Merge branches 'master', 'omap1-upstream' and 'orion' into devel
[linux-2.6] / fs / udf / inode.c
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/module.h>
36 #include <linux/pagemap.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/slab.h>
40
41 #include "udf_i.h"
42 #include "udf_sb.h"
43
44 MODULE_AUTHOR("Ben Fennema");
45 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
46 MODULE_LICENSE("GPL");
47
48 #define EXTENT_MERGE_SIZE 5
49
50 static mode_t udf_convert_permissions(struct fileEntry *);
51 static int udf_update_inode(struct inode *, int);
52 static void udf_fill_inode(struct inode *, struct buffer_head *);
53 static int udf_alloc_i_data(struct inode *inode, size_t size);
54 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
55                                         sector_t *, int *);
56 static int8_t udf_insert_aext(struct inode *, struct extent_position,
57                               kernel_lb_addr, uint32_t);
58 static void udf_split_extents(struct inode *, int *, int, int,
59                               kernel_long_ad[EXTENT_MERGE_SIZE], int *);
60 static void udf_prealloc_extents(struct inode *, int, int,
61                                  kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62 static void udf_merge_extents(struct inode *,
63                               kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64 static void udf_update_extents(struct inode *,
65                                kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
66                                struct extent_position *);
67 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
68
69 /*
70  * udf_delete_inode
71  *
72  * PURPOSE
73  *      Clean-up before the specified inode is destroyed.
74  *
75  * DESCRIPTION
76  *      This routine is called when the kernel destroys an inode structure
77  *      ie. when iput() finds i_count == 0.
78  *
79  * HISTORY
80  *      July 1, 1997 - Andrew E. Mileski
81  *      Written, tested, and released.
82  *
83  *  Called at the last iput() if i_nlink is zero.
84  */
85 void udf_delete_inode(struct inode *inode)
86 {
87         truncate_inode_pages(&inode->i_data, 0);
88
89         if (is_bad_inode(inode))
90                 goto no_delete;
91
92         inode->i_size = 0;
93         udf_truncate(inode);
94         lock_kernel();
95
96         udf_update_inode(inode, IS_SYNC(inode));
97         udf_free_inode(inode);
98
99         unlock_kernel();
100         return;
101
102 no_delete:
103         clear_inode(inode);
104 }
105
106 /*
107  * If we are going to release inode from memory, we discard preallocation and
108  * truncate last inode extent to proper length. We could use drop_inode() but
109  * it's called under inode_lock and thus we cannot mark inode dirty there.  We
110  * use clear_inode() but we have to make sure to write inode as it's not written
111  * automatically.
112  */
113 void udf_clear_inode(struct inode *inode)
114 {
115         struct udf_inode_info *iinfo;
116         if (!(inode->i_sb->s_flags & MS_RDONLY)) {
117                 lock_kernel();
118                 /* Discard preallocation for directories, symlinks, etc. */
119                 udf_discard_prealloc(inode);
120                 udf_truncate_tail_extent(inode);
121                 unlock_kernel();
122                 write_inode_now(inode, 0);
123         }
124         iinfo = UDF_I(inode);
125         kfree(iinfo->i_ext.i_data);
126         iinfo->i_ext.i_data = NULL;
127 }
128
129 static int udf_writepage(struct page *page, struct writeback_control *wbc)
130 {
131         return block_write_full_page(page, udf_get_block, wbc);
132 }
133
134 static int udf_readpage(struct file *file, struct page *page)
135 {
136         return block_read_full_page(page, udf_get_block);
137 }
138
139 static int udf_write_begin(struct file *file, struct address_space *mapping,
140                         loff_t pos, unsigned len, unsigned flags,
141                         struct page **pagep, void **fsdata)
142 {
143         *pagep = NULL;
144         return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
145                                 udf_get_block);
146 }
147
148 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
149 {
150         return generic_block_bmap(mapping, block, udf_get_block);
151 }
152
153 const struct address_space_operations udf_aops = {
154         .readpage       = udf_readpage,
155         .writepage      = udf_writepage,
156         .sync_page      = block_sync_page,
157         .write_begin            = udf_write_begin,
158         .write_end              = generic_write_end,
159         .bmap           = udf_bmap,
160 };
161
162 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
163 {
164         struct page *page;
165         char *kaddr;
166         struct udf_inode_info *iinfo = UDF_I(inode);
167         struct writeback_control udf_wbc = {
168                 .sync_mode = WB_SYNC_NONE,
169                 .nr_to_write = 1,
170         };
171
172         /* from now on we have normal address_space methods */
173         inode->i_data.a_ops = &udf_aops;
174
175         if (!iinfo->i_lenAlloc) {
176                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
177                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
178                 else
179                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
180                 mark_inode_dirty(inode);
181                 return;
182         }
183
184         page = grab_cache_page(inode->i_mapping, 0);
185         BUG_ON(!PageLocked(page));
186
187         if (!PageUptodate(page)) {
188                 kaddr = kmap(page);
189                 memset(kaddr + iinfo->i_lenAlloc, 0x00,
190                        PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
191                 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
192                         iinfo->i_lenAlloc);
193                 flush_dcache_page(page);
194                 SetPageUptodate(page);
195                 kunmap(page);
196         }
197         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
198                iinfo->i_lenAlloc);
199         iinfo->i_lenAlloc = 0;
200         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
201                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
202         else
203                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
204
205         inode->i_data.a_ops->writepage(page, &udf_wbc);
206         page_cache_release(page);
207
208         mark_inode_dirty(inode);
209 }
210
211 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
212                                            int *err)
213 {
214         int newblock;
215         struct buffer_head *dbh = NULL;
216         kernel_lb_addr eloc;
217         uint32_t elen;
218         uint8_t alloctype;
219         struct extent_position epos;
220
221         struct udf_fileident_bh sfibh, dfibh;
222         loff_t f_pos = udf_ext0_offset(inode);
223         int size = udf_ext0_offset(inode) + inode->i_size;
224         struct fileIdentDesc cfi, *sfi, *dfi;
225         struct udf_inode_info *iinfo = UDF_I(inode);
226
227         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
228                 alloctype = ICBTAG_FLAG_AD_SHORT;
229         else
230                 alloctype = ICBTAG_FLAG_AD_LONG;
231
232         if (!inode->i_size) {
233                 iinfo->i_alloc_type = alloctype;
234                 mark_inode_dirty(inode);
235                 return NULL;
236         }
237
238         /* alloc block, and copy data to it */
239         *block = udf_new_block(inode->i_sb, inode,
240                                iinfo->i_location.partitionReferenceNum,
241                                iinfo->i_location.logicalBlockNum, err);
242         if (!(*block))
243                 return NULL;
244         newblock = udf_get_pblock(inode->i_sb, *block,
245                                   iinfo->i_location.partitionReferenceNum,
246                                 0);
247         if (!newblock)
248                 return NULL;
249         dbh = udf_tgetblk(inode->i_sb, newblock);
250         if (!dbh)
251                 return NULL;
252         lock_buffer(dbh);
253         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
254         set_buffer_uptodate(dbh);
255         unlock_buffer(dbh);
256         mark_buffer_dirty_inode(dbh, inode);
257
258         sfibh.soffset = sfibh.eoffset =
259                         f_pos & (inode->i_sb->s_blocksize - 1);
260         sfibh.sbh = sfibh.ebh = NULL;
261         dfibh.soffset = dfibh.eoffset = 0;
262         dfibh.sbh = dfibh.ebh = dbh;
263         while (f_pos < size) {
264                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
265                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
266                                          NULL, NULL, NULL);
267                 if (!sfi) {
268                         brelse(dbh);
269                         return NULL;
270                 }
271                 iinfo->i_alloc_type = alloctype;
272                 sfi->descTag.tagLocation = cpu_to_le32(*block);
273                 dfibh.soffset = dfibh.eoffset;
274                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
275                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
276                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
277                                  sfi->fileIdent +
278                                         le16_to_cpu(sfi->lengthOfImpUse))) {
279                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
280                         brelse(dbh);
281                         return NULL;
282                 }
283         }
284         mark_buffer_dirty_inode(dbh, inode);
285
286         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
287                 iinfo->i_lenAlloc);
288         iinfo->i_lenAlloc = 0;
289         eloc.logicalBlockNum = *block;
290         eloc.partitionReferenceNum =
291                                 iinfo->i_location.partitionReferenceNum;
292         elen = inode->i_sb->s_blocksize;
293         iinfo->i_lenExtents = elen;
294         epos.bh = NULL;
295         epos.block = iinfo->i_location;
296         epos.offset = udf_file_entry_alloc_offset(inode);
297         udf_add_aext(inode, &epos, eloc, elen, 0);
298         /* UniqueID stuff */
299
300         brelse(epos.bh);
301         mark_inode_dirty(inode);
302         return dbh;
303 }
304
305 static int udf_get_block(struct inode *inode, sector_t block,
306                          struct buffer_head *bh_result, int create)
307 {
308         int err, new;
309         struct buffer_head *bh;
310         sector_t phys = 0;
311         struct udf_inode_info *iinfo;
312
313         if (!create) {
314                 phys = udf_block_map(inode, block);
315                 if (phys)
316                         map_bh(bh_result, inode->i_sb, phys);
317                 return 0;
318         }
319
320         err = -EIO;
321         new = 0;
322         bh = NULL;
323
324         lock_kernel();
325
326         if (block < 0)
327                 goto abort_negative;
328
329         iinfo = UDF_I(inode);
330         if (block == iinfo->i_next_alloc_block + 1) {
331                 iinfo->i_next_alloc_block++;
332                 iinfo->i_next_alloc_goal++;
333         }
334
335         err = 0;
336
337         bh = inode_getblk(inode, block, &err, &phys, &new);
338         BUG_ON(bh);
339         if (err)
340                 goto abort;
341         BUG_ON(!phys);
342
343         if (new)
344                 set_buffer_new(bh_result);
345         map_bh(bh_result, inode->i_sb, phys);
346
347 abort:
348         unlock_kernel();
349         return err;
350
351 abort_negative:
352         udf_warning(inode->i_sb, "udf_get_block", "block < 0");
353         goto abort;
354 }
355
356 static struct buffer_head *udf_getblk(struct inode *inode, long block,
357                                       int create, int *err)
358 {
359         struct buffer_head *bh;
360         struct buffer_head dummy;
361
362         dummy.b_state = 0;
363         dummy.b_blocknr = -1000;
364         *err = udf_get_block(inode, block, &dummy, create);
365         if (!*err && buffer_mapped(&dummy)) {
366                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
367                 if (buffer_new(&dummy)) {
368                         lock_buffer(bh);
369                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
370                         set_buffer_uptodate(bh);
371                         unlock_buffer(bh);
372                         mark_buffer_dirty_inode(bh, inode);
373                 }
374                 return bh;
375         }
376
377         return NULL;
378 }
379
380 /* Extend the file by 'blocks' blocks, return the number of extents added */
381 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
382                     kernel_long_ad *last_ext, sector_t blocks)
383 {
384         sector_t add;
385         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
386         struct super_block *sb = inode->i_sb;
387         kernel_lb_addr prealloc_loc = {};
388         int prealloc_len = 0;
389         struct udf_inode_info *iinfo;
390
391         /* The previous extent is fake and we should not extend by anything
392          * - there's nothing to do... */
393         if (!blocks && fake)
394                 return 0;
395
396         iinfo = UDF_I(inode);
397         /* Round the last extent up to a multiple of block size */
398         if (last_ext->extLength & (sb->s_blocksize - 1)) {
399                 last_ext->extLength =
400                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
401                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
402                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
403                 iinfo->i_lenExtents =
404                         (iinfo->i_lenExtents + sb->s_blocksize - 1) &
405                         ~(sb->s_blocksize - 1);
406         }
407
408         /* Last extent are just preallocated blocks? */
409         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
410                                                 EXT_NOT_RECORDED_ALLOCATED) {
411                 /* Save the extent so that we can reattach it to the end */
412                 prealloc_loc = last_ext->extLocation;
413                 prealloc_len = last_ext->extLength;
414                 /* Mark the extent as a hole */
415                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
416                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
417                 last_ext->extLocation.logicalBlockNum = 0;
418                 last_ext->extLocation.partitionReferenceNum = 0;
419         }
420
421         /* Can we merge with the previous extent? */
422         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
423                                         EXT_NOT_RECORDED_NOT_ALLOCATED) {
424                 add = ((1 << 30) - sb->s_blocksize -
425                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
426                         sb->s_blocksize_bits;
427                 if (add > blocks)
428                         add = blocks;
429                 blocks -= add;
430                 last_ext->extLength += add << sb->s_blocksize_bits;
431         }
432
433         if (fake) {
434                 udf_add_aext(inode, last_pos, last_ext->extLocation,
435                              last_ext->extLength, 1);
436                 count++;
437         } else
438                 udf_write_aext(inode, last_pos, last_ext->extLocation,
439                                 last_ext->extLength, 1);
440
441         /* Managed to do everything necessary? */
442         if (!blocks)
443                 goto out;
444
445         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
446         last_ext->extLocation.logicalBlockNum = 0;
447         last_ext->extLocation.partitionReferenceNum = 0;
448         add = (1 << (30-sb->s_blocksize_bits)) - 1;
449         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
450                                 (add << sb->s_blocksize_bits);
451
452         /* Create enough extents to cover the whole hole */
453         while (blocks > add) {
454                 blocks -= add;
455                 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
456                                  last_ext->extLength, 1) == -1)
457                         return -1;
458                 count++;
459         }
460         if (blocks) {
461                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
462                         (blocks << sb->s_blocksize_bits);
463                 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
464                                  last_ext->extLength, 1) == -1)
465                         return -1;
466                 count++;
467         }
468
469 out:
470         /* Do we have some preallocated blocks saved? */
471         if (prealloc_len) {
472                 if (udf_add_aext(inode, last_pos, prealloc_loc,
473                                  prealloc_len, 1) == -1)
474                         return -1;
475                 last_ext->extLocation = prealloc_loc;
476                 last_ext->extLength = prealloc_len;
477                 count++;
478         }
479
480         /* last_pos should point to the last written extent... */
481         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
482                 last_pos->offset -= sizeof(short_ad);
483         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
484                 last_pos->offset -= sizeof(long_ad);
485         else
486                 return -1;
487
488         return count;
489 }
490
491 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
492                                         int *err, sector_t *phys, int *new)
493 {
494         static sector_t last_block;
495         struct buffer_head *result = NULL;
496         kernel_long_ad laarr[EXTENT_MERGE_SIZE];
497         struct extent_position prev_epos, cur_epos, next_epos;
498         int count = 0, startnum = 0, endnum = 0;
499         uint32_t elen = 0, tmpelen;
500         kernel_lb_addr eloc, tmpeloc;
501         int c = 1;
502         loff_t lbcount = 0, b_off = 0;
503         uint32_t newblocknum, newblock;
504         sector_t offset = 0;
505         int8_t etype;
506         struct udf_inode_info *iinfo = UDF_I(inode);
507         int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
508         int lastblock = 0;
509
510         prev_epos.offset = udf_file_entry_alloc_offset(inode);
511         prev_epos.block = iinfo->i_location;
512         prev_epos.bh = NULL;
513         cur_epos = next_epos = prev_epos;
514         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
515
516         /* find the extent which contains the block we are looking for.
517            alternate between laarr[0] and laarr[1] for locations of the
518            current extent, and the previous extent */
519         do {
520                 if (prev_epos.bh != cur_epos.bh) {
521                         brelse(prev_epos.bh);
522                         get_bh(cur_epos.bh);
523                         prev_epos.bh = cur_epos.bh;
524                 }
525                 if (cur_epos.bh != next_epos.bh) {
526                         brelse(cur_epos.bh);
527                         get_bh(next_epos.bh);
528                         cur_epos.bh = next_epos.bh;
529                 }
530
531                 lbcount += elen;
532
533                 prev_epos.block = cur_epos.block;
534                 cur_epos.block = next_epos.block;
535
536                 prev_epos.offset = cur_epos.offset;
537                 cur_epos.offset = next_epos.offset;
538
539                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
540                 if (etype == -1)
541                         break;
542
543                 c = !c;
544
545                 laarr[c].extLength = (etype << 30) | elen;
546                 laarr[c].extLocation = eloc;
547
548                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
549                         pgoal = eloc.logicalBlockNum +
550                                 ((elen + inode->i_sb->s_blocksize - 1) >>
551                                  inode->i_sb->s_blocksize_bits);
552
553                 count++;
554         } while (lbcount + elen <= b_off);
555
556         b_off -= lbcount;
557         offset = b_off >> inode->i_sb->s_blocksize_bits;
558         /*
559          * Move prev_epos and cur_epos into indirect extent if we are at
560          * the pointer to it
561          */
562         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
563         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
564
565         /* if the extent is allocated and recorded, return the block
566            if the extent is not a multiple of the blocksize, round up */
567
568         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
569                 if (elen & (inode->i_sb->s_blocksize - 1)) {
570                         elen = EXT_RECORDED_ALLOCATED |
571                                 ((elen + inode->i_sb->s_blocksize - 1) &
572                                  ~(inode->i_sb->s_blocksize - 1));
573                         etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
574                 }
575                 brelse(prev_epos.bh);
576                 brelse(cur_epos.bh);
577                 brelse(next_epos.bh);
578                 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
579                 *phys = newblock;
580                 return NULL;
581         }
582
583         last_block = block;
584         /* Are we beyond EOF? */
585         if (etype == -1) {
586                 int ret;
587
588                 if (count) {
589                         if (c)
590                                 laarr[0] = laarr[1];
591                         startnum = 1;
592                 } else {
593                         /* Create a fake extent when there's not one */
594                         memset(&laarr[0].extLocation, 0x00,
595                                 sizeof(kernel_lb_addr));
596                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
597                         /* Will udf_extend_file() create real extent from
598                            a fake one? */
599                         startnum = (offset > 0);
600                 }
601                 /* Create extents for the hole between EOF and offset */
602                 ret = udf_extend_file(inode, &prev_epos, laarr, offset);
603                 if (ret == -1) {
604                         brelse(prev_epos.bh);
605                         brelse(cur_epos.bh);
606                         brelse(next_epos.bh);
607                         /* We don't really know the error here so we just make
608                          * something up */
609                         *err = -ENOSPC;
610                         return NULL;
611                 }
612                 c = 0;
613                 offset = 0;
614                 count += ret;
615                 /* We are not covered by a preallocated extent? */
616                 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
617                                                 EXT_NOT_RECORDED_ALLOCATED) {
618                         /* Is there any real extent? - otherwise we overwrite
619                          * the fake one... */
620                         if (count)
621                                 c = !c;
622                         laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
623                                 inode->i_sb->s_blocksize;
624                         memset(&laarr[c].extLocation, 0x00,
625                                 sizeof(kernel_lb_addr));
626                         count++;
627                         endnum++;
628                 }
629                 endnum = c + 1;
630                 lastblock = 1;
631         } else {
632                 endnum = startnum = ((count > 2) ? 2 : count);
633
634                 /* if the current extent is in position 0,
635                    swap it with the previous */
636                 if (!c && count != 1) {
637                         laarr[2] = laarr[0];
638                         laarr[0] = laarr[1];
639                         laarr[1] = laarr[2];
640                         c = 1;
641                 }
642
643                 /* if the current block is located in an extent,
644                    read the next extent */
645                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
646                 if (etype != -1) {
647                         laarr[c + 1].extLength = (etype << 30) | elen;
648                         laarr[c + 1].extLocation = eloc;
649                         count++;
650                         startnum++;
651                         endnum++;
652                 } else
653                         lastblock = 1;
654         }
655
656         /* if the current extent is not recorded but allocated, get the
657          * block in the extent corresponding to the requested block */
658         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
659                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
660         else { /* otherwise, allocate a new block */
661                 if (iinfo->i_next_alloc_block == block)
662                         goal = iinfo->i_next_alloc_goal;
663
664                 if (!goal) {
665                         if (!(goal = pgoal)) /* XXX: what was intended here? */
666                                 goal = iinfo->i_location.logicalBlockNum + 1;
667                 }
668
669                 newblocknum = udf_new_block(inode->i_sb, inode,
670                                 iinfo->i_location.partitionReferenceNum,
671                                 goal, err);
672                 if (!newblocknum) {
673                         brelse(prev_epos.bh);
674                         *err = -ENOSPC;
675                         return NULL;
676                 }
677                 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
678         }
679
680         /* if the extent the requsted block is located in contains multiple
681          * blocks, split the extent into at most three extents. blocks prior
682          * to requested block, requested block, and blocks after requested
683          * block */
684         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
685
686 #ifdef UDF_PREALLOCATE
687         /* preallocate blocks */
688         udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
689 #endif
690
691         /* merge any continuous blocks in laarr */
692         udf_merge_extents(inode, laarr, &endnum);
693
694         /* write back the new extents, inserting new extents if the new number
695          * of extents is greater than the old number, and deleting extents if
696          * the new number of extents is less than the old number */
697         udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
698
699         brelse(prev_epos.bh);
700
701         newblock = udf_get_pblock(inode->i_sb, newblocknum,
702                                 iinfo->i_location.partitionReferenceNum, 0);
703         if (!newblock)
704                 return NULL;
705         *phys = newblock;
706         *err = 0;
707         *new = 1;
708         iinfo->i_next_alloc_block = block;
709         iinfo->i_next_alloc_goal = newblocknum;
710         inode->i_ctime = current_fs_time(inode->i_sb);
711
712         if (IS_SYNC(inode))
713                 udf_sync_inode(inode);
714         else
715                 mark_inode_dirty(inode);
716
717         return result;
718 }
719
720 static void udf_split_extents(struct inode *inode, int *c, int offset,
721                               int newblocknum,
722                               kernel_long_ad laarr[EXTENT_MERGE_SIZE],
723                               int *endnum)
724 {
725         unsigned long blocksize = inode->i_sb->s_blocksize;
726         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
727
728         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
729             (laarr[*c].extLength >> 30) ==
730                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
731                 int curr = *c;
732                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
733                             blocksize - 1) >> blocksize_bits;
734                 int8_t etype = (laarr[curr].extLength >> 30);
735
736                 if (blen == 1)
737                         ;
738                 else if (!offset || blen == offset + 1) {
739                         laarr[curr + 2] = laarr[curr + 1];
740                         laarr[curr + 1] = laarr[curr];
741                 } else {
742                         laarr[curr + 3] = laarr[curr + 1];
743                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
744                 }
745
746                 if (offset) {
747                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
748                                 udf_free_blocks(inode->i_sb, inode,
749                                                 laarr[curr].extLocation,
750                                                 0, offset);
751                                 laarr[curr].extLength =
752                                         EXT_NOT_RECORDED_NOT_ALLOCATED |
753                                         (offset << blocksize_bits);
754                                 laarr[curr].extLocation.logicalBlockNum = 0;
755                                 laarr[curr].extLocation.
756                                                 partitionReferenceNum = 0;
757                         } else
758                                 laarr[curr].extLength = (etype << 30) |
759                                         (offset << blocksize_bits);
760                         curr++;
761                         (*c)++;
762                         (*endnum)++;
763                 }
764
765                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
766                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
767                         laarr[curr].extLocation.partitionReferenceNum =
768                                 UDF_I(inode)->i_location.partitionReferenceNum;
769                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
770                         blocksize;
771                 curr++;
772
773                 if (blen != offset + 1) {
774                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
775                                 laarr[curr].extLocation.logicalBlockNum +=
776                                                                 offset + 1;
777                         laarr[curr].extLength = (etype << 30) |
778                                 ((blen - (offset + 1)) << blocksize_bits);
779                         curr++;
780                         (*endnum)++;
781                 }
782         }
783 }
784
785 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
786                                  kernel_long_ad laarr[EXTENT_MERGE_SIZE],
787                                  int *endnum)
788 {
789         int start, length = 0, currlength = 0, i;
790
791         if (*endnum >= (c + 1)) {
792                 if (!lastblock)
793                         return;
794                 else
795                         start = c;
796         } else {
797                 if ((laarr[c + 1].extLength >> 30) ==
798                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
799                         start = c + 1;
800                         length = currlength =
801                                 (((laarr[c + 1].extLength &
802                                         UDF_EXTENT_LENGTH_MASK) +
803                                 inode->i_sb->s_blocksize - 1) >>
804                                 inode->i_sb->s_blocksize_bits);
805                 } else
806                         start = c;
807         }
808
809         for (i = start + 1; i <= *endnum; i++) {
810                 if (i == *endnum) {
811                         if (lastblock)
812                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
813                 } else if ((laarr[i].extLength >> 30) ==
814                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
815                         length += (((laarr[i].extLength &
816                                                 UDF_EXTENT_LENGTH_MASK) +
817                                     inode->i_sb->s_blocksize - 1) >>
818                                     inode->i_sb->s_blocksize_bits);
819                 } else
820                         break;
821         }
822
823         if (length) {
824                 int next = laarr[start].extLocation.logicalBlockNum +
825                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
826                           inode->i_sb->s_blocksize - 1) >>
827                           inode->i_sb->s_blocksize_bits);
828                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
829                                 laarr[start].extLocation.partitionReferenceNum,
830                                 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
831                                 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
832                                 currlength);
833                 if (numalloc)   {
834                         if (start == (c + 1))
835                                 laarr[start].extLength +=
836                                         (numalloc <<
837                                          inode->i_sb->s_blocksize_bits);
838                         else {
839                                 memmove(&laarr[c + 2], &laarr[c + 1],
840                                         sizeof(long_ad) * (*endnum - (c + 1)));
841                                 (*endnum)++;
842                                 laarr[c + 1].extLocation.logicalBlockNum = next;
843                                 laarr[c + 1].extLocation.partitionReferenceNum =
844                                         laarr[c].extLocation.
845                                                         partitionReferenceNum;
846                                 laarr[c + 1].extLength =
847                                         EXT_NOT_RECORDED_ALLOCATED |
848                                         (numalloc <<
849                                          inode->i_sb->s_blocksize_bits);
850                                 start = c + 1;
851                         }
852
853                         for (i = start + 1; numalloc && i < *endnum; i++) {
854                                 int elen = ((laarr[i].extLength &
855                                                 UDF_EXTENT_LENGTH_MASK) +
856                                             inode->i_sb->s_blocksize - 1) >>
857                                             inode->i_sb->s_blocksize_bits;
858
859                                 if (elen > numalloc) {
860                                         laarr[i].extLength -=
861                                                 (numalloc <<
862                                                  inode->i_sb->s_blocksize_bits);
863                                         numalloc = 0;
864                                 } else {
865                                         numalloc -= elen;
866                                         if (*endnum > (i + 1))
867                                                 memmove(&laarr[i],
868                                                         &laarr[i + 1],
869                                                         sizeof(long_ad) *
870                                                         (*endnum - (i + 1)));
871                                         i--;
872                                         (*endnum)--;
873                                 }
874                         }
875                         UDF_I(inode)->i_lenExtents +=
876                                 numalloc << inode->i_sb->s_blocksize_bits;
877                 }
878         }
879 }
880
881 static void udf_merge_extents(struct inode *inode,
882                               kernel_long_ad laarr[EXTENT_MERGE_SIZE],
883                               int *endnum)
884 {
885         int i;
886         unsigned long blocksize = inode->i_sb->s_blocksize;
887         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
888
889         for (i = 0; i < (*endnum - 1); i++) {
890                 kernel_long_ad *li /*l[i]*/ = &laarr[i];
891                 kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
892
893                 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
894                         (((li->extLength >> 30) ==
895                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
896                         ((lip1->extLocation.logicalBlockNum -
897                           li->extLocation.logicalBlockNum) ==
898                         (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
899                         blocksize - 1) >> blocksize_bits)))) {
900
901                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
902                                 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
903                                 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
904                                 lip1->extLength = (lip1->extLength -
905                                                   (li->extLength &
906                                                    UDF_EXTENT_LENGTH_MASK) +
907                                                    UDF_EXTENT_LENGTH_MASK) &
908                                                         ~(blocksize - 1);
909                                 li->extLength = (li->extLength &
910                                                  UDF_EXTENT_FLAG_MASK) +
911                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
912                                                 blocksize;
913                                 lip1->extLocation.logicalBlockNum =
914                                         li->extLocation.logicalBlockNum +
915                                         ((li->extLength &
916                                                 UDF_EXTENT_LENGTH_MASK) >>
917                                                 blocksize_bits);
918                         } else {
919                                 li->extLength = lip1->extLength +
920                                         (((li->extLength &
921                                                 UDF_EXTENT_LENGTH_MASK) +
922                                          blocksize - 1) & ~(blocksize - 1));
923                                 if (*endnum > (i + 2))
924                                         memmove(&laarr[i + 1], &laarr[i + 2],
925                                                 sizeof(long_ad) *
926                                                 (*endnum - (i + 2)));
927                                 i--;
928                                 (*endnum)--;
929                         }
930                 } else if (((li->extLength >> 30) ==
931                                 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
932                            ((lip1->extLength >> 30) ==
933                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
934                         udf_free_blocks(inode->i_sb, inode, li->extLocation, 0,
935                                         ((li->extLength &
936                                           UDF_EXTENT_LENGTH_MASK) +
937                                          blocksize - 1) >> blocksize_bits);
938                         li->extLocation.logicalBlockNum = 0;
939                         li->extLocation.partitionReferenceNum = 0;
940
941                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
942                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
943                              blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
944                                 lip1->extLength = (lip1->extLength -
945                                                    (li->extLength &
946                                                    UDF_EXTENT_LENGTH_MASK) +
947                                                    UDF_EXTENT_LENGTH_MASK) &
948                                                    ~(blocksize - 1);
949                                 li->extLength = (li->extLength &
950                                                  UDF_EXTENT_FLAG_MASK) +
951                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
952                                                 blocksize;
953                         } else {
954                                 li->extLength = lip1->extLength +
955                                         (((li->extLength &
956                                                 UDF_EXTENT_LENGTH_MASK) +
957                                           blocksize - 1) & ~(blocksize - 1));
958                                 if (*endnum > (i + 2))
959                                         memmove(&laarr[i + 1], &laarr[i + 2],
960                                                 sizeof(long_ad) *
961                                                 (*endnum - (i + 2)));
962                                 i--;
963                                 (*endnum)--;
964                         }
965                 } else if ((li->extLength >> 30) ==
966                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
967                         udf_free_blocks(inode->i_sb, inode,
968                                         li->extLocation, 0,
969                                         ((li->extLength &
970                                                 UDF_EXTENT_LENGTH_MASK) +
971                                          blocksize - 1) >> blocksize_bits);
972                         li->extLocation.logicalBlockNum = 0;
973                         li->extLocation.partitionReferenceNum = 0;
974                         li->extLength = (li->extLength &
975                                                 UDF_EXTENT_LENGTH_MASK) |
976                                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
977                 }
978         }
979 }
980
981 static void udf_update_extents(struct inode *inode,
982                                kernel_long_ad laarr[EXTENT_MERGE_SIZE],
983                                int startnum, int endnum,
984                                struct extent_position *epos)
985 {
986         int start = 0, i;
987         kernel_lb_addr tmploc;
988         uint32_t tmplen;
989
990         if (startnum > endnum) {
991                 for (i = 0; i < (startnum - endnum); i++)
992                         udf_delete_aext(inode, *epos, laarr[i].extLocation,
993                                         laarr[i].extLength);
994         } else if (startnum < endnum) {
995                 for (i = 0; i < (endnum - startnum); i++) {
996                         udf_insert_aext(inode, *epos, laarr[i].extLocation,
997                                         laarr[i].extLength);
998                         udf_next_aext(inode, epos, &laarr[i].extLocation,
999                                       &laarr[i].extLength, 1);
1000                         start++;
1001                 }
1002         }
1003
1004         for (i = start; i < endnum; i++) {
1005                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1006                 udf_write_aext(inode, epos, laarr[i].extLocation,
1007                                laarr[i].extLength, 1);
1008         }
1009 }
1010
1011 struct buffer_head *udf_bread(struct inode *inode, int block,
1012                               int create, int *err)
1013 {
1014         struct buffer_head *bh = NULL;
1015
1016         bh = udf_getblk(inode, block, create, err);
1017         if (!bh)
1018                 return NULL;
1019
1020         if (buffer_uptodate(bh))
1021                 return bh;
1022
1023         ll_rw_block(READ, 1, &bh);
1024
1025         wait_on_buffer(bh);
1026         if (buffer_uptodate(bh))
1027                 return bh;
1028
1029         brelse(bh);
1030         *err = -EIO;
1031         return NULL;
1032 }
1033
1034 void udf_truncate(struct inode *inode)
1035 {
1036         int offset;
1037         int err;
1038         struct udf_inode_info *iinfo;
1039
1040         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1041               S_ISLNK(inode->i_mode)))
1042                 return;
1043         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1044                 return;
1045
1046         lock_kernel();
1047         iinfo = UDF_I(inode);
1048         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1049                 if (inode->i_sb->s_blocksize <
1050                                 (udf_file_entry_alloc_offset(inode) +
1051                                  inode->i_size)) {
1052                         udf_expand_file_adinicb(inode, inode->i_size, &err);
1053                         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1054                                 inode->i_size = iinfo->i_lenAlloc;
1055                                 unlock_kernel();
1056                                 return;
1057                         } else
1058                                 udf_truncate_extents(inode);
1059                 } else {
1060                         offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1061                         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1062                                 0x00, inode->i_sb->s_blocksize -
1063                                 offset - udf_file_entry_alloc_offset(inode));
1064                         iinfo->i_lenAlloc = inode->i_size;
1065                 }
1066         } else {
1067                 block_truncate_page(inode->i_mapping, inode->i_size,
1068                                     udf_get_block);
1069                 udf_truncate_extents(inode);
1070         }
1071
1072         inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1073         if (IS_SYNC(inode))
1074                 udf_sync_inode(inode);
1075         else
1076                 mark_inode_dirty(inode);
1077         unlock_kernel();
1078 }
1079
1080 static void __udf_read_inode(struct inode *inode)
1081 {
1082         struct buffer_head *bh = NULL;
1083         struct fileEntry *fe;
1084         uint16_t ident;
1085         struct udf_inode_info *iinfo = UDF_I(inode);
1086
1087         /*
1088          * Set defaults, but the inode is still incomplete!
1089          * Note: get_new_inode() sets the following on a new inode:
1090          *      i_sb = sb
1091          *      i_no = ino
1092          *      i_flags = sb->s_flags
1093          *      i_state = 0
1094          * clean_inode(): zero fills and sets
1095          *      i_count = 1
1096          *      i_nlink = 1
1097          *      i_op = NULL;
1098          */
1099         bh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 0, &ident);
1100         if (!bh) {
1101                 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1102                        inode->i_ino);
1103                 make_bad_inode(inode);
1104                 return;
1105         }
1106
1107         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1108             ident != TAG_IDENT_USE) {
1109                 printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1110                                 "failed ident=%d\n", inode->i_ino, ident);
1111                 brelse(bh);
1112                 make_bad_inode(inode);
1113                 return;
1114         }
1115
1116         fe = (struct fileEntry *)bh->b_data;
1117
1118         if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1119                 struct buffer_head *ibh = NULL, *nbh = NULL;
1120                 struct indirectEntry *ie;
1121
1122                 ibh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 1,
1123                                         &ident);
1124                 if (ident == TAG_IDENT_IE) {
1125                         if (ibh) {
1126                                 kernel_lb_addr loc;
1127                                 ie = (struct indirectEntry *)ibh->b_data;
1128
1129                                 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1130
1131                                 if (ie->indirectICB.extLength &&
1132                                     (nbh = udf_read_ptagged(inode->i_sb, loc, 0,
1133                                                             &ident))) {
1134                                         if (ident == TAG_IDENT_FE ||
1135                                             ident == TAG_IDENT_EFE) {
1136                                                 memcpy(&iinfo->i_location,
1137                                                        &loc,
1138                                                        sizeof(kernel_lb_addr));
1139                                                 brelse(bh);
1140                                                 brelse(ibh);
1141                                                 brelse(nbh);
1142                                                 __udf_read_inode(inode);
1143                                                 return;
1144                                         } else {
1145                                                 brelse(nbh);
1146                                                 brelse(ibh);
1147                                         }
1148                                 } else {
1149                                         brelse(ibh);
1150                                 }
1151                         }
1152                 } else {
1153                         brelse(ibh);
1154                 }
1155         } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1156                 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1157                        le16_to_cpu(fe->icbTag.strategyType));
1158                 brelse(bh);
1159                 make_bad_inode(inode);
1160                 return;
1161         }
1162         udf_fill_inode(inode, bh);
1163
1164         brelse(bh);
1165 }
1166
1167 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1168 {
1169         struct fileEntry *fe;
1170         struct extendedFileEntry *efe;
1171         time_t convtime;
1172         long convtime_usec;
1173         int offset;
1174         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1175         struct udf_inode_info *iinfo = UDF_I(inode);
1176
1177         fe = (struct fileEntry *)bh->b_data;
1178         efe = (struct extendedFileEntry *)bh->b_data;
1179
1180         if (fe->icbTag.strategyType == cpu_to_le16(4))
1181                 iinfo->i_strat4096 = 0;
1182         else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1183                 iinfo->i_strat4096 = 1;
1184
1185         iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1186                                                         ICBTAG_FLAG_AD_MASK;
1187         iinfo->i_unique = 0;
1188         iinfo->i_lenEAttr = 0;
1189         iinfo->i_lenExtents = 0;
1190         iinfo->i_lenAlloc = 0;
1191         iinfo->i_next_alloc_block = 0;
1192         iinfo->i_next_alloc_goal = 0;
1193         if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1194                 iinfo->i_efe = 1;
1195                 iinfo->i_use = 0;
1196                 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1197                                         sizeof(struct extendedFileEntry))) {
1198                         make_bad_inode(inode);
1199                         return;
1200                 }
1201                 memcpy(iinfo->i_ext.i_data,
1202                        bh->b_data + sizeof(struct extendedFileEntry),
1203                        inode->i_sb->s_blocksize -
1204                                         sizeof(struct extendedFileEntry));
1205         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1206                 iinfo->i_efe = 0;
1207                 iinfo->i_use = 0;
1208                 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1209                                                 sizeof(struct fileEntry))) {
1210                         make_bad_inode(inode);
1211                         return;
1212                 }
1213                 memcpy(iinfo->i_ext.i_data,
1214                        bh->b_data + sizeof(struct fileEntry),
1215                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1216         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1217                 iinfo->i_efe = 0;
1218                 iinfo->i_use = 1;
1219                 iinfo->i_lenAlloc = le32_to_cpu(
1220                                 ((struct unallocSpaceEntry *)bh->b_data)->
1221                                  lengthAllocDescs);
1222                 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1223                                         sizeof(struct unallocSpaceEntry))) {
1224                         make_bad_inode(inode);
1225                         return;
1226                 }
1227                 memcpy(iinfo->i_ext.i_data,
1228                        bh->b_data + sizeof(struct unallocSpaceEntry),
1229                        inode->i_sb->s_blocksize -
1230                                         sizeof(struct unallocSpaceEntry));
1231                 return;
1232         }
1233
1234         inode->i_uid = le32_to_cpu(fe->uid);
1235         if (inode->i_uid == -1 ||
1236             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1237             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1238                 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1239
1240         inode->i_gid = le32_to_cpu(fe->gid);
1241         if (inode->i_gid == -1 ||
1242             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1243             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1244                 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1245
1246         inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1247         if (!inode->i_nlink)
1248                 inode->i_nlink = 1;
1249
1250         inode->i_size = le64_to_cpu(fe->informationLength);
1251         iinfo->i_lenExtents = inode->i_size;
1252
1253         inode->i_mode = udf_convert_permissions(fe);
1254         inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
1255
1256         if (iinfo->i_efe == 0) {
1257                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1258                         (inode->i_sb->s_blocksize_bits - 9);
1259
1260                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1261                                       lets_to_cpu(fe->accessTime))) {
1262                         inode->i_atime.tv_sec = convtime;
1263                         inode->i_atime.tv_nsec = convtime_usec * 1000;
1264                 } else {
1265                         inode->i_atime = sbi->s_record_time;
1266                 }
1267
1268                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1269                                       lets_to_cpu(fe->modificationTime))) {
1270                         inode->i_mtime.tv_sec = convtime;
1271                         inode->i_mtime.tv_nsec = convtime_usec * 1000;
1272                 } else {
1273                         inode->i_mtime = sbi->s_record_time;
1274                 }
1275
1276                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1277                                       lets_to_cpu(fe->attrTime))) {
1278                         inode->i_ctime.tv_sec = convtime;
1279                         inode->i_ctime.tv_nsec = convtime_usec * 1000;
1280                 } else {
1281                         inode->i_ctime = sbi->s_record_time;
1282                 }
1283
1284                 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1285                 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1286                 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1287                 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1288         } else {
1289                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1290                     (inode->i_sb->s_blocksize_bits - 9);
1291
1292                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1293                                       lets_to_cpu(efe->accessTime))) {
1294                         inode->i_atime.tv_sec = convtime;
1295                         inode->i_atime.tv_nsec = convtime_usec * 1000;
1296                 } else {
1297                         inode->i_atime = sbi->s_record_time;
1298                 }
1299
1300                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1301                                       lets_to_cpu(efe->modificationTime))) {
1302                         inode->i_mtime.tv_sec = convtime;
1303                         inode->i_mtime.tv_nsec = convtime_usec * 1000;
1304                 } else {
1305                         inode->i_mtime = sbi->s_record_time;
1306                 }
1307
1308                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1309                                       lets_to_cpu(efe->createTime))) {
1310                         iinfo->i_crtime.tv_sec = convtime;
1311                         iinfo->i_crtime.tv_nsec = convtime_usec * 1000;
1312                 } else {
1313                         iinfo->i_crtime = sbi->s_record_time;
1314                 }
1315
1316                 if (udf_stamp_to_time(&convtime, &convtime_usec,
1317                                       lets_to_cpu(efe->attrTime))) {
1318                         inode->i_ctime.tv_sec = convtime;
1319                         inode->i_ctime.tv_nsec = convtime_usec * 1000;
1320                 } else {
1321                         inode->i_ctime = sbi->s_record_time;
1322                 }
1323
1324                 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1325                 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1326                 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1327                 offset = sizeof(struct extendedFileEntry) +
1328                                                         iinfo->i_lenEAttr;
1329         }
1330
1331         switch (fe->icbTag.fileType) {
1332         case ICBTAG_FILE_TYPE_DIRECTORY:
1333                 inode->i_op = &udf_dir_inode_operations;
1334                 inode->i_fop = &udf_dir_operations;
1335                 inode->i_mode |= S_IFDIR;
1336                 inc_nlink(inode);
1337                 break;
1338         case ICBTAG_FILE_TYPE_REALTIME:
1339         case ICBTAG_FILE_TYPE_REGULAR:
1340         case ICBTAG_FILE_TYPE_UNDEF:
1341                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1342                         inode->i_data.a_ops = &udf_adinicb_aops;
1343                 else
1344                         inode->i_data.a_ops = &udf_aops;
1345                 inode->i_op = &udf_file_inode_operations;
1346                 inode->i_fop = &udf_file_operations;
1347                 inode->i_mode |= S_IFREG;
1348                 break;
1349         case ICBTAG_FILE_TYPE_BLOCK:
1350                 inode->i_mode |= S_IFBLK;
1351                 break;
1352         case ICBTAG_FILE_TYPE_CHAR:
1353                 inode->i_mode |= S_IFCHR;
1354                 break;
1355         case ICBTAG_FILE_TYPE_FIFO:
1356                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1357                 break;
1358         case ICBTAG_FILE_TYPE_SOCKET:
1359                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1360                 break;
1361         case ICBTAG_FILE_TYPE_SYMLINK:
1362                 inode->i_data.a_ops = &udf_symlink_aops;
1363                 inode->i_op = &page_symlink_inode_operations;
1364                 inode->i_mode = S_IFLNK | S_IRWXUGO;
1365                 break;
1366         default:
1367                 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1368                                 "file type=%d\n", inode->i_ino,
1369                                 fe->icbTag.fileType);
1370                 make_bad_inode(inode);
1371                 return;
1372         }
1373         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1374                 struct deviceSpec *dsea =
1375                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1376                 if (dsea) {
1377                         init_special_inode(inode, inode->i_mode,
1378                                 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1379                                       le32_to_cpu(dsea->minorDeviceIdent)));
1380                         /* Developer ID ??? */
1381                 } else
1382                         make_bad_inode(inode);
1383         }
1384 }
1385
1386 static int udf_alloc_i_data(struct inode *inode, size_t size)
1387 {
1388         struct udf_inode_info *iinfo = UDF_I(inode);
1389         iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1390
1391         if (!iinfo->i_ext.i_data) {
1392                 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1393                                 "no free memory\n", inode->i_ino);
1394                 return -ENOMEM;
1395         }
1396
1397         return 0;
1398 }
1399
1400 static mode_t udf_convert_permissions(struct fileEntry *fe)
1401 {
1402         mode_t mode;
1403         uint32_t permissions;
1404         uint32_t flags;
1405
1406         permissions = le32_to_cpu(fe->permissions);
1407         flags = le16_to_cpu(fe->icbTag.flags);
1408
1409         mode =  ((permissions) & S_IRWXO) |
1410                 ((permissions >> 2) & S_IRWXG) |
1411                 ((permissions >> 4) & S_IRWXU) |
1412                 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1413                 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1414                 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1415
1416         return mode;
1417 }
1418
1419 /*
1420  * udf_write_inode
1421  *
1422  * PURPOSE
1423  *      Write out the specified inode.
1424  *
1425  * DESCRIPTION
1426  *      This routine is called whenever an inode is synced.
1427  *      Currently this routine is just a placeholder.
1428  *
1429  * HISTORY
1430  *      July 1, 1997 - Andrew E. Mileski
1431  *      Written, tested, and released.
1432  */
1433
1434 int udf_write_inode(struct inode *inode, int sync)
1435 {
1436         int ret;
1437
1438         lock_kernel();
1439         ret = udf_update_inode(inode, sync);
1440         unlock_kernel();
1441
1442         return ret;
1443 }
1444
1445 int udf_sync_inode(struct inode *inode)
1446 {
1447         return udf_update_inode(inode, 1);
1448 }
1449
1450 static int udf_update_inode(struct inode *inode, int do_sync)
1451 {
1452         struct buffer_head *bh = NULL;
1453         struct fileEntry *fe;
1454         struct extendedFileEntry *efe;
1455         uint32_t udfperms;
1456         uint16_t icbflags;
1457         uint16_t crclen;
1458         kernel_timestamp cpu_time;
1459         int err = 0;
1460         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1461         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1462         struct udf_inode_info *iinfo = UDF_I(inode);
1463
1464         bh = udf_tread(inode->i_sb,
1465                         udf_get_lb_pblock(inode->i_sb,
1466                                           iinfo->i_location, 0));
1467         if (!bh) {
1468                 udf_debug("bread failure\n");
1469                 return -EIO;
1470         }
1471
1472         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1473
1474         fe = (struct fileEntry *)bh->b_data;
1475         efe = (struct extendedFileEntry *)bh->b_data;
1476
1477         if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1478                 struct unallocSpaceEntry *use =
1479                         (struct unallocSpaceEntry *)bh->b_data;
1480
1481                 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1482                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1483                        iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1484                                         sizeof(struct unallocSpaceEntry));
1485                 crclen = sizeof(struct unallocSpaceEntry) +
1486                                 iinfo->i_lenAlloc - sizeof(tag);
1487                 use->descTag.tagLocation = cpu_to_le32(
1488                                                 iinfo->i_location.
1489                                                         logicalBlockNum);
1490                 use->descTag.descCRCLength = cpu_to_le16(crclen);
1491                 use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use +
1492                                                            sizeof(tag), crclen,
1493                                                            0));
1494                 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1495
1496                 mark_buffer_dirty(bh);
1497                 brelse(bh);
1498                 return err;
1499         }
1500
1501         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1502                 fe->uid = cpu_to_le32(-1);
1503         else
1504                 fe->uid = cpu_to_le32(inode->i_uid);
1505
1506         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1507                 fe->gid = cpu_to_le32(-1);
1508         else
1509                 fe->gid = cpu_to_le32(inode->i_gid);
1510
1511         udfperms = ((inode->i_mode & S_IRWXO)) |
1512                    ((inode->i_mode & S_IRWXG) << 2) |
1513                    ((inode->i_mode & S_IRWXU) << 4);
1514
1515         udfperms |= (le32_to_cpu(fe->permissions) &
1516                     (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1517                      FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1518                      FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1519         fe->permissions = cpu_to_le32(udfperms);
1520
1521         if (S_ISDIR(inode->i_mode))
1522                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1523         else
1524                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1525
1526         fe->informationLength = cpu_to_le64(inode->i_size);
1527
1528         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1529                 regid *eid;
1530                 struct deviceSpec *dsea =
1531                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1532                 if (!dsea) {
1533                         dsea = (struct deviceSpec *)
1534                                 udf_add_extendedattr(inode,
1535                                                      sizeof(struct deviceSpec) +
1536                                                      sizeof(regid), 12, 0x3);
1537                         dsea->attrType = cpu_to_le32(12);
1538                         dsea->attrSubtype = 1;
1539                         dsea->attrLength = cpu_to_le32(
1540                                                 sizeof(struct deviceSpec) +
1541                                                 sizeof(regid));
1542                         dsea->impUseLength = cpu_to_le32(sizeof(regid));
1543                 }
1544                 eid = (regid *)dsea->impUse;
1545                 memset(eid, 0, sizeof(regid));
1546                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1547                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1548                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1549                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1550                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1551         }
1552
1553         if (iinfo->i_efe == 0) {
1554                 memcpy(bh->b_data + sizeof(struct fileEntry),
1555                        iinfo->i_ext.i_data,
1556                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1557                 fe->logicalBlocksRecorded = cpu_to_le64(
1558                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1559                         (blocksize_bits - 9));
1560
1561                 if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1562                         fe->accessTime = cpu_to_lets(cpu_time);
1563                 if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1564                         fe->modificationTime = cpu_to_lets(cpu_time);
1565                 if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1566                         fe->attrTime = cpu_to_lets(cpu_time);
1567                 memset(&(fe->impIdent), 0, sizeof(regid));
1568                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1569                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1570                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1571                 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1572                 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1573                 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1574                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1575                 crclen = sizeof(struct fileEntry);
1576         } else {
1577                 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1578                        iinfo->i_ext.i_data,
1579                        inode->i_sb->s_blocksize -
1580                                         sizeof(struct extendedFileEntry));
1581                 efe->objectSize = cpu_to_le64(inode->i_size);
1582                 efe->logicalBlocksRecorded = cpu_to_le64(
1583                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1584                         (blocksize_bits - 9));
1585
1586                 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1587                     (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1588                      iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1589                         iinfo->i_crtime = inode->i_atime;
1590
1591                 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1592                     (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1593                      iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1594                         iinfo->i_crtime = inode->i_mtime;
1595
1596                 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1597                     (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1598                      iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1599                         iinfo->i_crtime = inode->i_ctime;
1600
1601                 if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1602                         efe->accessTime = cpu_to_lets(cpu_time);
1603                 if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1604                         efe->modificationTime = cpu_to_lets(cpu_time);
1605                 if (udf_time_to_stamp(&cpu_time, iinfo->i_crtime))
1606                         efe->createTime = cpu_to_lets(cpu_time);
1607                 if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1608                         efe->attrTime = cpu_to_lets(cpu_time);
1609
1610                 memset(&(efe->impIdent), 0, sizeof(regid));
1611                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1612                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1613                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1614                 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1615                 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1616                 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1617                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1618                 crclen = sizeof(struct extendedFileEntry);
1619         }
1620         if (iinfo->i_strat4096) {
1621                 fe->icbTag.strategyType = cpu_to_le16(4096);
1622                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1623                 fe->icbTag.numEntries = cpu_to_le16(2);
1624         } else {
1625                 fe->icbTag.strategyType = cpu_to_le16(4);
1626                 fe->icbTag.numEntries = cpu_to_le16(1);
1627         }
1628
1629         if (S_ISDIR(inode->i_mode))
1630                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1631         else if (S_ISREG(inode->i_mode))
1632                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1633         else if (S_ISLNK(inode->i_mode))
1634                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1635         else if (S_ISBLK(inode->i_mode))
1636                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1637         else if (S_ISCHR(inode->i_mode))
1638                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1639         else if (S_ISFIFO(inode->i_mode))
1640                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1641         else if (S_ISSOCK(inode->i_mode))
1642                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1643
1644         icbflags =      iinfo->i_alloc_type |
1645                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1646                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1647                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1648                         (le16_to_cpu(fe->icbTag.flags) &
1649                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1650                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1651
1652         fe->icbTag.flags = cpu_to_le16(icbflags);
1653         if (sbi->s_udfrev >= 0x0200)
1654                 fe->descTag.descVersion = cpu_to_le16(3);
1655         else
1656                 fe->descTag.descVersion = cpu_to_le16(2);
1657         fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1658         fe->descTag.tagLocation = cpu_to_le32(
1659                                         iinfo->i_location.logicalBlockNum);
1660         crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc -
1661                                                                 sizeof(tag);
1662         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1663         fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag),
1664                                                   crclen, 0));
1665         fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1666
1667         /* write the data blocks */
1668         mark_buffer_dirty(bh);
1669         if (do_sync) {
1670                 sync_dirty_buffer(bh);
1671                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1672                         printk(KERN_WARNING "IO error syncing udf inode "
1673                                 "[%s:%08lx]\n", inode->i_sb->s_id,
1674                                 inode->i_ino);
1675                         err = -EIO;
1676                 }
1677         }
1678         brelse(bh);
1679
1680         return err;
1681 }
1682
1683 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
1684 {
1685         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1686         struct inode *inode = iget_locked(sb, block);
1687
1688         if (!inode)
1689                 return NULL;
1690
1691         if (inode->i_state & I_NEW) {
1692                 memcpy(&UDF_I(inode)->i_location, &ino, sizeof(kernel_lb_addr));
1693                 __udf_read_inode(inode);
1694                 unlock_new_inode(inode);
1695         }
1696
1697         if (is_bad_inode(inode))
1698                 goto out_iput;
1699
1700         if (ino.logicalBlockNum >= UDF_SB(sb)->
1701                         s_partmaps[ino.partitionReferenceNum].s_partition_len) {
1702                 udf_debug("block=%d, partition=%d out of range\n",
1703                           ino.logicalBlockNum, ino.partitionReferenceNum);
1704                 make_bad_inode(inode);
1705                 goto out_iput;
1706         }
1707
1708         return inode;
1709
1710  out_iput:
1711         iput(inode);
1712         return NULL;
1713 }
1714
1715 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1716                     kernel_lb_addr eloc, uint32_t elen, int inc)
1717 {
1718         int adsize;
1719         short_ad *sad = NULL;
1720         long_ad *lad = NULL;
1721         struct allocExtDesc *aed;
1722         int8_t etype;
1723         uint8_t *ptr;
1724         struct udf_inode_info *iinfo = UDF_I(inode);
1725
1726         if (!epos->bh)
1727                 ptr = iinfo->i_ext.i_data + epos->offset -
1728                         udf_file_entry_alloc_offset(inode) +
1729                         iinfo->i_lenEAttr;
1730         else
1731                 ptr = epos->bh->b_data + epos->offset;
1732
1733         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1734                 adsize = sizeof(short_ad);
1735         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1736                 adsize = sizeof(long_ad);
1737         else
1738                 return -1;
1739
1740         if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1741                 char *sptr, *dptr;
1742                 struct buffer_head *nbh;
1743                 int err, loffset;
1744                 kernel_lb_addr obloc = epos->block;
1745
1746                 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1747                                                 obloc.partitionReferenceNum,
1748                                                 obloc.logicalBlockNum, &err);
1749                 if (!epos->block.logicalBlockNum)
1750                         return -1;
1751                 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1752                                                                  epos->block,
1753                                                                  0));
1754                 if (!nbh)
1755                         return -1;
1756                 lock_buffer(nbh);
1757                 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1758                 set_buffer_uptodate(nbh);
1759                 unlock_buffer(nbh);
1760                 mark_buffer_dirty_inode(nbh, inode);
1761
1762                 aed = (struct allocExtDesc *)(nbh->b_data);
1763                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1764                         aed->previousAllocExtLocation =
1765                                         cpu_to_le32(obloc.logicalBlockNum);
1766                 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1767                         loffset = epos->offset;
1768                         aed->lengthAllocDescs = cpu_to_le32(adsize);
1769                         sptr = ptr - adsize;
1770                         dptr = nbh->b_data + sizeof(struct allocExtDesc);
1771                         memcpy(dptr, sptr, adsize);
1772                         epos->offset = sizeof(struct allocExtDesc) + adsize;
1773                 } else {
1774                         loffset = epos->offset + adsize;
1775                         aed->lengthAllocDescs = cpu_to_le32(0);
1776                         sptr = ptr;
1777                         epos->offset = sizeof(struct allocExtDesc);
1778
1779                         if (epos->bh) {
1780                                 aed = (struct allocExtDesc *)epos->bh->b_data;
1781                                 aed->lengthAllocDescs =
1782                                         cpu_to_le32(le32_to_cpu(
1783                                         aed->lengthAllocDescs) + adsize);
1784                         } else {
1785                                 iinfo->i_lenAlloc += adsize;
1786                                 mark_inode_dirty(inode);
1787                         }
1788                 }
1789                 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1790                         udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1791                                     epos->block.logicalBlockNum, sizeof(tag));
1792                 else
1793                         udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1794                                     epos->block.logicalBlockNum, sizeof(tag));
1795                 switch (iinfo->i_alloc_type) {
1796                 case ICBTAG_FLAG_AD_SHORT:
1797                         sad = (short_ad *)sptr;
1798                         sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1799                                                      inode->i_sb->s_blocksize);
1800                         sad->extPosition =
1801                                 cpu_to_le32(epos->block.logicalBlockNum);
1802                         break;
1803                 case ICBTAG_FLAG_AD_LONG:
1804                         lad = (long_ad *)sptr;
1805                         lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1806                                                      inode->i_sb->s_blocksize);
1807                         lad->extLocation = cpu_to_lelb(epos->block);
1808                         memset(lad->impUse, 0x00, sizeof(lad->impUse));
1809                         break;
1810                 }
1811                 if (epos->bh) {
1812                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1813                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1814                                 udf_update_tag(epos->bh->b_data, loffset);
1815                         else
1816                                 udf_update_tag(epos->bh->b_data,
1817                                                 sizeof(struct allocExtDesc));
1818                         mark_buffer_dirty_inode(epos->bh, inode);
1819                         brelse(epos->bh);
1820                 } else {
1821                         mark_inode_dirty(inode);
1822                 }
1823                 epos->bh = nbh;
1824         }
1825
1826         etype = udf_write_aext(inode, epos, eloc, elen, inc);
1827
1828         if (!epos->bh) {
1829                 iinfo->i_lenAlloc += adsize;
1830                 mark_inode_dirty(inode);
1831         } else {
1832                 aed = (struct allocExtDesc *)epos->bh->b_data;
1833                 aed->lengthAllocDescs =
1834                         cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) +
1835                                     adsize);
1836                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1837                                 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1838                         udf_update_tag(epos->bh->b_data,
1839                                         epos->offset + (inc ? 0 : adsize));
1840                 else
1841                         udf_update_tag(epos->bh->b_data,
1842                                         sizeof(struct allocExtDesc));
1843                 mark_buffer_dirty_inode(epos->bh, inode);
1844         }
1845
1846         return etype;
1847 }
1848
1849 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1850                       kernel_lb_addr eloc, uint32_t elen, int inc)
1851 {
1852         int adsize;
1853         uint8_t *ptr;
1854         short_ad *sad;
1855         long_ad *lad;
1856         struct udf_inode_info *iinfo = UDF_I(inode);
1857
1858         if (!epos->bh)
1859                 ptr = iinfo->i_ext.i_data + epos->offset -
1860                         udf_file_entry_alloc_offset(inode) +
1861                         iinfo->i_lenEAttr;
1862         else
1863                 ptr = epos->bh->b_data + epos->offset;
1864
1865         switch (iinfo->i_alloc_type) {
1866         case ICBTAG_FLAG_AD_SHORT:
1867                 sad = (short_ad *)ptr;
1868                 sad->extLength = cpu_to_le32(elen);
1869                 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
1870                 adsize = sizeof(short_ad);
1871                 break;
1872         case ICBTAG_FLAG_AD_LONG:
1873                 lad = (long_ad *)ptr;
1874                 lad->extLength = cpu_to_le32(elen);
1875                 lad->extLocation = cpu_to_lelb(eloc);
1876                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1877                 adsize = sizeof(long_ad);
1878                 break;
1879         default:
1880                 return -1;
1881         }
1882
1883         if (epos->bh) {
1884                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1885                     UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1886                         struct allocExtDesc *aed =
1887                                 (struct allocExtDesc *)epos->bh->b_data;
1888                         udf_update_tag(epos->bh->b_data,
1889                                        le32_to_cpu(aed->lengthAllocDescs) +
1890                                        sizeof(struct allocExtDesc));
1891                 }
1892                 mark_buffer_dirty_inode(epos->bh, inode);
1893         } else {
1894                 mark_inode_dirty(inode);
1895         }
1896
1897         if (inc)
1898                 epos->offset += adsize;
1899
1900         return (elen >> 30);
1901 }
1902
1903 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1904                      kernel_lb_addr *eloc, uint32_t *elen, int inc)
1905 {
1906         int8_t etype;
1907
1908         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1909                (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1910                 int block;
1911                 epos->block = *eloc;
1912                 epos->offset = sizeof(struct allocExtDesc);
1913                 brelse(epos->bh);
1914                 block = udf_get_lb_pblock(inode->i_sb, epos->block, 0);
1915                 epos->bh = udf_tread(inode->i_sb, block);
1916                 if (!epos->bh) {
1917                         udf_debug("reading block %d failed!\n", block);
1918                         return -1;
1919                 }
1920         }
1921
1922         return etype;
1923 }
1924
1925 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1926                         kernel_lb_addr *eloc, uint32_t *elen, int inc)
1927 {
1928         int alen;
1929         int8_t etype;
1930         uint8_t *ptr;
1931         short_ad *sad;
1932         long_ad *lad;
1933         struct udf_inode_info *iinfo = UDF_I(inode);
1934
1935         if (!epos->bh) {
1936                 if (!epos->offset)
1937                         epos->offset = udf_file_entry_alloc_offset(inode);
1938                 ptr = iinfo->i_ext.i_data + epos->offset -
1939                         udf_file_entry_alloc_offset(inode) +
1940                         iinfo->i_lenEAttr;
1941                 alen = udf_file_entry_alloc_offset(inode) +
1942                                                         iinfo->i_lenAlloc;
1943         } else {
1944                 if (!epos->offset)
1945                         epos->offset = sizeof(struct allocExtDesc);
1946                 ptr = epos->bh->b_data + epos->offset;
1947                 alen = sizeof(struct allocExtDesc) +
1948                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1949                                                         lengthAllocDescs);
1950         }
1951
1952         switch (iinfo->i_alloc_type) {
1953         case ICBTAG_FLAG_AD_SHORT:
1954                 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1955                 if (!sad)
1956                         return -1;
1957                 etype = le32_to_cpu(sad->extLength) >> 30;
1958                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1959                 eloc->partitionReferenceNum =
1960                                 iinfo->i_location.partitionReferenceNum;
1961                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1962                 break;
1963         case ICBTAG_FLAG_AD_LONG:
1964                 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1965                 if (!lad)
1966                         return -1;
1967                 etype = le32_to_cpu(lad->extLength) >> 30;
1968                 *eloc = lelb_to_cpu(lad->extLocation);
1969                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1970                 break;
1971         default:
1972                 udf_debug("alloc_type = %d unsupported\n",
1973                                 iinfo->i_alloc_type);
1974                 return -1;
1975         }
1976
1977         return etype;
1978 }
1979
1980 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1981                               kernel_lb_addr neloc, uint32_t nelen)
1982 {
1983         kernel_lb_addr oeloc;
1984         uint32_t oelen;
1985         int8_t etype;
1986
1987         if (epos.bh)
1988                 get_bh(epos.bh);
1989
1990         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1991                 udf_write_aext(inode, &epos, neloc, nelen, 1);
1992                 neloc = oeloc;
1993                 nelen = (etype << 30) | oelen;
1994         }
1995         udf_add_aext(inode, &epos, neloc, nelen, 1);
1996         brelse(epos.bh);
1997
1998         return (nelen >> 30);
1999 }
2000
2001 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2002                        kernel_lb_addr eloc, uint32_t elen)
2003 {
2004         struct extent_position oepos;
2005         int adsize;
2006         int8_t etype;
2007         struct allocExtDesc *aed;
2008         struct udf_inode_info *iinfo;
2009
2010         if (epos.bh) {
2011                 get_bh(epos.bh);
2012                 get_bh(epos.bh);
2013         }
2014
2015         iinfo = UDF_I(inode);
2016         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2017                 adsize = sizeof(short_ad);
2018         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2019                 adsize = sizeof(long_ad);
2020         else
2021                 adsize = 0;
2022
2023         oepos = epos;
2024         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2025                 return -1;
2026
2027         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2028                 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
2029                 if (oepos.bh != epos.bh) {
2030                         oepos.block = epos.block;
2031                         brelse(oepos.bh);
2032                         get_bh(epos.bh);
2033                         oepos.bh = epos.bh;
2034                         oepos.offset = epos.offset - adsize;
2035                 }
2036         }
2037         memset(&eloc, 0x00, sizeof(kernel_lb_addr));
2038         elen = 0;
2039
2040         if (epos.bh != oepos.bh) {
2041                 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
2042                 udf_write_aext(inode, &oepos, eloc, elen, 1);
2043                 udf_write_aext(inode, &oepos, eloc, elen, 1);
2044                 if (!oepos.bh) {
2045                         iinfo->i_lenAlloc -= (adsize * 2);
2046                         mark_inode_dirty(inode);
2047                 } else {
2048                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2049                         aed->lengthAllocDescs =
2050                                 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) -
2051                                             (2 * adsize));
2052                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2053                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2054                                 udf_update_tag(oepos.bh->b_data,
2055                                                 oepos.offset - (2 * adsize));
2056                         else
2057                                 udf_update_tag(oepos.bh->b_data,
2058                                                 sizeof(struct allocExtDesc));
2059                         mark_buffer_dirty_inode(oepos.bh, inode);
2060                 }
2061         } else {
2062                 udf_write_aext(inode, &oepos, eloc, elen, 1);
2063                 if (!oepos.bh) {
2064                         iinfo->i_lenAlloc -= adsize;
2065                         mark_inode_dirty(inode);
2066                 } else {
2067                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2068                         aed->lengthAllocDescs =
2069                                 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) -
2070                                             adsize);
2071                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2072                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2073                                 udf_update_tag(oepos.bh->b_data,
2074                                                 epos.offset - adsize);
2075                         else
2076                                 udf_update_tag(oepos.bh->b_data,
2077                                                 sizeof(struct allocExtDesc));
2078                         mark_buffer_dirty_inode(oepos.bh, inode);
2079                 }
2080         }
2081
2082         brelse(epos.bh);
2083         brelse(oepos.bh);
2084
2085         return (elen >> 30);
2086 }
2087
2088 int8_t inode_bmap(struct inode *inode, sector_t block,
2089                   struct extent_position *pos, kernel_lb_addr *eloc,
2090                   uint32_t *elen, sector_t *offset)
2091 {
2092         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2093         loff_t lbcount = 0, bcount =
2094             (loff_t) block << blocksize_bits;
2095         int8_t etype;
2096         struct udf_inode_info *iinfo;
2097
2098         if (block < 0) {
2099                 printk(KERN_ERR "udf: inode_bmap: block < 0\n");
2100                 return -1;
2101         }
2102
2103         iinfo = UDF_I(inode);
2104         pos->offset = 0;
2105         pos->block = iinfo->i_location;
2106         pos->bh = NULL;
2107         *elen = 0;
2108
2109         do {
2110                 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2111                 if (etype == -1) {
2112                         *offset = (bcount - lbcount) >> blocksize_bits;
2113                         iinfo->i_lenExtents = lbcount;
2114                         return -1;
2115                 }
2116                 lbcount += *elen;
2117         } while (lbcount <= bcount);
2118
2119         *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2120
2121         return etype;
2122 }
2123
2124 long udf_block_map(struct inode *inode, sector_t block)
2125 {
2126         kernel_lb_addr eloc;
2127         uint32_t elen;
2128         sector_t offset;
2129         struct extent_position epos = {};
2130         int ret;
2131
2132         lock_kernel();
2133
2134         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2135                                                 (EXT_RECORDED_ALLOCATED >> 30))
2136                 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
2137         else
2138                 ret = 0;
2139
2140         unlock_kernel();
2141         brelse(epos.bh);
2142
2143         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2144                 return udf_fixed_to_variable(ret);
2145         else
2146                 return ret;
2147 }