6_dst_alloc();
1803 return ERR_PTR(-ENOMEM);
1805 dev_hold(&loopback_dev);
1808 rt->u.dst.flags = DST_HOST;
1809 rt->u.dst.input = ip6_input;
1810 rt->u.dst.output = ip6_output;
1811 rt->rt6i_dev = &loopback_dev;
1812 rt->rt6i_idev = idev;
1813 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
1814 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1815 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1816 rt->u.dst.obsolete = -1;
1818 rt->rt6i_flags = RTF_UP | RTF_NONEXTHOP;
1820 rt->rt6i_flags |= RTF_ANYCAST;
1822 rt->rt6i_flags |= RTF_LOCAL;
1823 rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
1824 if (rt->rt6i_nexthop == NULL) {
1825 dst_free(&rt->u.dst);
1826 return ERR_PTR(-ENOMEM);
1829 ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
1830 rt->rt6i_dst.plen = 128;
1831 rt->rt6i_table = fib6_get_table(RT6_TABLE_LOCAL);
1833 atomic_set(&rt->u.dst.__refcnt, 1);
1838 static int fib6_ifdown(struct rt6_info *rt, void *arg)
1840 if (((void*)rt->rt6i_dev == arg || arg == NULL) &&
1841 rt != &ip6_null_entry) {
1842 RT6_TRACE("deleted by ifdown %p\n", rt);
1848 void rt6_ifdown(struct net_device *dev)
1850 fib6_clean_all(fib6_ifdown, 0, dev);
1853 struct rt6_mtu_change_arg
1855 struct net_device *dev;
1859 static int rt6_mtu_change_route(struct rt6_info *rt, void *p_arg)
1861 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
1862 struct inet6_dev *idev;
1864 /* In IPv6 pmtu discovery is not optional,
1865 so that RTAX_MTU lock cannot disable it.
1866 We still use this lock to block changes
1867 caused by addrconf/ndisc.
1870 idev = __in6_dev_get(arg->dev);
1874 /* For administrative MTU increase, there is no way to discover
1875 IPv6 PMTU increase, so PMTU increase should be updated here.
1876 Since RFC 1981 doesn't include administrative MTU increase
1877 update PMTU increase is a MUST. (i.e. jumbo frame)
1880 If new MTU is less than route PMTU, this new MTU will be the
1881 lowest MTU in the path, update the route PMTU to reflect PMTU
1882 decreases; if new MTU is greater than route PMTU, and the
1883 old MTU is the lowest MTU in the path, update the route PMTU
1884 to reflect the increase. In this case if the other nodes' MTU
1885 also have the lowest MTU, TOO BIG MESSAGE will be lead to
1888 if (rt->rt6i_dev == arg->dev &&
1889 !dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1890 (dst_mtu(&rt->u.dst) > arg->mtu ||
1891 (dst_mtu(&rt->u.dst) < arg->mtu &&
1892 dst_mtu(&rt->u.dst) == idev->cnf.mtu6)))
1893 rt->u.dst.metrics[RTAX_MTU-1] = arg->mtu;
1894 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(arg->mtu);
1898 void rt6_mtu_change(struct net_device *dev, unsigned mtu)
1900 struct rt6_mtu_change_arg arg = {
1905 fib6_clean_all(rt6_mtu_change_route, 0, &arg);
1908 static struct nla_policy rtm_ipv6_policy[RTA_MAX+1] __read_mostly = {
1909 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) },
1910 [RTA_OIF] = { .type = NLA_U32 },
1911 [RTA_IIF] = { .type = NLA_U32 },
1912 [RTA_PRIORITY] = { .type = NLA_U32 },
1913 [RTA_METRICS] = { .type = NLA_NESTED },
1916 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
1917 struct fib6_config *cfg)
1920 struct nlattr *tb[RTA_MAX+1];
1923 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
1928 rtm = nlmsg_data(nlh);
1929 memset(cfg, 0, sizeof(*cfg));
1931 cfg->fc_table = rtm->rtm_table;
1932 cfg->fc_dst_len = rtm->rtm_dst_len;
1933 cfg->fc_src_len = rtm->rtm_src_len;
1934 cfg->fc_flags = RTF_UP;
1935 cfg->fc_protocol = rtm->rtm_protocol;
1937 if (rtm->rtm_type == RTN_UNREACHABLE)
1938 cfg->fc_flags |= RTF_REJECT;
1940 cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
1941 cfg->fc_nlinfo.nlh = nlh;
1943 if (tb[RTA_GATEWAY]) {
1944 nla_memcpy(&cfg->fc_gateway, tb[RTA_GATEWAY], 16);
1945 cfg->fc_flags |= RTF_GATEWAY;
1949 int plen = (rtm->rtm_dst_len + 7) >> 3;
1951 if (nla_len(tb[RTA_DST]) < plen)
1954 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
1958 int plen = (rtm->rtm_src_len + 7) >> 3;
1960 if (nla_len(tb[RTA_SRC]) < plen)
1963 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
1967 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
1969 if (tb[RTA_PRIORITY])
1970 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
1972 if (tb[RTA_METRICS]) {
1973 cfg->fc_mx = nla_data(tb[RTA_METRICS]);
1974 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
1978 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
1985 int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
1987 struct fib6_config cfg;
1990 err = rtm_to_fib6_config(skb, nlh, &cfg);
1994 return ip6_route_del(&cfg);
1997 int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
1999 struct fib6_config cfg;
2002 err = rtm_to_fib6_config(skb, nlh, &cfg);
2006 return ip6_route_add(&cfg);
2009 static inline size_t rt6_nlmsg_size(void)
2011 return NLMSG_ALIGN(sizeof(struct rtmsg))
2012 + nla_total_size(16) /* RTA_SRC */
2013 + nla_total_size(16) /* RTA_DST */
2014 + nla_total_size(16) /* RTA_GATEWAY */
2015 + nla_total_size(16) /* RTA_PREFSRC */
2016 + nla_total_size(4) /* RTA_TABLE */
2017 + nla_total_size(4) /* RTA_IIF */
2018 + nla_total_size(4) /* RTA_OIF */
2019 + nla_total_size(4) /* RTA_PRIORITY */
2020 + nla_total_size(sizeof(struct rta_cacheinfo));
2023 static int rt6_fill_node(struct sk_buff *skb, struct rt6_info *rt,
2024 struct in6_addr *dst, struct in6_addr *src,
2025 int iif, int type, u32 pid, u32 seq,
2026 int prefix, unsigned int flags)
2029 struct nlmsghdr *nlh;
2033 if (prefix) { /* user wants prefix routes only */
2034 if (!(rt->rt6i_flags & RTF_PREFIX_RT)) {
2035 /* success since this is not a prefix route */
2040 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*rtm), flags);
2044 rtm = nlmsg_data(nlh);
2045 rtm->rtm_family = AF_INET6;
2046 rtm->rtm_dst_len = rt->rt6i_dst.plen;
2047 rtm->rtm_src_len = rt->rt6i_src.plen;
2050 table = rt->rt6i_table->tb6_id;
2052 table = RT6_TABLE_UNSPEC;
2053 rtm->rtm_table = table;
2054 NLA_PUT_U32(skb, RTA_TABLE, table);
2055 if (rt->rt6i_flags&RTF_REJECT)
2056 rtm->rtm_type = RTN_UNREACHABLE;
2057 else if (rt->rt6i_dev && (rt->rt6i_dev->flags&IFF_LOOPBACK))
2058 rtm->rtm_type = RTN_LOCAL;
2060 rtm->rtm_type = RTN_UNICAST;
2062 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2063 rtm->rtm_protocol = rt->rt6i_protocol;
2064 if (rt->rt6i_flags&RTF_DYNAMIC)
2065 rtm->rtm_protocol = RTPROT_REDIRECT;
2066 else if (rt->rt6i_flags & RTF_ADDRCONF)
2067 rtm->rtm_protocol = RTPROT_KERNEL;
2068 else if (rt->rt6i_flags&RTF_DEFAULT)
2069 rtm->rtm_protocol = RTPROT_RA;
2071 if (rt->rt6i_flags&RTF_CACHE)
2072 rtm->rtm_flags |= RTM_F_CLONED;
2075 NLA_PUT(skb, RTA_DST, 16, dst);
2076 rtm->rtm_dst_len = 128;
2077 } else if (rtm->rtm_dst_len)
2078 NLA_PUT(skb, RTA_DST, 16, &rt->rt6i_dst.addr);
2079 #ifdef CONFIG_IPV6_SUBTREES
2081 NLA_PUT(skb, RTA_SRC, 16, src);
2082 rtm->rtm_src_len = 128;
2083 } else if (rtm->rtm_src_len)
2084 NLA_PUT(skb, RTA_SRC, 16, &rt->rt6i_src.addr);
2087 NLA_PUT_U32(skb, RTA_IIF, iif);
2089 struct in6_addr saddr_buf;
2090 if (ipv6_get_saddr(&rt->u.dst, dst, &saddr_buf) == 0)
2091 NLA_PUT(skb, RTA_PREFSRC, 16, &saddr_buf);
2094 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2095 goto nla_put_failure;
2097 if (rt->u.dst.neighbour)
2098 NLA_PUT(skb, RTA_GATEWAY, 16, &rt->u.dst.neighbour->primary_key);
2101 NLA_PUT_U32(skb, RTA_OIF, rt->rt6i_dev->ifindex);
2103 NLA_PUT_U32(skb, RTA_PRIORITY, rt->rt6i_metric);
2105 expires = rt->rt6i_expires ? rt->rt6i_expires - jiffies : 0;
2106 if (rtnl_put_cacheinfo(skb, &rt->u.dst, 0, 0, 0,
2107 expires, rt->u.dst.error) < 0)
2108 goto nla_put_failure;
2110 return nlmsg_end(skb, nlh);
2113 return nlmsg_cancel(skb, nlh);
2116 int rt6_dump_route(struct rt6_info *rt, void *p_arg)
2118 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
2121 if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
2122 struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
2123 prefix = (rtm->rtm_flags & RTM_F_PREFIX) != 0;
2127 return rt6_fill_node(arg->skb, rt, NULL, NULL, 0, RTM_NEWROUTE,
2128 NETLINK_CB(arg->cb->skb).pid, arg->cb->nlh->nlmsg_seq,
2129 prefix, NLM_F_MULTI);
2132 int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2134 struct nlattr *tb[RTA_MAX+1];
2135 struct rt6_info *rt;
2136 struct sk_buff *skb;
2141 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
2146 memset(&fl, 0, sizeof(fl));
2149 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
2152 ipv6_addr_copy(&fl.fl6_src, nla_data(tb[RTA_SRC]));
2156 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
2159 ipv6_addr_copy(&fl.fl6_dst, nla_data(tb[RTA_DST]));
2163 iif = nla_get_u32(tb[RTA_IIF]);
2166 fl.oif = nla_get_u32(tb[RTA_OIF]);
2169 struct net_device *dev;
2170 dev = __dev_get_by_index(iif);
2177 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2183 /* Reserve room for dummy headers, this skb can pass
2184 through good chunk of routing engine.
2186 skb->mac.raw = skb->data;
2187 skb_reserve(skb, MAX_HEADER + sizeof(struct ipv6hdr));
2189 rt = (struct rt6_info*) ip6_route_output(NULL, &fl);
2190 skb->dst = &rt->u.dst;
2192 err = rt6_fill_node(skb, rt, &fl.fl6_dst, &fl.fl6_src, iif,
2193 RTM_NEWROUTE, NETLINK_CB(in_skb).pid,
2194 nlh->nlmsg_seq, 0, 0);
2200 err = rtnl_unicast(skb, NETLINK_CB(in_skb).pid);
2205 void inet6_rt_notify(int event, struct rt6_info *rt, struct nl_info *info)
2207 struct sk_buff *skb;
2208 u32 pid = 0, seq = 0;
2209 struct nlmsghdr *nlh = NULL;
2216 seq = nlh->nlmsg_seq;
2219 skb = nlmsg_new(rt6_nlmsg_size(), gfp_any());
2223 err = rt6_fill_node(skb, rt, NULL, NULL, 0, event, pid, seq, 0, 0);
2224 /* failure implies BUG in rt6_nlmsg_size() */
2227 err = rtnl_notify(skb, pid, RTNLGRP_IPV6_ROUTE, nlh, gfp_any());
2230 rtnl_set_sk_err(RTNLGRP_IPV6_ROUTE, err);
2237 #ifdef CONFIG_PROC_FS
2239 #define RT6_INFO_LEN (32 + 4 + 32 + 4 + 32 + 40 + 5 + 1)
2250 static int rt6_info_route(struct rt6_info *rt, void *p_arg)
2252 struct rt6_proc_arg *arg = (struct rt6_proc_arg *) p_arg;
2254 if (arg->skip < arg->offset / RT6_INFO_LEN) {
2259 if (arg->len >= arg->length)
2262 arg->len += sprintf(arg->buffer + arg->len,
2263 NIP6_SEQFMT " %02x ",
2264 NIP6(rt->rt6i_dst.addr),
2267 #ifdef CONFIG_IPV6_SUBTREES
2268 arg->len += sprintf(arg->buffer + arg->len,
2269 NIP6_SEQFMT " %02x ",
2270 NIP6(rt->rt6i_src.addr),
2273 arg->len += sprintf(arg->buffer + arg->len,
2274 "00000000000000000000000000000000 00 ");
2277 if (rt->rt6i_nexthop) {
2278 arg->len += sprintf(arg->buffer + arg->len,
2280 NIP6(*((struct in6_addr *)rt->rt6i_nexthop->primary_key)));
2282 arg->len += sprintf(arg->buffer + arg->len,
2283 "00000000000000000000000000000000");
2285 arg->len += sprintf(arg->buffer + arg->len,
2286 " %08x %08x %08x %08x %8s\n",
2287 rt->rt6i_metric, atomic_read(&rt->u.dst.__refcnt),
2288 rt->u.dst.__use, rt->rt6i_flags,
2289 rt->rt6i_dev ? rt->rt6i_dev->name : "");
2293 static int rt6_proc_info(char *buffer, char **start, off_t offset, int length)
2295 struct rt6_proc_arg arg = {
2301 fib6_clean_all(rt6_info_route, 0, &arg);
2305 *start += offset % RT6_INFO_LEN;
2307 arg.len -= offset % RT6_INFO_LEN;
2309 if (arg.len > length)
2317 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
2319 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
2320 rt6_stats.fib_nodes, rt6_stats.fib_route_nodes,
2321 rt6_stats.fib_rt_alloc, rt6_stats.fib_rt_entries,
2322 rt6_stats.fib_rt_cache,
2323 atomic_read(&ip6_dst_ops.entries),
2324 rt6_stats.fib_discarded_routes);
2329 static int rt6_stats_seq_open(struct inode *inode, struct file *file)
2331 return single_open(file, rt6_stats_seq_show, NULL);
2334 static struct file_operations rt6_stats_seq_fops = {
2335 .owner = THIS_MODULE,
2336 .open = rt6_stats_seq_open,
2338 .llseek = seq_lseek,
2339 .release = single_release,
2341 #endif /* CONFIG_PROC_FS */
2343 #ifdef CONFIG_SYSCTL
2345 static int flush_delay;
2348 int ipv6_sysctl_rtcache_flush(ctl_table *ctl, int write, struct file * filp,
2349 void __user *buffer, size_t *lenp, loff_t *ppos)
2352 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2353 fib6_run_gc(flush_delay <= 0 ? ~0UL : (unsigned long)flush_delay);
2359 ctl_table ipv6_route_table[] = {
2361 .ctl_name = NET_IPV6_ROUTE_FLUSH,
2362 .procname = "flush",
2363 .data = &flush_delay,
2364 .maxlen = sizeof(int),
2366 .proc_handler = &ipv6_sysctl_rtcache_flush
2369 .ctl_name = NET_IPV6_ROUTE_GC_THRESH,
2370 .procname = "gc_thresh",
2371 .data = &ip6_dst_ops.gc_thresh,
2372 .maxlen = sizeof(int),
2374 .proc_handler = &proc_dointvec,
2377 .ctl_name = NET_IPV6_ROUTE_MAX_SIZE,
2378 .procname = "max_size",
2379 .data = &ip6_rt_max_size,
2380 .maxlen = sizeof(int),
2382 .proc_handler = &proc_dointvec,
2385 .ctl_name = NET_IPV6_ROUTE_GC_MIN_INTERVAL,
2386 .procname = "gc_min_interval",
2387 .data = &ip6_rt_gc_min_interval,
2388 .maxlen = sizeof(int),
2390 .proc_handler = &proc_dointvec_jiffies,
2391 .strategy = &sysctl_jiffies,
2394 .ctl_name = NET_IPV6_ROUTE_GC_TIMEOUT,
2395 .procname = "gc_timeout",
2396 .data = &ip6_rt_gc_timeout,
2397 .maxlen = sizeof(int),
2399 .proc_handler = &proc_dointvec_jiffies,
2400 .strategy = &sysctl_jiffies,
2403 .ctl_name = NET_IPV6_ROUTE_GC_INTERVAL,
2404 .procname = "gc_interval",
2405 .data = &ip6_rt_gc_interval,
2406 .maxlen = sizeof(int),
2408 .proc_handler = &proc_dointvec_jiffies,
2409 .strategy = &sysctl_jiffies,
2412 .ctl_name = NET_IPV6_ROUTE_GC_ELASTICITY,
2413 .procname = "gc_elasticity",
2414 .data = &ip6_rt_gc_elasticity,
2415 .maxlen = sizeof(int),
2417 .proc_handler = &proc_dointvec_jiffies,
2418 .strategy = &sysctl_jiffies,
2421 .ctl_name = NET_IPV6_ROUTE_MTU_EXPIRES,
2422 .procname = "mtu_expires",
2423 .data = &ip6_rt_mtu_expires,
2424 .maxlen = sizeof(int),
2426 .proc_handler = &proc_dointvec_jiffies,
2427 .strategy = &sysctl_jiffies,
2430 .ctl_name = NET_IPV6_ROUTE_MIN_ADVMSS,
2431 .procname = "min_adv_mss",
2432 .data = &ip6_rt_min_advmss,
2433 .maxlen = sizeof(int),
2435 .proc_handler = &proc_dointvec_jiffies,
2436 .strategy = &sysctl_jiffies,
2439 .ctl_name = NET_IPV6_ROUTE_GC_MIN_INTERVAL_MS,
2440 .procname = "gc_min_interval_ms",
2441 .data = &ip6_rt_gc_min_interval,
2442 .maxlen = sizeof(int),
2444 .proc_handler = &proc_dointvec_ms_jiffies,
2445 .strategy = &sysctl_ms_jiffies,
2452 void __init ip6_route_init(void)
2454 struct proc_dir_entry *p;
2456 ip6_dst_ops.kmem_cachep =
2457 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
2458 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
2460 #ifdef CONFIG_PROC_FS
2461 p = proc_net_create("ipv6_route", 0, rt6_proc_info);
2463 p->owner = THIS_MODULE;
2465 proc_net_fops_create("rt6_stats", S_IRUGO, &rt6_stats_seq_fops);
2470 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2475 void ip6_route_cleanup(void)
2477 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2478 fib6_rules_cleanup();
2480 #ifdef CONFIG_PROC_FS
2481 proc_net_remove("ipv6_route");
2482 proc_net_remove("rt6_stats");
2489 kmem_cache_destroy(ip6_dst_ops.kmem_cachep);