2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
7 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
8 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
10 * Released under the GPL
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/ptrace.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/interrupt.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/spinlock.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/dma-mapping.h>
33 #include <asm/8xx_immap.h>
34 #include <asm/pgtable.h>
35 #include <asm/mpc8xx.h>
37 #include <asm/uaccess.h>
42 /*************************************************/
44 #define FEC_MAX_MULTICAST_ADDRS 64
46 /*************************************************/
48 static char version[] __devinitdata =
49 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
51 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
52 MODULE_DESCRIPTION("Motorola 8xx FEC ethernet driver");
53 MODULE_LICENSE("GPL");
55 int fec_8xx_debug = -1; /* -1 == use FEC_8XX_DEF_MSG_ENABLE as value */
56 module_param(fec_8xx_debug, int, 0);
57 MODULE_PARM_DESC(fec_8xx_debug,
58 "FEC 8xx bitmapped debugging message enable value");
61 /*************************************************/
64 * Delay to wait for FEC reset command to complete (in us)
66 #define FEC_RESET_DELAY 50
68 /*****************************************************************************************/
70 static void fec_whack_reset(fec_t * fecp)
75 * Whack a reset. We should wait for this.
77 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
79 (FR(fecp, ecntrl) & FEC_ECNTRL_RESET) != 0 && i < FEC_RESET_DELAY;
83 if (i == FEC_RESET_DELAY)
84 printk(KERN_WARNING "FEC Reset timeout!\n");
88 /****************************************************************************/
91 * Transmitter timeout.
93 #define TX_TIMEOUT (2*HZ)
95 /****************************************************************************/
98 * Returns the CRC needed when filling in the hash table for
99 * multicast group filtering
100 * pAddr must point to a MAC address (6 bytes)
102 static __u32 fec_mulicast_calc_crc(char *pAddr)
107 __u32 crc = 0xffffffff;
110 for (byte_count = 0; byte_count < 6; byte_count++) {
111 byte = pAddr[byte_count];
112 for (bit_count = 0; bit_count < 8; bit_count++) {
115 if (msb ^ (byte & 0x1)) {
125 * Set or clear the multicast filter for this adaptor.
126 * Skeleton taken from sunlance driver.
127 * The CPM Ethernet implementation allows Multicast as well as individual
128 * MAC address filtering. Some of the drivers check to make sure it is
129 * a group multicast address, and discard those that are not. I guess I
130 * will do the same for now, but just remove the test if you want
131 * individual filtering as well (do the upper net layers want or support
132 * this kind of feature?).
134 static void fec_set_multicast_list(struct net_device *dev)
136 struct fec_enet_private *fep = netdev_priv(dev);
137 fec_t *fecp = fep->fecp;
138 struct dev_mc_list *pmc;
147 if ((dev->flags & IFF_PROMISC) != 0) {
149 spin_lock_irqsave(&fep->lock, flags);
150 FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
151 spin_unlock_irqrestore(&fep->lock, flags);
156 printk(KERN_WARNING DRV_MODULE_NAME
157 ": %s: Promiscuous mode enabled.\n", dev->name);
162 if ((dev->flags & IFF_ALLMULTI) != 0 ||
163 dev->mc_count > FEC_MAX_MULTICAST_ADDRS) {
165 * Catch all multicast addresses, set the filter to all 1's.
174 * Now populate the hash table
176 for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next) {
177 crc = fec_mulicast_calc_crc(pmc->dmi_addr);
178 temp = (crc & 0x3f) >> 1;
179 hash_index = ((temp & 0x01) << 4) |
180 ((temp & 0x02) << 2) |
182 ((temp & 0x08) >> 2) |
183 ((temp & 0x10) >> 4);
184 csrVal = (1 << hash_index);
192 spin_lock_irqsave(&fep->lock, flags);
193 FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
194 FW(fecp, hash_table_high, hthi);
195 FW(fecp, hash_table_low, htlo);
196 spin_unlock_irqrestore(&fep->lock, flags);
199 static int fec_set_mac_address(struct net_device *dev, void *addr)
201 struct sockaddr *mac = addr;
202 struct fec_enet_private *fep = netdev_priv(dev);
203 struct fec *fecp = fep->fecp;
205 __u32 addrhi, addrlo;
208 /* Get pointer to SCC area in parameter RAM. */
209 for (i = 0; i < 6; i++)
210 dev->dev_addr[i] = mac->sa_data[i];
213 * Set station address.
215 addrhi = ((__u32) dev->dev_addr[0] << 24) |
216 ((__u32) dev->dev_addr[1] << 16) |
217 ((__u32) dev->dev_addr[2] << 8) |
218 (__u32) dev->dev_addr[3];
219 addrlo = ((__u32) dev->dev_addr[4] << 24) |
220 ((__u32) dev->dev_addr[5] << 16);
222 spin_lock_irqsave(&fep->lock, flags);
223 FW(fecp, addr_low, addrhi);
224 FW(fecp, addr_high, addrlo);
225 spin_unlock_irqrestore(&fep->lock, flags);
231 * This function is called to start or restart the FEC during a link
232 * change. This only happens when switching between half and full
235 void fec_restart(struct net_device *dev, int duplex, int speed)
238 immap_t *immap = (immap_t *) IMAP_ADDR;
241 struct fec_enet_private *fep = netdev_priv(dev);
242 struct fec *fecp = fep->fecp;
243 const struct fec_platform_info *fpi = fep->fpi;
247 __u32 addrhi, addrlo;
249 fec_whack_reset(fep->fecp);
252 * Set station address.
254 addrhi = ((__u32) dev->dev_addr[0] << 24) |
255 ((__u32) dev->dev_addr[1] << 16) |
256 ((__u32) dev->dev_addr[2] << 8) |
257 (__u32) dev->dev_addr[3];
258 addrlo = ((__u32) dev->dev_addr[4] << 24) |
259 ((__u32) dev->dev_addr[5] << 16);
260 FW(fecp, addr_low, addrhi);
261 FW(fecp, addr_high, addrlo);
264 * Reset all multicast.
266 FW(fecp, hash_table_high, 0);
267 FW(fecp, hash_table_low, 0);
270 * Set maximum receive buffer size.
272 FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
273 FW(fecp, r_hash, PKT_MAXBUF_SIZE);
276 * Set receive and transmit descriptor base.
278 FW(fecp, r_des_start, iopa((__u32) (fep->rx_bd_base)));
279 FW(fecp, x_des_start, iopa((__u32) (fep->tx_bd_base)));
281 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
282 fep->tx_free = fep->tx_ring;
283 fep->cur_rx = fep->rx_bd_base;
286 * Reset SKB receive buffers
288 for (i = 0; i < fep->rx_ring; i++) {
289 if ((skb = fep->rx_skbuff[i]) == NULL)
291 fep->rx_skbuff[i] = NULL;
296 * Initialize the receive buffer descriptors.
298 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
299 skb = dev_alloc_skb(ENET_RX_FRSIZE);
301 printk(KERN_WARNING DRV_MODULE_NAME
302 ": %s Memory squeeze, unable to allocate skb\n",
304 fep->stats.rx_dropped++;
307 fep->rx_skbuff[i] = skb;
309 CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data,
310 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
312 CBDW_DATLEN(bdp, 0); /* zero */
313 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
314 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
317 * if we failed, fillup remainder
319 for (; i < fep->rx_ring; i++, bdp++) {
320 fep->rx_skbuff[i] = NULL;
321 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
325 * Reset SKB transmit buffers.
327 for (i = 0; i < fep->tx_ring; i++) {
328 if ((skb = fep->tx_skbuff[i]) == NULL)
330 fep->tx_skbuff[i] = NULL;
335 * ...and the same for transmit.
337 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
338 fep->tx_skbuff[i] = NULL;
339 CBDW_BUFADDR(bdp, virt_to_bus(NULL));
341 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
345 * Enable big endian and don't care about SDMA FC.
347 FW(fecp, fun_code, 0x78000000);
352 FW(fecp, mii_speed, fep->fec_phy_speed);
355 * Clear any outstanding interrupt.
357 FW(fecp, ievent, 0xffc0);
358 FW(fecp, ivec, (fpi->fec_irq / 2) << 29);
361 * adjust to speed (only for DUET & RMII)
364 cptr = in_be32(&immap->im_cpm.cp_cptr);
365 switch (fpi->fec_no) {
368 * check if in RMII mode
370 if ((cptr & 0x100) == 0)
375 else if (speed == 100)
380 * check if in RMII mode
382 if ((cptr & 0x80) == 0)
387 else if (speed == 100)
393 out_be32(&immap->im_cpm.cp_cptr, cptr);
396 FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
398 * adjust to duplex mode
401 FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
402 FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */
404 FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
405 FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */
409 * Enable interrupts we wish to service.
411 FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
412 FEC_ENET_RXF | FEC_ENET_RXB);
415 * And last, enable the transmit and receive processing.
417 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
418 FW(fecp, r_des_active, 0x01000000);
421 void fec_stop(struct net_device *dev)
423 struct fec_enet_private *fep = netdev_priv(dev);
424 fec_t *fecp = fep->fecp;
428 if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
429 return; /* already down */
431 FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */
432 for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
433 i < FEC_RESET_DELAY; i++)
436 if (i == FEC_RESET_DELAY)
437 printk(KERN_WARNING DRV_MODULE_NAME
438 ": %s FEC timeout on graceful transmit stop\n",
441 * Disable FEC. Let only MII interrupts.
444 FW(fecp, ecntrl, ~FEC_ECNTRL_ETHER_EN);
447 * Reset SKB transmit buffers.
449 for (i = 0; i < fep->tx_ring; i++) {
450 if ((skb = fep->tx_skbuff[i]) == NULL)
452 fep->tx_skbuff[i] = NULL;
457 * Reset SKB receive buffers
459 for (i = 0; i < fep->rx_ring; i++) {
460 if ((skb = fep->rx_skbuff[i]) == NULL)
462 fep->rx_skbuff[i] = NULL;
467 /* common receive function */
468 static int fec_enet_rx_common(struct fec_enet_private *ep,
469 struct net_device *dev, int budget)
471 fec_t *fecp = fep->fecp;
472 const struct fec_platform_info *fpi = fep->fpi;
474 struct sk_buff *skb, *skbn, *skbt;
480 * First, grab all of the stats for the incoming packet.
481 * These get messed up if we get called due to a busy condition.
485 /* clear RX status bits for napi*/
487 FW(fecp, ievent, FEC_ENET_RXF | FEC_ENET_RXB);
489 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
491 curidx = bdp - fep->rx_bd_base;
494 * Since we have allocated space to hold a complete frame,
495 * the last indicator should be set.
497 if ((sc & BD_ENET_RX_LAST) == 0)
498 printk(KERN_WARNING DRV_MODULE_NAME
499 ": %s rcv is not +last\n",
505 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
506 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
507 fep->stats.rx_errors++;
508 /* Frame too long or too short. */
509 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
510 fep->stats.rx_length_errors++;
511 /* Frame alignment */
512 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
513 fep->stats.rx_frame_errors++;
515 if (sc & BD_ENET_RX_CR)
516 fep->stats.rx_crc_errors++;
518 if (sc & BD_ENET_RX_OV)
519 fep->stats.rx_crc_errors++;
521 skbn = fep->rx_skbuff[curidx];
522 BUG_ON(skbn == NULL);
525 skb = fep->rx_skbuff[curidx];
529 * Process the incoming frame.
531 fep->stats.rx_packets++;
532 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
533 fep->stats.rx_bytes += pkt_len + 4;
535 if (pkt_len <= fpi->rx_copybreak) {
536 /* +2 to make IP header L1 cache aligned */
537 skbn = dev_alloc_skb(pkt_len + 2);
539 skb_reserve(skbn, 2); /* align IP header */
540 skb_copy_from_linear_data(skb,
549 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
552 skb_put(skb, pkt_len); /* Make room */
553 skb->protocol = eth_type_trans(skb, dev);
558 netif_receive_skb(skb);
560 printk(KERN_WARNING DRV_MODULE_NAME
561 ": %s Memory squeeze, dropping packet.\n",
563 fep->stats.rx_dropped++;
568 fep->rx_skbuff[curidx] = skbn;
569 CBDW_BUFADDR(bdp, dma_map_single(NULL, skbn->data,
570 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
573 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
576 * Update BD pointer to next entry.
578 if ((sc & BD_ENET_RX_WRAP) == 0)
581 bdp = fep->rx_bd_base;
584 * Doing this here will keep the FEC running while we process
585 * incoming frames. On a heavily loaded network, we should be
586 * able to keep up at the expense of system resources.
588 FW(fecp, r_des_active, 0x01000000);
590 if (received >= budget)
598 if (received < budget) {
599 netif_rx_complete(dev, &fep->napi);
601 /* enable RX interrupt bits */
602 FS(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
609 static void fec_enet_tx(struct net_device *dev)
611 struct fec_enet_private *fep = netdev_priv(dev);
614 int dirtyidx, do_wake;
617 spin_lock(&fep->lock);
621 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
623 dirtyidx = bdp - fep->tx_bd_base;
625 if (fep->tx_free == fep->tx_ring)
628 skb = fep->tx_skbuff[dirtyidx];
633 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
634 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
635 fep->stats.tx_errors++;
636 if (sc & BD_ENET_TX_HB) /* No heartbeat */
637 fep->stats.tx_heartbeat_errors++;
638 if (sc & BD_ENET_TX_LC) /* Late collision */
639 fep->stats.tx_window_errors++;
640 if (sc & BD_ENET_TX_RL) /* Retrans limit */
641 fep->stats.tx_aborted_errors++;
642 if (sc & BD_ENET_TX_UN) /* Underrun */
643 fep->stats.tx_fifo_errors++;
644 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
645 fep->stats.tx_carrier_errors++;
647 fep->stats.tx_packets++;
649 if (sc & BD_ENET_TX_READY)
650 printk(KERN_WARNING DRV_MODULE_NAME
651 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
655 * Deferred means some collisions occurred during transmit,
656 * but we eventually sent the packet OK.
658 if (sc & BD_ENET_TX_DEF)
659 fep->stats.collisions++;
662 * Free the sk buffer associated with this last transmit.
664 dev_kfree_skb_irq(skb);
665 fep->tx_skbuff[dirtyidx] = NULL;
668 * Update pointer to next buffer descriptor to be transmitted.
670 if ((sc & BD_ENET_TX_WRAP) == 0)
673 bdp = fep->tx_bd_base;
676 * Since we have freed up a buffer, the ring is no longer
685 spin_unlock(&fep->lock);
687 if (do_wake && netif_queue_stopped(dev))
688 netif_wake_queue(dev);
692 * The interrupt handler.
693 * This is called from the MPC core interrupt.
696 fec_enet_interrupt(int irq, void *dev_id)
698 struct net_device *dev = dev_id;
699 struct fec_enet_private *fep;
700 const struct fec_platform_info *fpi;
703 __u32 int_events_napi;
705 if (unlikely(dev == NULL))
708 fep = netdev_priv(dev);
713 * Get the interrupt events that caused us to be here.
715 while ((int_events = FR(fecp, ievent) & FR(fecp, imask)) != 0) {
718 FW(fecp, ievent, int_events);
720 int_events_napi = int_events & ~(FEC_ENET_RXF | FEC_ENET_RXB);
721 FW(fecp, ievent, int_events_napi);
724 if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
725 FEC_ENET_BABT | FEC_ENET_EBERR)) != 0)
726 printk(KERN_WARNING DRV_MODULE_NAME
727 ": %s FEC ERROR(s) 0x%x\n",
728 dev->name, int_events);
730 if ((int_events & FEC_ENET_RXF) != 0) {
732 fec_enet_rx_common(fep, dev, ~0);
734 if (netif_rx_schedule_prep(dev, &fep->napi)) {
735 /* disable rx interrupts */
736 FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
737 __netif_rx_schedule(dev, &fep->napi);
739 printk(KERN_ERR DRV_MODULE_NAME
740 ": %s driver bug! interrupt while in poll!\n",
742 FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
747 if ((int_events & FEC_ENET_TXF) != 0)
754 /* This interrupt occurs when the PHY detects a link change. */
756 fec_mii_link_interrupt(int irq, void *dev_id)
758 struct net_device *dev = dev_id;
759 struct fec_enet_private *fep;
760 const struct fec_platform_info *fpi;
762 if (unlikely(dev == NULL))
765 fep = netdev_priv(dev);
772 * Acknowledge the interrupt if possible. If we have not
773 * found the PHY yet we can't process or acknowledge the
774 * interrupt now. Instead we ignore this interrupt for now,
775 * which we can do since it is edge triggered. It will be
776 * acknowledged later by fec_enet_open().
781 fec_mii_ack_int(dev);
782 fec_mii_link_status_change_check(dev, 0);
788 /**********************************************************************************/
790 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
792 struct fec_enet_private *fep = netdev_priv(dev);
793 fec_t *fecp = fep->fecp;
798 spin_lock_irqsave(&fep->tx_lock, flags);
801 * Fill in a Tx ring entry
805 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
806 netif_stop_queue(dev);
807 spin_unlock_irqrestore(&fep->tx_lock, flags);
810 * Ooops. All transmit buffers are full. Bail out.
811 * This should not happen, since the tx queue should be stopped.
813 printk(KERN_WARNING DRV_MODULE_NAME
814 ": %s tx queue full!.\n", dev->name);
818 curidx = bdp - fep->tx_bd_base;
820 * Clear all of the status flags.
822 CBDC_SC(bdp, BD_ENET_TX_STATS);
827 fep->tx_skbuff[curidx] = skb;
829 fep->stats.tx_bytes += skb->len;
832 * Push the data cache so the CPM does not get stale memory data.
834 CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data,
835 skb->len, DMA_TO_DEVICE));
836 CBDW_DATLEN(bdp, skb->len);
838 dev->trans_start = jiffies;
841 * If this was the last BD in the ring, start at the beginning again.
843 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
846 fep->cur_tx = fep->tx_bd_base;
849 netif_stop_queue(dev);
852 * Trigger transmission start
854 CBDS_SC(bdp, BD_ENET_TX_READY | BD_ENET_TX_INTR |
855 BD_ENET_TX_LAST | BD_ENET_TX_TC);
856 FW(fecp, x_des_active, 0x01000000);
858 spin_unlock_irqrestore(&fep->tx_lock, flags);
863 static void fec_timeout(struct net_device *dev)
865 struct fec_enet_private *fep = netdev_priv(dev);
867 fep->stats.tx_errors++;
870 netif_wake_queue(dev);
872 /* check link status again */
873 fec_mii_link_status_change_check(dev, 0);
876 static int fec_enet_open(struct net_device *dev)
878 struct fec_enet_private *fep = netdev_priv(dev);
879 const struct fec_platform_info *fpi = fep->fpi;
882 napi_enable(&fep->napi);
884 /* Install our interrupt handler. */
885 if (request_irq(fpi->fec_irq, fec_enet_interrupt, 0, "fec", dev) != 0) {
886 printk(KERN_ERR DRV_MODULE_NAME
887 ": %s Could not allocate FEC IRQ!", dev->name);
888 napi_disable(&fep->napi);
892 /* Install our phy interrupt handler */
893 if (fpi->phy_irq != -1 &&
894 request_irq(fpi->phy_irq, fec_mii_link_interrupt, 0, "fec-phy",
896 printk(KERN_ERR DRV_MODULE_NAME
897 ": %s Could not allocate PHY IRQ!", dev->name);
898 free_irq(fpi->fec_irq, dev);
899 napi_disable(&fep->napi);
904 fec_mii_startup(dev);
905 netif_carrier_off(dev);
906 fec_mii_link_status_change_check(dev, 1);
908 spin_lock_irqsave(&fep->lock, flags);
909 fec_restart(dev, 1, 100); /* XXX this sucks */
910 spin_unlock_irqrestore(&fep->lock, flags);
912 netif_carrier_on(dev);
913 netif_start_queue(dev);
918 static int fec_enet_close(struct net_device *dev)
920 struct fec_enet_private *fep = netdev_priv(dev);
921 const struct fec_platform_info *fpi = fep->fpi;
924 netif_stop_queue(dev);
925 napi_disable(&fep->napi);
926 netif_carrier_off(dev);
929 fec_mii_shutdown(dev);
931 spin_lock_irqsave(&fep->lock, flags);
933 spin_unlock_irqrestore(&fep->lock, flags);
935 /* release any irqs */
936 if (fpi->phy_irq != -1)
937 free_irq(fpi->phy_irq, dev);
938 free_irq(fpi->fec_irq, dev);
943 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
945 struct fec_enet_private *fep = netdev_priv(dev);
949 static int fec_enet_poll(struct napi_struct *napi, int budget)
951 struct fec_enet_private *fep = container_of(napi, struct fec_enet_private, napi);
952 struct net_device *dev = fep->dev;
954 return fec_enet_rx_common(fep, dev, budget);
957 /*************************************************************************/
959 static void fec_get_drvinfo(struct net_device *dev,
960 struct ethtool_drvinfo *info)
962 strcpy(info->driver, DRV_MODULE_NAME);
963 strcpy(info->version, DRV_MODULE_VERSION);
966 static int fec_get_regs_len(struct net_device *dev)
968 return sizeof(fec_t);
971 static void fec_get_regs(struct net_device *dev, struct ethtool_regs *regs,
974 struct fec_enet_private *fep = netdev_priv(dev);
977 if (regs->len < sizeof(fec_t))
981 spin_lock_irqsave(&fep->lock, flags);
982 memcpy_fromio(p, fep->fecp, sizeof(fec_t));
983 spin_unlock_irqrestore(&fep->lock, flags);
986 static int fec_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
988 struct fec_enet_private *fep = netdev_priv(dev);
992 spin_lock_irqsave(&fep->lock, flags);
993 rc = mii_ethtool_gset(&fep->mii_if, cmd);
994 spin_unlock_irqrestore(&fep->lock, flags);
999 static int fec_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1001 struct fec_enet_private *fep = netdev_priv(dev);
1002 unsigned long flags;
1005 spin_lock_irqsave(&fep->lock, flags);
1006 rc = mii_ethtool_sset(&fep->mii_if, cmd);
1007 spin_unlock_irqrestore(&fep->lock, flags);
1012 static int fec_nway_reset(struct net_device *dev)
1014 struct fec_enet_private *fep = netdev_priv(dev);
1015 return mii_nway_restart(&fep->mii_if);
1018 static __u32 fec_get_msglevel(struct net_device *dev)
1020 struct fec_enet_private *fep = netdev_priv(dev);
1021 return fep->msg_enable;
1024 static void fec_set_msglevel(struct net_device *dev, __u32 value)
1026 struct fec_enet_private *fep = netdev_priv(dev);
1027 fep->msg_enable = value;
1030 static const struct ethtool_ops fec_ethtool_ops = {
1031 .get_drvinfo = fec_get_drvinfo,
1032 .get_regs_len = fec_get_regs_len,
1033 .get_settings = fec_get_settings,
1034 .set_settings = fec_set_settings,
1035 .nway_reset = fec_nway_reset,
1036 .get_link = ethtool_op_get_link,
1037 .get_msglevel = fec_get_msglevel,
1038 .set_msglevel = fec_set_msglevel,
1039 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1040 .set_sg = ethtool_op_set_sg,
1041 .get_regs = fec_get_regs,
1044 static int fec_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1046 struct fec_enet_private *fep = netdev_priv(dev);
1047 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
1048 unsigned long flags;
1051 if (!netif_running(dev))
1054 spin_lock_irqsave(&fep->lock, flags);
1055 rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL);
1056 spin_unlock_irqrestore(&fep->lock, flags);
1060 int fec_8xx_init_one(const struct fec_platform_info *fpi,
1061 struct net_device **devp)
1063 immap_t *immap = (immap_t *) IMAP_ADDR;
1064 static int fec_8xx_version_printed = 0;
1065 struct net_device *dev = NULL;
1066 struct fec_enet_private *fep = NULL;
1075 switch (fpi->fec_no) {
1077 fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec;
1081 fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec2;
1088 if (fec_8xx_version_printed++ == 0)
1089 printk(KERN_INFO "%s", version);
1091 i = sizeof(*fep) + (sizeof(struct sk_buff **) *
1092 (fpi->rx_ring + fpi->tx_ring));
1094 dev = alloc_etherdev(i);
1100 fep = netdev_priv(dev);
1103 /* partial reset of FEC */
1104 fec_whack_reset(fecp);
1106 /* point rx_skbuff, tx_skbuff */
1107 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1108 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1114 spin_lock_init(&fep->lock);
1115 spin_lock_init(&fep->tx_lock);
1118 * Set the Ethernet address.
1120 for (i = 0; i < 6; i++)
1121 dev->dev_addr[i] = fpi->macaddr[i];
1123 fep->ring_base = dma_alloc_coherent(NULL,
1124 (fpi->tx_ring + fpi->rx_ring) *
1125 sizeof(cbd_t), &fep->ring_mem_addr,
1127 if (fep->ring_base == NULL) {
1128 printk(KERN_ERR DRV_MODULE_NAME
1129 ": %s dma alloc failed.\n", dev->name);
1135 * Set receive and transmit descriptor base.
1137 fep->rx_bd_base = fep->ring_base;
1138 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1140 /* initialize ring size variables */
1141 fep->tx_ring = fpi->tx_ring;
1142 fep->rx_ring = fpi->rx_ring;
1145 if (fpi->phy_irq != -1 &&
1146 (fpi->phy_irq >= SIU_IRQ0 && fpi->phy_irq < SIU_LEVEL7)) {
1148 siel = in_be32(&immap->im_siu_conf.sc_siel);
1149 if ((fpi->phy_irq & 1) == 0)
1150 siel |= (0x80000000 >> fpi->phy_irq);
1152 siel &= ~(0x80000000 >> (fpi->phy_irq & ~1));
1153 out_be32(&immap->im_siu_conf.sc_siel, siel);
1157 * The FEC Ethernet specific entries in the device structure.
1159 dev->open = fec_enet_open;
1160 dev->hard_start_xmit = fec_enet_start_xmit;
1161 dev->tx_timeout = fec_timeout;
1162 dev->watchdog_timeo = TX_TIMEOUT;
1163 dev->stop = fec_enet_close;
1164 dev->get_stats = fec_enet_get_stats;
1165 dev->set_multicast_list = fec_set_multicast_list;
1166 dev->set_mac_address = fec_set_mac_address;
1167 netif_napi_add(dev, &fec->napi,
1168 fec_enet_poll, fpi->napi_weight);
1170 dev->ethtool_ops = &fec_ethtool_ops;
1171 dev->do_ioctl = fec_ioctl;
1173 fep->fec_phy_speed =
1174 ((((fpi->sys_clk + 4999999) / 2500000) / 2) & 0x3F) << 1;
1176 init_timer(&fep->phy_timer_list);
1178 /* partial reset of FEC so that only MII works */
1179 FW(fecp, mii_speed, fep->fec_phy_speed);
1180 FW(fecp, ievent, 0xffc0);
1181 FW(fecp, ivec, (fpi->fec_irq / 2) << 29);
1183 FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
1184 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
1186 netif_carrier_off(dev);
1188 err = register_netdev(dev);
1193 if (fpi->use_mdio) {
1194 fep->mii_if.dev = dev;
1195 fep->mii_if.mdio_read = fec_mii_read;
1196 fep->mii_if.mdio_write = fec_mii_write;
1197 fep->mii_if.phy_id_mask = 0x1f;
1198 fep->mii_if.reg_num_mask = 0x1f;
1199 fep->mii_if.phy_id = fec_mii_phy_id_detect(dev);
1209 fec_whack_reset(fecp);
1212 unregister_netdev(dev);
1216 dma_free_coherent(NULL,
1219 sizeof(cbd_t), fep->ring_base,
1220 fep->ring_mem_addr);
1227 int fec_8xx_cleanup_one(struct net_device *dev)
1229 struct fec_enet_private *fep = netdev_priv(dev);
1230 fec_t *fecp = fep->fecp;
1231 const struct fec_platform_info *fpi = fep->fpi;
1233 fec_whack_reset(fecp);
1235 unregister_netdev(dev);
1237 dma_free_coherent(NULL, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1238 fep->ring_base, fep->ring_mem_addr);
1245 /**************************************************************************************/
1246 /**************************************************************************************/
1247 /**************************************************************************************/
1249 static int __init fec_8xx_init(void)
1251 return fec_8xx_platform_init();
1254 static void __exit fec_8xx_cleanup(void)
1256 fec_8xx_platform_cleanup();
1259 /**************************************************************************************/
1260 /**************************************************************************************/
1261 /**************************************************************************************/
1263 module_init(fec_8xx_init);
1264 module_exit(fec_8xx_cleanup);